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Abstract

RNA is a dynamic biomolecule crucial for cellular regulation, with its function
largely determined by its folding into complex structures, while misfolding can
lead to multifaceted biological sequelae. During the folding process, RNA tra-
verses through a series of intermediate structural states, with each transition occur-
ring at variable rates that collectively influence the time required to reach the func-
tional form. Understanding these folding kinetics is vital for predicting RNA be-
havior and optimizing applications in synthetic biology and drug discovery. While
in silico kinetic RNA folding simulators are often computationally intensive and
time-consuming, accurate approximations of the folding times can already be very
informative to assess the efficiency of the folding process. In this work, we present
KinPFN, a novel approach that leverages prior-data fitted networks to directly
model the posterior predictive distribution of RNA folding times. By training on
synthetic data representing arbitrary prior folding times, KinPFN efficiently ap-
proximates the cumulative distribution function of RNA folding times in a single
forward pass, given only a few initial folding time examples. Our method offers
a modular extension to existing RNA kinetics algorithms, promising significant
computational speed-ups orders of magnitude faster, while achieving comparable
results. We showcase the effectiveness of KinPFN through extensive evaluations
and real-world case studies, demonstrating its potential for RNA folding kinetics
analysis, its practical relevance, and generalization to other biological data.

1 Introduction

Ribonucleic acid (RNA) plays a pivotal role in various biological processes, serving as a crucial
intermediary between DNA and proteins while exerting significant regulatory functions through
diverse mechanisms (Fu, 2014). Composed of four nucleotides — Adenine (A), Cytosine (C), Gua-
nine (G), and Uracil (U) — the functionality of RNA is closely tied to its structure (Lodish et al.,
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2005): An RNA molecule adopts one or more native conformations that are essential for its biologi-
cal activity (Fang et al., 2015). The dynamic process of how RNAs acquire their functional structure
from, e.g., the unfolded state, is known as kinetic folding of RNA. During this process, the RNA
strand transitions through several intermediate structural states, driven by intra-molecular interac-
tions (Flamm et al., 2000; Yu et al., 2018). Since misfolding can lead to significant dysfunctions
and diseases (Conlon & Manley, 2017), the study of RNA folding kinetics is highly relevant for
biomedical applications.

An important aspect of folding dynamics is the study of the rates and pathways through which
RNA molecules achieve their native structures (Chen, 2008). A common measure to quantify these
processes are first passage times (FPTs), i.e. the time required to acquire a certain structure for
the first time, and their cumulative distribution functions (CDFs) (Flamm et al., 2000; Wolfinger
et al., 2004). These functions are derived from extensive simulations, requiring thousands of folding
iterations to capture the probabilistic behavior of RNA molecules. While essential for understanding
RNA dynamics, calculating FPT CDFs is computationally expensive (Wolfinger et al., 2004; Badelt
et al., 2023), posing a significant barrier to real-time applications such as kinetic RNA design, which
is critical for drug discovery. While deep learning methods could improve the state of the art in RNA
folding (Fu et al., 2022; Franke et al., 2024) and RNA design (Runge et al., 2024; Patil et al., 2024),
they are not yet used in modeling RNA kinetics.

In this work, we present KinPFN, a novel deep learning-based approach that dramatically accel-
erates the computation of RNA first passage times. KinPFN leverages prior-data fitted networks
(PFNs) (Müller et al., 2022) trained on synthetic datasets of RNA folding times to predict the en-
tire CDF of folding times from just a few context examples in a single forward pass. By providing
fast and accurate distribution approximations, KinPFN can be integrated with existing RNA kinetics
simulators, offering comparable performance at a fraction of the computational cost.

Our main contributions are summarized as follows:

• We propose a new synthetic prior to sample datasets of RNA folding times. We use this syn-
thetic data to train a prior-data fitted network to learn to predict the distribution of RNA first
passage times, conditioned on a small set of context examples (Section 4).

• We introduce KinPFN, a new deep learning model for RNA kinetics, providing accurate pre-
dictions of RNA first passage time distributions accelerating kinetic simulations by orders of
magnitude (Section 4.2).

• We evaluate KinPFN’s performance on synthetic and real-world RNA data, demonstrating its
practical utility through two case studies: an analysis of eukaryotic RNAs and a study of RNA
folding efficiency (Section 5).

• In addition to its application to RNA folding kinetics, we assess KinPFN’s ability to generalize
to different biological data sources by approximating gene expression data obtained from a
previous smFISH (Femino et al., 1998; Raj et al., 2008) wet-lab analysis (Bagnall et al., 2020),
demonstrating its potential to accelerate experimental protocols (Section 5.4).

2 Background

RNA First Passage Times Kinetic RNA folding is typically approximated by Monte-Carlo sim-
ulation techniques (Flamm & Hofacker, 2008). However, this is computationally expensive since
enough stochastic simulations need to be accumulated to get a statistically representative time evo-
lution of the state probabilities. Depending on the number of different structural states, which is
typically huge, the path during folding, and the energy barriers between the states, the time to reach
a certain structure for the first time, i.e., the first passage time, can differ across multiple kinetic sim-
ulations for a given RNA. By comparing the first passage time CDFs of different RNA molecules
or under varying conditions, differences in the folding dynamics can be revealed and better under-
stood. This comparison provides insights into the efficiency and stability of the different folding
processes, examining the impact of various modifications, such as chemical alternations or evolu-
tionary changes (Flamm et al., 2000). In this work, we use the term folding time as a synonym for
first passage time.

Prior-Data Fitted Networks Prior-data fitted networks (PFNs) (Müller et al., 2022) use a
transformer-based model to perform approximate Bayesian inference. PFNs are trained to predict
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an output y ∈ R, conditioned on an input x and a training set Dtrain of input-output pairs. Dur-
ing training, these samples are drawn from a prior distribution over datasets p(D), optimizing the
Cross-Entropy loss for a PFN qθ with parameters θ,

ℓθ = E(x,y)∪Dtrain∼p(D) [− log qθ(y | x,Dtrain)] , (1)

for predicting the label y, given x and Dtrain. As shown by Müller et al. (2022), this approach
directly minimizes the Kullback-Leibler (KL) divergence between the prediction of the PFN and the
true posterior predictive distribution when training on many samples of the form (x, y) ∪Dtrain. In
this work, we adapt this strategy to tackle the prediction of RNA first passage time distributions.

3 Related Work

In silico analysis of RNA folding kinetics can be divided into nucleotide-resolution and coarse-
grained approaches. While the first yields a high level of simulation details, the latter typically
allows studying larger systems, i.e. longer RNA chain lengths. The first publicly available tool for
computing RNA folding kinetics at nucleotide resolution is Kinfold (Flamm et al., 2000), a Markov-
chain Monte Carlo (MCMC) method that is still considered one of the most accurate approaches
available (Fukunaga & Hamada, 2019). This accuracy, however, comes at the cost of runtime as
Kinfold MCMC simulations typically require a large number of trajectories to obtain reliable re-
sults. While it is possible to simulate the folding kinetics of RNA chains of several hundreds of
nucleotides, such calculations require substantial compute (Fukunaga & Hamada, 2019). This limi-
tation inspired accelerating techniques like memoization and parallelization (Aviram et al., 2012), or
shortcuts for the energy calculations of RNA secondary structures as implemented in Kfold (Dyke-
man, 2015). In contrast, we develop KinPFN as an extension to existing kinetic RNA folding sim-
ulators to massively speed up every kinetic simulator that produces first passage times. Please find
more related work on RNA folding kinetics in Appendix A.

