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Abstract

Fairness-aware Machine Learning (FairML) applications are
often characterized by complex social objectives and legal
requirements, frequently involving multiple, potentially con-
flicting notions of fairness. Despite the well-known Impossi-
bility Theorem of Fairness and extensive theoretical research
on the statistical and socio-technical trade-offs between fair-
ness metrics, many FairML tools still optimize or constrain
for a single fairness objective. However, this one-sided op-
timization can inadvertently lead to violations of other rele-
vant notions of fairness. In this socio-technical and empirical
study, we frame fairness as a many-objective (MaO) problem
by treating fairness metrics as conflicting objectives. We in-
troduce ManyFairHPO, a human-in-the-loop, fairness-aware
model selection framework that enables practitioners to ef-
fectively navigate complex and nuanced fairness objective
landscapes. ManyFairHPO aids in the identification, evalu-
ation, and balancing of fairness metric conflicts and their re-
lated social consequences, leading to more informed and so-
cially responsible model-selection decisions. Through a com-
prehensive empirical evaluation and a case study on the Law
School Admissions problem, we demonstrate the effective-
ness of ManyFairHPO in balancing multiple fairness objec-
tives, mitigating risks such as self-fulfilling prophecies, and
providing interpretable insights to guide stakeholders in mak-
ing fairness-aware modeling decisions.

1 Introduction
Instances of algorithmic discrimination are a growing con-
cern in both the machine learning (ML) literature and, more
recently, in the media and greater society. This is a con-
sequence of the increasing prevalence of ML applications
where individuals are disparately impacted by algorithmic
decisions (Angwin et al. 2016; de Zwart 2022). Mirror-
ing the complex and socio-technical nature of the machine
bias problem, the field of Fairness-aware Machine Learn-
ing (FairML) has emerged, providing a collaborative space
for political philosophers, social scientists, legislators, statis-
ticians, and ML researchers. FairML has the overarching
goals of defining, studying, detecting, and mitigating algo-
rithmic bias.

Despite significant advancements, the FairML community
has received widespread criticism from the Social Sciences,
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Humanities, and Law for attempting to solve the complex,
nuanced, and socio-technical problem of machine bias al-
gorithmically (Hoffmann 2019; Selbst et al. 2019). Several
arguments cite that real-world applications of FairML are of-
ten characterized by a complex set of social objectives and
legal requirements (Ruf and Detyniecki 2021). Due to their
complexity, these criteria are unlikely to be captured by sin-
gle, coarsely-grained statistical measures of fairness. In such
cases, FairML methods that only incorporate a single no-
tion of fairness risk fair-washing, or proposing a so-called
fair model that satisfies one notion of fairness while vio-
lates another potentially relevant one, potentially resulting
in negative social consequences. Other criticisms of FairML
cite the black-box nature of bias-mitigation techniques as a
key concern (Robertson, Stinson, and Hu 2022), suggesting
a crucial interplay between fairness, transparency, and inter-
pretability (Barocas, Hardt, and Narayanan 2023; Schöffer
2023). Broadly effective FairML methods should not only
cope with a diverse set of objectives and requirements but
ideally offer interpretable insights.

Rather than resisting these criticisms, we embrace them,
taking the perspective that FairML approaches that over-
simplify the complex and socio-technical nature of FairML
problems risk doing more harm than good. Instead, FairML
approaches must adapt to the context in which they exist.
In recent years, the topic of fairness has gained popularity
in the Automated Machine Learning (AutoML) literature,
which typically formulates fairness as a bi-objective (BiO)
or constrained hyperparameter optimization (HPO) prob-
lem. Fairness-aware HPO varies common ML design deci-
sions (tree depth, neural architecture, neural network width,
etc.) to explore the Pareto Front of fair and accurate mod-
els (Wu and Wang 2021; Perrone et al. 2021; Schmucker
et al. 2020; Dooley* et al. 2023). According to Weerts
et al. (2023), fairness-aware AutoML holds key advantages
in human-centricity and transparency, enabling practition-
ers to explore multiple fairness-accuracy trade-offs and gain
interpretable insights into the fairness-objective landscape
of the problem at hand. In addition, the BiO problem for-
mulation extends naturally to the MaO case, encompass-
ing three or more fairness and accuracy constraints or ob-
jectives, enabling practitioners to explore not only fairness-
accuracy trade-offs but trade-offs between fairness metrics
themselves. Although the prospect of constraining or op-



Fairness 
Objectives

1) Many-Objective 
Optimization

FairML Dataset

DSP

EOP

EOD

IND

✘

Self-fulfilling 
prophecy

Fairness Metric 
Prioritization

Identification 
of Risks

2) Fairness Metric Selection 
& Risk Identification 

EOD

IND

0.3

SFP

0.2

0.0

0.0

✔

w

DSP

EOP

DSPEOP

3) Many-Objective Model 
Selection

DSP 0.00 0.50 0.10 0.05

EOP 0.50 0.00 0.01 0.40

EOD 0.10 0.01 0.00 0.02

IND 0.05 0.40 0.02 0.00

DSP EOP EOD IND

Fairness Metric Conflicts

A Edu. Sal. Prev. Loan

White HS 50k Yes Yes

Black BSc. 75k No No

Black MSc. 67k Yes No

White HS 55k No ?

