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Abstract

Data in tabular form makes up a large part of real-world ML applications, and thus, there
has been a strong interest in developing novel deep learning (DL) architectures for supervised
learning on tabular data in recent years. As a result, there is a debate as to whether DL
methods are superior to the ubiquitous ensembles of boosted decision trees. Typically, the
advantage of one model class over the other is claimed based on an empirical evaluation,
where different variations of both model classes are compared on a set of benchmark datasets
that supposedly resemble relevant real-world tabular data. While the landscape of state-of-
the-art models for tabular data changed, one factor has remained largely constant over the
years: The datasets. Here, we examine 30 recent publications and 187 different datasets
they use, in terms of age, study size and relevance. We found that the average study used
less than 10 datasets and that half of the datasets are older than 20 years. Our insights
raise questions about the conclusions drawn from previous studies and urge the research
community to develop and publish additional recent, challenging and relevant datasets and
ML tasks for supervised learning on tabular data.

1 Introduction

Empirical evaluations are crucial to studying algorithms under varying conditions and
measuring progress (McGeoch, 2012; Johnson, 2002) and, thus, are a fundamental part
of rigorous, data-driven ML research (Sculley et al., 2018). Here, we focus on supervised
learning on tabular data, which is an omnipresent data type in many domains, such as in
medicine, finance and industry (Chui et al., 2018; Müller, 2023). The availability of a large
number of representative, realistic datasets is a necessary requirement for running conclusive
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experiments to assess the performance and usefulness of specific ML algorithms in a given
domain, and to drive forward the development of new state-of-the-art models. Arguably,
the more mature ML becomes as a discipline and the more common its application becomes
in a certain domain, the larger and more detailed our benchmarks should be, when we move
from proofs-of-concepts to a more thorough type of analysis. However, currently, there is a
risk of low comparability and contradicting results due to studies using different benchmark
datasets and a risk of misleading conclusions if the selected ML tasks are not representative.

Tree-based ensembles have been the dominating model class for tabular supervised
learning due to their flexibility and scalability, especially variants of gradient-boosted decision
trees (GBDT; Friedman, 2001; Chen and Guestrin, 2016; Ke et al., 2017; Prokhorenkova
et al., 2018) and random forests (Breiman, 2001; Wright and Ziegler, 2017). Driven by the
triumph of DL in many other domains, DL researchers started to also focus on tabular
data. Consequently, which of the two model classes performs better is a heavily and often
passionately debated question, with publications favoring one or the other based on empirical
evaluations (Gorishniy et al., 2021; Kadra et al., 2021; Borisov et al., 2022; Shwartz-Ziv
and Armon, 2022; Grinsztajn et al., 2022; Hollmann et al., 2023; McElfresh et al., 2023).
Since the landscape of relevant models has changed in the past few years, our primary
aim is to scrutinize a fundamental design decision of every empirical study: The choice of
datasets. Despite recent advances in providing large collections of datasets for empirical
comparisons (Bischl et al., 2021; McElfresh et al., 2023), the choice of benchmark datasets
often appears to be either an afterthought or a nuisance for model-centric research.

After reviewing the state-of-the-art in tabular supervised learning in Section 2, we present
our main three contributions:

1. We review 30 recently published papers studying DL and GBDT models for tabular
data and collect the superset of 187 datasets used in these works, now available on
Openml.org (Section 3).

2. We evaluate a set of 11 popular algorithms (3 DL models, 4 GBDT models and 4
baseline models) on this superset (Section 3).

3. We discuss the reviewed studies and our experimental results with respect to study
size (Section 4), dataset age (Section 5) and dataset relevance (Section 6).

Afterwards, we propose several ways forward to improve the experimental design in tabular
classification in Section 7 before concluding the paper in Section 8.

2 Background and Related Work

Now, we briefly summarize recent methods for supervised learning on tabular data and prior
work evaluating the current state of empirical research.

For over a decade, tree-based ensembles, and especially GBDTs, have been considered to
be state-of-the-art models for tabular data (Fernández-Delgado et al., 2014; Wainberg et al.,
2016). In the last few years, DL researchers have started to target tabular data as a new
domain and suggested new architectures and methods specifically tailored toward tabular
data. Popular methods are often based on transformers (Arik and Pfister, 2020; Chen et al.,
2022; Kossen et al., 2021; Somepalli et al., 2022; Gorishniy et al., 2022; Hollmann et al.,
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2023), GAMs (Agarwal et al., 2021; Dubey et al., 2022; Radenovic et al., 2022), standard
feed-forward and ResNet architectures (Gorishniy et al., 2021; Kadra et al., 2021) or a hybrid
of a tree-style model with a network (Popov et al., 2020; Sarkar, 2022; Yoon et al., 2020;
Joseph and Raj, 2022). Furthermore, several researchers have critically examined these
proposed advances and have conducted neutral and independent studies, i.e., not comparing
against a model that was developed by the authors of the study themselves (Boulesteix
et al., 2013), often finding that many neural networks do not work as well as proclaimed by
the publications introducing them (Borisov et al., 2022; Grinsztajn et al., 2022; Gorishniy
et al., 2021; Shwartz-Ziv and Armon, 2022; McElfresh et al., 2023) but also showing positive
results for some (McElfresh et al., 2023).

Shwartz-Ziv and Armon (2022) go one step further and also demonstrate that an ensemble
of novel DL techniques with GBDT models can indeed give better results, similar to the
known fact that standard feed-forward networks can be combined with tree-based methods
to achieve better performance (Zimmer et al., 2021). More recently, McElfresh et al.
(2023) conducted a large-scale study aiming to identify dataset characteristics that make a
dataset more favorable for tree-based or NN-based models, finding that on a large number of
datasets, both approaches perform en-par and that tree-based methods can handle irregular
features (e.g., those with a skewed range or standard deviation of features) better than some
NN-based models.

By the very nature of established review procedures and the biases they cause, all
works introducing a novel method provide empirical results that demonstrate the superior
performance of that method; however, several works have criticized specifically the field of
ML for testing novel ideas only on a small set of datasets that might not be representative of
the real world (Saitta and Neri, 1998; Wagstaff, 2012; Raji et al., 2021) or an experimental
setup that fails to identify the source of empirical gains (Lipton and Steinhardt, 2019). While
it can be an important “sanity check” to ensure that an algorithm is implemented correctly
and working as intended, picking a small number will usually not cover the space of realistic
datasets well and can therefore lead to spurious and potentially misleading or unreliable
results, which might not hold under qualitative replication (Macià et al., 2013; Macià and
Bernadó-Mansilla, 2014; Muñoz et al., 2018). Nevertheless, small numbers of datasets are
used in many empirical studies; Macià et al. (2013) demonstrated this for papers from 15
years ago1 and we demonstrate in this paper that this still holds for more recent work.

3 Subject of this Study: Commonly used Datasets for Prototypical
Studies in Tabular ML

We base our selection of datasets on the well-known blog post by Sebastian Raschka2 that
surveys 30 papers which evaluate or propose DL for tabular data. First, we briefly discuss
the algorithms and datasets we considered, starting with a summary of the publications, our
procedure to collect datasets and summary statistics.

1. Macià et al. (2013) studied 215 papers from the journal Pattern Recognition and the International
Conference on Machine Learning that have been published between 2008 and 2010, and which compared
at least two classifiers and contained the word classifier either in the title or abstract, finding that more
than 75% of the works use 10 or less datasets.