An Alternative to KinPFN are probabilistic density estimators like kernel density estimation
(KDE) (Bishop, 2006), Gaussian Mixture Models (GMM) (Bishop, 2006) or Bayesian Gaussian
Mixture Models, also known as Dirichlet Process GMMs (DP-GMM), which utilize a Variational
Bayesian estimation of Gaussian mixtures (Blei & Jordan, 2006). Similar to KinPFN, GMM and
DP-GMM aim to model the posterior predictive distribution as a multi-modal Gaussian distribu-
tion. While GMMs struggle with complex data structures, especially when the number of modes is
unknown, Bayesian approaches like DP-GMM can dynamically adjust the number of mixture com-
ponents (McLachlan et al., 2019; Neal, 2000). Alternatively, kernel density estimation (KDE) offers
a non-parametric approach by estimating probability densities through the summation of kernels,
like Gaussians, over data points (Bishop, 2006).

While, to the best of our knowledge, KinPFN is the first deep learning approach for RNA folding ki-
netics, PFNs were previously applied to multiple problems like few shot image classification (Müller
et al., 2022), classification for small tabular datasets (Müller et al., 2022; Hollmann et al., 2023), ex-
trapolation of learning curves (Adriaensen et al., 2023), Bayesian optimization and hyperparameter
optimization (Müller et al., 2023; Rakotoarison et al.), and time series forecasting (Dooley et al.,
2024).

4 Approximation of RNA Folding Time Distributions

We consider the problem of learning the posterior predictive distribution (PPD) of first passage times
for an RNA molecule ϕ ∈ {A,G,C,U}l of length l, conditioned on a small set of initial examples,
to approximate the cumulative distribution function (CDF). Formally, the first passage time t is
the time required for the RNA ϕ to fold from an initial structure ωstart into a stop structure ωstop
while transitioning through arbitrary intermediate structural states. Running M folding simulations
under the same conditions (for RNA sequence ϕ, ωstart, and ωstop) yields distinct first passage times
t1, . . . , tM . By aggregating these times, we compute the fraction of molecules ϕ folded by time T ,
denoted Fϕ(T ), where Fϕt (T ) = P (t ≤ T ) represents the CDF of the stochastic variable t.

The problem we consider in this work can be formulated as follows: Given N ≪ M observed
first passage times t1, . . . , tN and a prior distribution over first passage times from which we can
generate samples, we aim to approximate the PPD q(t | t1, . . . , tN ). With an approximated PPD,
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we can compute the predicted CDF F̂ϕ(T ), which approximates the true CDF Fϕ(T ); the fraction
of molecules folded by time T .

In the following sections, we describe our approach to define a synthetic prior of first passage time
distributions that allows us to approximate the PPD of folding times (Section 4.1) and explain the
development of KinPFN in detail (Section 4.2).

4.1 A Synthetic Prior for RNA Folding Time Distributions

Obtaining large amounts of prior RNA kinetics data to train a deep learning model, particularly for
longer RNAs, is currently infeasible due to the exponential runtime of accurate kinetic simulators
(see Figure 7 in Appendix B). This hinders us from using traditional Bayesian approaches for the ap-
proximation of RNA first passage times, e.g., by training a variational autoencoder (VAE) (Kingma,
2013). Therefore, we take an alternative approach, training a PFN solely on a synthetic prior of
RNA first passage time distributions. However, developing a synthetic prior for molecular problems
is challenging since it seems impossible to generate meaningful synthetic combinations of molecule
features with posterior information from a process depending on these features. We, therefore, de-
velop KinPFN independent of molecular features and restrict its input to first passage times only.
This offers the advantage that we can apply KinPFN to predict first passage time distributions at test
time, independent of the underlying data-generating process.

For the development of our synthetic FPT prior, we leverage the observation that RNA first pas-
sage time distributions often exhibit CDFs with regions of slower growth interspersed with steeper
transitions, leading to distinct plateaus and multiple changes between convex and concave sections
representing inefficiencies in the corresponding folding pathway (Flamm et al., 2000; Wolfinger
et al., 2004). These patterns make multi-modal distributions a natural choice to model the complex-
ity of such processes synthetically, as they are designed to capture data with multiple local maxima
or modes (Hartigan & Hartigan, 1985). We thus construct a prior distribution over RNA first pas-
sage times as a family of multi-modal Gaussian distributions {Pψk

| k ∈ {2, 3, 4, 5}, ψk ∈ Ψk}.
Each multi-modal distribution in this family comprises k Gaussian components, each character-
ized by its own mean µi and standard deviation σi, i = 1, . . . , k. The parameter space Ψk
thus defines the family of distributions, with each specific distribution parameterized by a vector
ψk = ((µ1, σ1), (µ2, σ2), . . . , (µk, σk)) within Ψk. We illustrate a synthetic bi-modal PDF along-
side its corresponding CDF and examples of synthetic first passage time CDFs in Figure 1.

Since we cannot make any further assumptions about the distribution of folding times, especially
when generating synthetic data, x and y of a prior distribution p(ψk) are considered completely
independent. Consequently, we decide to assign a value of zero to all variables x, representing
no prior information, while the y variables are ultimately sampled from the aforementioned multi-
modal distributions. As the targets y represent synthetic first passage times, they will be referred to
as t from this point forward. We set the range of possible first passage time values t ∼ p(ψk) to

Figure 1: Examples of the synthetic prior of RNA first passage times. We show an example of
a single CDF (red) and the corresponding multi-modal probability density function (PDF) (blue;
dotted line) generated from the synthetic prior (left). The distribution is bi-modal (k = 2) with
the parameters ψk = ((10.86, 1.36), (2.38, 2.48)). The right plot visualizes ten example CDFs
generated from the synthetic prior.
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[10−6, 1015], a range that covers a large fraction of possible folding processes based on observations
from preliminary kinetic simulations. To mimic realistic first passage time distributions, we choose
bounded uniform base means µbase

i ∼ U(−5, 16), and uniformly distributed standard deviations
σi ∼ U(0.1, 4.2) based on preliminary experiments. To increase the variability of the prior, we
introduce a uniformly distributed shifting parameter δ ∼ U(−6, 15), which is sampled only once
and fixed for all i = 1, . . . , k. The final means µi are then given by:

µi = µbase
i + δ , (2)

with the probability density function (PDF) of the multi-modal Gaussian distribution parameterized
by ψk expressed as

p(ψk, x) =
k∑
i=1

exp

(
− (log x− µi)

2

2σ2
i

)
, (3)

for a value x.

To sample first passage times (FPTs) from these PDFs, we generate the PDF over a logarithmically
spaced range of x-values within the provided FPT bounds and employ the inverse transformation
method, known as the Smirnov transformation. The required series of calculations to derive the
CDF, its quantile function CDF−1, different normalizations to properly scale the functions, and
logarithmic transformations are detailed in Appendix C.1. The prior distribution over synthetic
RNA first passage times used in this work is then represented by the log-encoded samples from a
multi-modal Gaussian distribution p(ψk) ∈ Pψk

:

Y = log10
({

CDF−1(ψk) (U(0, 1)) | p(ψk)
})
. (4)

4.2 PFNs for the Approximation of RNA Folding Time Distributions

We propose to use PFNs (Müller et al., 2022) to accelerate kinetic simulations for RNA first pas-
sage time distributions. During training, the PFN qθ with model parameters θ is presented with M
synthetic first passage times, {(0i, ti)}Mi=1, sampled from the prior distribution p(ψk). To enable
the model to generalize across varying amounts of training data instead of a fixed number of con-
text folding times, this example set is split at a random cutoff point N ∼ U(0,M − 1), resulting
in a training subset Dtrain = {(0i, ti)}Ni=1, while the remaining first passage times are held out via
masking. These held-out times, ttest = {tN+1, . . . , tM}, are then used as targets for prediction by
minimizing the prior-data negative log-likelihood (NLL) according to Equation 1 as proposed by
Müller et al. (2022):

ℓθ = E(0,ttest)∪Dtrain∼p(ψk) [− log qθ(ttest|0test, Dtrain)] . (5)

Figure 2 schematically illustrates this training process of KinPFN for a single batch of size B, along
with its application in approximating the posterior predictive distribution (PPD) of RNA first passage
times using N real folding times as context obtained from a kinetic simulator.