No Loan Loan

Black

White

P
ro

b
a

b
ili

ty

Conflict Visualization Risk Assessment

X

Human Preference & 
Domain Knowledge

Modeling 
Decision

Error (F1)

Unfair. (EOP)Unfair. (EOP)

No Loan

Error (F1)

Unfair. (EOP)Unfair. (EOP)

Figure 1: ManyFairHPO: We introduce ManyFairHPO, a human-in-the-loop, many-objective optimization framework for nav-
igating complex fairness and performance trade-offs in machine learning. The approach consists of three main stages: 1) Many-
Objective Optimization to explore trade-offs between a candidate set of fairness and performance metrics, 2) Fairness Metric
Selection & Risk Identification to incorporate domain knowledge, human preferences, and insights from Pareto front analysis
to prioritize metrics and assess fairness conflict risks, and 3) Many-Objective Model Selection to choose a final model that
balances multiple objectives based on assigned weights.

timizing for multiple notions of fairness has been men-
tioned several times in the literature (Perrone et al. 2021;
Schmucker et al. 2020), previous studies lack a convinc-
ing socio-technical and empirical basis to answer the crucial
question: “how and why should we put this into practice?”
To bridge these gaps in the literature, our study motivates
the MaO problem formulation for fairness, making the fol-
lowing contributions:
1. We propose a human-in-the-loop optimization frame-

work for fairness, ManyFairHPO, that aids practitioners
in the identification, evaluation, and balancing of fairness
metric conflicts and their related social consequences, en-
abling fairness-aware model-selection decisions that en-
capsulate multiple conflicting fairness objectives.

2. In an empirical and socio-technical study, we evaluate
and motivate the MaO HPO problem formulation for fair-
ness on a diverse set of fairness benchmarks. The key
message of our evaluation is ManyFairHPO performs
competitively to the typical BiO problem formulation
and state-of-the-art bias-mitigation techniques. Addition-
ally, we find that ManyFairHPO thoroughly explores the
trade-offs between fairness metrics themselves.

3. Exemplifying the efficacy of ManyFairHPO in fairness
problems with a complex set of fairness objectives, we

perform a case study on the topical Law School Admis-
sions problem. We provide a simulation with multiple
stakeholders, demonstrating how our interpretable met-
rics and visualizations can help them understand the po-
tential social consequences of fairness metric conflicts,
such as the risk of self-fulfilling prophecy. We show
how the interpretability of ManyFairHPO can lead to a
thorough, stakeholder-informed model selection decision
that mitigates this risk.

In the remainder of the paper, after summarizing related
works that incorporate multiple fairness objectives and con-
straints (Section 2), we introduce the related terminology
in algorithmic fairness as well as multi-objective optimiza-
tion (Section 3). We then introduce our approach, Many-
FairHPO, and our experimental setup (Section 4). Our re-
sults (Section 5) show that ManyFairHPO is both suitable
as a bias-mitigation technique and enables practitioners to
navigate and explore complex fairness objective landscapes.
Finally, we conclude with possible future directions of re-
search and a call to action for the fairness community to
consider fairness metric conflicts and the MaO problem for-
mulation as a crucial next step in fairness research.



2 Related Work
The characterization of fairness as an inherently BiO prob-
lem has received significant attention in the literature (Mar-
tinez, Bertran, and Sapiro 2020; Islam, Pan, and Foulds
2021), with several works citing the importance of consider-
ing fairness-accuracy trade-offs in the FairML problem land-
scape. In this section, we discuss the critical issue of op-
timization problem formulation for fairness, comparing the
typical BiO framing to its counterpart, constrained optimiza-
tion (CO).

We begin by discussing several works that formulate the
FairML task as a CO problem and discuss its pros and
cons compared to the BiO problem formulation. In Fair
Bayesian Optimization, Perrone et al. (2021) expand upon
common bias-mitigation techniques to integrate constraints
across multiple fairness metrics. Relatedly, Hsu et al. (2022)
employ Mixed Integer Linear Programming to enforce con-
straints across various fairness criteria, to explore and push
the boundaries. Finally, Exponentiated Gradient Reduction
(EGR) claims to “yield a randomized classifier with the
lowest (empirical) error subject to the desired constraints”
(Agarwal et al. 2018). Due to its strong reputation as a state-
of-the-art constrained approach, we select EGR as a baseline
in our empirical analysis (Section 5).

The first key difference between the BiO and constrained
problem formulation is that the latter assumes the knowl-
edge of appropriate fairness metrics and achievable con-
straints. Although previous socio-technical work (Ruf and
Detyniecki 2021) provides useful guidelines for fairness
metric selection, the range of achievable fairness metric val-
ues (especially in the presence of conflicts) is highly data
and model-dependent. While we align with the argument
of Perrone et al. (2021) that COtimization is more com-
putationally efficient in cases where fairness objectives and
reasonable constraints are clearly defined, we maintain that
this is an unrealistic scenario, especially when constraining
across multiple, potentially conflicting notions of fairness.
We also highlight that preferences towards certain fairness
metrics or the enforcement of fairness constraints can still
be performed after BiO optimization, making it a more flexi-
ble method when computational resources are not extremely
limited and prior knowledge of the fairness objective land-
scape is scarce.

Secondly, because constrained approaches focus the
search on the constrained region of interest, they typically
do not explore the entire Pareto Front of all objectives, often
leaving quality (in this case either in terms of performance
or fairness) on the table (Weerts et al. 2023). Additionally,
by exploring the entire Pareto Front(s), approaches provide
interpretable insights into the overall objective landscape, a
key aspect in building trust (Schöffer 2023) and aiding prac-
titioners in the iterative FairML design cycle (Weerts et al.
2023). Such insights include but are not limited to the de-
gree of trade-offs between fairness metrics, the nature and
shape of Pareto Fronts (e,g. knee points) (Dhiman and Ku-
mar 2019), and the relative difficulty of different fairness
objectives (Jordan, Cohen, and Thomas 2018).

A final key feature of the BiO problem formulation is its
natural extension to the MaO setting, which enables practi-

tioners to incorporate multiple user-defined fairness metrics
as additional objectives. Although Schmucker et al. (2020)
argue that their methodology is “extensible” to the MaO set-
ting, they do not verify this hypothesis or explore its bene-
fits. In this study, we fill this gap in the FairML literature,
providing a socio-technical and empirical basis for the MaO
problem formulation.