2. https://sebastianraschka.com/blog/2022/deep-learning-for-tabular-data.html, accessed on Feb
4th, 2024 [last update on Jan 23rd, 2023]
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We chose to consider the papers from this blog post as a concise collection of recent
work that avoids injecting our own biases; we list all3 of the papers it considers in Table 3
in Appendix A. In addition, we consider two OpenML benchmarking suites (Bischl et al.,
2021) as two popular dataset collections used to evaluate and compare ML models: the
OpenML-CC18 (Bischl et al., 2021) and the AMLB (Gijsbers et al., 2022) suite. This gives
us a total of 31 entries in the table, out of which we consider 26 in this work.4 Overall, we
found 211 classification and 54 regression datasets. We restricted ourselves to supervised
classification to have a manageable experimental setup. After screening the classification
datasets, we are left with 187 that we consider in our work, and we describe the datasets we
had to leave out in Appendix A.3. 5

To facilitate a comprehensive and informative comparison, we evaluated a selection of
11 commonly used ML models: Logistic Regression (Linear), Random Forests (RF) and
two simple multi-layer Perceptrons (MLP sklearn/MLP Pytorch) as baseline algorithms, 4
tree-based boosting algorithms (CatBoost, XGB, LGBM, HGBM) and 3 recent advanced DL
architectures (ResNet, SAINT and FT-Transformer). For each method, we used random
search (Bergstra and Bengio, 2012) for 100 hyperparameter configurations using a train-
valid-test split using ROC AUC and used the test performance of the configuration with the
best validation performance. We provide the details of these methods, search spaces and the
experimental protocol in Appendix C.

We note that the main goal of our work is not to provide an overview of, or compare,
methods but to focus on the most commonly used datasets in prototypical studies for
supervised tabular ML and how the changing model landscape impacts the results. For this
reason, and in order to conduct a neutral comparison (Boulesteix et al., 2013), we also
leave out two methods that some of us co-authored: TabPFN (Hollmann et al., 2023) and
regularization cocktails (Kadra et al., 2021).

4 Part I: A Look at Study Sizes

We start our assessment by looking at the size of the studies conducted in these papers.
For this assessment, we consider all datasets, including classification, regression and other
tasks, as shown in Table 3 in Appendix A. Classification seems to be by far the most prominent
task type; papers roughly use 3.5 times as many classification datasets as regression datasets
in their work. This is also underlined by the fact that we found a total of 187 classification
datasets compared to 54 regression datasets in these papers.

3. We do not list the entry Denoising Autoencoders (DAEs) for Tabular Data because it refers to Kaggle
Notebooks and not an experimental study.

4. Out of the 31 papers, we do not consider two papers introducing data generators (Borisov et al., 2023;
Kotelnikov et al., 2023) and three further studies using datasets and tasks that fall beyond the scope of
this paper: one paper only uses regression datasets (Zhu et al., 2021), one paper uses pre-training models
on a multi-label dataset (Levin et al., 2023), one paper only contained preprocessed datasets where the
pre-processing is not clearly described (Cai et al., 2021). This leaves us with a total of 26 collections of
datasets that we study in this paper.

5. Overall, we have managed to collect datasets for 14 papers, while for the remaining 12 papers, at least
one dataset is missing (as we describe in the Appendix A).
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#data sets 1 2− 10 11− 30 > 30 Avg

#Papers using #datasets (main exp.) 2(7.41%) 17(62.96%) 6(22.22%) 2 (7.41%) 11.74
#Papers using #datasets (all) 1(3.70%) 11(40.74%) 10(37.04%) 5(18.51%) 22.37

Macià et al. (2013) 25.5% 55.3% 16.7% 2.3% 8

Table 1: Number of datasets used in the publications considered in this work (see Table 3
in Appendix A) (n=27) in relation to the numbers provided by Macià et al. (2013).
(main exp.) only refers to classification datasets used in the main experiments,
(all) considers all datasets used in a paper.

Following Macià et al. (2013), we analyze the number of datasets per paper used in
the main experiments (and overall) and present the results in Table 4. Our collection of
publications roughly follows the same pattern as identified by Macià et al. (2013), who
considered 215 general ML papers eleven years ago: Only very few papers use only a
single dataset (7.41%), and most papers use between two and ten datasets for their main
experiment(62.96%). When considering all datasets used in a paper (not just in the main
results), we also find a large number of papers using between 11 and 30 datasets. This is also
in line with the more recent results by Bouthillier and Varoquaux (2020), who surveyed more
than 300 submissions to NeurIPS’19 (and ICLR’19), concluding that 44% of the NeurIPS
papers (and 50% of the ICLR papers) used 3− 5 datasets.

To visualize the impact of the study size, we compute the rank of the performance of
ML models on increasing subsets of datasets in Figure 1 (left-hand side). First, we consider
randomly chosen subsets (thin lines) and compare them to the overall rank across all possible
subsets (dotted lines). Additionally, some datasets are used more often than others, and we
show the rank across increasing subsets of the most popular datasets (solid lines), i.e. the
line shows the rank across the three (four, five, six, ...) most often used datasets. While we
do not want to discuss the ranking of individual models, this visualization shows that there
is a lot of variability in the subsets and that especially a small number of datasets can lead
to large instability and contradictory conclusions based on the data subset sample.6

5 Part II: A Look at Dataset Age

Next, we study the age of the used datasets and whether and how it impacts the results.
First of all, we observe that while the number of novel methods increases quickly, the number
of new datasets does not. We show the empirical distribution of the dataset age in Figure 2
(left) and observe that overall the datasets are relatively old; not a single dataset is newer
than from 2021. Concretely, the 75th Percentile is 2012, i.e., 75% of the datasets were
created before the deep learning boom started with the release of AlexNet (Krizhevsky et al.,
2012). In addition, in Figure 2 (middle and right) we show the dataset distribution over

6. At the same time, we note that a study might have good reasons to choose a subset to assess algorithms
under specific conditions, e.g., small datasets or only continuous features. Such experiments are important
to understand the behaviour of algorithms, and also do not yield contradictory results (it may well be
that algorithm A is better than algorithm B on small datasets and vice versa on large datasets).
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Figure 1: (Left) Ranking for increasing subsets of datasets. The thin, semi-transparent
lines are computed on randomly sampled collections, dashed lines show the
overall average rank over these randomly sampled collections, and the think lines
correspond to the rank across subsets of popular datasets (e.g. the rank across the
3 most often used datasets). (Right) Ranking of the methods for rolling windows
of 10 datasets, sorted by their age.
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Figure 2: Cumulative distribution of dataset creation over years (left). Distribution of
features (middle) and instances (right) according to the number of datasets (X-
axis). The green dots depict individual datasets, and the black line is the mean
number of features and instances, respectively. We also give the rough years at
the top of the X-axis and apply a log transformation to the y-axis.

time. Here we can observe that datasets appear to increase in size over time, which would
justify the development of new methods.

While the age of a dataset on its own does not indicate its relevance for nowadays tasks, it
can still yield interesting insights, as we show next. For this, we sort the datasets by age and
compute the ranking of the algorithms for rolling windows of datasets, see Figure 1 (right).
We find that except for CatBoost, the ranks fluctuate quite a bit, and also that CatBoost is
not always the best method. Indeed, around 2014, one could consider FT-Transformer to
be the best model, and between 1998 and 2012 there is also a lot of fluctuation with four
different tree-based ensembles ranking first at different points in time.
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OpenML ID Count Name Year

1596 12 Covertype 1998
1590 10 Adult 1996

45575 6 Epsilon 2008
45570 6 Higgs 2014
4538 5 Gesture Phase Segmentation 2014

45062 5 Churn Modelling (shrutime) 2019
23512 5 Higgs Small 2014

31 5 German Credit 1994
14674 4 Blood Transfusion Service Center 2008
42397 4 Credit Fraud 2015
1494 4 QSAR Biodeg 2013
37 4 Diabetes 1988

45556 4 Click 2012
45554 4 Fico 2018
40975 4 Car 1988

Table 2: Most frequently used datasets that have been used in at least four different suites.
For each dataset, we list its OpenML dataset ID (ID), by how many papers it was
used (Count), and its creation year (Year).