KinPFN Architecture and Hyperparameters We adopt the transformer-based (Vaswani et al.,
2017) PFN architecture as proposed by Müller et al. (2022) and treat each pair (0, t) as a separate
token. To learn the distribution of the targets rather than ordering, we deliberately omit positional
encoding to maintain permutation invariance according to Müller et al. (2022). Since the first pas-
sage times t have already been log-encoded to the range [−6, 15] in the prior distribution p(ψk) (see
Section 4.1), we encode the input with a linear layer after normalizing the data to zero mean and
a standard deviation of one while preserving the distributional properties. Following Müller et al.
(2022), we mask the attention matrix s.t. each position only attends to the training positions. This
ensures that only training examples influence each other while test samples remain independent. We
use the Adam optimizer (Kingma & Ba, 2015) with a cosine decay (Loshchilov & Hutter, 2017)
and a linear learning rate warm-up over 25% of the training steps as previously proposed (Müller
et al., 2022; Adriaensen et al., 2023). KinPFN outputs a discretized distribution qθ(t|0, Dtrain) (Rie-
mann distribution; see Müller et al. (2022)) using a finite number of buckets with equal likelihood
of containing t; a hyperparameter that is included in our hyperparameter optimization (HPO) proce-
dure leading to a final number of 1,000 buckets for KinPFN, initialized on a batch of 100,000 prior
samples. A visualization of the discretized distribution qθ can be found in Appendix H.4. Further
hyperparameters, like the number of layers, the embedding size, or the learning rate are inherited
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Sample synthetic first passage times D(j) ∼ p(ψk) ∈ Pψk

D(1) = {(0i, ti)}Mi=1 =

{(0i, ti)}Ni=1 ∪ {(0i, ti)}Mi=N+1 =

D
(1)
train ∪ {(0(1)test , t

(1)
test)}

...

D(B) = {(0i, ti)}Mi=1 =

{(0i, ti)}Ni=1 ∪ {(0i, ti)}Mi=N+1 =

D
(B)
train ∪ {(0(B)

test , t
(B)
test )}

Train KinPFN by minimizing

−
∑B
j=1 log qθ(t

(j)
test|0

(j)
test, D

(j)
train)

N real first passage times
and test input for inference up to a certain

number of folding simulations M Bayesian inference via the trained
KinPFN, with the actual training

data and test points as input:

qθ∗(ttest|0test, Dtrain) ≈ p(ttest|0test, Dtrain)

({(0i, ti)}Ni=1, {(0i)}Mi=1) = (Dtrain, 0test)

KinPFN with parameters θ∗

Figure 2: A schematic visualization of KinPFN. Diagram based on Müller et al. (2022).

from the Transformer architecture. Given the infinite nature of synthetic training data, we set the
dropout rate and the weight decay to zero. We tune hyperparameters in two separate runs using
Neural Pipeline search (NePS) (Stoll et al., 2023). More details regarding hyperparameters, hyper-
parameter optimization, and the final configuration of KinPFN can be found in Appendix D. The
final model of KinPFN was trained for roughly five hours on a single A40 GPU.

5 Experiments

KinPFN was trained on synthetic datasets of RNA folding times to learn to predict the distribution
of first passage times, conditioned on a few examples. Therefore, the predictions only depend on
example folding times for a given RNA but not on other features, e.g., its length, sequence com-
position, structure, or energy parameters. In this section, we show that this feature of KinPFN is
a main contributor to its practical relevance. First, we confirm its ability to transfer from the syn-
thetic prior data to realistic scenarios using a test set of simulations for randomly generated RNAs
(Section 5.1). Then, we demonstrate the practical importance of KinPFN in two case studies: We
show that KinPFN is capable of approximating first passage time distributions of natural RNAs
(Section 5.2) and analyze the folding efficiency of different RNA sequences (Section 5.3). Finally,
we assess KinPFN’s ability to generalize to different biological data by approximating gene expres-
sion data from a previous study (Bagnall et al., 2020) (Section 5.4). Preliminary evaluations for
the predictions on samples from the synthetic prior are shown in Appendix H.1. We report per-
formance in terms of prior-data negative log-likelihood (NLL) between the approximated posterior
predictive distribution (PPD) and the true first passage time distribution and mean absolute error
(MAE) between the CDF of the approximated PPD F̂ (t) and the true target CDF F (t). More infor-
mation about these measures can be found in Appendix F. All experiments analyzing runtimes were
benchmarked on a single AMD Milan EPYC 7513 CPU with 2,6 GHz.

5.1 KinPFN Transfers to Real-World Scenarios

We assess the general capabilities of KinPFN to transfer from synthetic data to data obtained from
kinetic simulators. In particular, we analyze the robustness of KinPFN to changes in the sequence
length of the RNA, the start and stop structure, and different kinetic simulators. To do so, we
create a novel test set of 635 randomly generated RNA sequences with lengths between 15 and 147
nucleotides, run Kinfold (Flamm et al., 2000) for 1,000 simulations on each of the test samples and
extract first passage times (FPTs) from the simulations. We compare KinPFN to a DP-GMM and a
KDE on this dataset, evaluating their performance across varying amounts of context using identical
context first passage times. We did not include a standard GMM due to the unknown number of
modes in the data. Instead, we use the DP-GMM, which can dynamically adjust to the correct
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number of modes, given an upper bound of 5. This upper bound aligns with our assumption in the
synthetic prior for KinPFN (Section 4.1). We conducted a hyperparameter optimization for both
DP-GMM and KDE, which can be found in Appendix E. To analyze the performance of KinPFN for
arbitrary folding paths that do not include the unfolded or minimum free energy structural states, we
additionally run Kinfold on a randomly generated RNA sequence of 75 nucleotides and predict the
PPD of first passage times for alternative folding paths. For the evaluation of KinPFN’s robustness
to changes of the simulator, we use the Kfold (Dykeman, 2015) kinetic simulator to obtain FPTs
for a randomly generated RNA of length 56. We provide more details about our novel test set in

Table 1: Evaluation of KinPFN, DP-GMM and KDE models on our test set comprising 635 real-
world first passage time distributions in terms of prior-data negative log-likelihood loss (lower is
better) with context first passage time cutoffs N ∈ {10, 25, 50, 75, 100}. For DP-GMM, we assume
a maximum modality of 5.

Method First Passage Times N
10 25 50 75 100

KinPFN 1.3739 1.2435 1.2047 1.1916 1.1858
DP-GMM 1.6277 1.3576 1.2671 1.2350 1.2171
KDE 1.4370 1.2559 1.2133 1.2003 1.1957

a)

c)b)

Figure 3: KinPFN approximations of first passage time distributions for simulation data of random
RNA sequences across different settings. a) KinPFN testing set PPD mean NLL losses along with
the CDF MAEs across RNA sequence length ranges. Error bars show the standard deviation of the
losses. b) Example approximation for an alternative folding path of a 75 nucleotide RNA sequence
with ground truth data obtained from Kinfold simulations. c) Example approximation for a 56
nucleotide RNA using Kfold simulation data as ground truth. We use N = 25 context first passage
times for all experiments. Approximation examples show the mean and standard deviation around
the mean for 20 predictions with different context examples sampled at random.
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Figure 4: KinPFN first passage time CDF approximations for Saccharomyces cerevisiae tRNAphe.
We show the mean and standard deviation for 20 predictions of KinPFN, each using 50 randomly
sampled context times (left). On the right side, we show the runtime of Kinfold for 50 and 1,000
kinetic simulations for the tRNAphe.

