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Georges-Köhler Allee 74
79110, Freiburg, Germany

matusd@informatik.uni-freiburg.de

Abstract

RNA-protein interactions (RPI) are ubiquitous in cellular organisms and essen-
tial for gene regulation. In particular, protein interactions with non-coding RNAs
(ncRNAs) play a critical role in these processes. Experimental analysis of RPIs is
time-consuming and expensive, and existing computational methods rely on small
and limited datasets. This work introduces RNAInterAct, a comprehensive RPI
dataset, alongside RPIembeddor, a novel transformer-based model designed for
classifying ncRNA-protein interactions. By leveraging two foundation models for
sequence embedding, we incorporate essential structural and functional insights
into our task. We demonstrate RPIembeddor’s strong performance and general-
ization capability compared to state-of-the-art methods across different datasets
and analyze the impact of the proposed embedding strategy on the performance in
an ablation study.

1 Introduction

The discovery that 85% of the human genome is transcribed into ribonucleic acid (RNA), while
only about 2% of these RNAs code for proteins (Birney et al., 2007; Consortium et al., 2012), has
shifted our view of RNA from a mere translator between DNA and proteins to one of the most
crucial cellular regulators. Although the functions of many non-coding RNAs (ncRNAs) remain
unknown, it is widely acknowledged that their interactions with proteins are one of the driving forces
for cellular functions, particularly in gene regulation and epigenetics (Oksuz et al., 2023; Statello
et al., 2021; Mangiavacchi et al., 2023). However, experimental analysis of these interactions, e.g.,
via systematic evolution of ligands by exponential enrichment (SELEX) (Tuerk & Gold, 1990), is
time-consuming and expensive. In silico methods capable of distinguishing between interacting and
non-interacting RNA-protein pairs could significantly reduce these costs.

Deep learning based methods recently set novel ground across a variety of applications in molec-
ular research (Alipanahi et al., 2015b; Ronneberger et al., 2015; Baek et al., 2021; Jumper et al.,
2021; Baek et al., 2023). Additionally, meta-learning across tasks has demonstrated its potential
to significantly improve the performance of deep learning models (Singh et al., 2019), particularly
when labeled data is scarce - a common challenge in RNA-protein interaction (RPI) prediction tasks.
While machine learning approaches to classify RPIs exist (Muppirala et al., 2011; Pan et al., 2016;
Jain et al., 2018), the application of meta-learning strategies to leverage the diverse characteristics
of various RNAs and proteins for this task remains largely unexplored. Furthermore, interactions
typically hinge on structural features in addition to sequence information, which, for RNAs are not
widely available at a large scale. An algorithm capable of accurately classifying ncRNA-protein in-
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teraction solely from sequence inputs and applicable across a wide range of interaction types would
be highly valuable.

In this study, we introduce RPIembeddor, a novel and comprehensive approach for classifying
ncRNA-protein interactions that addresses these challenges. We compile an extensive dataset of
positive RPI entries from the RNAInter database (Kang et al., 2022) and enrich it with carefully gen-
erated negative examples, leveraging both sequence and structure features of the RNA and protein
interactors. We employ two foundation models, RNA-FM (Chen et al., 2022a) and ESM-fold (Lin
et al., 2022), to generate embeddings for the RNA and protein sequences. These are then used to
train an attention-based model, designed for binary RPI classification.

Our main contributions are as follows:

• We build RNAInterAct1, an extensive dataset for ncRNA-protein interaction prediction,
derived from the RNAInter (Kang et al., 2022) database. RNAInterAct comprises 73, 362
negative and 35, 852 positive interactions across 976 unique RNA families. To ensure
rigorous evaluation, we meticulously curate two subsets, TRinter for training and TSfam
for testing, with consideration to prevent any overlap in RNA families between the test set
and the training set, thereby eliminating homology bias.

• We introduce RPIembeddor, a novel algorithm for ncRNA-protein interaction prediction
that utilizes embeddings from two foundational models within an attention-based frame-
work. Further, we demonstrate its superior generalization capabilities when benchmarked
against state-of-the-art models across various test sets, marking a significant advancement
in the field.