6 Part III: A Look at Individual Datasets

Finally, we are also interested in the datasets themselves and what kind of tasks they
represent. In the following, we share some of the peculiarities we found while studying the
datasets; for a full list, see Appendix A.5.

First, some datasets are used more often than others. We list datasets that were used in
four or more papers in Table 6 and highlight several interesting findings: (a) The two most
often used datasets, Covertype (Blackard and Dean, 1999) and Adult (Kohavi, 1996), are
more than 20 years old, (b) out of the datasets that were used at least four times, 5/15 are
older than 20 years, 11/15 are 10 years or older, and only 4 are younger than ten years, (b)
the third most often used dataset, Epsilon (Sonnenburg and Franc, 2008; Boullé, 2009), is
an artificial dataset from the Pascal Large Scale Learning Challenge 2008, and (c) the Higgs
dataset appears twice in this ranking: once in its original size with 11M samples and once
in a small version (whereas both are often referred to as Higgs).7 Second, among the total
number of 187, we find several datasets that are commonly referred to as “image” datasets:
MNIST, Fashion-MNIST, CIFAR-10, Devnagari script, mfeat-pixel and optdigits; but also
several datasets that constitute feature extractors from images, such as mfeat-fourier and
variants of that dataset constructed using other feature extraction techniques. Moreover,
among the most-used datasets, we also find one dataset that contains features extracted
from a video (Gesture Phase Segmentation). We argue that image and video data (as well
as their extracted features) should no longer be used as tabular data because using their raw
representation inside a deep neural network has led to drastically improved performance

7. We even found a third dataset named Higgs which originates from the popular Higgs Boson Kaggle
competition (Adam-Bourdarios et al., 2015).
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over tabular classification methods. Third, reproducibility is a main concern for empirical
experiments. However, we found two regularly used datasets (Cardiovascular Disease and
Tours and Travels Customer Churn Prediction) where we could not find the origin, including
whether they are real-world or synthetic datasets. Additionally, for example, FICO/HELOC
exists in several variations and has been used under the same name. Finally, we also found
several datasets (adult, German Credit, Diabetes, COMPAS and iris) that are retired or
retracted and, thus, should not be used anymore (Ding et al., 2021; Bao et al., 2021; Poisot,
2020; Radin, 2017; Grömping, 2019). These issues question the relevance of existing empirical
evaluations for current, real-world tabular learning scenarios and urge the usage of unique
dataset identifiers, such as OpenML dataset IDs.

7 Discussion

First of all, while we do not aim to compare the different algorithms in terms of performance,
we find CatBoost (Prokhorenkova et al., 2018) to obtain a strong average ranking, which is
in line with the results of other comparisons (McElfresh et al., 2023; Zhu et al., 2023).

Based on the three angles from which we looked at the datasets used in empirical
comparisons of supervised classification models for tabular data (study size, dataset age and
individual datasets), we conclude the following:

1. We need to separate the representation of datasets from the information a dataset
represents. A dataset should not be considered tabular because it is stored in tabular
form but because of its content (e.g., the pixels of an image can, in principle, be stored
in a table, but we would not consider the resulting dataset to be tabular).

2. For several areas, extracting features from raw data and using tabular classification
methods on the outcome yields competitive results (e.g., EEG classification (Gemein
et al., 2020) or particle detection in a physics experiment (Adam-Bourdarios et al.,
2015)). However, for other domains (e.g., image data) this representation is no longer
relevant for state-of-the-art research. Therefore, as a community, we must come up
with a clear definition of when data should be used in its tabular representation,
contrary to other forms.

3. We need to be able to define what makes problems relevant. While we can define the
space of problems to measure if we can solve datasets in every part of the space (Muñoz
et al., 2018), we should also focus on problems considered relevant by a large community
and prospective users of tabular ML methods.

4. Finally, and most importantly, there has been a non-negligible shift in the model
landscape, and we must change our benchmark dataset landscape accordingly to no
longer measure progress in the past.

Based on these, we will be able to come up with a crisp definition of what constitutes a
tabular classification task and we make a concrete proposal in Appendix B, based on which
we can define new standard benchmark datasets. In order to allow the ML community to
make progress, we call for the creation of such benchmark suites.

As a first concrete step, we propose to deprecate datasets for which we are very certain
that they should not be used in their tabular representation: images, videos, and datasets
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extracted from those modalities. We are not aware of any recent results that demonstrate
that any model class besides deep learning models tailored towards those modalities achieves
competitive performance.

8 Conclusion and Future Work

In this work, we surveyed the state of datasets used in recent papers on novel architectures
for tabular deep learning and works that conduct independent empirical comparisons of
supervised classification models. We found that the selection of datasets can lead to different
rankings of models and, thereby, also different conclusions. We found that datasets of
different ages can lead to different rankings. Last but not least, we found that most datasets
used are rather old. When introducing new solutions, we would have expected the works
to also use rather recent datasets. As a concrete first step forward, we suggested dropping
image, video and datasets extracted from these modalities. We hope that our work starts
a discussion about the datasets used to benchmark algorithms for tabular data, which
hopefully leads to better practices in the comparison of machine learning algorithms for
tabular data, and to more people making current tabular datasets available.

In the future, it would be great to take a closer look at how the different data types and
the dataset age impact the performance of the models under consideration. Finally, the
community needs to discuss how to incentivize creating and providing datasets on platforms
such as OpenML in order to encourage the sharing of relevant new challenges.

Broader Impact Statement

We conducted a meta-study reusing the same datasets used in previous papers to maximize the
alignment of our results with the original results. This includes several ethically questionable
datasets, such as COMPAS (Bao et al., 2021) and Iris (Poisot, 2020) and retired datasets,
such as adult (Ding et al., 2021). Using these datasets might send the signal that they can
be used; however, we do not endorse the usage of these datasets and urge researchers to
exclude them from future work (as discussed in Section 6).

Reproducibility Statement

We provide results, the analysis scripts and our code for the experiments at https://

github.com/automl/dmlr-iclr24-datasets-for-benchmarking. Furthermore, we refer
the reader to Appendix C for a discussion of our setup, and Appendix A for a discussion of
the datasets we used.
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M. Muñoz, L. Villanova, D. Baatar, and K. Smith-Miles. Instance spaces for machine
learning classification. Machine Learning, 107(1):109–147, 2018.

A. Müller. From automl to autods, 2023. URL https://www.youtube.com/watch?v=jp_

UZoM_OjE. Industry Day Keynote at the 2nd AutoML conference.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

T. Poisot. Retiring iris, 2020. URL https://armchairecology.blog/iris-dataset/.

S. Popov, S. Morozov, and A. Babenko. Neural oblivious decision ensembles for deep
learning on tabular data. In Proceedings of the International Conference on Learning
Representations (ICLR’20), 2020. Published online: iclr.cc.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. Dorogush, and A. Gulin. Catboost: Unbiased
boosting with categorical features. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Proceedings of the 31st International Conference
on Advances in Neural Information Processing Systems (NeurIPS’18), page 6639–6649.
Curran Associates, 2018.