Appendix G. Except for KinPFN’s comparison with DP-GMM and KDE on the test set, we report
results using 25 context examples only. Predictions with different context lengths, more competitor
evaluations, and results for additional RNAs are reported in Appendix H.2 and H.3.

Results Table 1 provides the comparison of KinPFN with the DP-GMM and the KDE on our in-
troduced test set. Our approach consistently demonstrates a lower mean NLL, outperforming both
approaches across various context first passage times ( N ∈ {10, 25, 50, 75, 100}). As shown in
Figure 3a, KinPFN performs well across all sequences of the test set independent of the sequence
length, given only 25 context points. This is an important finding since especially simulations for
long RNAs could benefit from accelerations with KinPFN. Similarly, we observe a very good fit
of the approximation of the CDF of first passage times for folding paths between alternative struc-
tures (Figure 3b) and the application of KinPFN to simulations obtained from Kfold instead of
Kinfold (Figure 3c). Our results thus indicate that KinPFN seems to generalize across different se-
quence lengths, start and stop structures, and different simulators. Notably, the approximations with
KinPFN only require 2,5% of the compute budget of the original simulators to achieve comparable
results. However, the accuracy of the KinPFN approximations across all experiments can be further
improved as we observe an increase in performance with an increasing number of context examples
(see Table 1 and Table 6 in Appendix H.2). This, however, comes at the cost of additional simulator
runtime.

5.2 KinPFN Approximates First Passage Times of Eukaryotic RNAs

While we observed robust performance of KinPFN for randomly generated RNA sequences, pre-
dictions for natural RNAs might be more challenging. In particular, highly structured RNAs like
transfer RNAs (tRNA) or ribosomal RNAs (rRNA) might show different folding behavior com-
pared to random RNA sequences due to million years of evolutionary pressure (Vicens & Kieft,
2022; Herschlag, 1995). We, therefore, decide to evaluate KinPFN on a tRNAphe of 76 nucleotides
(RNAcentral Id: URS000011107D 4932) and a 5S rRNA of 121 nucleotides (RNAcentral Id:
URS000055688D 559292) from Saccharomyces cerevisiae, one of the most extensively studied eu-
karyotic model organisms in molecular and cell biology, commonly known as brewer’s yeast. For
our experiments, we again use 1,000 Kinfold simulations as the ground truth data.

Results Figure 4 shows the first passage time CDF approximations of KinPFN for the tRNAphe

(left). We observe that KinPFN is capable of approximating the ground truth data nearly perfectly
using only 50 context first passage times. The runtime plot in Figure 4 (right) visualizes the de-
crease of the computational demands as the approximations of KinPFN result from using only 5%
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of the original compute budget, reducing the required CPU time from approximately 2,686 minutes
(1000 simulations) to 170 minutes (50 simulations) while achieving nearly identical results. More
predictions with different context times, as well as similar results for the 5S rRNA, are shown in
Appendix H.5. We conclude that KinPFN is capable of accurately approximating the CDFs of first
passage times for real-world, structured RNAs like tRNA and rRNA.

5.3 Case Study: RNA Folding Efficiency Analysis

To demonstrate the utility of KinPFN, we conduct a case study focused on comparing the folding
efficiency of three 43 nucleotide long RNA molecules (ϕ0, ϕ1, ϕ2) that are predicted to fold into the
same minimum free energy (MFE) structure. Alterations in the RNA sequences, such as mutations
or modifications — often driven by evolutionary optimization — can have a significant effect on the
folding dynamics (Flamm et al., 2000). A comparison of the CDFs of first passage times can distin-
guish molecules that fold more or less efficiently and provide information about how alternations in
the molecules impact the folding behavior, an important aspect for RNA-based therapeutics (Mollica
et al., 2022). For our experiment, we simulate 1,000 folding trajectories from the open chain to the
MFE structure using Kinfold and calculate the ground truth first passage time CDFs shown in the
left plot of Figure 5 for each of the 3 RNA molecules.

Results We find that KinPFN captures the general folding behavior of the RNAs accurately, as
shown in Figure 5 (right). However, while it captures the saddle points of the CDFs of ϕ1 (orange)
and ϕ2 (green) arguably well, it is slightly less accurate for the most efficiently folding RNA, ϕ0
(blue). Remarkably, the KinPFN approximations were obtained using only ten context times, mark-
ing a 100× speed-up compared to each of the three individual simulation trajectories. Results for
more approximations using different context lengths are shown in Appendix H.6.

5.4 KinPFN Generalizes to Gene Expression Data

Besides their usage in RNA folding kinetics analysis, CDFs of different distributions are a common
tool for the analysis of biological data. For example, Bagnall et al. (2020) analyzed the messenger
RNA (mRNA) expression of interleukin-1-α (IL-1α), interleukin-1-β (IL-1β), and tumor necrosis
factor-alpha (TNF-α) to study inducible gene expression in the immune toll-like receptor (TLR) sys-
tem. Using single-molecule fluorescence in situ hybridization (smFISH) (Femino et al., 1998; Raj
et al., 2008) analysis of the cumulative probability distribution of IL-1α, IL-1β, and TNF-α mRNA
expression in two cell lines (established RAW 264.7 macrophage cells and bone-marrow-derived
macrophages (BMDM)) stimulated with lipid A, Bagnall et al. (2020) demonstrate conserved vari-
ability in the TLR system across cell types, suggesting different modes of regulation of IL-1β and

Figure 5: RNA folding efficiency analysis. The left plot shows the ground truth CDFs F (t) for three
sequences ϕ0, ϕ1 and ϕ2, representing the fraction of molecules folded into the MFE conformation
(shown in dot-bracket notation (Hofacker et al., 1994)) over time t. The right plot displays the
KinPFN approximations F̂ (t) with ten Kinfold times as context.
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TNF-α expression. We use this experiment to analyze the capability of KinPFN to generalize to dif-
ferent biological data. Specifically, we use the raw count data of 447, 718, and 356 RAW 264.7 and
447, 732, and 322 BMDM cells for IL-1α, IL-1β, and TNF-α, respectively, to predict the cumulative
probability functions of mRNA expression to replicate the outcome of the smFISH experiment of
Bagnall et al. (2020) with KinPFN while using only a fraction of the data.

Results Figure 6 illustrates the approximations of the mRNA expression of IL-1α, IL-1β, and
TNF-α. We observe that KinPFN can approximate the gene expression with high accuracy, using
only roughly 8% of the expression data. These results suggest that - besides its application to RNA
folding kinetics - KinPFN could be a valuable tool for different types of analysis across biological
questions, including the potential to speed up even wet-lab experiments (see also Appendix H.7).

6 Conclusion, Limitations & Future Work

We present KinPFN, the first work that uses prior-data fitted networks for biological data. Trained on
a synthetic prior, we show that our new approach can accurately model RNA folding kinetics while
accelerating RNA first passage time analysis by orders of magnitude. Moreover, we demonstrate that
KinPFN generalizes to gene expression data obtained from wet-lab smFISH analysis, suggesting
that KinPFN could be applicable to the analysis of a wide range of different biological questions.

Limitations While showing impressive accuracy across multiple tasks, KinPFN also has limita-
tions. Since it is purely trained on synthetic first passage time data, it depends on a data-generating
approach like kinetic simulators or wet-lab experiments during inference. It would be interesting
to see how incorporating other features, e.g., the RNA sequence, structure, or energy information,
could influence KinPFN’s performance. However, it is an open problem to implement the required
information in a synthetic prior without using external data sources. Additionally, KinPFN would
benefit from larger-scale evaluations, e.g., on longer RNAs, to confirm its independence of RNA
features like sequence length. However, obtaining this kind of data is currently infeasible due to the
large computing demands of available simulators and the problem’s complexity. Further, KinPFN is
limited to a bounded range of time values; however, so far, we have not experienced this limitation
to be a major problem, and the training time of KinPFN is moderate, allowing retraining on adapted
ranges. Similar to GMMs and KDEs, the performance of KinPFN strongly depends on the provided
context. We tried to compensate for that by showing mean and standard deviation around the mean
across 20 context inputs to quantify the variation in KinPFN approximations.

