
1st Workshop on Neural Architecture Search at ICLR 2020

DIFFERENTIAL EVOLUTION FOR NEURAL ARCHITEC-
TURE SEARCH

Noor Awad1∗, Neeratyoy Mallik1∗, & Frank Hutter1,2
1Department of Computer Science, University of Freiburg
2Bosch Center for Artificial Intelligence
Freiburg, Germany
{awad,mallik,fh}@cs.uni-freiburg.de

ABSTRACT

Neural architecture search (NAS) methods rely on a search strategy for deciding
which architectures to evaluate next and a performance estimation strategy for as-
sessing their performance (e.g., using full evaluations, multi-fidelity evaluations,
or the one-shot model). In this paper, we focus on the search strategy and demon-
strate that the simple yet powerful evolutionary algorithm of differential evolution
(DE) yields state-of-the-art performance for NAS, comparing favourably to regu-
larized evolution and Bayesian optimization. It yields improved and more robust
results for 13 tabular NAS benchmarks based on NAS-Bench-101, NAS-Bench-
1Shot1, NAS-Bench-201 and NAS-HPO bench.

1 INTRODUCTION

Evolutionary algorithms have a long history for neural architecture search (NAS), for combined
search of architectures and weights (Stanley et al., 2019; 2009), (Mason et al., 2017a; Baioletti
et al., 2020), search of just the architecture (Real et al., 2017; Elsken et al., 2018; Liu et al., 2017),
and multi-objective optimization of performance and resource consumption (Elsken et al., 2019b).
Recently, regularized evolution (Real et al., 2018) has been shown to yield very robust performance
on NAS benchmarks (Ying et al., 2019) and found novel neural architectures for object recognition
in CIFAR-10 (Real et al., 2018) and to an improved version of the transformer (So et al., 2019).

Here, we study the use of the popular evolutionary algorithm of differential evolution (DE, Storn &
Kenneth (1997)) for NAS. DE has previously been used to search basic neural network architectures.
For example, Mineu et al. (2010) used DE to search for layers, neurons, weights and connections
for architectures using a special local and global neighbourhood strategy for the mutation operation,
Bhuiyan (2009) introduced a simple DE algorithm without the use of a crossover operation, and
Zhang et al. (2019) used DE to jointly evolve architectures and weights, followed by the Levenberg-
Marquardt algorithm to finetune the generated weights. Other works that use DE to evolve basic
neural architectures can be found in (Dhahri et al., 2012; Mason et al., 2017b). In this paper
and different from the above, rather than developing a customized DE version for a specific task,
we standardize and benchmark the use of a simple, yet effective DE, for a wide range of NAS
benchmarks .

DE has been used as one of many algorithms for a recent benchmark of joint hyperparameter opti-
mization and NAS Klein et al. (2018), and did not yield state-of-the-art performance there. However,
that study used a simple SciPy Virtanen et al. (2020) implementation, and we demonstrate that with
a better implementation and a fixed, robust hyperparameter setting, DE does indeed achieve state-
of-the-art performance on a wide range of recent NAS benchmarks compared to other blackbox
optimizers.

Most recent progress in NAS focuses on exploiting the one-shot model introduced by Pham et al.
(2018), prominently based on extensions of differentiable architecture search (DARTS (Liu et al.,
2018)). However, the one-shot model in general (Sciuto et al., 2019) and DARTS in particular (Zela
et al., 2020b) feature several failure modes. For this reason, using the terminology of Elsken et al.

∗Equal contribution

1

1st Workshop on Neural Architecture Search at ICLR 2020

(2019a), we do not employ the one-shot model as a performance estimation strategy to evaluate
different search strategies, but rather stick to the simpler performance estimation strategy of full
evaluations. While a large-scale evaluation would normally be completely infeasible in this setting
due to the high computational cost of full evaluations, this analysis is made possible by the recent
availability of tabular NAS benchmarks (Ying et al., 2019).

We first describe a canonical version of differential evolution (DE; Section 2), then describe how to
apply DE to NAS (Section 3), and then Section 4 demonstrates that the resulting algorithm outper-
forms the previous best search strategies on a wide range of 13 benchmarks based on NAS-Bench-
101 (Ying et al., 2019) NAS-Bench-1Shot1 (Zela et al., 2020c), NAS-Bench-201 (Dong & Yang,
2020), and NAS-HPO-Bench (Klein & Hutter, 2019).

2 CANONICAL DIFFERENTIAL EVOLUTION

Differential Evolution (DE, Storn & Kenneth (1997)) is an evolutionary algorithm that is based on
four steps (initialization, mutation, crossover and selection). We describe these below, deferring
details to Appendix A. In its canonical form, DE is described for continuous optimization.

Initialization. DE is a population-based meta-heuristic algorithm which consists of a population
of NP individuals. Each individual is considered a solution and expressed as a vector of D-
dimensional decision variables, which are initialized uniformly at random in the search range.

Mutation. A new child/offspring is produced using the mutation operation for each individual in
the population by a so called mutation strategy. The classical DE uses rand/1 mutation, in which
three random individuals/parentsXr1 , Xr2 , Xr3 are chosen to generate a new vector Vi,g as follows:

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) (1)

where Vi,g is the mutant vector generated for each individualXi,g in the population, F is the scaling
factor (which usually takes values within the range [0, 1]), and r1, r2, r3 are the indices of different
randomly selected individuals. The subscript g indicates the generation index, or iteration number.

Crossover. After the mutation, a crossover operation is applied to each target vector Xi,g and
its corresponding mutant vector Vi,g to generate a trial vector Ui,g . We use a simple binomial
crossover, which chooses the value for each dimension i from Vi,g with probability Cr and from
Xi,g otherwise.