F. Radenovic, A. Dubey, and D. Mahajan. Neural basis models for interpretability. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Proceedings
of the 36th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’22), pages 8414–8426. Curran Associates, 2022.

14

iclr.cc
https://www.youtube.com/watch?v=jp_UZoM_OjE
https://www.youtube.com/watch?v=jp_UZoM_OjE
https://armchairecology.blog/iris-dataset/
iclr.cc


Towards quantifying the effect of datasets for benchmarking

J. Radin. “Digital Natives”: How medical and indigenous histories matter for big data.
Osiris, 32, 2017.

I. Raji, E. Bender, A. Paullada, E. Denton, and A. Hanna. Ai and the everything in the
whole wide world benchmark. In J. Vanschoren and S. Yeung, editors, Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks. Curran
Associates, 2021.

S. Raschka. A short chronology of deep learning for tabular data, 2022. URL https:

//sebastianraschka.com/blog/2022/deep-learning-for-tabular-data.html.

I. Rubachev, A. Alekberov, Y. Gorishniy, and A. Babenko. Revisiting pretraining objectives
for tabular deep learning. OpenReview, 2023. URL https://openreview.net/forum?

id=kjPLodRa0n.

L. Saitta and F. Neri. Learning in the “real world”. Mach. Learn., 30(2–3):133–163, 1998.

T. Sarkar. Xbnet: An extremely boosted neural network. Intelligent Systems with Applica-
tions, 15:200097, 2022.
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Appendix A. Considered Works and Datasets Used

A.1 Dataset Collection Procedure

In the following, we discuss all dataset collections we consider and list them in Table 3. The
use of datasets serves different purposes in the considered papers: (a) to visually demonstrate
specific behaviour or capability on an exemplary dataset, e.g., the mushroom dataset used to
study interpretability in Arik and Pfister (2020) (b) to study generalization to other dataset
types or algorithm components, e.g., mid-sized datasets in Schäfl et al. (2022) or convolution
layers in (Kossen et al., 2021) and (c) to compare the performance of algorithms. Here we
solely focus on the datasets used for (c), the so-called main experiment comparing algorithms
w.r.t. their performance. We describe the considered and left-out datasets per paper in
Appendix A.4. To ensure reproducibility and to follow prior efforts, we used OpenML for
handling the datasets so that (a) all datasets and their metadata are available in a uniform
and machine-readable format, (b) datasets are stored in a single place and are accessible
via APIs and (c) data splits can be stored alongside the data. In addition, using OpenML
overcomes the criticism of UCI as it provides access in a uniform manner and does not
require laborious manual inspection (Macià and Bernadó-Mansilla, 2014). This is a great
advancement over previous work, where the dataset origins were provided as OpenML task
and dataset ids, links to Kaggle competitions and notebooks, links to UCI, repositories on
GitHub and links to CSV files uploaded on self-hosted websites. To follow a structured
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procedure, we first manually gathered all combinations of dataset names and papers. Then,
we identified the actual data 8 used and followed these steps:

1. We used the OpenML dataset ID or task ID where available.

2. If these were unavailable, we tried to find the dataset on OpenML via the name,
description and other information and verified a match with the number and type of
attributes and instances.

3. In case of no match, we tried to track down the original source and uploaded the
dataset to OpenML to make it accessible for future researchers.

We found a total of 187 classification datasets 9. Most datasets were already available on
OpenML, and we only had to upload or re-upload (to correct wrong metadata) 21 datasets
to OpenML. Unfortunately, we could only obtain 187 out of 211 classification datasets:
The missing datasets either were not publicly available (5 datasets), or it was unclear how
a dataset was extracted from a gene database (6 datasets). We excluded six datasets for
technical reasons, such as containing string or data features or having too few samples of
one class (it had two samples, but our resampling procedure requires three), one dataset
because we could not identify its source, and another 5 datasets because the data was already
preprocessed according to a method introduced in the paper (Cai et al., 2021). Moreover,
one dataset we only managed to upload after running the experiments, and it is therefore
excluded from our further analysis. We give further details in Appendix A.3. Out of the
211 datasets, 19 datasets are also used in the OpenML-CC18 and the OpenML-AutoML
benchmark.

A.2 Datasets that we did use

OpenML Dataset ID Count Name Creation

2 1 anneal 1990
3 2 kr-vs-kp 1983
5 1 arrhythmia 1998
6 1 letter 1991

11 2 balance-scale 1976
12 2 mfeat-factors 1998
13 3 breast-cancer 1988
14 2 mfeat-fourier 1998
15 2 breast-w 1990
16 2 mfeat-karhunen 1998
18 2 mfeat-morphological 1998
22 2 mfeat-zernike 1998

8. We did not consider whether an experiment used a specific dataset split, e.g. cross-validation or holdout,
to unify our study and to always have multiple test sets available (Bouthillier et al., 2021). We considered
this to be more important than having access to the exact splits used in previous works.

9. We did not consider 54 regression datasets and plan to study this in the future.
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23 2 cmc 1987
25 1 horse-colic 1989
28 2 digits 1995
29 3 credit-approval 1987
31 5 credit-g 1994
32 1 pendigits 1994
37 4 diabetes 1988
38 2 sick 1986
40 1 conn-bench-sonar-mines-rocks 1988
41 1 glass 1987
43 1 haberman-survival 1976
44 3 spambase 1999
46 1 splice 1991
49 1 heart-cleveland 1988
50 2 tic-tac-toe 1990
53 1 statlog-heart 1988
54 3 vehicle 1987
56 1 congressional-voting 1984
61 2 iris 1936
151 1 electricity 1999
171 1 primary-tumor 1988
182 1 satimage 1993
187 2 wine 1998
188 3 eucalyptus 1992
300 1 isolet 1991
307 1 vowel 1987
458 2 analcatdata auth... 2003
469 2 analcatdata dmft 2003
554 1 mnist 1998