Future Work The training of deep learning models on synthetic data for biological applications
appears very promising. One advantage of KinPFN is that, unlike GMMs or standard KDEs, it is not
limited to predefined kernels or Gaussian distributions; instead, we can define synthetic priors using

Figure 6: Approximation of mRNA expression of IL-1α, IL-1β and TNF-α in RAW 264.7 and
BMDM cells. We plot approximations using only 25 context data points per gene.
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a variety of different distributions. This approach, however, is out of the scope of this paper and we
will assess its potential in future work. Generally, PFNs could play an important role in the field of
structural biology, potentially also involving approaches based on PFN models for tabular data. We
believe that this line of research has the potential to substantially impact biological analysis, offering
tremendous possibilities to accelerate scientific discovery.
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A Further Background & Related Work

In the following, we outline further background information and related work on RNA folding dy-
namics.

The folding dynamics of RNA can be described as a stochastic process in a state space, comprised of
a set of structures or conformations a given RNA sequence may assume, a move set that defines the
allowed elementary transitions between conformations in the state space, and transition rates for all
allowed transitions. Mathematically, this compiles into a continuous time Markov process governed
by the following master equation for the state probabilities Px(t) of observing state x at time t

dPx(t)

dt
=

∑
y ̸=x

[Py(t)kxy − Px(t)kyx]

where kxy is the transition rate from state y to state x. For RNA sequences of moderate length, the
master equation becomes too high dimensional to be solved analytically; therefore, it is approxi-
mated by Monte-Carlo simulation techniques (Flamm & Hofacker, 2008), which is, however, very
time-consuming since enough stochastic simulations need to be accumulated to get a statistically
representative time evolution of the state probabilities. Alternatively, acceleration has been proposed
through a more macroscopic structural description of RNA by helix kinetics methods (Xayaphoum-
mine et al., 2005; Danilova et al., 2006).

A different approach to simulating the dynamics of RNA folding is through analysis of the underly-
ing folding landscape. Such a landscape can be constructed from complete suboptimal folding with
barriers (Flamm et al., 2002), which provides an exact partitioning of the RNA conformation space
into basins of attraction, i.e. local optima of the energy landscape. These macro-states provide a nat-
ural coarse-graining of the folding landscape and allow to re-formulate the dynamics on a reduced
number of states, resulting in a massive speedup of computation time at comparable levels of detail.
This idea is implemented in the tool treekin, which models the complete folding dynamics of RNA
molecules of length up to approximately 100 nucleotides as a continuous-time Markov process that
is solved by numerical integration (Wolfinger et al., 2004).
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B Exponential Kinfold Runtime

Figure 7 shows the mean CPU times (in minutes), along with the upper bound standard deviations,
for simulating 10, 25, 50, 75, and 1000 folding processes — transitioning from an open chain to the
minimum free energy conformation — with the mean times calculated for different RNA sequence
lengths based on 50 distinct artificial RNA molecules per length. Despite the logarithmic scale on
the CPU time axis, the mean CPU time still shows a linear increase, highlighting the exponential
growth in the computational time required for these simulations. The calculations for Figure 7 were
performed on a single core of an AMD Milan EPYC 7513 CPU with 2.6 GHz.

Figure 7: Kinfold mean CPU times (in minutes), including the upper bound standard deviations for
simulating 10, 25, 50, 75, and 1000 folding processes over different RNA sequence lengths, based
on 50 distinct artificial RNA molecules per length.
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C Synthetic Folding Time Distribution Prior Details

In the following, we will describe our proposed synthetic prior and the method for sampling a single
batch of synthetic first passage times from it in more detail. The synthetic first passage times t
are sampled from a distribution p(ψk) generated from a family of multi-modal distributions Pψk

as
introduced in Section 4.1. The possible first passage time values across all p(ψk) range from 10α

to 10β , with α = −6 and β = 15, thereby limiting T ∈ [Tstart, Tstop] by min(Tstart) = 10−6 and
max(Tstop) = 1015, as we observed that this time range covers a very high fraction of possible RNA
folding processes.

Each distribution p(ψk) ∈ Pψk
is characterized by k Gaussian components, each with a mean µi and

a standard deviation σi, for i = 1, . . . , k. The base means µbase
i are uniformly distributed between

α + 1 = −5 and β + 1 = 16, and the standard deviations σi are uniformly distributed between
0.1 and β−α

5 = 4.2. Further, we introduce a shifting parameter δ, which is uniformly distributed
between α and β, i.e., δ ∼ U(−6, 15) and is fixed for all i = 1, . . . , k. The final means µi are then
given by:

µi = µbase
i + δ.

Given the parameters ψk and a value x, the probability density function (PDF) of the multi-modal
Gaussian distribution is expressed as:

p(ψk, x) =

k∑
i=1

exp

(
− (log x− µi)

2

2σ2
i

)
.

C.1 Sampling from the Synthetic Prior of RNA First Passage Times

To sample a batch of synthetic first passage times of sizeB with a fixed number of times, i.e., number
of simulations per training example of M from a multi-modal distribution p(ψk), we employ the
inverse transformation method also known as the Smirnov transformation. To do so we generate the
PDF p(ψk, x) over a logarithmically spaced sequence x of length M from 10α to 10β . Then, to
normalize this PDF and therefore ensure a valid probability distribution, we calculate:

p̂(ψk, x) =
p(ψk, x)∫ 10β

10α
p′(ψk, τ) dτ

. (6)

Next, we compute the cumulative distribution function (CDF):

CDF(ψk, x) =
∫ x

10α
p̂(ψk, τ) dτ. (7)

To ensure the CDF ranges from 0 to 1, we normalize it by dividing by the integral over the entire
range from 10α to 10β :

CDF(ψk, x) =

∫ x
10α

p̂(ψk, τ) dτ∫ 10β

10α
p̂(ψk, τ) dτ

. (8)

This normalization ensures that the CDF is properly scaled, with CDF(ψk, 10β) = 1.

By inverting the CDF, we obtain the quantile function CDF−1(ψk). To generate samples, we draw
uniform samples ui from a uniform distribution U(0, 1) for i = 1, . . . ,M and transform these
samples using the inverse CDF:

ti = CDF−1(ψk, ui),

where ti are the sampled values from the distribution. We then encode these samples by applying a
logarithmic transformation:

t̂i = log10(ti).

Finally, constructing the prior output, for a batch of size B and a fixed number of first passage times
per example M , we generate the independent variables X and Y as follows:

X = 0B×M×1,

Yi,: = [t̂1, t̂2, . . . , t̂M ] for i = 1, . . . , B.
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D KinPFN Details

D.1 KinPFN Hyperparameter

All hyperparameters in the KinPFN model are inherited from the transformer-based architec-
ture (Vaswani et al., 2017) of prior-data fitted networks (PFNs) as proposed by Müller et al. (2022).
These include the number of layers (nlayers), attention heads (nheads), embedding size (emsize), the
number of neurons in each hidden layer (nhidden), the learning rate for the Adam optimizer (Kingma
& Ba, 2015) (learning rate), the number of steps per epoch (steps), and the total number of epochs
(epochs). However, it is not entirely accurate to refer to ”epochs” in this context, as we are training
on synthetic data sampled from a prior, resulting in a single, infinite epoch. In the context of PFNs,
the loss is updated after each step, which is why we describe these steps as hyperparameterized steps
per epoch. The term ”epochs” is used here primarily because it serves as a hyperparameter within
the code, providing a mechanism to control the training process. Another crucial parameter is the
sequence length (seq len) of the input, representing the number of folding simulations (i.e., first
passage times M ) fed into the Transformer. This sequence length indicates the number of samples
drawn from a prior distribution p(ψk) ∈ Pψk

, as defined in Section 4.1. Additionally, given the infi-
nite nature of synthetic training data and the singular epoch, we set the dropout rate and the weight
decay to zero.