3 Background
3.1 Fairness-aware Machine Learning
In this section, we provide an introduction to fairness and
its many definitions, bias mitigation strategies, as well as
the theoretical trade-offs between fairness and performance
objectives. For a more comprehensive review of the fairness
literature, we refer to (Pessach and Shmueli 2022).

FairML approaches seek to detect and mitigate machine
bias at various stages of the ML pipeline and can be effec-
tively divided into pre-processing, in-processing, and post-
processing techniques, which detect and mitigate bias in ei-
ther 1) the input data, 2) the training algorithm or 3) the
model’s predictions (Pessach and Shmueli 2022). In recent
years, the objective of fairness has gained increased popular-
ity in the AutoML community, resulting in several studies
that achieved competitive performance to specialized bias-
mitigation techniques by simply varying the hyperparam-
eters or neural architecture of ML models (Perrone et al.
2021; Schmucker et al. 2020; ?). For an in-depth discussion
on fairness-aware AutoML, we refer to Weerts et al. (2023).

Despite the strong performance of bias-mitigation tech-
niques and fairness-aware AutoML, a lingering question in
the fairness literature remains an introspective one: how do
we define fairness itself? Grappling with a philosophical
question that has been debated for millennia (Binns 2018),
as well as a growing set of social objectives and legal re-
quirements, the FairML community has proposed over 20
different fairness metrics (Barocas, Hardt, and Narayanan
2023), which seek to quantify the fairness (or unfairness) of
a model. The FairML problem is formally defined below.
Definition 3.1 (FairML Problem). Given a data set D =
(X,Y,A) of n features and m samples X ∈ Rm×n, a bi-
nary target Y ∈ {0, 1}m, and a binary protected attribute
A ∈ {0, 1}m, find a model M : X → Ŷ that satisfies or
optimizes a set of fairness and performance objectives or
constraints {f0, f1, f2, ...}

The three most common metrics for group fairness are
Demographic Statistical Parity (DDSP), Equalized Odds
(DEOD), and Equal Opportunity (DEOP). Group fairness
operates upon the egalitarian principle that valuable re-
sources should be distributed equally across salient demo-
graphic groups, while individual fairness is based on the no-
tion of just deserts (Binns 2018), requiring that individuals
receive their deserved outcome. Associated individual fair-
ness metrics are similarity-based and require that similar in-
dividuals (based on a set of legitimate factors) receive sim-
ilar outcomes (Barocas, Hardt, and Narayanan 2023). Due
to the challenge in defining legitimate factors, we opt for
a simplified definition of Inverse Distance (INVD) as pro-
posed by Berk et al. (2017), which treats the ground truth



as a legitimate factor (despite the potential for direct bias).
We provide a mathematical definition of the above fairness
metrics in (Table 1).

A foundational concept, especially in the fairness-aware
AutoML literature is the fairness-accuracy trade-off, which
states that improvements in fairness usually come at the cost
of reduced predictive accuracy (Pessach and Shmueli 2022).
This is because unfairness is caused primarily by indirect
bias, which occurs due to an indirect influence of protected
attributes on the target variable via a set of indirect encod-
ings (Kamishima et al. 2012) which may also influence the
outcome of interest. For example, standardized test scores
are a partially useful predictor of student success. However,
these scores can also be indirectly influenced by race via
latent factors such as access to test-preparation resources.
For a more mathematical discussion of the fairness-accuracy
trade-off, we refer to (Cooper and Abrams 2021).

3.2 Fairness Metric Impossibility Theorem
A central concept to this study in particular is the Impossi-
bility Theorem of Fairness, which states that the three main
notions of group fairness (Sufficiency, Separation, and In-
dependence) cannot all be satisfied at once (Miconi 2017),
(Kleinberg, Mullainathan, and Raghavan 2016) (Choulde-
chova 2016). The Impossibility Theorem applies when there
is a difference in base rates, and is thus widely applicable in
real-world FairML problems. According to Barocas, Hardt,
and Narayanan (2023):

“What this shows is that we cannot impose multiple
criteria as hard constraints. This leaves open the pos-
sibility that meaningful trade-offs between these dif-
ferent criteria exist.”

3.3 Fairness Metric Conflict-Related Risks
Given the potential conflicts between fairness metrics them-
selves, we formalize the notion of conflict-related risks. In
Figure 2 (left) we first outline our perspective on fairness
metrics as a mapping to specific social objectives such as
equity, equality, and individual justice. When one metric is
satisfied by violating another (right), a first-order risk oc-
curs, namely the reduction in the social benefits of the vio-
lated metric (e.g. reduced individual justice). However, more
consequential are the second-order risks of fairness met-
ric violations, which occur rather as a downstream effect.
In their critical analysis of DDSP, (Dwork et al. 2012) de-
scribe three conflict-related risks, namely 1) reduced utility
2) self-fulfilling prophecy (SFP) and 3) subset targeting. In
the context of this study, we focus on the risk of SFP due
to its clear connection to a conflict between group fairness
metrics DDSP and DEOP. We explain SFP with an example.

Imagine a university admissions algorithm that obtains
equal acceptance rates across demographic groups by ele-
vating the chances of underprivileged students getting ac-
cepted. This approach leads to the inclusion of several un-
derqualified students from this group. Although this algo-
rithm achieves low DDSP unfairness by achieving equal ac-
ceptance rates, it violates the unfairness metric DEOP, which
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Figure 2: Conflict-Related Risks: Fairness metrics serve as
a statistical means to specify and optimize various social
objectives, such as equality, equity, and individual justice.
However, certain conflicts hold potential downstream conse-
quences, such as the risk of Self-Fulfilling Prophecy (SFP)
when DDSP is satisfied by violating other metrics.

measures the between-group acceptance rate of qualified ap-
plicants. In addition to the reduction in equality of oppor-
tunity, the second-order risks are more dangerous. If the
underprivileged students who are accepted do not succeed
at the university, such an admissions strategy could create
positive feedback loops for future discrimination, ultimately
reinforcing the self-fulfilling prophecy that the underprivi-
leged group is less qualified (Dwork et al. 2012).