• Through a comprehensive ablation study, we validate the usefulness of the selected embed-
dings, illustrating how they critically enhance model performance.

2 Related work

Due to the limited amount of experimentally derived RNA-protein complex structure data, ma-
chine learning methods typically rely on sequence information (RNA and/or protein) to predict
RPIs (Bheemireddy et al., 2022). As an RNA-binding protein can bind to many different RNA se-
quences with varying affinity (depending on the presence and arrangement of specific RNA structure
and/or sequence recognition motifs), experimental interaction datasets for a specific protein can con-
tain from thousands up to tens of thousands RNA targets. These datasets (typically obtained from
CLIP-seq experiments (Hafner et al., 2021)) are common and readily available, so most of the avail-
able computational methods use them to train protein-specific models to predict the protein binding
sites on given RNA sequences (Pan et al., 2019; Uhl et al., 2021). Consequently, these models de-
pend on the availability of a sufficiently large interaction dataset for a protein of interest. However,
for example, out of the estimated 2,000 (possibly more) human RBPs (Brannan et al., 2016; Hentze
et al., 2018; Liu et al., 2019), such datasets only exist for a few hundred RBPs, showcasing the
need for alternative approaches. To study this vast space of unexplored RPIs, a particularly useful
extension are approaches that predict whether any given RNA and protein interact based on their
sequences. To date, only a limited number of methods have been developed for predicting RPIs
using solely the sequence information of ncRNAs and proteins To the best of our knowledge, these
include RPIseq (Muppirala et al., 2011), IncPro (Lu et al., 2013), IPMiner (Pan et al., 2016), and
XRPI (Jain et al., 2018). In the following, we will focus on XRPI and IPMiner, since they show to
outperform the previous two methods. Detailed description of the respective tools can be found in
Appendix A.

3 Data

The foundation of our study on predicting RPIs is an extensive, meticulously compiled, and pro-
cessed dataset. We provide a concise overview of our data pipeline in this section, with a more
detailed description available in the Appendix B.
Data Preparation We use the RNA Interactome Database (RNAInter) (Kang et al., 2022) with
over 47 million RNA interactions across 156 different species as the basis for our dataset. Among

1To support future work in the field, we make our dataset publicly available upon acceptance.
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Table 1: Overview of the datasets used in this work.

Feature TRinter TSfam RPI2825

Unique RNA Families 976 172 N/A
Unique Protein Clans 152 152 N/A

Positive Interactions 35,852 4,887 871
Negative Interactions 73,362 8,116 0

Total Interactions 109,214 13,003 871

these, RPIs are particularly prominent, with 37,067,587 entries. Even though RNAInter does not
directly provide sequence information, we obtain it by cross-linking different large-scale databases
like NCBI (Benson et al., 2012), UniProt (Consortium, 2019), or Ensembl (Cunningham et al.,
2022). To enable informed negative interaction generation, we perform an extensive annotation us-
ing the Rfam (Kalvari et al., 2021) and Pfam (Mistry et al., 2020) databases, assigning RNA families
and protein clans to each unique interactor. Our refinement process includes setting a length cutoff
at 1024 nucleotides and amino acids, limiting the number of interactions per interactor to 150, and
excluding mRNAs from the dataset. After careful curation of the negative examples by leveraging
RNA family and protein clan information to ensure biological relevance, the RNAInterAct dataset
encompasses a total of 122,217 interactions between ncRNAs and proteins with a 1:2 ratio of posi-
tive and negative interactions.
Train and Test Sets RNAInterAct serves as a foundation for our derived training and test sets,
TRinter and TSfam, respectively. We strategically divide RNAInterAct based on the RNA families
involved, ensuring no RNA family overlap between TRinter and TSfam. This approach is grounded
in the understanding that RNA families consist of RNAs with conserved nucleotide sequences, shar-
ing common structural features and, typically, similar functions. Evaluation on such a test set ensures
the assessment of the model’s true generalization capabilities, in stark contrast to the limited insights
gained from random splits of training and testing data.