D.2 Hyperparameter Optimization

Given the uncertainty about the significance of each parameter in the final model’s performance,
we decided to utilize Neural Pipeline Search (NePS) (Stoll et al., 2023) for the hyperparameter op-
timization (HPO) of the KinPFN architecture. NePS is an open-source Python library that offers
state-of-the-art HPO methods, including Bayesian Optimization and multi-fidelity methods like Hy-
perband (Li et al., 2017). In our setup, we chose Hyperband as our HPO technique. Hyperband
optimizes the search process by dynamically allocating resources, enabling faster identification of
the best configurations. It strikes an effective balance between exploration and exploitation. Initially,
it explores a wide range of configurations with minimal resources, then progressively concentrates
resources on the most promising candidates while discarding poor-performing ones early through a
process of successive halving (Li et al., 2017).

As a performance metric for Hyperband to assess the quality of hyperparameter configurations,
we utilize the prior-data negative log-likelihood (NLL), as outlined in Section 2. This approach
is equivalent to calculating the Kullback-Leibler divergence between the approximated posterior
predictive distribution (PPD) and the true target PPD (Müller et al., 2022). Each configuration
trained by Hyperband is evaluated on a newly introduced validation set, discribed in Section G.

We conducted two final iterations of the NePS Hyperband process, evaluating a total of 261 con-
figurations. After completing the first iteration, we made slight adjustments to the search space.
Additionally, we set N = 25 for the validation pipeline in the first iteration and N = 10 for the
second iteration, representing the number of context first passage times for each approximation. To
ensure comparability across the validation of different hyperparameter configurations, we fixed the
indices of theseN context first passage times within the available time points, which, in a real-world
scenario, would typically be randomized since first passage times are usually obtained without any
order when running kinetic folding algorithms like Kinfold (Flamm et al., 2000).

Table 2 and 3 outline the hyperparameter search space used for our optimization process in iteration
one and two, respectively (differences are highlighted in blue). In the first iteration, we used a fixed
batch size of 50. However, in the second iteration, we reduced the batch size to 40 to accommodate
the adjusted search space, which brought us to our GPU memory limit. Since Hyperband requires a
fidelity parameter to represent resource usage — in this case, computing time — we designate the
epochs hyperparameter as the fidelity parameter, defining its range between 250 and 3000. This is
directly related to the steps per epoch, as the model runs a specified number of steps during each
epoch, with each step involving training on a single batch. By tuning both the number of epochs
and steps per epoch, we control the amount of synthetic data sampled from the prior that our model
sees during training. Additionally, we adjust the learning rate for the Adam optimizer (Kingma &
Ba, 2015), setting a range between 10−5 and 10−3. This range is informed by preliminary training
sessions, where we observed that higher learning rates resulted in highly irregular learning curves
and, consequently, poor performance. We also evaluate models using different Transformer input
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Table 2: Hyperparameter search space for NePS Hyperband iteration 1.
Differences to iteration 2 are highlighted in blue

Hyperparameter Type Values/Range
epochs Integer [250, 3000] (hyperband fidelity)
steps Integer [50, 100]
learning rate Float [10−5, 10−3] (log scale)
seq len Categorical {200, 300, 500, 700}
buckets Categorical {100, 1000, 10000}
emsize Categorical {256, 512}
nheads Categorical {4, 8}
nhidden Categorical {512, 1024}
nlayers Categorical {2, 3, 4, 6, 8, 12}

Table 3: Hyperparameter search space for NePS Hyperband iteration 2.
Differences to iteration 1 are highlighted in blue

Hyperparameter Type Values/Range
epochs Integer [250, 3000] (hyperband fidelity)
steps Integer [50, 100]
learning rate Float [10−5, 10−3] (log scale)
seq len Categorical {200, 300, 500, 700, 1000, 1400}
buckets Categorical {100, 1000, 5000, 10000}
emsize Categorical {256, 512}
nheads Categorical {4, 8}
nhidden Categorical {512, 1024}
nlayers Categorical {2, 3, 4, 6, 8}

sequence lengths — specifically 200, 300, 500, 700, 1000, and 1400 — as this parameter represents
the number of first passage time samplesM drawn from each prior distribution p(ψk). Furthermore,
we assess the models with 100, 1000, 5000, and 10000 buckets over which we discretize the learned
posterior predictive distribution. For the embedding size, we evaluate options of 256 and 512, and
we asses 4 and 8 Transformer attention heads, which split the embedded input into smaller segments
for focused attention. We also explore various model complexities by varying the number of neurons
per hidden layer (512 and 1024) and the total number of layers, considering a broad range from 2 to
12 layers.

After both Hyperband iterations we identified four highly promising KinPFN architectures
{KinPFN1, . . .KinPFN4}. Among these, KinPFN1 and KinPFN3 demonstrated the minimal NLL
in the first and second NePS Hyperband iteration with 1.1761 (N = 25) and 1.2101 (N = 10),
respectively. Table 4 shows the NLL performance metrics of the found configurations across vari-
ous cutoffs N ∈ {10, 25, 50, 75, 100}. For each distribution example in the proposed validation set,
we randomly selected the N context times from the pool of M = 1000 available times, ensuring a
broader and more generalizable evaluation, as the Hyperband validation pipeline was only based on
fixed N first passage times with fixed indices within M .
While KinPFN4 was the configuration with the second-best mean NLL loss with 1.2102 (N = 10)
after KinPFN3 in the second NePS iteration, KinPFN2 adopted the configuration of KinPFN1 but
trained on a larger Transformer input sequence length of 1400.

In the model analysis, KinPFN1 shows the best performance with N = 10 context first passage
times. However, for all other values of N (N ∈ {25, 50, 75, 100}), KinPFN2 surpasses it. Addition-
ally, KinPFN2 outperforms both models from the second NePS iteration, KinPFN3 and KinPFN4,
based on the NLL losses, as demonstrated in Table 4. Based on these results, we selected KinPFN2

as our final KinPFN model that was utilized in all experiments, as it shows the best overall perfor-
mance.

Final KinPFN Configuration The final KinPFN model consists of 4.86 million parameters, fea-
turing a total of 8 layers, each with a hidden size of 512, 4 attention heads, an embedding size of
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Table 4: Comparison of four promising KinPFN hyperparameter configurations identified in two
NePS (Stoll et al., 2023), i.e., Hyperband (Li et al., 2017) iterations in terms of prior-data negative
log-likelihood loss (lower is better) with context first passage time cutoffsN ∈ {10, 25, 50, 75, 100}.