Selection. After generating the trial vector Ui,g , DE computes its function value f(Ui,g), keeping
Ui,g if it performs at least as well as Xi,g and reverting back to Xi,g otherwise.

3 DIFFERENTIAL EVOLUTION FOR NAS

Recent NAS approaches and benchmarks parameterize cell structures of deep neural networks as
directed graphs (Zoph et al., 2018; Ying et al., 2019; Zela et al., 2020a; Dong & Yang, 2020). The
realisation of a candidate cell structure can be seen as an assignment of operations from a set of
choices or a range of values, such as the choice of operator on an edge or the choice of predecessors
of a node in the directed graph.

We found the best way of applying DE when parameters are discrete or categorical is to keep the
population in a continuous space, perform canonical DE as usual as described in Section 2, and
only discretize copies of individuals to evaluate them. If we instead dealt with a discrete population
space, then the diversity of population would drop dramatically, leading to many individuals having
the same parameter values; the resulting population would then have many duplicates, lowering the
diversity of the difference distribution and making it hard for DE to explore effectively.

The modified canonical DE we used for NAS is presented in Algorithm 1 of Appendix B. Figure 1
shows the general framework of our DE implementation. We scale all NAS parameters to [0, 1] to
let DE work on individuals from a uniform, continuous space. The continuous value for Ui,g needs
to be mapped back to the original space of the NAS parameters before the function evaluation. In
Algorithm 1, we use a method discretized architecture to do this; this method retrieves the following
values Xi depending on the parameter’s type:

2

1st Workshop on Neural Architecture Search at ICLR 2020

Figure 1: DE for NAS Framework

• Integer and float parameters: Xi ∈ [ai, bi] are retrieved as: ai + (bi − ai) ·Ui,g , where the
integer parameters are additionally rounded.
• Ordinal and categorical parameters Xi ∈ {x1, ..., xn}: the range [0, 1] is divided uni-

formly into n bins.

Figure 2: Illustration of DE mutation on categorical
parameterization of NAS cell space

We illustrate the discretization in Figure 2.
For the categorical parameter X2 ∈ {‘1x1
conv’, ‘skip’, ‘3x3 conv’}, the correspond-
ing continuous DE space maps to [0, 1/3)
for ‘1x1 conv’, [1/3, 2/3) for ‘skip’, and
[2/3, 1] for ‘3x3 conv’. As seen in Figure
2, the difference vector and the randomly
sampled candidate individuals determine
how the search space is spanned to find a
mutant vector that participates in the se-
lection process. The resultant mutant can
lie on any of the 9 grids formed in Figure
2 for the 2-dimensional case.

One drawback for such an approach might
arise in the case of a conditional parameter
space. However, just like in NAS-Bench-
101 (Ying et al., 2019), the function value for an invalid architecture can simply be a maximal
error of 1 (at no computational cost, even in a non-tabular benchmark). Such individuals will be
guaranteed to lose in the selection process, thereby implicitly avoiding invalid architectures over
time.

4 EXPERIMENTS

We evaluate DE’s performance on four recent NAS benchmarks: NAS-Bench-101 (Ying et al.,
2019), NAS-HPO (Klein & Hutter, 2019), NAS-Bench-1shot1 (Zela et al., 2020a) and NAS-Bench-
201 (Dong & Yang, 2020). We compare against several baseline algorithms, namely Random
Search (RS) (Bergstra & Bengio, 2012), BOHB (Falkner et al., 2018), Tree Parzen Estimator (TPE)
(Bergstra et al., 2011), Hyperband (HB) (Li et al., 2018) and regularized evolution (RE) (Real et al.,
2018). Appendix C has more details about the used algorithms and their hyperparameter settings.
For DE, we set scaling factor F and crossover rate Cr to 0.5 over all the generations. For the
population size NP , we tested several values (provided in Appendix in F) and chose 20 for our
experiments. We consider RE as the primary baseline algorithm (run until 10Ms) since it belongs
to the same family of algorithms as DE and has been shown to perform robustly many times be-
fore. We provide a comparison of the robustness between RE and DE in Appendix E. For each
algorithm, we performed 500 independent runs and report the mean performance of the immediate
validation regret (Ying et al., 2019). Throughout, we evaluate algorithms in the anytime setting,
showing performance of the best found configuration over time as suggested by Ying et al. (2019)
and Lindauer & Hutter (2019). In all our plots, the x-axis shows estimated wall-clock time, as the
cumulative time taken for training each of the architectures found as returned by the NAS bench-
marks. Due to the space limitation, we show the test regret plots for NAS-101 and NAS-1shot1,

3

1st Workshop on Neural Architecture Search at ICLR 2020

(a) CifarA (b) CifarB (c) CifarC

Figure 3: A comparison of the mean validation regret performance of 500 independent runs as a
function of estimated training time for NAS-Bench-101 on CifarA, CifarB and CifarC.

and also discuss the experiments for NAS-Bench-201 and NAS-HPO in Appendix D.1, D.2, D.3,
D.4, respectively. We compare our implementation with the popular SciPy-DE code Virtanen et al.
(2020) in Appendix G. Our code for DE and for reproducing our experiments is publicly available
at https://github.com/automl/DE-NAS.