We emphasize, through the various question marks in Fig-
ure 2, that fairness metric conflict-related risks is a largely
understudied topic. Additionally, we note that these con-
flicts (and their associated risks) are not symmetric, a phe-
nomenon that we describe in Appendix Section A.2.

3.4 Multi-Objective Optimization
Multi-objective optimization is an increasingly relevant
topic in ML research, as ML applications are increasingly
scrutinized with respect to environmental, logistical, and
social requirements (Karl et al. 2022). Multi-objective op-
timization seeks to provide solutions to an optimization
problem under a set of two or more conflicting objectives
(Sharma and Kumar 2022). Objectives are called conflicting
when gains in one objective trade-off against losses in the
other.

Let Λ be a design space representing all possible design
decisions. The goal of multi-objective optimization is to find
a set of design solutions λ ∈ Λ that minimize a multi-criteria
objective function f : Λ → Rd, which returns a vector of
costs ⟨f1(λ), f2(λ), ..., fd(λ)⟩ with respect to each objec-
tive. We consider the strict partial Pareto order ≺Pareto where
x ≺Pareto y iff xi ≤ yi for all 1 ≤ i ≤ d and xj < yj for at
least one j. If we consider all possible values Y = f(Λ) we
obtain a set of minimal values called the Pareto Front.

P(Y) :=
{
y ∈ Y : {y′ ∈ Y, y′ ≺Pareto y} = ∅

}
(1)

Any value in P(Y) is called non-dominated, i.e., there is
no other solution that is as least as good as this value for all
objectives but strictly better in at least one of the objectives.
The hypervolume is a quality indicator and represents the
volume of the dominated region of the objective space with
respect to a reference point r.

H(P) := Vol(P(Y)) (2)



Name Definition

Demographic Statistical Parity (DDSP) |P (Ŷ = 1|A = 0)− P (Ŷ = 1|A = 1)|
Equalized Opportunity (DEOP) |P (Ŷ = 1|A = 0, Y = 1)− P (Ŷ = 1|A = 1, Y = 1)|
Equalized (Average) Odds (DEOD) 1

2

∑
y∈{0,1} ·|P (Ŷ = 1|A = 0, Y = y)− P (Ŷ = 1|A = 1, Y = y)|

Inverse Distance (INVD) 1
m2 ·

∑m
i,j=1 |yi − yj | · |ŷi − ŷj |

Table 1: Fairness metrics: Given protected attributes A, targets Y , and predictions Ŷ , we summarize measures of unfairness
drawn from the aif360 library. INVD is a simplified version of similarity-based individual fairness which treats ground truth
labels as legitimate factors for the inverse distance function (|yi − yj |).

In this study, we focus on normalized hypervolume, an ex-
tension of the concept of hypervolume which scales the em-
pirical value to a (0, 1) range, making it comparable across
different optimization tasks. For a further discussion on nor-
malized hypervolume and other multi-objective quality indi-
cators, we refer to (Hansen et al. 2022).

MaO optimization is a subcategory of multi-objective op-
timization and is applicable to high-dimensional problems
with three or more objectives. MaO algorithms are concep-
tually similar to low-dimensional multi-objective algorithms
but often implement additional quality-diversity measures
to ensure sufficient exploration of all objectives (Deb and
Jain 2014). For simplicity and to avoid confusion, we di-
vide multi-objective optimization into two problem settings:
BiO (optimizing for two objectives) and MaO (optimizing
for more than two objectives).

3.5 Hyperparameter Optimization
Hyperparameter optimization (HPO) seeks to automate the
trial-and-error process of designing and deploying ML mod-
els (Bischl et al. 2023). HPO has been shown to consistently
improve performance across a wide variety of ML tasks,
with high-profile success stories (Chen et al. 2018) and has
since become a crucial aspect of the ML design cycle. An-
other advantage of HPO is its extensibility to the BiO case,
where varying ML hyperparameters can have an impact on
not only performance, but other ML objectives, such as in-
terpretability, energy efficiency, and namely, fairness (Karl
et al. 2022). In the context of fairness-aware AutoML, recent
studies have shown a significant impact of regularizing hy-
perparameters on commonly used fairness metrics. Fairness-
aware HPO provides a convenient framework for the FairML
problem and is also extensible to include preprocessing, in-
processing, and post-processing techniques (as well as their
own hyperparameters) as part of the search (Wu and Wang
2021).

3.6 Evolutionary Algorithms
Many design spaces are large and non-differentiable, render-
ing an exhaustive search or gradient-based methods compu-
tationally infeasable. A popular approach to multi-objective
problems is the Evolutionary Algorithm (EA), a population-
based optimization technique that draws inspiration from
the process of biological evolution to solve black-box,
non-differentiable optimization problems (Eiben and Smith
2015). By implementing bio-evolutionary concepts such as

selection, mutation, and crossover, EAs effectively balance
exploration and exploitation, generating state-of-the-art re-
sults in a variety of domains.

Nondomoninated-Sorting Genetic Algorithm (NSGA-II)
is a state-of-the-art MO-EA (Deb et al. 2002), which applies
the notion of dominance in order to recursively divide the
population into ranked fronts. Parent and survivor selection
is performed using the heuristics of front rank and crowding
distance, which measures the distance of solutions to their
nearest neighbor on their respective front. Entire fronts are
greedily selected until including the next front exceeds a pre-
defined quota. At this stage, individuals are selected from
the final front based on crowding distance, which serves
as a heuristic for uniqueness, and encourages exploration
through population diversity. NSGA-III (Deb and Jain 2014)
incorporates the concept of reference directions in order to
select individuals for crossover and survival from equally
spaced regions of the many-dimensional objective space.