Configuration Parameters First Passage Times N

10 25 50 75 100

KinPFN1 seq len=700, epochs=1000, steps=86, learn-

ing rate=2.5588748050825984 × 10−5,

buckets=1000, emsize=256, nheads=4, nhidden=512,

nlayers=8, batch size=50

1.348 1.254 1.225 1.216 1.210

KinPFN2 seq len=1400, epochs=1000, steps=86, learn-

ing rate=2.5588748050825984 × 10−5,

buckets=1000, emsize=256, nheads=4, nhidden=512,

nlayers=8, batch size=50

1.378 1.246 1.207 1.195 1.189

KinPFN3 seq len=1400, epochs=1000, steps=72, learn-

ing rate=3.867480144966054 × 10−5,

buckets=10000, emsize=256, nheads=4, nhid-

den=1024, nlayers=4, batch size=40

1.384 1.255 1.219 1.208 1.202

KinPFN4 seq len=1400, epochs=333, steps=85, learn-

ing rate=7.062252166123585 × 10−4,

buckets=10000, emsize=512, nheads=4, nhid-

den=1024, nlayers=2, batch size=40

1.418 1.259 1.215 1.202 1.194

256, a learning rate of 2.5588748050825984× 10−5, and 1000 buckets. The model was trained for
1000 epochs, each consisting of 86 steps (with a batch size of 50), resulting in a total of 4,300,000
seen examples (calculated as 1000 x 86 x 50). Each example comprised M = 1400 (synthetic)
first passage times from (theoretical) folding simulations, which represent the Transformer input
sequence length.
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E KDE and DP-GMM Details

To ensure an optimal comparison of KinPFN with Kernel Density Estimation (KDE) and the Dirich-
let Process Gaussian Mixture Model (DP-GMM), we performed a random search hyperparameter
optimization (HPO). For KDE, we tuned the bandwidth hyperparameter over a logarithmic search
space ranging from 10−3 to 101, while for DP-GMM, we optimized the weight concentration prior
within a logarithmic range of 10−4 to 102. Both methods were evaluated using 1,000 configurations,
selecting the one with the lowest mean negative log-likelihood on our validation set, consisting of
2,019 real RNA first passage time distributions (Appendix G) using 25 context times for each ex-
ample. Figure 8 illustrates the HPO results for KDE (left) and DP-GMM (right). As a result of the
HPO, we selected a bandwidth of 0.352 with a Gaussian kernel for KDE and a weight concentra-
tion prior of 9.79e-4 for DP-GMM and allowed a maximum of 100,000 iterations of Expectation-
Maximization (EM).

Figure 8: Hyperparameter optimization for Kernel Density Estimation (KDE) on the bandwidth
parameter (left) and for Dirichlet Process Gaussian Mixture Models (DP-GMM) on the weight con-
centration prior parameter (right).
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F Metrics

In our experiments and evaluations, we rely on the prior-data negative log-likelihood (NLL) between
the approximated posterior predictive distribution (PPD) and the true first passage time distribution
as a primary performance metric, consistent with its use during training and hyperparameter opti-
mization (HPO) (Section 4.2):

ℓθ = E(0,ttest)∪Dtrain∼p(ψk) [− log qθ(ttest|0test, Dtrain)] . (9)

When comparing KinPFN to other methods, such as Gaussian Mixture Models (GMM), Dirichlet
Process Gaussian Mixture Models (DP-GMM), and Kernel Density Estimation (KDE), we consis-
tently use the mean negative log-likelihood (NLL) as the evaluation metric. This choice is motivated
by the fact that the mean NLL reflects how effectively each method has learned the underlying pos-
terior predictive distributions (PPDs) of the first passage times. Minimizing the NLL aligns with
minimizing the Kullback-Leibler (KL) divergence between the estimated PPD and the ground truth
PPD (Müller et al., 2022), making it a robust measure of model performance.

As our main objective is approximating the CDFs of the first passage times, we additionally evaluate
the performance by measuring the mean absolute error (MAE) between the CDF of the approximated
PPD F̂ (t) and the true target CDF F (t). For a single CDF approximation of KinPFN, the mean ab-
solute error (MAE) is defined as the average of the absolute differences between the predicted CDF
values and the ground truth CDF values for a specific sequence of folding times. Mathematically, it
can be expressed as:

MAE =
1

M

M∑
i=1

∣∣∣F̂ (ti)− F (ti)
∣∣∣ , (10)

where M is the number of available ground truth first passage time points for the particular example
RNA sequence, F̂ (ti) is the predicted CDF value at the i-th first passage time ti, computed by
KinPFN, F (ti) is the ground truth CDF value at the i-th first passage time ti.

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.618378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618378
http://creativecommons.org/licenses/by/4.0/


G Validation and Test Data

We introduce two new datasets: a validation set and a test set, both consisting of real RNA first
passage times. The validation set contains 2,016 randomly generated RNA sequences, while the test
set includes 635 sequences. The times were acquired by simulating the folding process of the RNAs,
starting from an open-chain conformation and progressing to the molecule’s minimum free energy
conformation with the kinetic folding simulator Kinfold (Flamm et al., 2000). Figure 9 illustrates the
distribution of RNA sequence lengths across both datasets. The validation set, used throughout all
NePS (Stoll et al., 2023) iterations (i.e., Hyperband (Li et al., 2017)), is shown in dark blue, while
the test set, shown in dark red, is reserved for final KinPFN model evaluations (see Section 5.1).
Importantly, these two datasets are mutually independent in terms of RNA primary sequences and
secondary structures.

Figure 9: Number of examples by RNA sequence length ranges for the custom validation set used
in all NePS (Stoll et al., 2023) i.e., Hyperband (Li et al., 2017) iterations and the custom testing set
used for final KinPFN model evaluations (Section 5.1). Both sets are independent of each other with
respect to RNA primary sequence and secondary structures.
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H Additional Evaluations

H.1 Synthetic Prior Approximations

We evaluate our proposed model using synthetic data generated from the same prior distribu-
tion employed during training (see Section 4.1). We approximate 10,000 synthetic first pas-
sage time distributions, varying the cutoff points for the number of context first passage times
N ∈ {10, 25, 50, 75, 100}. This allows us to evaluate the model’s performance as the number
of context points provided to KinPFN increases. For each case, we sample M = 1000 first passage
times from the prior distribution. The performance is measured in terms of the posterior predic-
tive distribution (PPD) mean negative log-likelihood (NLL) and the cumulative distribution function
(CDF) mean absolute error (MAE), computed over all 10,000 examples at each cutoff N . Table 5
presents the results of this evaluation. We observe significant improvements in both the NLL and
MAE when increasing the number of context points from N = 10 to N = 25 and from N = 25
to N = 50. Beyond N = 50, while the loss continues to decrease, the rate of improvement slows
down as the context size grows from N = 75 to N = 100.

Table 5: Performance evaluation of KinPFN on 10,000 synthetic first passage time distributions.
Metrics are shown for different context first passage time cutoffs N ∈ {10, 25, 50, 75, 100}, mea-
sured in terms of negative log-likelihood (NLL) and mean absolute error (MAE). Lower values
indicate better performance.

Performance Metric First Passage Times N
10 25 50 75 100

Mean Prior-Data NLL 2.4265 2.1364 2.0596 2.0388 2.0281
Mean Absolute Error 0.0878 0.0553 0.0388 0.0321 0.0275

H.2 Comparison KinPFN, GMM, DP-GMM and KDE

To further evaluate our model, we compare KinPFN against multiple Gaussian Mixture Models
(GMMs) and Dirichlet Process Gaussian Mixture Models (DP-GMMs) using various initial modal-
ity assumptions. Specifically, we consider mixture models with modalities k ∈ {2, 3, 4, 5}, align-
ing with the assumptions outlined in our synthetic prior (Section 4.1), denoted as GMMk and
DP-GMMk. For all evaluations, the models were provided identical context first passage times.
Both GMM and DP-GMM models were allowed a maximum of 100,000 iterations of Expectation-
Maximization (EM). Additionally, we compare KinPFN to a Kernel Density Estimator (KDE) that
we optimized for its bandwidth hyperparameter (Appendix E), as discussed in Section 5.1.

Table 6: Evaluation of KinPFN, KDE, and multiple GMMk and DP-GMMk models with different
initial modality assumptions k ∈ {2, 3, 4, 5} on a newly introduced testing set comprising 635 real-
world first passage time distributions in terms of prior-data negative log-likelihood loss (lower is
better) with context first passage time cutoffs N ∈ {10, 25, 50, 75, 100}.