In addition to evaluating RPIembeddor on the TSfam, we also assess it using the widely recognized
RPI2825 dataset Muppirala et al. (2011); Jain et al. (2018). This step allows us to examine the
model’s ability to generalize across a distinct distribution of examples since RPI2825 comprises
exclusively positive interactions. Consistent with our methodology, we apply the same sequence
length restriction of 1024 nucleotides/amino acids to this dataset. A comparative overview of the
datasets utilized in our evaluations is presented in Table 1.

4 Method

In this section, we detail RPIembeddor, our proposed approach for RPI classification.
Embeddings The centerpiece of our model involves leveraging RNA and protein embeddings
from pre-trained models to incorporate structural and functional insights into our interaction predic-
tion task. For RNA sequences, we employ the transformer-based RNA Foundation Model (RNA-
FM) Chen et al. (2022b), which was trained on a massive corpus of 23 million unlabeled non-coding
RNAs from RNAcentral Consortium et al. (2017) using self-supervised learning. For protein se-
quences, we utilize Evolutionary Scale Modeling 2 (ESM-2) Lin et al. (2022), a transformer-based
language model trained on the UniRef database Suzek et al. (2014) that specializes in predicting pro-
tein folding from amino acid sequences. Contrasting with the well-known AlphaFold Jumper et al.
(2021), ESM-2 operates without the need for multiple sequence alignments (MSAs), making it a
more fitting option for our requirements. We opt for the 30-layer version of ESM-2 with 150 million
parameters to match RNA-FM’s embedding size of 640. Given that RNA-protein interactions hinge
critically on the structures and functional characteristics of the molecules involved, the combined
use of embeddings from these two models offers a comprehensive view of potential interaction sites
and mechanisms, promising performance improvement on the RPI classification task.
Model After processing the inputs with RNA-FM and ESM-2, we obtain two embeddings, each
of size N × 640 with N being the input sequence length. These embeddings are then fed into our
transformer-based model, RPIembeddor. To address the possibility of variable lengths of RNA and
protein sequences while ensuring compatibility, we implement two parallel feed-forward layers that
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normalize the size of the input embeddings. Subsequently, the embeddings undergo processing in
an encoder layer designed to treat them symmetrically, ensuring they have equal influence on the
model’s final output probability. This symmetrical processing is crucial as it allows our model to dy-
namically focus on specific parts of the sequences that are most relevant for predicting interactions,
leveraging the strengths of the attention mechanism. By doing so, attention facilitates the model’s
ability to capture complex dependencies between RNA and protein sequences. The resulting latent
representations are concatenated and processed through a series of feed-forward layers, culminating
in a linear layer with a sigmoid activation function to produce output class probabilities. The archi-
tectural choices result in the model size of 1.4M parameters. For the task of RPI classification, we
employ a binary loss function and optimize the model using a combination of linear warm-up and
cosine annealing strategies with the AdamW optimizer Loshchilov & Hutter (2019a). For a detailed
overview of RPIembeddor’s architecture and hyperparameters, please refer to Appendix C.1.

5 Experiments

To evaluate RPIembeddor’s efficacy, we conduct two sets of experiments. First, we compare its per-
formance against state-of-the-art methods, IPMiner (Pan et al., 2016) and XRPI (Jain et al., 2018),
on both the TSfam dataset and the RPI2825 dataset (Section 5.1). Secondly, through an ablation
study, we analyze the impact of embeddings on model performance (Section 5.2).