4 Methodology
In this section, we introduce ManyFairHPO, our MaO opti-
mization approach for fairness that provides an interpretable,
human-in-the-loop framework to help practitioners navi-
gate the complex landscape of fairness metric conflicts and
make informed and socially responsible model selection
decisions. ManyFairHPO consists of three main stages: 1)
MaO optimization for a candidate set of fairness metrics,
2) fairness metric selection and risk identification, and 3)
fairness-aware model selection. The description below fol-
lows Figure 1, which provides a visual overview of the
ManyFairHPO framework.

4.1 Many-Objective Optimization

ManyFairHPO takes a FairML dataset and a non-
weighted candidate set of performance and fairness metrics
f0, f1, f2, ... as input. We then employ the popular MaO
optimization algorithm NSGA-III (Deb and Jain 2014) to
efficiently explore the objective space of fairness-accuracy
trade-offs and fairness metric conflicts, yielding a MaO
Pareto Front P (YMULTI). Starting with MaO optimiza-
tion, ManyFairHPO differs from other approaches by de-
laying the selection and prioritization of performance and
fairness objectives until the trade-offs between these metrics
are known.



4.2 Fairness Metric Selection & Risk
Identification

The second stage of ManyFairHPO focuses on assigning a
set of performance and objective weights ⟨w0, w1, w2, ...⟩
based on domain knowledge, human preferences, and in-
sights taken from the high-dimensional Pareto analysis.

Domain Knowledge and Human Preferences Fairness
objective weights can be derived from discussions about the
relative importance of fairness objectives. To facilitate these
discussions, we draw an analogy between fairness metrics
and their related social objectives (Section 3.1), making it
easier for domain experts and stakeholders to express their
preferences. It is important to note that stakeholders and do-
main experts may have different priorities, which can be ac-
counted for during objective weighting. For instance, a hir-
ing agency might prioritize individual fairness to maintain
a reputation for non-discriminatory decisions, while a hir-
ing discrimination expert might focus on group fairness to
ensure workplace diversity.

Another crucial discussion point is the identification of
potential fairness metric conflict-related risks, which are
the potential downstream consequences when one fairness
metric is satisfied by violating another (e.g., self-fulfilling
prophecy). Key questions to consider include: “Will ML-
assisted decisions be used to train future algorithms?”
and “Are individuals from underprivileged groups being
thoughtfully selected?” It is important to keep in mind that
the identified risks may not be exhaustive or guaranteed to
occur, motivating the need for exploratory analysis of the
high-dimensional Pareto Fronts.

Interpretability via Pareto Analysis MaO optimization
provides interpretability through post-hoc analysis of the ob-
jective landscape. ManyFairHPO offers interpretable met-
rics and visualizations to identify fairness metric conflicts,
visualize them, and evaluate their social consequences. To
quantify the strength of fairness metric conflicts, we intro-
duce the notion of fairness metric contrast:
Definition 4.1 (Contrast). The contrast of fairness metric fi
with respect to fairness metric fj is defined as the difference
in normalized hypervolume when optimizing for fj and fi,
respectively:

C(fi, fj) := Hfj

(
P(Yj)

)
−Hfj

(
P(Yi)

)
(3)

It’s worth noting that the contrast metric is not symmetric
(Appendix Section A.2). A large positive value of C(fi, fj)
indicates a severe conflict, where optimizing for fi fails to
optimize for fj . A value close to zero suggests a weak con-
flict, and a negative value points to a negative conflict, where
optimizing for a different fairness metric is better than opti-
mizing for one directly.

To help practitioners understand fairness metric trade-
offs, we provide visualizations related to contrast, such as
3-dimensional ternary plots, which reveal whether conflicts
occur at specific accuracy levels. We also recommend com-
paring the predictive behavior of models selected from simi-
lar accuracy levels on two conflicting Pareto Fronts to assess
whether the conflict results in a downstream risk.

4.3 Fairness-Aware Model Selection
The final stage of ManyFairHPO involves selecting a model
that effectively captures social objectives and mitigates
conflict-related risks. Insights from the previous stage can be
used to assign performance and fairness objective weights.
For a pair of conflicting fairness metrics (fi, fj), where sat-
isfying fi violates fj and leads to unwanted downstream
consequences, a higher weight can be assigned to fj to avoid
this risk (Figure 1).

Given a high-dimensional Pareto Front P (YMULTI) and
a vector of weights ⟨w0, w1, ...⟩, the MaO model selection
task is simplified to:

λ∗ = argminλ

∑
wi · fi(λ) (4)

For simplicity, we define Equation 4 as a linear combination,
but more complex functions can be used to incorporate the
utility and marginal gains of metrics.

4.4 Experimental Setup
Our experimental scope comprises of hyperparameter search
spaces from HPOBench (Eggensperger et al. 2021) for Ran-
dom Forest (RF), XGBoost (XGB), and Multi-Layer Per-
ceptron (NN) models (Pedregosa et al. 2011) (Appendix Ta-
ble 2) applied to fairness datasets: Bank Marketing, Ger-
man Credit, Adult Census Income, COMPAS Criminal Re-
cidivism, and Law School Admissions (Vanschoren et al.
2014) (Appendix Table 3). We use commonly employed
fairness metrics from IBM’s aif360 library (Bellamy et al.
2019): Demographic Statistical Parity (DDSP), Equalized
Odds (DEOD), Equality of Opportunity (DEOP), and In-
verse Distance (INVD) (Appendix Table 1).