1017 1 arrhythmia 1998
1044 1 eye movement 2005
1049 2 pc4 2004
1050 2 pc3 2004
1053 1 jm1 2004
1063 2 kc2 2004
1067 2 kc1 2004
1068 2 pc1 2004
1111 1 kddcup09-appetency 2009
1119 1 adult 1996
1219 1 click prediction 2012
1430 1 a9a 1998
1461 3 bank-marketing 2011
1462 2 banknote-authentication 2013
1464 4 blood-transfusion 2008
1468 2 cnae-9 2009
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1475 1 first-order-theorem-proving 2013
1477 1 gas concentration 2012
1478 1 har 2012
1480 2 ilpd 2011
1483 1 ldpa 2010
1485 1 madelon 2003
1486 2 nomao 2008
1487 2 ozone-level-8hr 2005
1489 2 phoneme 1993
1494 4 qsar-biodeg 2013
1497 1 wall-robot-navigation 2009
1501 1 semeion 1994
1502 1 skin-segmentation 2009
1509 1 walking-activity 2012
1510 2 wdbc 1992
1523 1 vertebral-column3 2005
1524 1 vertebral-column2 2005
1567 2 pokerhand 2002
1590 10 adult roc 1996
1596 12 covertype 1998
4134 2 bioresponse 2011
4534 1 phishingwebsites 2012
4535 1 income 1995
4538 5 gesturephasesegmentationprocessed 2014
4541 1 diabetes 130us 2014
6332 3 cylinder-bands 1994
23381 2 dresses-sales 2014
23512 5 higgs small 2014
23517 2 numerai28.6 2016
40499 1 texture 1966
40664 1 car-evaluation 1988
40668 2 connect-4 1995
40670 1 dna 1991
40685 2 shuttle 1994
40687 1 solar-flare 1989
40701 1 churn 2012
40923 2 devnagari-script 2015
40966 2 miceprotein 2015
40975 4 car 1988
40978 1 internet-advertisements 1998
40979 1 mfeat-pixel 1998
40981 1 australian 1987
40982 2 steel-plates-fault 1998
40983 2 wilt 2013
40984 2 segment 1990
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40994 2 climate-model-simulation-crashes 2013
40996 1 fashion-mnist 2017
41027 2 jungle chess 2pcs raw endgame complete 2014
41138 1 apsfailure 2016
41142 1 christine 2006
41143 2 jasmine 2009
41145 1 philippine 2009
41146 2 sylvine 1998
41147 1 albert 2014
41150 2 miniboone 2005
41162 1 kick 2012
41163 1 dilbert 2014
41164 2 fabert 2013
41166 3 volkert 2006
41167 1 dionis 2014
41168 3 jannis 2010
41169 3 helena 2010
42193 1 compas 2016
42396 2 aloi 2014
42397 4 credit fraud 2015
42477 1 default 2009
42733 1 click prediction small 2012
42734 1 okcupid-stem 2011
44089 1 jannis 2011
44120 1 electricity 1999
44121 1 covertype 1998
44122 1 pol 1995
44123 1 house 16h 1990
44125 1 magicaltelescope 2004
44126 1 bank-marketing 2011
44129 1 default of-credit-card-clients 2014
44130 1 higgs small 2005
44156 1 electricity 1999
44157 1 eye movement 2005
44159 1 covertype 1998
45019 1 bioresponse 2011
45020 1 miniboone 2009
45021 1 diabetes130us 2010
45022 1 eye movement 2008
45028 1 credit 1997
45035 1 albert 2014
45036 1 default of-credit-card-clients 2009
45038 1 road-safety 2015
45039 1 compas-two-years 2016
45062 5 churn modelling 2019
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45069 1 diabetes 2008
45545 1 travel customers 2021
45547 2 cardio 1999
45548 2 otto group product classification 2015
45551 2 higgs kaggle 2014
45554 4 fico 2018
45556 1 click 2012
45557 1 mammographic 2006
45558 1 htru2 2010
45559 1 insurance co 2000
45560 1 online shoppers 2018
45562 1 seismicbumps 2010
45563 1 dota2games 2016
45565 1 1995 income 1996
45566 1 santander customer transaction prediction5 2019
45567 1 hcdr main 2018
45568 3 telco-customer-churn 2018
45570 6 higgs 2014
45575 6 epsilon 2008
45579 1 microsoft 2013

A.3 Datasets that we did not use

• 20 Newsgroups, used by Dubey et al. (2022) and Radenovic et al. (2022). The 20
newsgroups dataset contains messages from 20 news groups with the task to classify
which newsgroup a text belongs to. We considered uploading this dataset, but decided
against doing so because we would train a representation on a training set, but in
reality, we would use a 4-fold CV setup that does not align with this train/test split
and would lead to spurious results.

• adult, as used by Huang et al. (2020): This is a multi-label version of the famous adult
data set (Kohavi, 1996) created for the ChaLearn AutoML challenge (Guyon et al.,
2019, see online Appendix). We excluded this dataset because we do not consider
multi-label problems. However, the suite used in this work already contains the a
different version of the adult dataset, that only consists of the training portion of the
original dataset, we do not deem this to be an issue.

• Avazu, used by Cai et al. (2021): We excluded this dataset because the paper provides
the dataset only in the preprocessed version generated by the method described in the
paper.

• Blog, used by Yoon et al. (2020): We excluded this dataset because it requires a
non-i.i.d. split.

• Buddy, used by Kotelnikov et al. (2023). This dataset contains timestamps and it is
therefore unclear how to use it in a standard supervised classification setup.
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Table 3: Studied papers. We classify the papers from the blog post (Raschka, 2022) into
three categories: (1) Works that study a large range of methods (Comp), (2) works
that introduce a method (New), and (3) works that introduce data generation
techniques (Generative; not considered). We also list two papers introducing
OpenML benchmarking suites that are not part of the blog post (OpenML).
Column clf shows the number of classification datasets used in the main experiment
and reg shows the number of regression datasets, respectively. We also list the
number of invalid datasets that we could not use (inv, see Appendix A.3; not
considered), and the number of datasets that were used for experiments besides
the main experiment (side, see Appendix A.4, not considered).

Type Method Reference clf reg inv side

Comp

- Borisov et al. (2022) 4 1 - -
FT-Transformer Gorishniy et al. (2021) 7 4 - 5
- Grinsztajn et al. (2022) 21 35 - -
- Shwartz-Ziv and Armon (2022) 9 2 - -

New

NAM Agarwal et al. (2021) 2 2 1 -
TabNet Arik and Pfister (2020) 3 2 - 8
SCARF Bahri et al. (2022) 69 - - -
TAC Buturović and Miljković (2020) 1 - 1 -
ARM-Net Cai et al. (2021) 5 - 5 -
DANET Chen et al. (2022) 4 3 1 -
SPAM Dubey et al. (2022) 9 4 3 3
multiple Gorishniy et al. (2022) 7 4 - 1
TabPFN Hollmann et al. (2023) 30 - - 170
TabTransformer Huang et al. (2020) 20 - 1 -
GATE Joseph and Raj (2022) 3 2 - -
RegCocktails Kadra et al. (2021) 40 - - -
NPT Kossen et al. (2021) 6 4 - 2
multiple Levin et al. (2023) 1 - 1 2
NODE Popov et al. (2020) 3 3 1 -
NBM Radenovic et al. (2022) 8 4 3 3
multiple Rubachev et al. (2023) 6 5 - 1
XGBNet Sarkar (2022) 8 - 2 -
Hopular Schäfl et al. (2022) 16 - 1 4
SAINT Somepalli et al. (2022) 20 10 - 1
SuperTML Sun et al. (2019) 4 - - -
VIME Yoon et al. (2020) 11 - 9 -
IGDT Zhu et al. (2021) - 2 - -

Summary
Mean 11.7 3.2 1.1 7.4
Median 7 2 0 0

Generative
GReaT Borisov et al. (2023) - - - 6
- Kotelnikov et al. (2023) - - - 16

OpenML
- Bischl et al. (2021) - - - 72
- Gijsbers et al. (2022) - - - 71
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• Click, used by Chen et al. (2022); Dubey et al. (2022); Popov et al. (2020); Radenovic
et al. (2022) is a random subset of the size of 1.000.000 datapoints from the KDD Cup
2012. However, it contains more than 700.000 unique user IDs, which were too many
to upload to OpenML as categories of a categorical feature. In the meantime we have
manageded to upload the dataset, but only after running the experiments.

• Clinical UK: We excluded the dataset because it is not publicly available.

• Clinical US We excluded the dataset because it is not publicly available.

• Criteo, used by Cai et al. (2021): We excluded this dataset because the paper provides
the dataset only in the preprocessed version generated by the method described in the
paper.

• Diabetes130, used by Cai et al. (2021): We excluded this dataset because the paper
provides the dataset only in the preprocessed version generated by the method described
in the paper.

• Digit Completion, used by Sarkar (2022). Unfortunately, the paper does not contain
enough information to identify this dataset. Furthermore, the provided code contains
code to load a subset of MNIST or the digit dataset, which makes it unclear which of
both might have been used. Moreover, there is no such dataset on the internet, which
prevents us from using this dataset.