4.1 NAS-BENCH-101

In this experiment we investigated DE’s performance on the cell search space of 423k unique cell
architectures of a convolutional neural network for CIFAR-10 defined by NAS-Bench-101 (Ying
et al., 2019). We study three different search spaces: CifarA contains the main search space dis-
cussed by Ying et al. (2019), and CifarB and CifarC are variants of the same space with alternative
encodings (treating the edge parameters as categorical parameters with 21 choices and continuous
∈ [0, 1], respectively). Figure 3 presents a comparison of the performance of compared algorithms
showing the mean validation regret of 500 independent runs as a function of the estimated training
time. We show our results for test regret in Appendix D.1. HB and BOHB are multi-fidelity opti-
mization algorithms which evaluate at fewer epochs while other algorithms evaluate only at Emax.
However, NAS-Bench-101 features a low rank correlation between the performance obtained with
different budgets (Ying et al., 2019), and thus these algorithms do not perform better than the other
algorithms that only use the maximum number of epoch. The other algorithms (RS, TPE, and RE)
follow the same behaviour at the beginning of the search for all 3 encodings of the search space, and
in the end the evolutionary algorithms RE and DE clearly yield the best performance. DE shows
much better final performance for CifarA and CifarC and competitive performance with RE for Ci-
farB. It appears that DE is able to exploit high-dimensional spaces well and handle mixed-types
better. This may be attributed to NAS-Bench-101’s locality property (Ying et al., 2019) along with
DE’s search method, since a DE population with individuals from a good region will be able to
exploit further and get near the global optimum.

4.2 NAS-BENCH-1SHOT1

NAS-Bench-1Shot1 (Zela et al., 2020c) was created from the search space of NAS-Bench-101 by
keeping the network-level topology intact and modifying the cell-level topology to allow the appli-
cation of modern weight sharing algorithms for three search spaces with 6, 240 (search space 1),
29, 160 (search space 2), and 363, 648 (search space 3) architectures. Figure 4 shows our results
for the mean performance on validation regret while we present a comparison on test regret in Ap-
pendix D.2. For search space 1, all the algorithms achieve nearly the same error at the beginning of
the search, then DE converges faster until other algorithms catch up. For search space 2, RE and DE
converge fastest. For search space 3, the most complex (high-dimensional) and largest (10x more
architectures than space 2, and 100x more than space 1), DE clearly outperforms all other algorithms
and converges fastest.

5 CONCLUSION

We demonstrated that Differential Evolution can be utilised as an alternative search strategy for the
growing field of NAS. We also demonstrated DE’s ability to handle mixed data types and high-
dimensional spaces. DE may thus be a good candidate for NAS in very large spaces that may help

4

https://github.com/automl/DE-NAS

1st Workshop on Neural Architecture Search at ICLR 2020

(a) Search Space 1 (b) Search Space 2 (c) Search Space 3

Figure 4: A comparison of the mean validation regret performance of 500 independent runs as a
function of estimated training time for NAS-1Shot1 on the three different search spaces.

discover new, yet unknown, architectural design patterns. Since DE naturally lends itself well to
parallelization, future work includes providing a parallel implementation. We are also interested in
combining DE with different performance estimation strategies, such as multi-fidelity methods and
the one-shot model.

ACKNOWLEDGMENTS

The authors acknowledge funding by the Robert Bosch GmbH for financial support.

5

1st Workshop on Neural Architecture Search at ICLR 2020

REFERENCES

M. Baioletti, G. Di Bari, A. Milani, and Valentina Poggioni. Differential evolution for neural net-
works optimization. Mathematics, 8(1), 2020.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR, 13:281–305,
2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
Proc. of NeurIPS’11, pp. 2546–2554, 2011.

Md. Zakirul Alam Bhuiyan. An algorithm for determining neural network architecture using differ-
ential evolution. In International Conference on Business Intelligence and Financial Engineering,
July 2009.

U. Chakraborty. Advances in Differential Evolution. Springer, 2008.

H. Dhahri, A. Alimi, and A. Abraham. Hierarchical multi-dimensional differential evolution for the
design of beta basis function neural network. Neurocomputing, 97:131–140, November 2012.

X. Dong and Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. arXiv:2001.00326 [cs.CV], 2020.

T. Elsken, J. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via lamarck-
ian evolution. arXiv:1804.09081 [stat.ML], 2018.

T. Elsken, J. Metzen, and F. Hutter. Neural architecture search: A survey. JMLR, 20:1–21, 2019a.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architec-
ture search via lamarckian evolution. In International Conference on Learning Representations,
2019b. URL https://openreview.net/forum?id=ByME42AqK7.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and Efficient Hyperparameter Optimization at
Scale. In Proc. of ICML’18, pp. 1437–1446, 2018.

P. Groenen and M. van Velden. Multidimensional scaling by majorization: A review. Journal of
Statistical Software, Articles, 73(8):1–26, 2016.

A. Klein and F. Hutter. Tabular benchmarks for joint architecture and hyperparameter optimization.
arXiv:1905.04970 [cs.LG], 2019.

A. Klein, E. Christiansen K. Murphy, and F. Hutter. Towards reproducible neural architecture and
hyperparameter search. In ICML Reproducibility in Machine Learning Workshop, 2018.

J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, Mar 1964.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel bandit-
based approach to hyperparameter optimization. JMLR, 18(185):1–52, 2018.

Marius Lindauer and Frank Hutter. Best Practices for Scientific Research on Neural Architecture
Search. arXiv e-prints, art. arXiv:1909.02453, Sep 2019.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representations
for efficient architecture search. arXiv:1711.00436 [cs.LG], 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. CoRR,
abs/1806.09055, 2018. URL http://arxiv.org/abs/1806.09055.

K. Mason, J. Duggan, and E. Howley. Neural network topology and weight optimization through
neuro differential evolution. In Genetic and Evolutionary Computation Conference, July 2017a.