We apply NSGA-III to optimize for a five-dimensional
Pareto Front P (YMULTI) of F1-Score and all four fairness
metrics, resulting in 15 MaO experiments repeated with 10
random seeds (150 total runs). For comparison, we apply
BiO optimization (NSGA-II) to optimize for F1-Score and
a single fairness metric, resulting in 60 BiO experiments
repeated with 10 random seeds (600 total runs). We also
compare our results with Exponentiated Gradient Reduction
(EGR) by in-processing the most accurate model for each
search space and dataset across 10 independent trials. The
source code for experiments and analysis as well as supple-
mentary material is available at https://github.com/jr2021/
ManyFairHPO-AIES.

Research Questions To systematically evaluate the effec-
tiveness of ManyFairHPO and demonstrate its practical ap-
plication, we propose the following research questions:

RQ1: Fairness-Aware Many-Objective Optimization. What
are the advantages of ManyFairHPO as an approach
to bias mitigation compared to BiO optimization
and state-of-the-art bias-mitigation techniques? How
well does it explore fairness-accuracy trade-offs and
fairness metric conflicts? What interpretable insights
can be gained into fairness objective landscapes that
can be used to select and prioritize fairness metrics,
as well as identify and assess conflict-related risks?



RQ2: Law School Admissions Case Study. How can Many-
FairHPO be applied in a real-world scenario with
complex fairness objectives and diverse stakeholder
interests? We explore a Law School Admissions case
study to demonstrate how ManyFairHPO can relate
social objectives and downstream risks to a priori-
tized set of fairness metrics, informing the selection
of a model that incorporates multiple conflicting per-
formance and fairness objectives.

5 Results
5.1 ManyFairHPO for Bias-Mitigation
In this section, we systematically assess the effectiveness
of the MaO problem formulation (ManyFairHPO) from a
technical perspective. We demonstrate that ManyFairHPO
is competitive from a bias-mitigation standpoint, achiev-
ing similar fairness and accuracy values compared to BiO
optimization and outperforming the state-of-the-art bias-
mitigation technique EGR. Moreover, we showcase Many-
FairHPO’s novel ability to explore and balance trade-offs be-
tween fairness metrics themselves.

Fairness-Accuracy Trade-offs We first verify that opti-
mizing for multiple fairness metrics together using Many-
FairHPO is at least as effective as optimizing for the same
metrics separately using BiO optimization.

Figure 3: ManyFairHPO vs. Bi-Objective Optimization:
Comparison of hypervolume achieved by ManyFairHPO
and bi-objective optimization across datasets and search
spaces. NSGA-III matches the hypervolume achieved by
NSGA-II with a correlation of 0.991, indicating that similar
fairness-accuracy Pareto Fronts are achieved when optimiz-
ing for fairness metrics together compared to optimizing for
them separately.

To empirically validate this, we compare the fairness-
accuracy hypervolume (normalized) achieved by the MaO
optimizer NSGA-III compared to its BiO counterpart
NSGA-II across different BiO combinations, datasets, and
hyperparameter search spaces (Figure 3). We observe a

Search Space

Dataset Objectives XGB RF NN

German F1-DDSP 10/0/0 10/0/0 10/0/0
F1-DEOD 10/0/0 10/0/0 10/0/0

Compas F1-DDSP 10/0/0 0/10/0 10/0/0
F1-DEOD 5/5/0 0/0/10 10/0/0

Lawschool F1-DDSP 0/10/0 0/0/10 10/0/0
F1-DEOD 0/0/10 0/0/10 7/3/0

Bank F1-DDSP 10/0/0 10/0/0 10/0/0
F1-DEOD 10/0/0 10/0/0 10/0/0

Table 2: ManyFairHPO vs. In-Processing (EGR): Num-
ber of wins (ManyFairHPO dominates EGR), ties (non-
dominated solutions), and losses (EGR dominates Many-
FairHPO) across different datasets and search spaces. Many-
FairHPO dominates EGR in 9/12 cases for DDSP and 7/12
cases for DEOD.

strong and significant correlation of 0.991 (p = 0.0) between
the hypervolume achieved from optimizing for multiple fair-
ness metrics together as opposed to optimizing for them sep-
arately.

Next, we compare the Pareto Fronts obtained from Many-
FairHPO to EGR, a state-of-the-art bias-mitigation tech-
nique that reduces the FairML task to a series of cost-
sensitive classification problems (Agarwal et al. 2018). To
provide a fair comparison, we in-process the most accurate
hyperparameter configurations with EGR for 10 indepen-
dent trials across all search spaces and models with respect
to group fairness metrics DDSP and DEOD.1 We summarize
the wins, ties, and losses (W/T/L) of ManyFairHPO against
EGR in Table 2, where ManyFairHPO dominates EGR in
the majority of trials in 9/12 cases for DDSP and 7/12 cases
for DEOD. We also visualize these outcomes in Appendix
Figure 2. The dominance of ManyFairHPO demonstrates
that MaO optimization is capable of efficiently exploring
multiple fairness-accuracy trade-offs, achieving compara-
ble Pareto Fronts to BiO optimization and outperforming
the state-of-the-art bias-mitigation technique EGR in most
cases.

Fairness Metric Trade-offs Beyond achieving competi-
tive fairness-accuracy trade-offs, a key novelty of Many-
FairHPO is its ability to explore trade-offs between fairness
metrics themselves. To identify which fairness metrics con-
flict on which search spaces and datasets, we calculate the
contrast between fairness metrics C(fi, fj) as described in
Definition 4.1 and provide a summary of observed conflicts
in Figure 4. A dark red cell in row j, column i, indicates
that optimizing for F1-Score and fairness metric fi fails to
optimize for F1-Score and fairness metric fj .

A key insight from this analysis is the strong data depen-
dence of fairness metric conflicts, motivating the need for

1Our results do not include a comparison on the Adult dataset
because single evaluations of EGR exceeded our 24-hour time bud-
get.



