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A Supplementary Results
A.1 Criminal Recidivism: Negative Conflicts
The Compas data set is a seminal instance of algorithmic
bias, where a sentencing algorithm used in the Florida judi-
cial system to predict criminal recidivism (likelihood of re-
offending) to aid parole decisions was found to be severely
biased against Black defendants (Angwin et al. 2016). In
this section, we take a closer look into the so-called inverse
conflicts we observed in the RF-Compas experiment, where
optimizing for different fairness metrics found stronger so-
lutions than optimizing for a fairness metric directly. This
result suggests a possible explanation for the strong per-
formance of the MaO problem formulation in this scenario
(Main Figure 3), where interaction between fairness metrics
enables MaO to discover strong overall solutions.

In Main Figure 4 we observe negative contrast values be-
tween DDSP with respect to DEOD (C = −0.078), DEOP
(C = −0.171), and INVD (C = −0.111), indicating that
a fairer solutions in terms of DEOD/P and INVD were dis-
covered when optimizing for F1-Score and DDSP. We also
observe MaO experiments in Main Figure 3 with negative
regret (-5% to -10%), indicating that a higher HDEOD/P

and HINV D was achieved by the MaO experiment than by
their corresponding BiO experiments. These results are at-
tributed to a single model discovered on P(YDDSP ) which
achieves reasonable accuracy (1−F1 = 0.3) and the lowest
unfairness in terms of all fairness metrics (Appendix Figure
1).

In order to better understand how strong overall fairness
was achieved by this model, we compare its behavior
with a slightly more accurate (1 − F1 = 0.27) but
less fair model in terms of all fairness metrics (Fig-
ure 1). In comparison, the all-fair model has a lower
sentencing rate for Black defendants that re-offended
(P (Sentenced|Black,Guilty) = 0.09) than the overall-
unfair model (P (Sentenced|Black,Guilty) = 0.13).
However, because both models have a high pa-
role rate for White defendants that re-offend
(P (Parole|White,Guilty) ≥ 0.20), the decreased
sentencing rate from the overall-fair model has the effect
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of improving overall fairness. First of all, the between-
group parole rate P (Parole|White) − P (Parole|Black)
is improved from DDSP = 0.07 in the overall-unfair
model to DDSP = 0.04 in the overall-fair model. In
addition, the between-group parole rate for non-re-
offending defendants P (Parole|White, Innocent) −
P (Parole|Black, Innocent) is improved from DEOP
= 0.02 in the overall-unfair model to DEOP = 0.01 in
the overall-fair model. Finally, similarity-based individual
fairness INVD is also improved in the overall-fair model, as
4% more similarly re-offending defendants receive similar
parole outcomes. This result suggests that optimizing for
multiple notions of fairness can have the effect of unlocking
regions of the objective space that are otherwise inaccessible
using the BiO problem formulation.

A.2 Asymmetry of Fairness Metric Conflicts
In this section, we outline a scenario where a substantial dif-
ference in base rates leads to an asymmetric fairness metric
conflict. An asymmetric fairness metric conflict occurs when
the impact of satisfying fairness metric fi on violating fair-
ness metric fj is different (larger or smaller) from the impact
of satisfying fj on violating fi.

In Main Figure 4, we observe an interesting phenomenon
on the RF-Lawschool experiment, where the conflict be-
tween INVD with respect to group fairness metrics DDSP
and DEOP/D (C = 0.2) is significantly larger than the con-
flict between group fairness metrics DDSP and DEOP/D
with respect to INVD (C = 0.1). In plainer terms, if INVD
is satisfied it leads to a strong violation of DDSP, while the
satisfaction of group fairness metrics leads to a relatively
weaker violation of INVD.

In the following argument, we explain why asymmetry
occurs on the Lawschool dataset by drawing a connection
to the significant imbalance (92% White and 8% Black) in
privileged and unprivileged applicants (Appendix Table 3).
Consider a perfect classifier that satisfies INVD by accept-
ing all qualified applicants and rejecting all unqualified ones.
Referring to the distribution in Main Figure 6 (right), the
classifier thus accepts all 1% of applicants who are qual-
ified and Black as well as all 50% who are qualified and
White. Similarly, the classifier rejects all 7% of applicants
who are unqualified and Black as well as all 42% who are



Figure 1: Inverse Conflicts (RF-Compas): Overall-fair model discovered in the RF-Compas experiment, which minimizes all
fairness metrics at a reasonable accuracy level. The All-Fair model increases the parole rate for Black defendants that did in
fact re-offend to the same rate as White applicants, resulting in low group and individual unfairness.

unqualified and White. Although INVD is satisfied (all in-
dividuals receive the outcome they deserve, regardless of
demographic group), such an admissions strategy strongly
violates DDSP (precisely resulting in P (Accept|White) −
P (Accept|Black) = 42

92 − 1
8 = 0.34 or a difference in

between-class acceptance rate of 34%).