K. Mason, J. Duggan, and E. Howley. Evolving multi-objective neural networks using differential
evolution for dynamic economic emission dispatch. In Genetic and Evolutionary Computation
Conference, pp. 1287–1294, July 2017b.

6

https://openreview.net/forum?id=ByME42AqK7
http://arxiv.org/abs/1806.09055

1st Workshop on Neural Architecture Search at ICLR 2020

Nicole L. Mineu, Teresa B. Ludermir, and Leandro M. Almeida. Topology optimization for arti-
ficial neural networks using differential evolution. In International Joint Conference on Neural
Networks, October 2010.

S. Das S. Mullick and P. Suganthan. Recent advances in differential evolution–an updated survey.
Elsevier SWEVO. Swarm and Evolutionary Computation, 27:1–30, 2016.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. CoRR, abs/1802.03268, 2018. URL http://arxiv.org/abs/
1802.03268.

E. Real, S. Moore, A. Selle, S. Saxena, Y. Suematsu, Q. Le, and A. Kurakin. Large-scale evolution
of image classifiers. arXiv:1703.01041 [cs.NE], 2017.

E. Real, A. Aggarwal, Y. Huang, and Q. Le. Regularized evolution for image classifier architecture
search. arXiv:1802.01548 [cs.NE], 2018.

Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. CoRR, abs/1902.08142, 2019. URL http://
arxiv.org/abs/1902.08142.

David R. So, Chen Liang, and Quoc V. Le. The evolved transformer. CoRR, abs/1901.11117, 2019.
URL http://arxiv.org/abs/1901.11117.

K. Stanley, D. D’Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale
neural networks. Artificial Life, 15(2):185–212, 2009.

K. Stanley, J. Clune, J. Lehman, and R. Miikkulainen. Designing neural networks through neu-
roevolution. Nature Machine Intelligence, 1(8):24–35, 2019.

P. Kenneth R. Storn and J. Lampinen. Differential evolution: a practical approach to global opti-
mization. Springer, 2005.

R. Storn and P. Kenneth. Differential evolution–a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J GLOBAL OPTIM, 11:341–359, 1997.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Comput-
ing in Python. Nature Methods, 17:261–272, 2020. URL https://doi.org/10.1038/
s41592-019-0686-2.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. NAS-bench-101: Towards
reproducible neural architecture search. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 7105–7114, Long Beach, California, USA, 09–15 Jun
2019. PMLR. URL http://proceedings.mlr.press/v97/ying19a.html.

A. Zela, J. Siems, and F. Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-shot neural
architecture search. arXiv:1902.09635 [cs.LG], 2020a.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hut-
ter. Understanding and robustifying differentiable architecture search. In International Confer-
ence on Learning Representations, 2020b. URL https://openreview.net/forum?id=
H1gDNyrKDS.

Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-
shot neural architecture search, 2020c.

7

http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1902.08142
http://arxiv.org/abs/1902.08142
http://arxiv.org/abs/1901.11117
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://proceedings.mlr.press/v97/ying19a.html
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS

1st Workshop on Neural Architecture Search at ICLR 2020

L. Zhang, H. Li, and X. Kong. Evolving feedforward artificial neural networks using a two-stage
approach. Neurocomputing, 360:25–36, September 2019.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architec-
tures for scalable image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

8

1st Workshop on Neural Architecture Search at ICLR 2020

A CANONICAL DIFFERENTIAL EVOLUTION

Differential Evolution (DE, Storn & Kenneth (1997)) is a simple yet effective evolutionary algorithm
which proves the quality of its performance to solve a variety of optimization problems Storn &
Lampinen (2005), Mullick & Suganthan (2016). This algorithm was originally introduced in 1995
by Storn and Price Storn & Kenneth (1997), and later attracted the attention of many researchers to
propose new improved state-of-the-art DE algorithms to solve contemporary optimization problems
Chakraborty (2008). DE algorithm is based on four steps (initialization, mutation, crossover and
selection) we describe in the following.

Initialization. DE is a population-based meta-heuristic algorithm which consists of a population
of NP individuals. Each individual is considered a solution and expressed as a vector of D-
dimensional decision variables, which are initialized uniformly at random in the search range as
follows:

popg = (X1
i,g, X

2
i,g, ..., X

D
i,g), i = 1, 2, ..., NP (2)

where g is the generation number, D is the dimension of the problem being solved and NP is the
population size. We then evaluate the function f(X) being optimized for each individual.

Mutation. A new child/offspring is produced using the mutation operation for each individual
in the population by a so-called mutation strategy. In the classical DE, rand/1 is used in which
three random individuals/parents denoted as Xr1 , Xr2 , Xr3 are chosen to generate new vector Vi as
follows:

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) (3)

where Vi,g is the mutant vector which we generate for each individual Xi,g in the population space.
F is the scaling factor that usually takes values within the range [0, 1] and r1, r2, r3 are the indices
of different random selected indices i.e., r1 6= r2 6= r3 ∈ [1, NP]. As Eq.3 allows some parameters
to be outside the search range, we check each parameter in Vi,g and reset if it happens to be outside
the boundaries.

Crossover. We apply uniform (binomial) crossover operation to each target vector Xi,g and its
corresponding mutant vector Vi,g to generate a final trial vector Ui,g as follows:

uji,g =

{
vji,g if (rand < Cr) or (j = jrand)

xji,g otherwise
(4)

The crossover rate Cr is real-valued and is usually specified in the range [0, 1]. This variable
controls the portion of parameter values that are copied from the mutant vector. jrand is a random
integer in the range [1, D]. The jth parameter value is copied from the mutant vector Vi,g to the
corresponding position in the trial vector Ui,g if a random number is less than or equal to Cr. If the
condition is not satisfied, then the jth position is copied from the target vector Xi,g .