Figure 4: Fairness Metric Contrast: Heatmap visualization of fairness metric conflicts across different datasets and ML models,
measured by the degree to which optimizing for one fairness-accuracy trade-off fails to optimize for another. Light red cells
indicate more severe conflicts. The results highlight the data and model dependence of fairness metric conflicts.

MaO exploration of fairness metric trade-offs on real-world
problems. We observe similar conflict patterns on datasets
with semantically similar target variables, such as the Bank
and Adult datasets, whose targets (Bank Marketing Sub-
scription and Income) both serve as proxies for financial sta-
tus. This suggests a relationship between FairML problem
characteristics and the presence of certain conflicts, motivat-
ing future work on which conflicts and risks to be aware of
for different classes of tasks. We also observe a slight model
dependence, with lower error models displaying stronger
conflicts, indicating that ManyFairHPO should be applied
over multiple hyperparameter search spaces to reveal the
true fairness objective landscape. Finally, we observe sev-
eral negative conflicts on the RF-Compas experiment, where
a fairness metric is better optimized indirectly than directly,
a result which suggests a possible interaction effect between
fairness metrics in hyperparmeter search spaces. We further
explain this result in Appendix A.1.

To illustrate ManyFairHPO’s novel capability in balanc-
ing fairness metric conflicts, we focus on a conflict observed
between INVD and DEOP (C = 0.337) from the RF-Adult
experiment (Figure 4 top-right). In Figure 5, we provide
a ternary plot of this conflict projecting the 3-dimensional
normalized locations of the Pareto Fronts P(YDEOP ) and
P(YINV D) and P(YMULTI) in 2-dimensional space.

The first observation we make is that INVD and DEOP
are only not in conflict at the high and low error extrema
of the objective space, where the model selections are either
unusable due to high error (top corner) or perform poorly in
terms of INVD and DEOP (bottom edge). In the top 20%
of most accurate models, the Pareto Fronts P(YDEOP ) and
P(YINV D) diverge, meaning that for a given accuracy level
in this range, a selection from the P(YDEOP ) Pareto Front
would result in a significant trade-off in INVD. In contrast,
the MaO Pareto Front P(YMULTI) provides a large number
of model selections that interpolate between these choices,

Figure 5: Conflict Interpolation (RF-Adult): Ternary plot of
the high-dimensional Pareto Front (orange) in the presence
of a fairness metric conflict between INVD (purple) and
DEOP (green). Metric values get better further away from
each corner. The many-objective Pareto Front provides a se-
lection of models that interpolate between fairness metric
conflicts.

allowing practitioners to trade-off fairness metrics with a
finer grain.

In summary, these results showcase ManyFairHPO’s abil-
ity to not only find competitive fairness-accuracy trade-
offs compared to BiO optimization and state-of-the-art bias-
mitigation techniques but also to explore and balance trade-
offs between fairness metrics themselves. This is a novel
contribution to the FairML literature.



Figure 6: Risk Assessment (RF-Lawschool): Explanation of the conflict between individually-fair and group-fair models discov-
ered selected from the RF-Lawschool experiments. The individually fair model has a higher rejection rate, resulting in fewer
similarly unqualified Black and White students receiving different outcomes (individual fairness). However, this strategy also
increases between-group acceptance rates (group unfairness).

Figure 7: Model Selection (RF-Law School): Model selec-
tion on the Law School Admissions problem under objective
weights w = ⟨0.5, 0.2, 0.3⟩ for F1-Score, DDSP, and INVD.
Single objective scalarization leads to a modeling decision
(green cross) with strong accuracy (F1 = 0.7) that success-
fully mitigates the risk of self-fulfilling prophecy.

5.2 Law School Admission Case Study
To illustrate the practical application of ManyFairHPO in
navigating intricate fairness landscapes, we present a case
study using the Law School Admissions dataset from the
1991-1997 LSAC National Longitudinal Bar Passage Study
(Wightman 1998).

Problem Description and Stakeholder Analysis This
dataset, containing information from nearly 30,000 Law
School applicants, is commonly used in the fairness com-
munity to simulate acceptance decisions based on predicted
first-year average (FYA) scores. Given the high ethnic dis-
parity identified in the initial LSAC study, we demonstrate
how ManyFairHPO can be used to balance the complex and

conflicting fairness objectives relevant to this scenario.
As outlined in Section 4, the first step of ManyFairHPO is

MaO optimization. We apply NSGA-III to optimize for per-
formance (F1) as well as fairness metrics DDSP, DEOP/D,
and INVD. Before examining the fairness metric conflicts,
we introduce a hypothetical scenario involving two stake-
holders with different preferences toward higher-level ob-
jectives.

The University, the first stakeholder, aims to make admis-
sions decisions that maintain a high academic standard while
attracting a large applicant pool. Consequently, they are hes-
itant towards Affirmative Action strategies that may discour-
age applicants from well-represented groups. The second
stakeholder, the University’s Equality, Diversity, and Inclu-
sion (EDI) committee, prioritizes increasing diversity and
breaking down systemic inequalities in both the admissions
process and the University as a whole. After discussing their
objectives, the University and EDI committee agree on ini-
tial weights of w = ⟨0.5, 0.5⟩ for F1-Score and DDSP, re-
spectively.

Conflict Evaluation and Assessment With the initial ob-
jective weights established based on the University and
EDI committee’s preferences, we demonstrate how Many-
FairHPO’s interpretability can assist practitioners in identi-
fying, understanding, and assessing fairness metric conflict-
related risks.

Figure 4 reveals a conflict between the individual fair-
ness metric INVD and group fairness metrics DEOP (C =
0.234), DEOD (C = 0.202), and DDSP (C = 0.182). No-
tably, the group fairness metrics do not conflict with each
other, implying that the assigned weight wDDSP = 0.25 for
DDSP captures the EDI committee’s preference for all three
group fairness metrics. Additionally, the conflict is slightly
asymmetric, meaning that selecting a Pareto optimal model
for INVD results in a smaller violation of the EDI commit-
tee’s preferred group fairness metrics compared to the re-
verse scenario.