• ecoli, used by Schäfl et al. (2022). This dataset contains two classes that only have
two samples each. This number of samples is too low for our train-valid-test procedure
and we therefore exclude it.

• Frappe, used by Cai et al. (2021): We excluded this dataset because the paper provides
the dataset only in the preprocessed version generated by the method described in the
paper.

• MCH, used by Yoon et al. (2020): We excluded the dataset because it is not publicly
available.

• MetaMIMIC, used by Levin et al. (2023): We excluded the dataset because it is not
publicly available, and because it is a multi-label dataset.

• MIMIC2, used by Agarwal et al. (2021); Radenovic et al. (2022); Dubey et al. (2022):
We excluded the dataset because it is not publicly available.

• MONO, used by Yoon et al. (2020): We excluded the dataset because it is not publicly
available.

• MovieLens, used by Cai et al. (2021): We excluded this dataset because the paper
provides the dataset only in the preprocessed version generated by the method described
in the paper.

• MPV, used by Yoon et al. (2020): We excluded the dataset because it is not publicly
available.
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• MRV, used by Yoon et al. (2020): We excluded the dataset because it is not publicly
available.

• PCT, used by Yoon et al. (2020): We excluded the dataset because it is not publicly
available.

• RET, used by Yoon et al. (2020): We excluded the dataset because it is not publicly
available.

• Rossmann Store Sales, used by Arik and Pfister (2020) and Shwartz-Ziv and Armon
(2022): We excluded the dataset due to its time series nature.

• Syn1, Syn2, Syn3, Syn4, Syn5, and Syn6 (Arik and Pfister, 2020): We excluded these
datasets due to their synthetic nature.

• Synthetic datasets used by Gorishniy et al. (2021): We excluded these datasets due
to their purely synthetic nature. Nonetheless, we would like to point out the great
study design: these datasets that were generated by gradually blending between
neural networks and decision trees to study the inductive biases of the proposed
FT-Transformer, showing where FT-Transformer improves over the previously used
ResNet.

• Titanic as used by Sarkar (2022): We excluded the dataset due to its string features.

A.4 Datasets per Paper

In this section we briefly categorize the datasets from each paper into main and additional
(other) experiments. This will help to better understand Table 3.

• Agarwal et al. (2021)

– Main experiment: Use four datasets

– Other:

∗ Use the MIMIC-II datasets with a doctor to validate intelligibility of the
NAM models.

∗ Use the FICO, Credit Fraud and California Housing datasets to check intelli-
gibility themselves.

∗ Use the COMPAS dataset to demonstrate a multi-task NAM model and com-
pare it against the single task NAM both in terms of predictive performance
and intelligibility.

• Arik and Pfister (2020)

– Main: Use five datasets.

– Other:

∗ Use 6 synthetic datasets for which only a subset of the features is relevant
to compare TabNet against competitors and demonstrate feature selection
capabilities, including per-data-point feature selection.
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∗ Use the Mushroom and the Adult dataset in addition to the 6 synthetic
datasets to test interpretibility.

• Bahri et al. (2022)

– Main: OpenML-CC18, but excluding the following image datasets: MNIST,
FashionMNIST, and CIFAR10.

– Other: None.

• Borisov et al. (2023): Uses datasets solely for benchmarking dataset generators.

• Borisov et al. (2022)

– Main: Use 5 datasets.

– Other: Use Adult to benchmark interpretibility of the tabular deep learning
models.

• Buturović and Miljković (2020)

– Main: Use 1 dataset.

– Other: None.

• Cai et al. (2021)

– Main: Use 5 datasets, mostly recommendation and click prediction datasets, but
their exact preprocessing and usage is not clear from the paper. The datasets
hosted by the authors does not match the raw representation of the datasets.

– Other: None.

• Chen et al. (2022)

– Main: Use 7 datasets.

– Other: None.

• Dubey et al. (2022)

– Main: Use 4 datasets in Section 4.1 (Measuring Benchmark Performance) and
another 9 datasets that they describe as commonly being used in the interpretabil-
ity literature (but use them for performance evaluation nevertheless)(same as
Radenovic et al. (2022) except that this work also uses the critical COMPAS
dataset).

– Other: Use 3 image classification datasets (Caltech-UCSD Birds, iNaturalists
”Birds” and Common Objects Datasets; same as Radenovic et al. (2022)).

• Gorishniy et al. (2021)

– Main: Use 11 datasets.
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– Other: They dropped four datasets (Bank, Kick, MiniBooNe, Click) from the
experiments that they found to be non-informative, i.e., where all models perform
similar (and report on these in the appendix). Furthermore, they conduct addi-
tional experiments on several synthetic datasets to further study the performance
of FT-Transformer and a standard ResNet.

• Gorishniy et al. (2022)

– Main: Use 11 datasets (different to the ones used by Gorishniy et al. (2021)).

– Other: They reused synthetic data generated by Gorishniy et al. (2021).

• Grinsztajn et al. (2022)

– Main:

– Other:

• Hollmann et al. (2023)

– Main: Use 30 datasets (from the OpenML-CC18).

– Other: The paper contains further experiments using the moons and circles toy
datasets as well as iris and wine datasets to visualize predictions, a subset of the
AutoML benchmark with the same characteristics as the 30 datasets used in the
main experiment (5 datasets), 149 validation datasets from OpenML that follow
the characteristics from the datasets used in the main paper. Finally, they used
18 larger datasets from the AutoML benchmark to study generalization to larger
datasets.

• Huang et al. (2020)

– Main: The main paper reports 15 binary classification datasets and the appendix
reports a superset of 20 binary classification tasks. We could not find an explana-
tion why these five tasks should not be considered in the main experiments and
therefore assume that all 20 datasets constitute the main experiment.

– Other: None.

• Joseph and Raj (2022)

– Main:

– Other:o

• Kadra et al. (2021)

– Main: Use 40 datasets.

– Other: None.

• Kossen et al. (2021)

– Main: Use 10 datasets.
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– Other: Use MNIST and CIFAR-10 as image datasets, and create a synthetic task
based on the UCI Protein regression dataset for which they know the ground-truth
interactions.

• Kotelnikov et al. (2023): Uses datasets solely for benchmarking dataset generators.

• Levin et al. (2023):

– Main: Multi-task dataset based on Meta-MIMIC.

– Other: 2 multi-label datasets.

• Popov et al. (2020)

– Main: Use 6 datasets.

– Other:

• Radenovic et al. (2022)

– Main: Use 12 datasets (same as Dubey et al. (2022) except that this work does
not use the critical COMPAS dataset).

– Other: Use 3 image classification datasets (Caltech-UCSD Birds, iNaturalists
”Birds” and Common Objects Datasets; same as Dubey et al. (2022)).

• Rubachev et al. (2023)

– Main: Use 11 datasets.

– Other: Generate synthetic data following Gorishniy et al. (2021). Also, in the
appendix, they study four datasets with more categorical features (Diamond,
Black Friday, Brazilian houses, Bank).

• Sarkar (2022)

– Main: Use 8 datasets.

– Other: None.

• Schäfl et al. (2022)

– Main: Use 16 datasets.

– Other: Use four medium-size datasets.

• Shwartz-Ziv and Armon (2022)

– Main: Use 11 datasets.

– Other: None.

• Somepalli et al. (2022)

– Main: Use 30 datasets.

– Other: Use MNIST to study the proposed attention mechanism.
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• Sun et al. (2019)

– Main: Use 4 datasets.

– Other: None

• Yoon et al. (2020)

– Main: Use 11 datasets, out of which three are publicly available (and one of them
being MNIST).