Method First Passage Times N
10 25 50 75 100

KinPFN 1.3739 1.2435 1.2047 1.1916 1.1858
GMM2 2.3297 1.3612 1.2361 1.2034 1.1930
GMM3 5.1566 1.5752 1.2893 1.2139 1.1917
GMM4 13.0983 2.0325 1.3690 1.2440 1.2104
GMM5 36.8972 2.6701 1.5005 1.2982 1.2370
DP-GMM2 1.6279 1.3525 1.2613 1.2306 1.2154
DP-GMM3 1.6280 1.3564 1.2651 1.2323 1.2157
DP-GMM4 1.6286 1.3573 1.2661 1.2340 1.2167
DP-GMM5 1.6277 1.3576 1.2671 1.2350 1.2171
KDE 1.4370 1.2559 1.2133 1.2003 1.1957
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Table 6 presents the mean negative log-likelihood losses for all models on our test set across various
numbers of context first passage times N ∈ {10, 25, 50, 75, 100}. The results demonstrate that
KinPFN consistently achieves lower loss compared to all other competitors.

H.3 Additional KinPFN Approximation Examples

In Section 5.1, we conducted approximations of first passage time distributions using KinPFN on
a 75-nucleotide RNA. The folding process for this RNA was simulated with the Kinfold kinetic
simulator (Flamm et al., 2000), employing custom start and stop structures. We also approximated
the folding time distribution for a 56-nucleotide RNA, for which we obtained ground truth data
using the KFold simulator (Dykeman, 2015). In all instances, the approximations were based on
just 25 context first passage times. This appendix provides additional approximations for these
RNAs, expanding the analysis by varying the number of context first passage times, specifically
N ∈ {10, 25, 50, 75}. Additionally, we performed approximations for a 93-nucleotide RNA using
the same simulation method as for the 75-nucleotide RNA (Figure 10) and extended our analysis
of the 56-nucleotide RNA to include results for a 31-nucleotide RNA (Figure 11). Additionally,
Figure 12 presents representative approximations for two RNAs from our newly introduced test set:
a 97-nucleotide RNA and a 119-nucleotide RNA, each evaluated with four different numbers of
context first passage times, N ∈ {10, 25, 50, 75}.

Figure 10: Approximations of the cumulative distribution function (CDF) for the first passage time
using KinPFN, with context times N ∈ {10, 25, 50, 75} (left to right), for an RNA sequence of
75 nucleotides (top) and 93 nucleotides (bottom). The folding process was simulated using custom
initial and final structures rather than the open chain and minimum free energy conformation.

Figure 11: KinPFN first passage time CDF approximations with context timesN ∈ {10, 25, 50, 75}
(left to right) for a 31 nucleotide long RNA (top) and a 56 nucleotide long RNA (bottom). First
passage times were obtained using the kinetic folding algorithm Kfold Dykeman (2015).

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.618378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618378
http://creativecommons.org/licenses/by/4.0/


Figure 12: KinPFN first passage time CDF approximations with context timesN ∈ {10, 25, 50, 75}
(left to right) for a 97 nucleotide long RNA (top) and a 119 nucleotide long RNA (bottom) that are
part of the newly introduced test set.

Figure 13: KinPFN PPD CDF approximations (left) along with the corresponding multi-modal PPD
PDFs (right) for two RNA molecules with lengths of 65 (top) and 86 (bottom) nucleotides.

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.618378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618378
http://creativecommons.org/licenses/by/4.0/


H.4 KinPFN Riemann Distribution Visualization

To provide a more intuitive understanding of the actual KinPFN predictions, Figure 13 illustrates
two CDF approximations for different RNA molecules, each with N = 25 context first-passage
times, compared against the ground truth CDF based on 1,000 Kinfold (Flamm et al., 2000) times
(left) alongside the probability density function (PDF) of the corresponding approximated posterior
predictive distribution (PPD), also known as the Riemann distribution (right) (Müller et al., 2022).
As discussed in Section 4.2, the PFN predicts a continuous distribution, which we discretized into
a finite number of buckets, forming the PDF bars. Each bar represents a bucket, and in our final
KinPFN model, we used 1,000 buckets, a hyperparameter defined in Section 4.2.
By examining the approximated PPD PDFs, we can observe the multi-modal nature of the learned
first-passage time distributions. For instance, the distribution for a 65 nucleotide long RNA in Fig-
ure 13 (top) shows bi-modality with two distinct peaks, while another first passage time distribution
for a 86 nucleotide long RNA in Figure 13 (bottom) exhibits tri-modality with three peaks. Notably,
the calculated CDFs for these multi-modal PPDs align closely with the ground truth CDFs from the
1,000 real first-passage times, demonstrating the effectiveness of our proposed prior, specifically, the
family of multi-modal Gaussian distributions introduced in Section 4.1. This prior, from which we
sampled synthetic first-passage time distributions to train KinPFN, enabled a strong generalization
to real-world RNA first-passage time distributions.

H.5 Eukaryotic transfer and ribosomal RNA

We present additional results for the first passage time distribution approximations using KinPFN
for tRNAphe and 5S rRNA from the eukaryote Saccharomyces cerevisiae, also known as brewer’s
yeast. Figure 15 displays the cumulative distribution function (CDF) approximations of first passage
times for tRNAphe (top) and 5S rRNA (bottom), with varying numbers of context first passage times,
N ∈ {10, 25, 50, 75}, as inputs to KinPFN. Additionally, Figure 14 illustrates the CPU time required
(in minutes) to compute 10, 25, 50, 75, and 1,000 first passage times for both tRNAphe (blue) and 5S
rRNA (red) using the kinetic simulator Kinfold (Flamm et al., 2000).

Figure 14: Kinfold CPU time (in minutes) vs. number of folding simulations for Saccharomyces
cerevisiae tRNAphe and 5S rRNA.

H.6 Application: RNA Folding Efficiency Analysis

Here we show KinPFN approximations using additional context first passage times of N ∈
{10, 25, 50} on a case study that focuses on comparing the folding efficiency of three 43-nucleotide
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Figure 15: KinPFN first passage time CDF approximations with context timesN ∈ {10, 25, 50, 75}
(left to right) for Saccharomyces cerevisiae tRNAphe (top) and 5S rRNA (bottom).

Figure 16: RNA folding efficiency analysis. The first plot from the left shows the ground truth CDFs
F (t) for three sequences ϕ0, ϕ1 and ϕ2, representing the fraction of molecules folded into the MFE
conformation over time t. The second, third, and fourth plot displays the KinPFN approximations
F̂ (t) with ten, 25, and 50 Kinfold times as context.

RNA molecules (ϕ0, ϕ1, ϕ2), each predicted to fold into the same minimum free energy (MFE)
structure (ωstop = .........................(((((....)))))....). As noted in Section 5.3, KinPFN accurately cap-
tures the overall folding behavior of these RNAs using just ten context times. We further observe
that increasing the number of context first passage times to 25 and 50 enhances the accuracy of these
approximations, as shown in Figure 16.

H.7 KinPFN Generalizes to Gene Expression Data

In this section, we present supplementary approximations of mRNA gene expression data for
interleukin-1-α (IL-1α), interleukin-1-β (IL-1β), and tumor necrosis factor-alpha (TNF-α). These
additional results build upon the experiment described in Section 5.4, where KinPFN was applied to
predict cumulative probability functions for gene expression in RAW 264.7 and BMDM cells using
a subset of context data points. The approximations shown here utilize further numbers of context
data points (10, 25, 50 and 75) and a different seed, providing a more comprehensive understanding
of the predictive capabilities of KinPFN across different biological datasets. The results in this sec-
tion serve to reinforce the main findings and demonstrate the robustness of KinPFN in accurately
replicating the outcomes of experiments such as those conducted by Bagnall et al. (2020) while
using minimal input data.
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Figure 17: Approximation of mRNA expression of IL-1α, IL-1β and TNF-α in RAW 264.7 and
BMDM cells. We plot approximations using only 10, 25, 50 and 75 context data points per gene.
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