5.1 Benchmarking on TSfam and RPI2825

Setup We evaluate RPIembeddor against IPMiner and XRPI, reporting key performance met-
rics such as binary precision, recall, F1 score, and accuracy. For a robust evaluation, RPIembeddor
is trained using three distinct random seeds over 90 epochs. We then aggregate the results to report
the average performance alongside the standard deviation. All results are summarized in Table 2.
Data We evaluate all models on the TSfam dataset and on the commonly used RPI2825 dataset
from the literature. It is important to note that these datasets feature distinctly different distributions
of positive and negative interaction examples (as detailed in Table 1).
TSfam We observe that RPIembeddor demonstrably outperforms competing models, achieving
an F1 score of 0.586 (±0.010) and an accuracy of 0.667 (±0.009). Specifically, our model correctly
classifies 2,971 out of 4,887 positive interactions and 5,586 out of 8,116 negative ones. In compari-
son, IPMiner predicts 1,830 true positives and 4,826 true negatives. Notably, XRPI exhibits a signif-
icant bias towards positive classifications, predicting approximately 91% of interactions (11,832 out
of 13,003) as positive, despite the dataset comprising roughly 62% negative examples. We illustrate
Receiver Operating Characteristic (ROC) curves for all three models in Figure 1.
RPI2825 The RPI2825 dataset comprised exclusively of positive interactions presents a challenge
for RPIembeddor. Despite this, our model demonstrates robust generalization, achieving the second-
best F1 score of 0.8 (±0.049), giving in to XRPI with an impressive F1 score of 0.991. However,
caution is warranted in interpreting XRPI’s performance, as our experiments on TSfam revealed its
tendency to predict significantly more positive interactions than negatives. This bias is evident in
the RPI2825 results where XRPI classifies 98% of the interactions as positive (855 out of 871), with
only 1.8% (16 out of 871) classified as negative. This serves as a concluding evidence for a strong
bias towards positive predictions for XRPI. Importantly, our analysis suggests that RPIembeddor’s
performance is not merely a reflection of the training data distribution, as it effectively generalizes to
unseen data distributions despite the majority class in training sets being negative interactions, unlike
the positive-only RPI2825 test set. This underscores the robustness and versatility of RPIembeddor
in handling diverse datasets.

5.2 Ablation Study

In this section, we evaluate the contributions of protein- and RNA embeddings to the performance of
our model. We conduct the analysis in two parts: (i) by replacing the protein- or RNA input embed-
ding with a random embedding of the same size to investigate whether both embeddings contribute
equally to the performance, and (ii) by replacing both input embeddings with one-hot encodings of
the input sequences to test whether our embeddings are superior to simpler representations in cap-
turing the relationships between the RNA and protein sequences.
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Table 2: Mean performance and standard deviation across three seeds of the RPIembeddor in com-
parison to state-of-the-art models.

Model TSfam RPI2825

Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.

RPIembeddor 0.550 0.627 0.586 0.667 1.0 0.667 0.8 0.667
±0.010 ±0.017 ±0.013 ±0.009 ±0.0 ±0.085 ±0.049 ±0.085

IPMiner 0.357 0.375 0.366 0.512 1.0 0.107 0.193 0.107
XRPI 0.375 0.909 0.531 0.398 1.0 0.982 0.991 0.982
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Figure 1: Receiver Operating Characteristics comparison on TSfam.

Setup In our study, we train one distinct model for each of the following configurations: random-
protein where only the protein embedding is utilized; random-RNA using only the RNA embedding;
one-hot, where both RNA and protein sequences are represented using one-hot encodings. We
compare models performance against RPIembeddor, which incorporates RNA-FM and ESM-2 em-
beddings, on the TSfam dataset. To ensure the reliability of our results, each model configuration is
evaluated across three unique random seeds.

Results The outcomes of each experimental setting are detailed in Table 3. Interestingly, we find
that RPIembeddor in all three configurations consistently behaves as a negative classifier, predicting
only negative examples. This pattern decisively underscores the significant role that both protein
and RNA embeddings play in the model’s ability to perform effectively.

6 Conclusion

Our work introduces RPIembeddor, a transformative approach to RNA-protein interaction (RPI)
prediction that harnesses the power of embeddings from two foundational models. Using a meta-
learning strategy to learn RPIs across different RNA and protein types, our method outperforms
existing methods while generalizing to unseen data distributions. We believe that our approach
bears great potential for future RPI prediction endeavors and we support this research by making our
new dataset RNAInterAct publicly available upon acceptance. Acknowledging the limitations tied
to foundational model dependencies and sequence length constraints, our future directions include
exploring alternative embeddings, e.g., from RNA structure models like the RNAformer Franke et al.
(2023) or other foundation models, to extend the applicability of our approach.
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Table 3: Results of the ablation study.

Model Prec. Rec. F1 Acc.