Selection. After we generate the final offspring, the selection operation takes place to determine
whether the target (the parent, Xi,g) or the trial (the offspring, Ui,g) vector survives to the next
generation by comparing their function values. The offspring replaces the parent if it has a better
function value as shown below. Otherwise, the new offspring is discarded, and the target vector
remains in the population for the next generation.

Xi,g =

{
Ui,g if (f(Ui,g) ≤ f(Xi,g))

Xi,g otherwise
(5)

We iterate the last three steps until a pre-defined number of function evaluation is reached.

B DE FOR NAS

B.1 IMPLEMENTATION DETAILS

The pseudo-code of DEHB algorithm is presented in Algorithm 1.

9

1st Workshop on Neural Architecture Search at ICLR 2020

Algorithm 1: DE-NAS Algorithm
Input:
f - NAS problem
F - scaling factor (default F = 0.5)
Cr - crossover rate (default CR = 0.5)
NP - population size
Output: Return best found architecture in pop

1 g = 0
2 while (|pop| < NP) . Initialize population
3 do
4 popi ← random configuration();
5 pop′i ← discretized architecture(popi); . Convert to discrete space
6 fitnessi ← evaluate architecture(pop′i);
7 end
8 while (g < gmax) do
9 Vg ← mutate(popg); . Mutation operation

10 Ug ← crossover(vg , popg); . Crossover operation
11 U ′g ← discretized population(Ug);
12 fitnessg ← evaluate population(U ′g);
13 popg+1,fitnessg+1← select(popg , Ug); . Selection operation
14 g = g+1;
15 end

B.2 CONTINUOUS TO NAS-SPACE MAPPING

As discussed in Section 3, DE performs best under a uniform, continuous parameter space of [0, 1],
where it can leverage the spanning of the search space using the scaled difference vector mutation.
This however requires an adequate mapping back to the NAS parameter space to realize the architec-
ture and obtain the evaluation on it. Given that every architecture parameter has a defined range or
set of values, we have devised a simple mapping that takes into account the domain of every param-
eter and accordingly scales the DE individual back to the NAS parameter space. In the 4 benchmark
analysis we performed, we encountered 4 different types of parameters, which in a general setting
also suffices to broadly capture different parameter types: Integer, Float, Categorical and Ordinal.
DE’s search should be robust to the binning of Integer, Categorical and Ordinal parameters in the [0,
1] range, and the scaling of Floats to [0, 1]. Convergence of DE would ideally lead to a population
of individuals from around the global optimal. DE has no prior information on the parameter space
to begin with. It explores and exploits the unit hypercube formed by scaling all parameters to [0, 1]
by responding to the objective function quality. In the Figures 5, 6, 7, we illustrate these notions by
comparing the trajectory of optimisation in the [0, 1] space versus the original parameter space.

The optimisation trajectories were generated by running DE with a population of 20 for 100 genera-
tions. We use multi-dimensional scaling (MDS) Kruskal (1964) based on the SMACOF algorithm
Groenen & van Velden (2016) to project the two spaces in 2-dimensions for ease of visualisation.
The transparency of the points correspond to the age of the point in the optimisation trajectory, with
the most opaque point being the last found configuration. Figures 5, 6, 7 aim to show the corre-
spondence of the search trajectories between the DE space of [0, 1] and the original NAS parameter
space. Possible reasons for the empty space artefacts may arise due to the non-linear mapping of
MDS that tries to preserve the pairwise distances in the 2-dimensional projections. Also, the vari-
ance in the number of categories in the domain of different categorical parameters in the benchmarks
may be affecting the scale of the Euclidean distances in the original space, unlike the compressed
scale of [0, 1] for DE. Nonetheless, the convergence of the search in both the spaces is illustrated
adequately.

Boundary constraints

During the evolution process, it may happen that certain mutants/offsprings are at the edge of the
unit hypercube that DE operates in. That is, certainXi may not be within [0, 1]. Two ways to handle

10

1st Workshop on Neural Architecture Search at ICLR 2020

(a) CifarA (b) CifarB (c) CifarC

Figure 5: MDS plots for NAS-Bench-101 comparing the optimisation trajectory in the DE space
and the corresponding NAS parameter space

(a) Search space 1 (b) Search space 2 (c) Search space 3

Figure 6: MDS plots for NAS-Bench-1shot1 comparing the optimisation trajectory in the DE space
and the corresponding NAS parameter space

that would be to either clip values to 0 or 1, or randomly assign a value to Xi from [0, 1]. Thus
ensuring that the subsequent continuous-to-discrete mapping will yield a legitimate configuration.
In all experiments in this work, we used random assignment to handle boundary checks.

C BASELINE ALGORITHMS

In our experiments, we used a well-performing setting for each of the used algorithms, except for
the parameter free random search algorithm, as originally proposed by NAS-Bench-101 and the
respective papers. As introduced by the different benchmarks being used here, the same encoding
structure is used for all algorithms.

Random Search (RS) We sample random architectures in the configuration space from a uniform
distribution in each generation.

(a) Cifar10 (b) Cifar100 (c) ImageNet16-120

Figure 7: MDS plots for NAS-Bench-201 comparing the optimisation trajectory in the DE space
and the corresponding NAS parameter space

11

1st Workshop on Neural Architecture Search at ICLR 2020

(a) CifarA (b) CifarB (c) CifarC

Figure 8: A comparison of the mean test regret performance of 500 independent runs as a function
of estimated training time for NAS-Bench-101 on CifarA, CifarB and CifarC.