Now consider modifying this classifier (e.g. with a post-
processing technique) such that DDSP is satisfied by in-
creasing the acceptance likelihood for unqualified Black stu-
dents by 3% and decreasing the acceptance likelihood for
qualified White students by 4% (positive discrimination), re-
sulting in P (Accept|White) − P (Accept|Black) = 46

92 −
4
8 = 0. Such a modified classifier results in only a 24% vi-
olation of INVD, as 3% and 4% of similarly qualified (or
unqualified) applicants from different demographic groups
receive different admissions/rejection outcomes.

Note that the impact of DDSP on INVD depends on the
base rate of privileged/unprivileged applicants, and asym-
metry would increase in this scenario if the overall propor-
tion of Black applicants increased while the ratio of qual-
ified and unqualified Black applicants stayed the same. For
example, if 2% of applicants were qualified and Black, while
14% of applicants were unqualified and Black, satisfying
DDSP, would require a 6% (as opposed to the previous 3%)
increase in acceptance likelihood for unqualified Black ap-
plicants, leading to a larger increase in INVD than in the
previous example. We thus exemplify how fairness metric
conflicts can be asymmetric, while also identifying the im-
pact that dataset characteristics (e.g. difference in base rates)
can have on their occurrence, significance, and symmetry.

This identification suggests that fairness metric conflicts can
potentially be anticipated during domain-knowledge-driven
deliberations, adding a technical and concrete angle to these
discussions.

B Experimental Details
B.1 Multi-Criteria Objective Function
Our objective function takes as input a hyperparameter con-
figuration λ ∈ Λ, a FairML data set D = (X,Y,A),
and a subset of the fairness metrics {f0, f1, f2, ..., fd}. The
objective function applies Nested Stratified k-Fold Cross-
Validation to iteratively partition the data set into training,
testing, and validation folds Dtrain,Dval and, Dtest. Each
fold is stratified by both the target Y and protected attribute
A in order to maintain a realistic distribution of these vari-
ables.

Given a candidate hyperparameter configuration λ ∈ Λ,
a model M is defined and fit to the training fold Dtrain,
generating predictions Ŷ on the validation set Dval. The
predictive performance of the hyperparameter configuration
f0(Y, Ŷ ) is calculated using the F1-Score, an appealing per-
formance metric in the face of significant class imbalance.
Because a higher F1-Score is better with respect to predic-
tive performance and defined in the range (0, 1), we min-
imize f0(Y, Ŷ ) := 1 − F1 during optimization. The un-
fairness of the hyperparameter configuration f1:d(Y, Ŷ , A)
is calculated using the measures of fairness defined in Table
??. The objective values of each evaluated hyperparameter
configuration are added to an archive of all observations Y .



Figure 2: ManyFairHPO vs. EGR: Relative fairness-accuracy objective space locations of hyperparameter configurations found
by ManyFairHPO and those post-processed with Exponentiated Gradient Reduction (EGR) to minimize DDSP (top) and DEOD
(bottom). ManyFairHPO Pareto Fronts dominate EGR models in the majority of cases (9/12 for DDSP and 7/12 for DEOD),
suggesting that HPO alone is a competitive approach to bias-mitigation.



Random Forest (NN)
Name Range Scale

max depth (1, 50) Log
min samples fold (2, 128) Log
min samples leaf (1, 20) Uniform
max features (0, 1) Uniform
n estimators (1, 200) Log

XGBoost (XGB)
Name Range Scale

eta (2−10, 1.0) Log
max depth (1, 50) Log
colsample bytree (0.1, 1.0) Uniform
reg lambda (2−10, 210) Log
n estimators (1, 200) Log

Multi-Layer Perceptron (NN)
Name Range Scale

depth (1, 3) Uniform
width (16, 1024) Log
batch size (4, 256) Log
alpha (10−8, 1) Log
learning rate init (10−5, 1) Log
n iter no change (1, 20) Log

Table 1: HPO Search Spaces: Summary of hyperparameter search spaces drawn from HPOBench.

Formulation Name Optimizer Objectives Pop. Size Func. Evals. Seeds

BiO F1-DDSP NSGA-II 2 20 1000 10
F1-DEOD NSGA-II 2 20 1000 10
F1-DEOP NSGA-II 2 20 1000 10
F1-INVD NSGA-II 2 20 1000 10

MaO F1-MULTI NSGA-III 5 42 1000 10

Table 2: ManyFairHPO Experiments: Summary of ManyFairHPO experiments, spaning across two problem formulations, four
fairness metrics, three HPO search spaces, and five data sets. We run each experiment for 10 seeds with a maximum wall-clock
time of 1 CPU day.
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Name Prot. Attr. Samples Features Pos./Neg. Priv./Unpriv.

German Credit sex 1,000 59 70/30 69/31
Criminal Recidvism race 5278 7 53/47 40/60
Bank Marketing age 764 31 23/77 64/36
Census Income sex 15,315 44 25/75 85/14
Lawschool Admissions race 22,342 3 25/75 92/8

Table 3: FairML Datasets: Summary of data sets drawn from the aif360 library.