RPIembeddor 0.563 ± 0.019 0.659 ± 0.071 0.605 ± 0.019 0.678 ± 0.009
One-Hot 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.624 ± 0.0
Random-Protein 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.624 ± 0.0
Random-RNA 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.624 ± 0.0

7 Acknowledgments

This research was funded by the German Research Foundation (DFG) under SFB 1597 (SmallData),
grant no. 499552394, and through grant no. 417962828. Dominika Matus acknowledges funding by
the Konrad Zuse School of Excellence in Learning and Intelligent Systems (ELIZA) through Mas-
ter’s in AI scholarship. We also acknowledge support by the state of Baden-Württemberg through
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A Related Work

In this section, we describe tools related to our work, including RPIseq (Muppirala et al., 2011),
IncPro (Lu et al., 2013), IPMiner (Pan et al., 2016), and XRPI (Jain et al., 2018).

IncPro IncPro, introduced by Lu et al. (2013), is a tool designed for predicting RNA-protein
interactions using an incremental learning approach with multiple kernel learning. It is capable of
handling large-scale data and integrates diverse features from RNA and protein sequences to enhance
prediction accuracy. Unlike our approach, IncPro primarily relies on incremental learning, which
may not adapt as effectively to new, unseen data types.

RPIseq RPIseq, developed by Muppirala et al. (2011), employs machine learning approaches,
such as Random Forest and Support Vector Machines (SVM), to predict RNA-protein interactions
from sequence information. It is valued for its straightforward methodology in processing RNA-
protein sequence data. In contrast, our method leverages a more complex feature extraction process,
which enables a deeper understanding of the underlying biological interactions.

IPMiner IPMiner, proposed by Pan et al. (2016), is a binary classifier designed to predict interac-
tions between (nc)RNA and protein sequences. It utilizes a stacked autoencoder and a random forest
classifier, where the autoencoder processes the raw input sequences to extract high-level features,
which are then used by the random forest classifier to determine interaction likelihoods. This tool
is noted for its improved efficiency and performance in handling diverse datasets. However, unlike
IPMiner, our approach incorporates a novel deep learning method that enhances the robustness and
generalizability of the predictions.

XRPI Jain et al. (2018) introduced XRPI, a tool for predicting RNA-protein interactions. Con-
trary to the use of deep learning techniques like CNNs, XRPI utilizes XGBoost, a boosting machine
learning algorithm that has not been extensively explored in biological systems. This approach is
rooted in a data-driven parameter strategy, leveraging high-resolution structures of RNA-protein
complexes. In XRPI, amino acids are classified into four classes based on their interaction propen-
sities in RPIs, and an interface size of five is considered for both proteins and RNA to account for
nearest neighbor effects that control the structural context of the interactions. This method is ef-
fective in cases with limited sequence information and is anticipated to be expanded for predicting
other biomolecular interactions, such as DNA-protein and protein-protein interactions.

B Data

The complete data processing pipeline is presented in Figure 2.

B.1 The RNA Interactome Database

The RNA Interactome Database (RNAInter) Kang et al. (2022) is a specialized resource in the field
of molecular biology that houses an extensive collection of over 47 million RNA interactions of
various types coming from 156 different species. Among these, RNA-protein interactions (RPIs)
are particularly prominent, with slightly over 37 million entries. This significant volume of data
underlines the importance of the complex interplay between RNA and proteins within biological
systems.

RNAInter v4.0, as utilized in this project, expands on its predecessor, RNAInter v3.0, through ex-
tensive literature mining and the integration of external databases with interactions sourced from
experimental evidence or computational prediction. Each entry within RNAInter v4.0 is assigned
a confidence score ranging from 0 to 1, reflecting a comprehensive evaluation based on three key
factors: the reliability of experimental evidence, community trust, and the specificity of cells or tis-
sues involved. Notably, the score distribution for all interactions as presented in Figure 3 is visibly
right-skewed, with the majority of entries assigned either ”weak” or ”predicted” evidence categories.
However, despite this skewness indicating a potential abundance of lower-confidence interactions,
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Figure 2: Data curation and processing pipeline.