(a) Search Space 1 (b) Search Space 2 (c) Search Space 3

Figure 9: A comparison of the mean test regret performance of 500 independent runs as a function
of estimated training time for NAS-1Shot1 on the three different search spaces.

BOHB We used the implementation from https://github.com/automl/HpBandSter. In
Ying et al. (2019), they identified the settings of key hyperparameters as: the number of samples to
optimize the acquisition function is set to 4, the minimum bandwidth for the kernel density estimator
is set to 0.3 and bandwidth factor is set to 3. In our experiments, we deploy the same settings.

Hyperband (HB) We used the implementation from https://github.com/automl/
HpBandSter. We set η = 3 and this parameter is not free to change since there is no other
different budgets included in the NAS benchmarks we used for another value setting.

Tree-structured Parzen estimator (TPE) We used the open-source implementation from https:
//github.com/hyperopt/hyperopt. We kept the settings of hyperparameters to their de-
fault.

Regularized Evolution (RE) We used the implementation from Real et al. (2018). We initially
sample an edge or operator uniformly at random, then we perform the mutation. After reaching
the population size, RE kills the oldest member at each iteration. As recommended by Ying et al.
(2019), the population size (PS) and sample size (TS) are set to 100 and 10 respectively.

D EXPERIMENTS

D.1 NAS-BENCH-101

Figure 8 presents a comparison of the performance of compared algorithms showing the mean test
regret of 500 independent runs as a function of the estimated training time for NAS-101.

D.2 NAS-BENCH-1SHOT1

Figure 9 presents a comparison of the performance of compared algorithms showing the mean test
regret of 500 independent runs as a function of the estimated training time for NAS-1shot1.

D.3 NAS-BENCH-201

This benchmark follows the same direction as NAS-Bench-1Shot1 where they define cells as a DAG
with 4 nodes and no restrictions on the maximal number of edges, while defining operations on the

12

https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt

1st Workshop on Neural Architecture Search at ICLR 2020

(a) Cifar10 (b) Cifar100 (c) ImageNet16-120

Figure 10: A comparison of the mean validation regret performance of 500 independent runs as a
function of estimated training time for NAS-201 on Cifar10, Cifar100 and ImageNet.

(a) Cifar10 (b) Cifar100 (c) ImageNet16-120

Figure 11: A comparison of the mean test regret performance of 500 independent runs as a function
of estimated training time for NAS-201 on Cifar10, Cifar100 and ImageNet.

edges. With 5 defined operations, the space contains 15, 625 architectures. Other than Cifar-10,
NAS-Bench-201 provides evaluations on 2 additional datasets, CIFAR-100 and ImageNet16-120.
Figure 10 summarizes the mean performance of validation regret as a function of the estimated
training time for 500 independent runs. We present the results for test regret in Figure 11. The
budget-aware algorithms, HB and BOHB, are not included in our comparison since the benchmark
does not yet allow (at the time of this work) to query the dataset at different epoch lengths. Referring
to Cifar10, we conclude that even though TPE starts outperforming all other algorithms, it converges
much slower towards the global optimum at the later end. DE achieves nearly the same test regret
as RE, and surprisingly RS recovers from the misleading early evaluations and is able to converge
faster than all other compared algorithms. For Cifar100, we observe a strong competition between
RE and DE in which they achieve the same regret behaviour at the start of the search and then DE is
slightly better than RE. Later RE converges faster and DE is able to perform comparably or slightly
better at the end. For ImageNet, TPE achieves the same behaviours as in Cifar10 where it converges
faster than all other algorithms but then it shows slower convergence. DE and RE outperform TPE
at the later end while both of them achieve nearly the same test regret.

D.4 NAS-HPO

This benchmark was constructed as a joint architecture and hyperparameter optimization search
problem for a 2-layer feedforward neural network and a linear output layer with parameterized ar-
chitecture details and training parameters. The search space consists of a large grid of configurations
on four popular UCI datasets for regression: protein structure, slice localization, naval propulsion
and parkinsons telemonitoring. Figure 12 summarizes the mean performance of validation regret as
a function of the estimated training time for 500 independent runs. We show the results for test re-
gret in Figure 13. Although the multi-fidelity optimization algorithms HB and BOHB achieve good
performance at the start of the search, they converge slower compared to DE and RE for all four
datasets. We also observe that DE achieves the same test regret as RE for Protein and Slice datasets,
and converges faster for Naval and Parkinsons. HB achieves a reasonable performance relatively
quickly but it is not able to outperform RE and DE at the end of the search.

13

1st Workshop on Neural Architecture Search at ICLR 2020

(a) Protein Structure (b) Slice Localization (c) Naval Propulsion

(d) Parkinsons Telemonitoring

Figure 12: A comparison of the mean validation regret performance of 500 independent runs as a
function of estimated training time for NAS-HPO on four UCI datasets: protein , slice, naval and
parkinsons.

(a) Protein Structure (b) Slice Localization (c) Naval Propulsion

(d) Parkinsons Telemonitoring

Figure 13: A comparison of the mean test regret performance of 500 independent runs as a function
of estimated training time for NAS-HPO on four UCI datasets: protein , slice, naval and parkinsons.

14

1st Workshop on Neural Architecture Search at ICLR 2020

(a) CifarA (b) CifarB (c) CifarC

Figure 14: Empirical cumulative distribution of the final performance over all runs of DE versus RE
over 500 runs after 10M seconds for NAS-Bench-101 on CifarA, CifarB and CifarC.