– Other: None

• Zhu et al. (2021)

– Main: Use 2 datasets.

– Other: None.

A.5 Dataset Peculiarities

• FICO/HELOC:

– Borisov et al. (2022) used a cleaned version of the dataset.

– Agarwal et al. (2021) used it as a regression dataset.

– Dubey et al. (2022) use the uncleaned version with columns contaning only
missing values.

– Radenovic et al. (2022) used the uncleaned version, but have more features than
the original dataset.

• Currently, there are three Higgs datasets in use, but we are unsure how we can decide
which one is the correct one.

• Buddy: unclear how to use this as it has time stamps

• The Microsoft dataset was correctly identified as a ranking problem by most studies.
However, one paper used it as a classification dataset.

• Cardiovascular Disease dataset: completely unknown origin

• Tours and Travels Customer Churn Prediction: completely unknown origin

• Epsilon is a synthetic dataset, and we are unsure what qualifies it as a tabular dataset.
We could not find a publication introducing the competition and were only able to
recover a slideset from a video hosting website (Sonnenburg and Franc, 2008) and
find a second-hand description by a participant of the competition introducing the
dataset (Boullé, 2009).

• Different versions of the same paper (the arXiv version of Somepalli et al. (2022) and
the ICLR submission) used different datasets, which makes it hard to decide which
one is the experimental setup that is preferred by the authors.

• Three works used the ethically questionable COMPAS dataset (Bao et al., 2021)
without further explanation.
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A.6 Retracted Datasets

We checked the most-common datasets from Table 6 to see whether the datasets are either
retracted or whether someone suggested not to use them any more:

• Adult (Ding et al., 2021)

• German Credit (Grömping, 2019)

• Compas (Bao et al., 2021)

• Iris (Poisot, 2020)

• Diabetes (Radin, 2017)

• Boston Housing (Carlisle, 2019)

Appendix B. Towards a crisp definition of tabular data

As mentioned in the main paper, we first define different categories of how data can arrive
in a tabular form:

1. Pixels/Raw: Raw recordings, e.g. images or ;Game: Game database, e.g. chess data

2. Homogeneous Extracted Features (HomE): When a feature extractor applied to raw
data (for example, an image) yields similar features, e.g., counts of a pattern, distances
to cluster means or a filter applied at multiple locations of an image.

3. Heterogeneous Extracted Features (HetE): Different concepts extracted from one source
of raw data without any additional features. This could be e.g. summary statistics of
gene expression data or neuroscientific recordings without patient meta-data such as
age.

4. Semi-Tabular: Different concepts extracted from one or more sources of raw data
with maybe additional information (similar to HetE, but this underlines that the
data is somewhat multimodal). Examples of this are often medical data where
extracted features are enriched with patient information, such as the arrhythmia
dataset (https://openml.org/d/5)

5. Tabular: Highly structured data with features on different scales, e.g., patient records,
customer data or sales data extracted from a relational database, etc.

These definitions are ordered from most raw to most tabular. We are aware that with
this definition, there will be cases in which it will be hard to decide. Nevertheless, we believe
this is an improvement over the current status quo, in which the definitions are more vague.
However, as also mentioned in the paper, we also need to take the into account whether
a representation makes sense for a dataset at hand given the state-of-the-art in modeling
for such a data modality. While it might be necessary for some domain such as images to
use raw data to obtain peak performance, there might be other domains where extracted
features with a model for tabular data might give the best performance.

29



Kohli, Feurer, Eggensperger, Bischl and Hutter

We believe that such a definition will allow us to define tabular data better than
other definitions from the literature, e.g., Borisov et al. (2022) state that tabular data is
“heterogeneous data that usually contain a variety of attribute types”, Grinsztajn et al. (2022)
define it as “tabular data, made of heterogeneous features, small sample sizes, extreme
values” and also not being deterministic (game datasets), while Cai et al. (2021) state that
“structured data is generally stored in a set of tables (relations) T1, T2, . . . of columns and
rows, which can be extracted from a relational database with feature extraction queries, e.g.,
the projection, natural join, and aggregation of these tables in the database”.

Appendix C. Experimental Setup

C.1 Implemented Methods

We have recently seen an influx of DL models for tabular data. In this paper, we restrict
our study to only a few models so that we can focus on the datasets rather than the
methods. We started using code from the recent study by Grinsztajn et al. (2022) and
extended the code with further variants of gradient boosting (CatBoost (Prokhorenkova
et al., 2018) and LightGBM (Ke et al., 2017)), and finally, we added two more baseline
models (LogReg and MLP from scikit-learn). We briefly describe each of the models in the
following (implementation details are also provided on our codebase):

• Gradient Boosting Models

– XGBoost (Chen and Guestrin (2016)): XGBoost is a very popular implementa-
tion of regularized Gradient boosting trees that uses level-wise tree growth and
histogram-based node splitting.

– LightGBM (Ke et al. (2017)): LightGBM employs leaf-wise tree growth and
histogram-based node splitting. It also allows to select novel speedup techniques
Gradient-based One Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB) but does not enable them by default).

– CatBoost (Prokhorenkova et al. (2018)): CatBoost uses oblivious decision trees
as base learners, ordered boosting to combat overfitting, and employs encoding
similar to mean target encoding for categorical features.

– HistGradientBoosting- Inspired by LightGBM, HistGradientBoosting bins
continuous features to accelerate learning. This baseline is implemented in
scikit-learn (Pedregosa et al., 2011).

• Deep Neural Network Models

– FT-Transformer (Gorishniy et al. (2021)): Extends the original transformer as
defined in Vaswani et al. (2017) by adding a feature tokenizer module to generate
embeddings for both numerical and categorical features.

– SAINT (Somepalli et al. (2022)): Applies self-attention (attention between
features) and introduces intersample attention (attention between rows, akin to
learning the distance metric for nearest neighbour classification).

30



Towards quantifying the effect of datasets for benchmarking

– ResNet (He et al. (2016)): A popular architecture in image recognition that
suggests using skip connections to learn deeper networks. Gorishniy et al. (2021)
suggest it as a robust DL baseline for tabular data.

• Baseline Models (all implemented in scikit-learn (Pedregosa et al., 2011)):

– LogReg: estimates the probability of the outcome using the logistic function.

– RF (Breiman, 2001): an ensemble learning method that constructs multiple
decision trees and combines their predictions to make accurate predictions.

– MLPsk: Simple feed-forward network.

– MLPpt (PyTorch): Simple feed-forward neural network which is also suggested
as a robust DL baseline for tabular data by Gorishniy et al. (2021).

C.1.1 Early Stopping

Early stopping is a regularization technique that is used for gradient boosting ensembles as
well as for DL models to avoid overfitting. The idea of early stopping is to train an iterative
model on a training set and score it on a separate data set after every iteration. Then, one
always keeps a copy of the model for the best score on this separate data set. At the end of
the training, instead of returning the model after all iterations, one returns the best recorded
models as measured on the separate set as well. Following previous studies, we implement
early stopping as well. Early stopping also has some degrees of freedom: the dataset on
which to decide whether to stop and the so-called patience to stop after t iterations of no
further improvement. Generally speaking, one can perform early stopping on the validation
set used to tune hyperparameters or split away a separate training set. The first option
increases the chances of overfitting because we look at the validation set more often, while
the second reduces the effective size of the training set. Another popular option we do not
consider because it would increase the compute cost too much is conducting cross-validation
and then using the average number of iterations as the number of iterations for a training
run on the full dataset. For scikit-learn models, only the second option is possible; therefore,
we follow it. For the deep learning and gradient boosting methods that are not implemented
in scikit-learn we were able to configure the data set used and found in early experiments
that using the validation set results in better generalization performance and therefore used
that.