Figure 3: Evaluation of confidence scores. (A) ROC for distinguishing between experimental and
predicted interactions. (B) Interaction number for each score interval. Plots are adapted from Kang
et al. (2022).

the database’s inclusivity in capturing a wide range of interactions, including less-studied ones,
presents valuable opportunities for exploratory research.

Among the databases contributing to the RPI data are LncTarD (Zhao et al., 2022), with experimen-
tally validated interactions; oRNAment (Bouvrette et al., 2020), a repository for computationally
predicted interactions; and NPInter v4.0 (Teng et al., 2020), which includes both types. Together,
these sources provide a comprehensive dataset of 37,067,587 RPI interactions, enriched with details
such as species, target regions, tissues or cell lines, and homology interactions. While the entries
do not explicitly include sequence information, each interactor is linked to an external database,
facilitating the retrieval of such critical data for our project.
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B.2 Sequence data

To complete the interaction data from the RNA Interactome Database (RNAInter) with essential
sequence information, we access databases linked to each interactor in a single entry. Protein se-
quences are sourced from NCBI and UniProt, while for RNA sequences, our sources include miR-
Base, Ensembl, NONCODE, and NCBI. Besides the sequence, we also query for sequence length
and specific IDs. These IDs are crucial for linking each sequence to its corresponding entry in
the RNAInter database. For a detailed overview of our data extraction rates relative to RNAInter
contents and the total number of sequences compiled, please refer to Table 4.

Table 4: RNAInter external databases statistics.

Database Unique Genes Genes Obtained Extraction rate

RNA Databases

Ensembl 45,235 41,086 90.83%
miRBase 11,040 3,803 34.45%
NCBI 494,057 493,849 99.96%
NONCODE 25,819 25,819 100.0%

Protein Databases

NCBI 288,104 284,157 98.63%
UniProt 3,290 3,069 93.28%

During our data processing, we exclude any entry that lacks either sequence information or neces-
sary IDs. We also eliminate duplicates based on the ID. This step is important because the same
sequence might appear in multiple databases and be associated with different interactions in the
RNAInter database. Finally, owing to the input length limitations of the foundation models em-
ployed for embedding generation, we set a maximum sequence length of 1024 for both RNA and
protein molecules. That results in a total number of 38,026 protein entries and 69,043 RNA entries.

For the subsequent stages of annotation and embedding generation, our focus shifts to the individual
protein and RNA sequences, rather than the interactions they form.

B.3 Annotations

Our approach to generating negative interactions, as detailed in Section B.5, builds upon the notion
of similarity between different RNA or protein sequences. An established way of expressing that is
through family annotation as it is done in Pfam and Rfam databases, for protein and RNA sequences
respectively.

The Pfam database Mistry et al. (2020) represents a comprehensive collection of protein fami-
lies, each characterized through multiple sequence alignments (MSA) and hidden Markov models
(HMMs) that help identify function regions within proteins, called domains, and group them based
on shared characteristics. Additionally, Pfam introduces a higher level of classification known as
’clans’, which groups together families that share a single evolutionary origin, as confirmed by sim-
ilarities in sequence, structure, and profile-HMMs. For our project, we utilized Pfam 36.0, which
comprises 20,795 entries and 659 clans.

The Rfam database Kalvari et al. (2021) comprises a curated collection of non-coding RNA (ncRNA)
families. Each family in this database is characterized by a multiple sequence alignment and a con-
sensus secondary structure, accompanied by a covariance model that aids in the annotation of new
family members. This classification, which includes structural information, is particularly crucial
for ncRNAs. Unlike protein-coding genes, ncRNAs often exhibit significant functional similarities
linked to their secondary structures, even when their primary sequences show little resemblance.
Such considerations are vital for an approach that utilizes primary sequence data. In our project, we
access Rfam 14, encompassing 4,170 families.

We scan each unique protein sequence against the Pfam database and for recognized entries, assign
a clan name. Similarly, each unique RNA sequence is scanned against the Rfam database using
Infernal (Nawrocki & Eddy, 2013) tool, and, if found, annotated a family name. Results concerning
the number of sequences are stored in Table 5.
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Table 5: Summary of family and clan annotation.