(a) Search Space 1 (b) Search Space 2 (c) Search Space 3

Figure 15: Empirical cumulative distribution of the final performance over all runs of DE versus RE
over 500 runs after 10M seconds for NAS-Bench-1Shot1 on the three different search spaces.

E ROBUSTNESS

In addition to obtaining a good performance, we test the robustness based on how an algorithm
is sensitive to the randomness in both training process and search method. Since RE seems to be
the competitor to DE, we show the empirical cumulative distribution of the final test regret after
10M seconds across 500 runs of RE and DE. Based on Figures 14, 15, 16 and 17 which present a
comparison of the robustness between DE and RE for the used benchmarks, we can conclude the
following:

• For NAS-Bench-101, DE is robust in solving CifarA and CifarC while RE is better in
solving CifarB.

• For NAS-Bench-1Shot1, DE is more robust to solve the three search spaces while we can
say that RE is competitive in search space 2.

• For NAS-201, RE is more robust than DE in ImageNet while DE is competitively robust to
RE in Cifar10 and Cifar100.

• For NAS-HPO, DE shows more robust performance in Slice and Parkinsons datasets. For
Protein and Naval datasets, DE is competitively robust to RE.

(a) Cifar10 (b) Cifar100 (c) ImageNet

Figure 16: Empirical cumulative distribution of the final performance over all runs of DE versus RE
over 500 runs after 10M seconds for NAS-Bench-201 on Cifar10, Cifar100 and ImageNet.

15

1st Workshop on Neural Architecture Search at ICLR 2020

(a) Protein Structure (b) Slice Localization (c) Naval Propulsion

(d) Parkinsons Telemonitoring

Figure 17: Empirical cumulative distribution of the final performance over all runs of DE versus
RE over 500 runs after 10M seconds for NAS-HPO on four UCI datasets: protein , slice, naval and
parkinsons.

Table 1: A comparison of mean and standard deviation of the final test regret over 500 runs for the
different optimization algorithms for NAS-Bench-101

NAS-Bench-101
CifarA CifarB CifarC

RS 0.0655 ± 0.00267 0.0647 ± 0.00308 0.0657 ± 0.00254
BOHB 0.0649 ± 0.00703 0.0648 ± 0.00203 0.065 ± 0.0023
HB 0.06367 ± 0.00307 0.0647 ± 0.00292 0.0648 ± 0.00292
TPE 0.0654 ± 0.00235 0.0651 ± 0.00223 0.0652 ± 0.00236
RE 0.0612 ± 0.00342 0.0613 ± 0.00321 0.0637 ± 0.00378
DE 0.0598 ± 0.00262 0.0611 ± 0.00225 0.0606 ± 0.00248

We also report a comparison of the mean and standard deviation of the final found text regret over
500 runs for the different optimization algorithms in Tables 1, 2, 3 and 4 for NAS-Bench-101, NAS-
Bench-1Shot1, NAS-Bench-201 and NAS-HPO respectively.

F EVALUATING POPULATION SIZE IN DE

In this section, we provide an ablation study on the choice of the population size in DE. Figures 18,
19, 20 and 21 show a comparison of different population sizes over 500 independent runs on the
different benchmark used: NAS-Bench-101, NAS-1Shot1, NAS201 and NAS-HPO respectively.

Table 2: A comparison of mean and standard deviation of the final test regret over 500 runs for the
different optimization algorithms for NAS-Bench-1Shot1

NAS-Bench-1Shot1
Search space 1 Search space 2 Search space 3

RS 0.0571 ± 0.00133 0.0603 ± 0.00183 0.0592 ± 0.00221
BOHB 0.0599 ± 0.00271 0.0606 ± 0.00215 0.0602 ± 0.00213
HB 0.0572 ± 0.00134 0.06 ± 0.00178 0.0594 ± 0.00221
TPE 0.0599 ± 0.00282 0.0609 ± 0.00232 0.0612 ± 0.00174
RE 0.0566 ± 0.00076 0.0607 ± 0.00122 0.0588 ± 0.00261
DE 0.0569 ± 0.00097 0.0605 ± 0.00113 0.0573 ± 0.00303

16

1st Workshop on Neural Architecture Search at ICLR 2020

Table 3: A comparison of mean and standard deviation of the final text regret over 500 runs for the
different optimization algorithms for NAS-Bench-201

NAS-Bench-201
Cifar10 Cifar100 ImageNet16-120

RS 0.0884 ± 0.00168 0.2719 ± 0.00509 0.5403 ± 0.00619
BOHB - - -
HB - - -
TPE 0.0892 ± 0.00093 0.2693 ± 0.00191 0.5379 ± 0.00587
RE 0.0889 ± 0.00057 0.2689 ± 0.00157 0.5358 ± 0.00347
DE 0.0889 ± 0.00054 0.2687 ± 0.00129 0.5362 ± 0.00348

Table 4: A comparison of mean and standard deviation of the final text regret over 500 runs for the
different optimization algorithms for NAS-HPO

NAS-HPO
Protein Slice Naval Parkinsons

RS 0.2176 ± 0.00246 0.00017 ± 1.85e-05 4.03e-05 ± 1.2e-05 0.0083 ± 0.00242
BOHB 0.2208 ± 0.00446 0.00019 ± 6.82e-05 5.73e-05 ± 2.3e-04 0.0089 ± 0.00685
HB 0.2161 ± 0.00124 0.00016 ± 9.75e-06 4.72e-05 ± 1.2e-04 0.0077 ± 0.00181
TPE 0.2185 ± 0.00486 0.00018 ± 3.17e-05 3.96e-05 ± 1.15e-05 0.0094 ± 0.009
RE 0.2155 ± 0.00028 0.00016 ± 2.06e-06 3.59e-05 ± 5.62e-06 0.0065 ± 0.00056
DE 0.2156 ± 0.00048 0.00016 ± 3.54e-06 3.58e-05 ± 3.81e-06 0.0064 ± 0.00078