C.1.2 Data preprocessing

We decided to go for very lean preprocessing pipelines. By this, we mean that we let the
models handle the data preprocessing themselves when possible. We chose this strategy
to not influence the results by data preprocessing and in order to make full benefit of
the developments of advanced methods such as CatBoost, which has effective methods for
handling categorical data. The only preprocessing we applied for all models was removing
constant columns. For all deep learning models, we used the following preprocessing:

• Categorical attributes: Categorical embedding where we treat missing values and
unknown categories at test time as the same.
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• Numerical attributes: Median imputation of missing values and Quantile transforma-
tion to transform all attributes to follow a Gaussian distribution.

The Gradient Boosting models do not require any preprocessing and can all handle categorical
data, missing values and unscaled numerical features by construction. Solely for CatBoost
we had to transform the categorical data to strings because this is how CatBoost handles
categorical features. Last but not least, we used a standard scikit-learn preprocessing pipeline
for the baseline models:

• We used OneHotEconding to transform categorical features into numerical features,
added an additional column for missing values and dropped unknown values at test
time.

• For numerical features, we use a mean imputation for missing values.

C.2 Experimental Protocol

We use 100 iterations of Random Search (Bergstra and Bengio, 2012) to optimize the
hyperparameters of each model. We provide the search spaces in Appendix D. For the
datasets we use OpenML tasks with four folds. However, we executed the models only on
the first fold, which leads to a test set with 25% of the data. We use 20% of the training
data as a validation set. Following previous work (Grinsztajn et al., 2022) we treat the data
in a train-validation-test protocol and do not refit the models. For CPU models (models
implemented in scikit-learn and other gradient boosting models), we allocate 12 GB and
1 CPU and give a time limit of 3 hours. We used NVIDIA GeForce RTX 2080 Ti for DL
models and Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz for all other models.

Appendix D. Search Spaces

Table 5: Model configuration space for CatBoost.
Name Type Default Range

learning rate UniformFloat 0.03 [0.01, 0.3]
max depth UniformInt 6 [2, 12]
reg lambda UniformFloat 3 [0.5, 30.0]
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Table 6: Model configuration space for FT-Transformer.

Name Type Default Range

batch size Categorical 256 (64, 256, 512, 1024)
d token UniformInt 192 [64, 512]
lr UniformFloat 0.0001 [1e-05, 0.001]
lr scheduler Categorical False (True, False)
module activation Categorical reglu reglu
module attention dropout UniformFloat 0.2 [0.0, 0.5]
module d ffn factor UniformFloat 1.3333333333 [0.6666666666666666, 2.6666666666666665]
module ffn dropout UniformFloat 0.1 [0.0, 0.5]
module initialization Categorical kaiming kaiming
module kv compression Categorical True (True, False)
module kv compression sharing Categorical headwise (’headwise’, ’key-value’)
module n heads Categorical 8 8
module n layers UniformInt 3 [1, 6]
module prenormalization Categorical True True
module residual dropout UniformFloat 0.0 [0.0, 0.5]
module token bias Categorical True True
optimizer Categorical adamw adamw
optimizer weight decay UniformFloat 1e-05 [1e-08, 0.001]

Table 7: Model configuration space for HistGradientBoosting.

Name Type Default Range

learning rate NormalFloat 0.010000000000000005 [2.2250738585072014e-308, 65535.0]
max depth Categorical None (’None’, 2, 3, 4)
max leaf nodes NormalInt 31 [2, 65535]
min samples leaf NormalInt 20 [1, 65535]

Table 8: Model configuration space for LightGBM.
Name Type Default Range

lambda l1 UniformFloat 1e-08 [1e-08, 10.0]
lambda l2 UniformFloat 1e-08 [1e-08, 10.0]
learning rate UniformFloat 0.1 [0.01, 0.3]
num leaves UniformInt 31 [2, 4096]
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Table 9: Model configuration space for MLPpt.

Name Type Default Range

batch size Categorical 256 (64, 256, 512, 1024)
lr UniformFloat 0.001 [1e-05, 0.01]
lr scheduler Categorical True (True, False)
module d embedding UniformInt 128 [64, 512]
module d layers UniformInt 256 [16, 1024]
module dropout Categorical 0.0 0.0
module n layers UniformInt 4 [1, 8]
optimizer Categorical adamw adamw

Table 10: Model configuration space for ResNet.
Name Type Default Range

batch size Categorical 256 (64, 256, 512, 1024)
lr UniformFloat 0.001 [1e-05, 0.01]
lr scheduler Categorical True (True, False)
module activation Categorical reglu reglu
module d UniformInt 256 [64, 1024]
module d embedding UniformInt 128 [64, 512]
module d hidden factor UniformFloat 2.0 [1.0, 4.0]
module hidden dropout UniformFloat 0.2 [0.0, 0.5]
module n layers UniformInt 8 [1, 16]
module normalization Categorical batchnorm (’batchnorm’, ’layernorm’)
module residual dropout UniformFloat 0.2 [0.0, 0.5]
optimizer Categorical adamw adamw
optimizer weight decay UniformFloat 1e-07 [1e-08, 0.001]

Table 11: Model configuration space for SAINT.
Name Type Default Range

args batch size Categorical 64 (32, 64, 256)
args lr Categorical 0.0001 0.0001
args val batch size Categorical 32 32
params depth Categorical 6 (1, 2, 3, 6, 12)
params dim Categorical 32 (32, 64, 128, 256)
params dropout Categorical 0.1 (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)
params heads Categorical 8 (2, 4, 8)
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Table 12: Model configuration space for MLPsk.
Name Type Default Range

activation Categorical relu (’tanh’, ’relu’)
alpha UniformFloat 0.0001 [1e-07, 0.1]
early stopping Categorical True (True, False)
hidden layer depth UniformInt 1 [1, 3]
learning rate Categorical constant (’constant’, ’invscaling’, ’adaptive’)
learning rate init UniformFloat 0.001 [0.0001, 0.5]
num nodes per layer UniformInt 32 [16, 264]

Table 13: Model configuration space for LogReg.
Name Type Default Range

C UniformFloat 1.0 [1e-12, 1.6094379124341003]
fit intercept Categorical True (True, False)
penalty Categorical l2 (’l2’, ’None’)

Table 14: Model configuration space for RF.

Name Type Default Range

bootstrap Categorical True (True, False)
criterion Categorical gini (’gini’, ’entropy’)
max depth Categorical None (’None’, 2, 3, 4)
max features Categorical sqrt (’sqrt’, ’log2’, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ’None’)
min impurity decrease Categorical 0.0 (0.0, 0.01, 0.02, 0.05)
min samples leaf UniformInt 1 [1, 50]
min samples split Categorical 2 (2, 3)

Table 15: Model configuration space for XGBoost.
Name Type Default Range

colsample bylevel UniformFloat 1 [0.5, 1.0]
colsample bytree UniformFloat 1 [0.5, 1.0]
gamma UniformFloat 1e-08 [1e-08, 7.0]
learning rate UniformFloat 0.3 [1e-05, 0.7]
max depth UniformInt 6 [1, 11]
min child weight UniformFloat 1 [1.0, 100.0]
reg alpha UniformFloat 1e-08 [1e-08, 100.0]
reg lambda UniformFloat 1e-08 [1e-08, 100.0]
subsample UniformFloat 1 [0.5, 1.0]
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