Type Unannotated Annotated Families/Clans

RNA 69,043 7,847 1,148
Protein 38,026 26,575 152

B.4 Positive interactions dataset

After gathering all necessary sequence information for generating negative interactions, we then fo-
cus on creating a dataset of positive interactions. We cross-reference the annotated RNA and protein
sequences, as detailed in Table 5, with the RNA Interactome Database (RNAInter). Our criterion
for inclusion is an overlap of sequence IDs between our dataset and RNAInter. This process yields
488,184 interactions, which represents approximately 1% of the original RNA-protein interactions
(RPI) data entries in RNAInter. Such a reduction is anticipated, given several limiting factors we
applied: sequence length restrictions, the requirement for family or clan annotations, and variable
extraction rates from the linked databases.

In the process of refining our dataset, we undertake several critical steps of analysis and filtering.
Initially, we examine the category information of both RNA and protein sequences. From the RNA
dataset, we exclude all mRNA sequences and categories that are undefined. Despite the significant
role of mRNAs in RPIs, our methodology is constrained by the RNA-FM foundation model used
for generating RNA embeddings. This model is exclusively pre-trained on non-coding RNAs, and
including mRNAs could potentially compromise the quality of the embeddings, thereby adversely
affecting prediction performance.

While we acknowledge the existence of other foundation models like CodonBERT (Li et al., 2023),
UTR-LM (Chu et al., 2023), and 3UTRBERT (Yang et al., 2023), which are specialized for coding
sequences (CDS), 5’ untranslated regions (UTRs), and 3’UTR mRNAs respectively, their integration
presents practical challenges. Given that some of the interactions in the RNAInter include genomic
context, the deployment of additional foundation models would be computationally expensive and
impractical for inference purposes, thus limiting the utility of our tool. Moreover, the Rfam database,
as discussed in Section B.3, does not differentiate between various mRNA families, a distinction that
is crucial for our approach for generating negative examples.

Consequently, after careful consideration, we remove 25,010 mRNA interactions and an additional
186 invalid RNA sequences from our dataset. The protein categories are limited to three types:
transcription factors (TF), RNA-binding proteins (RBP), and general proteins. Given this concise
categorization, we decide to retain all protein interactors. Following the removal of duplicates, our
final dataset comprises 462,988 interactions.

In the final stage of data preparation, we impose a limit of 150 interactions per interactor. This
threshold was determined through thorough analysis as an optimal balance, allowing us to maintain
a reasonable number of interactions while preventing the over-representation of certain interactors in
the dataset. As a result of this limitation, our collection of positive interactions is now 40,744. Given
that we intend to generate two negative interactions per one positive, the dataset will eventually triple
in size. This expansion ensures that even after the significant reduction in interactions, the dataset
remains robust enough to support the effective performance of our model. We present the interactors’
contributions per category in Table 6.

The sequence length distributions, as shown in Figure 4, indicate that RNA sequences in the
RNAInter database are typically much shorter than protein sequences, with the majority falling
within the range of approximately 50 to 250 nucleotides (nts). This observation validates our
sequence length restriction criteria, confirming that it did not excessively exclude sequences from
our dataset. On the other hand, the protein sequence length distribution appears to be normally
distributed with a slight right skew. This reflects the tendency of proteins to form longer amino acid
(AA) chains, corroborating their nature as generally larger molecules.

Based on the data presented in Table 7, we observe that the RNA family might be a relatively weak
indicator of similarity among different RNA sequences, as it appears that, on average, each family
groups together about three sequences. In contrast, Pfam clans seem to offer a more distinct separa-
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Category Percentage

miRNA 41.59%
snoRNA 33.36%
snRNA 6.74%
others 6.49%
lncRNA 4.51%
ncRNA 4.12%
rRNA 1.18%
scaRNA 1.10%
pseudo 0.39%
circRNA 0.25%
ribozyme 0.23%
sncRNA 0.03%
Mt tRNA 0.01%
misc RNA 0.00%

Category Percentage

TF 61.06%
RBP 30.26%
Protein 8.68%

Table 6: Breakdown of RNA (left) and protein (right) categories comprising the dataset.
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Figure 4: Sequence length distribution.

tion between protein sequence clusters, with an average of approximately nine protein sequences per
clan. These annotations are crucial in our method for generating negative examples, where finding
relations between interacting clans and families is key.