Referring to these figures, we can conclude that DE is insensitive to the choice of population size
at the beginning of the search till it reaches around 10M seconds, but later DE starts to converge at
different speeds. Apparently the use of large population size slow the DE search towards the global
optimum. We attribute this to many evaluations that DE performs for each generation. Setting the
population size to 10 shows faster convergence but in most cases it gets trapped in a local optimum
and is not able to recover from the bad regions. Hence, for our experiments we set the population size
to 20 as it shows the best convergence behaviour across the generations for different benchmarks.

G COMPARISON WITH SCIPY’S DE

SciPy Virtanen et al. (2020) is one of the most popular open-source Python packages that offers a
multitude of tools as abstraction for numerical methods. SciPy also has an implementation of DE
that is feature-laden and is capable of running the classical DE with different mutation and crossover
strategies 1. However, we argue that such a flexible DE requires good choices of hyperparameters
settings. The primary objective of this work is to standardize and benchmark an implementation of
DE that achieves strong and robust performance for NAS. The design was intentionally kept light to
make DE-NAS easy to study, customize if required, and also re-implement in other frameworks that

(a) CifarA (b) CifarB (c) CifarC

Figure 18: A comparison of different population sizes of DE over 500 independent runs for NAS-
Bench-101 on CifarA, CifarB and CifarC.

1which is publicly available at https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.differential_evolution.html

17

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html

1st Workshop on Neural Architecture Search at ICLR 2020

(a) Search Space 1 (b) Search Space 2 (c) Search Space 3

Figure 19: A comparison of different population sizes of DE over 500 independent runs for NAS-
Bench-1Shot1 on the three different search spaces.

(a) Cifar10 (b) Cifar100 (c) ImageNet

Figure 20: A comparison of different population sizes of DE over 500 independent runs for NAS-
Bench-201 on Cifar10, Cifar100 and ImageNet.

(a) Protein Structure (b) Slice Localization (c) Naval Propulsion

(d) Parkinsons Telemonitoring

Figure 21: A comparison of different population sizes of DE over 500 independent runs for NAS-
HPO on four UCI datasets: protein , slice, naval and parkinsons.

18

1st Workshop on Neural Architecture Search at ICLR 2020

(a) CifarA (b) CifarB (c) CifarC

Figure 22: Comparison of DE-NAS with Scipy-DE over 500 independent runs for NAS-Bench-101
on CifarA, CifarB and CifarC.

(a) Search Space 1 (b) Search Space 2 (c) Search Space 3

Figure 23: Comparison of DE-NAS with Scipy-DE over 500 independent runs for NAS-1shot1.

need to run NAS or other optimization benchmarks with different types of search spaces. However,
for a fair assessment, we ran Scipy’s DE on all the NAS benchmarks used in this work and compared
it to our implementation. Since Scipy’s DE just deals with continuous space, we consider the same
use of our discretization method to be able to run a NAS problem.

Figures 22, 23, 24 and 25 show the comparison of SciPy DE and DE-NAS. All the algorithms
were run with the same population size, the total generations evolved, and therefore the total num-
ber of function evaluations. The plots show the mean validation regret for 500 independent runs.
DE-Scipy-default is the version of DE that runs with the default hyperparameter settings in SciPy
which uses (F ∈ [0, 2], Cr ∈ [0, 1]). DE-Scipy-custom is the version of DE-Scipy with the same
hyperparameter settings we used in our implementation (F = Cr = 0.5). It must be noted that
DE-Scipy-default implicitly uses a large population size for its default settings (NP = NPinit×D)
but for a fair comparison, we set it to 20 as we use in our implementation. Despite being simpler and
purely stochastic, DE-NAS is much better than DE-Scipy-default for NAS-101 and NAS-1shot1.
This may highlight that specialized algorithms may have more modes of failure that affect robust-
ness. Also as we expected, DE-NAS and DE-Scipy-custom perform comparably across 10 different
benchmarks (NAS-101, NAS-HPO, NAS-201). This illustrates that our DE-NAS is well suited and
evidently a better choice for NAS with DE for search. The divergence in performance between DE-
Scipy-custom and our DE-NAS for NAS-1shot1 benchmark is however curious and its discussion
remains open for future work.

(a) Cifar10 (b) Cifar100 (c) ImageNet

Figure 24: Comparison of DE-NAS with Scipy-DE over 500 independent runs for NAS-201.

19

1st Workshop on Neural Architecture Search at ICLR 2020

(a) Protein Structure (b) Slice Localization (c) Naval Propulsion

(d) Parkinsons Telemonitoring

Figure 25: Comparison of DE-NAS with Scipy-DE over 500 independent runs for NAS-HPO.

20

	Introduction
	Canonical Differential Evolution
	Differential Evolution for NAS
	Experiments
	NAS-Bench-101
	NAS-Bench-1Shot1

	Conclusion
	Canonical Differential Evolution
	DE for NAS
	Implementation details
	Continuous to NAS-space mapping

	Baseline Algorithms
	Experiments
	NAS-Bench-101
	NAS-Bench-1shot1
	NAS-Bench-201
	NAS-HPO

	Robustness
	Evaluating Population Size in DE
	Comparison with SciPy's DE