Figure 7 further illustrates this conflict, showing that
P(YINV D) fails to approximate group fairness Pareto



Fronts, particularly in high to moderate error, low group un-
fairness regions of the (F1, DDSP ) objective spaces (40-
50%).

To exemplify the potential downstream social conse-
quences of this fairness metric conflict, we compare the
predictive behavior of two models: one selected from the
medium error, moderate individual unfairness region of
P(YINV D), and another chosen at a similar error level from
P(YDDSP ). The objective space locations of these models
are also visualized in Figure 7 as “Group Fair” and “Indiv.
Fair”.

Next, we perform risk-assessment on the two selected
models, providing a detailed summary of these models’
predictive behavior in Figure 6. Both models exhibit rela-
tively low group and individual unfairness (but high error)
by increasing the predicted qualification rate for Black stu-
dents from P (Qualified|Black) = 0.01 in the data to
P (Accept|Black) = 0.08 for the individually fair model
and P (Accept|Black) = 0.13 for the group-fair model.
The individually fair model rejects 3% more qualified and
2% more unqualified Black applicants compared to the
group-fair model. This improves INVD, as 2% fewer sim-
ilarly unqualified Black and White applicants receive differ-
ent outcomes. However, the group-fair model accepts 5%
more Black applicants overall, reducing the disparity be-
tween group acceptance rates (DDSP) from 23% in the
individually-fair model to 18%. While the group-fair model
achieves a more diverse accepted class, aligning with the
EDI committee’s objectives, it does so by accepting 2%
more unqualified Black applicants than the individually-fair
model.

Implementing such an admissions strategy may lead to
the downstream consequence of self-fulfilling prophecy if
the underprivileged students admitted through this approach
struggle academically, which concerns both the University
and the EDI committee.

Fairness-Aware Model Selection Having identified the
fairness metric conflict between INVD and group fair-
ness metrics, the University and EDI committee update the
weights from w = ⟨0.5, 0.5⟩ to include a preference for
INVD to mitigate the risk of SFP. The new weights for F1,
DDSP, and INVD become w = ⟨0.5, 0.2, 0.3⟩. Using these
objective weights, we perform model selection via single-
objective scalarization (Figure 7) to perform a model selec-
tion (green cross) that achieves a moderate level of accuracy
while balancing DDSP and INVD to mitigate the risk of SFP.
This result satisfies both the University’s and EDI commit-
tee’s objectives.

This case study shows the effectiveness of ManyFairHPO
in capturing and navigating the complex fairness objective
landscape of the Law School Admissions problem, consid-
ering the preferences and concerns of multiple stakeholders.
By providing interpretable insights into fairness metric con-
flicts and their potential downstream consequences, Many-
FairHPO enables the University and EDI committee to make
informed decisions that align with their priorities and miti-
gate risks.

6 Conclusion
In this study, we address the criticisms of FairML ap-
proaches that attempt to solve the fairness problem algorith-
mically by motivating the consideration of fairness metrics
as conflicting objectives. Our main contribution is Many-
FairHPO, a human-in-the-loop and interpretable MaO opti-
mization framework for fairness that enables practitioners to
thoroughly navigate complex fairness objective landscapes.
ManyFairHPO is designed to encourage socially responsi-
ble fairness modeling decisions that encapsulate multiple
fairness objectives and avoid fairness metric conflict-related
risks.

Our empirical evaluation demonstrates that Many-
FairHPO achieves similar Pareto fronts compared to the
typical BiO optimization and even outperforms the state-
of-the-art bias-mitigation technique Exponentiated Gradi-
ent Reduction (EGR). Moreover, ManyFairHPO exhibits a
unique ability to explore and balance trade-offs between
fairness metrics themselves, providing interpretable insights
into problems-specific fairness objective landscapes. We fur-
ther illustrate the practical application of ManyFairHPO
through a Law School Admissions case study, guiding prac-
titioners from fairness metric selection and risk identifica-
tion to MaO model selection. The case study showcases
ManyFairHPO’s effectiveness in navigating complex fair-
ness objective landscapes, considering the preferences and
concerns of multiple stakeholders, and mitigating potential
downstream consequences.

One key assumption we make is that stakeholder com-
promise is possible in the given use case, and that a
compromising solution can be found by ManyFairHPO.
Through our comparison to BiO HPO and EGR we show
that ManyFairHPO is largely effective at approximating
fairness-accuracy and fairness-fairness Pareto Fronts. How-
ever, the ManyFairHPO’s approximation largely depends on
the quality of the hyperparameter search space. As men-
tioned in Section 3, future extensions or applications of
ManyFairHPO could see benefit from including bias miti-
gation approaches and their hyperparameters in the search
space as seen in (Wu and Wang 2021). From a socio-
technical perspective, we note that the success of Many-
FairHPO as a socio-technical framework also rises and falls
with honest human interaction, including preferences from
a diverse set of stakeholders as well as thorough analysis
and assessment of fairness metric conflicts and their related
social consequences. While we believe ManyFairHPO is a
valuable approach, it could have adverse impacts if mitigat-
ing one conflict-related risk leads to another unforeseen so-
cial consequence.

This work also paves the way for socio-technical discus-
sions on how fairness metrics can be used in balance to meet
complex social objectives and requirements while mitigating
downstream conflict-related risks, rephrasing the question
from ”which fairness metric should I use?” towards ”which
prioritization of metrics would balance social objectives and
mitigate risks?” We also encourage socio-technical stud-
ies to identify further conflict-related risks and form con-
nections between problem characteristics and the presence,
severity, and significance of fairness metric conflicts.
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