Finally, we examine the various types of interactions within our dataset, focusing on the categories
of the interactors. While the miRNA-TF interaction type is predominant, our dataset exhibits a wide
range of interaction types, highlighting its diversity.
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Proteins RNA Pfam clans RNA families

1308 4169 152 1148
Table 7: Overview of unique sequences, families, and clans of the dataset.

B.5 Negative interactions dataset

As discussed previously, the conventional method of generating negative interactions involves ran-
domly selecting RNA and protein sequences not present in the positive samples. However, this
approach could result in a dataset with high levels of noise, as it essentially relies on arbitrary selec-
tion without specific biological rationale.

In our proposed approach, we focus on making more informed decisions based on family/clan infor-
mation and, where relevant, interactor categories. Initially, we established a network of family-clan
interactions. For each RNA family member, we analyze the positive interactions dataset to iden-
tify its protein interactors, linking the RNA family to the clans of these proteins. Additionally, we
annotate each RNA family with information about the protein categories that interact with its mem-
bers, and each clan with data on the RNA categories interacting with its protein members. This
methodology enables a broader scale analysis of RNA-protein interactions, moving beyond individ-
ual sequence analysis to understand the behavior of similar RNA and protein groups.

For each positive interaction, we generate two corresponding negative interactions, utilizing the
family-clan interaction data and information on interacting categories. In the first negative interac-
tion, we retain the original RNA interactor but pair it with a protein from a clan that does not interact
with the RNA’s family and, if possible, is not part of the interacting categories. Similarly, for the
second negative interaction, we keep the original protein interactor and pair it with an RNA from a
family that does not interact with the protein’s clan and is not part of the interacting category. This
approach ensures more accurate modeling of potential interactions, avoiding arbitrary pairings and
focusing instead on biologically plausible non-interactions.

After merging the newly generated negative interactions dataset with the existing positive interac-
tions dataset, we obtain a comprehensive dataset that is well-suited for binary classification tasks.
Our dataset has been populated with category interactions resembling the ones in Figure 5.
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Figure 5: All interaction per RNA/protein category heatmap.

C Methods

C.1 Model

In the development of RPIembeddor, we drew significant inspiration from transformer-based ar-
chitectures, which have revolutionized the field of natural language processing (NLP) and, more
recently, demonstrated their applicability and effectiveness within molecular biology Jumper et al.
(2021); Lin et al. (2022); Chen et al. (2022a); Alipanahi et al. (2015a); Brandes et al. (2022). The
core principles of transformers Vaswani et al. (2017), particularly their ability to capture long-range
dependencies through self-attention mechanisms, are exceptionally well-suited to understanding the
complex, sequence-based interactions characteristic of RNA and proteins.

To tailor RPIembeddor for the domain of RNA-protein interaction prediction, we carefully cali-
brated its architecture, hyperparameters and optimization strategy. The model’s backbone consists
of an encoder with feature vectors dimensionality set to dmodel = 256 and employs a multi-head
attention mechanism with nhead = 2 to efficiently process sequence information. The incorporation
of a single encoder layer, coupled with a deep feedforward network comprising 20 layers, strikes a
balance between model complexity and interpretability.

For the optimization strategy we opted for cosine annealing scheduler with the AdamW optimizer
Loshchilov & Hutter (2019b), and introduced a warm-up phase for the first 1,000 training steps,
initializing scheduler with a learning rate of 0.001. This warm-up phase helps avoid too fast conver-
gence to suboptimal solutions by gradually increasing the learning rate. Following this, the cosine
annealing scheduler reduces the learning rate over time, improving the model’s fine-tuning and gen-
eralization capabilities.

To prevent overfitting, we applied weight decay, setting it at 0.1, and used a dropout rate of 0.3.
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Figure 6: RPIembeddor architecture overview.

Figure 7: Encoder layer.

This hyperparemeter configuration was applied consistently across three different seeds for 90
epochs with a batch size of 64.
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