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Abstract

Accurate RNA secondary structure prediction is vital for understanding cellular
regulation and disease mechanisms. Deep learning (DL) methods have surpassed
traditional algorithms by predicting complex features like pseudoknots and multi-
interacting base pairs. However, traditional distance measures can hardly deal with
such tertiary interactions and the currently used evaluation measures (F1 score,
MCC) have limitations. We propose the Weisfeiler-Lehman graph kernel (WL) as
an alternative metric. Embracing graph-based metrics like WL enables fair and
accurate evaluation of RNA structure prediction algorithms. Further, WL provides
informative guidance, as demonstrated in an RNA design experiment.

1 Introduction

Ribonucleic acid (RNA) is one of the major regulators in cells and has been connected to multiple
diseases like cancer [1] and Parkinson’s [2]. Since the function of RNAs is dominated by their struc-
ture [3], accurate prediction of these structures appears as a fundamental problem in computational
biology [4]. RNA folds hierarchically and the formation of the final 3-dimensional shape strongly
depends on the formation of a secondary structure, which describes nucleotide pairings (base pairs)
of the RNA sequence via hydrogen bonds [5]. The secondary structure already defines the sites for
interactions with other cellular compounds [3], and improvements in secondary structure prediction,
therefore, could have a substantial impact on RNA-related research.

The potential improvements in the field of RNA structure prediction by sophisticated learning
algorithms recently attracted the interest of the deep learning (DL) community and led to an explosion
of DL-based approaches in the field [6–16], and new state-of-the-art results. The typical output of
these algorithms is a squared L × L binary adjacency matrix, where L is the length of the input
nucleotide sequence, indicating positions where base pairs form [6, 16]. Therefore, they can predict
all possible base pairs, including pseudoknots [17] and multi-interacting bases (multiplets) which is
an advantage over more traditional, dynamic programming-based algorithms.

RNA secondary structure predictions are typically evaluated for the accuracy of predicted base pairs
compared to a known structure. Traditional algorithms typically use tree representations, either
defining structure distance via edit operations [18–20] or tree alignment approaches [21]. However,
while there exist methods that are capable of comparing pseudoknotted structures [22], to the best
of our knowledge, there exists currently no algorithm that considers base multiplets, an important
type of nucleotide interactions e.g. for the formation of G-quadruplex structures [23]. Therefore,
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Figure 1: Bi-stable RNA 20mer. The F1 score and MCC when comparing both folds is 0.0 and
−0.026, respectively. The Weisfeiler-Lehman graph kernel provides a score of 0.25.

current state-of-the-art DL approaches evaluate their predictions using performance measures derived
from the confusion matrix. Two performance measures are well established, the F1 score and the
Matthews Correlation Coefficient (MCC) [24]. The main difference is that the F1 score is independent
of the true negatives and that it is not symmetric with respect to class swapping which makes the
MCC generally preferable with respect to binary classification [25]. However, for scoring secondary
structure prediction, both have their flaws. As an example, Figure 1 shows a bi-stable RNA 20mer
taken from Wenter et al. [26] in its two conformations. The respective F1 score between both
conformations is zero, while the MCC score of −0.026 is even below the score expected for a random
structure. Obviously, both structures share a common feature (the hairpin structure) with the exact
same base pair pattern which should be reflected by the score. Mathews [27] recently proposed
a derivative of the F1 score, named F1-shift for the remainder of this paper, to account for RNA
structural dynamics like bulge migration [28]. While this measure accounts for certain shifts in
the base pairing scheme of the secondary structure, it still cannot capture the similarity between
secondary structures as shown in Figure 1, similarly resulting in a score of zero.

RNAs can be represented as graphs and, therefore, graph metrics could be considered for scoring
the distance between two RNA secondary structures. To our knowledge, graph distance metrics
have not yet been used for scoring RNA secondary structure prediction. Hence, we propose to use
the Weisfeiler-Lehman graph kernel [29] for more accurate evaluations in RNA secondary structure
prediction tasks, instead of the commonly used F1 score, MCC, or their derivatives for binary
classification. In particular, our main contributions are as follows:
• We show that the commonly used F1 score and MCC as metrics for evaluating the quality of the

secondary structure are misleading and error-prone.
• We propose the Weisfeiler-Lehman graph kernel (WL) as an alternative metric to closer align the

biological motivation with the metric scale.
• We provide real-world examples to showcase the benefit of WL evaluation in contrast to F1 score,

shifted F1 score, and MCC.
• In two application settings, we show the practical usefulness of WL for analysis and to guide an

RNA design algorithm with improved results compared to traditional distance measures.

2 RNA Secondary Structure Measures

We review the commonly used measures for RNA secondary structure prediction, F1 score, MCC, and
F1-shift before we briefly introduce the Weisfeiler-Lehman (WL) kernel, a powerful graph similarity
measure widely used for comparing graphs in various domains. The WL kernel leverages the concept
of graph isomorphism and employs a label propagation approach to capture the structural information
of graphs.

2.1 Confusion Matrix Based Measures

The commonly used performance measures for RNA secondary structure prediction are based on
a confusion matrix, which describes the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) of a given prediction.

F1 Score The F1 score describes the harmonic mean of precision and recall and can be described
as F1 = 2 · TP/(2 · TP + FP + FN).
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Matthews Correlation Coefficient While the F1 score emphasizes on positives, the MCC is a
more balanced measure. The MCC can be calculated as follows.

MCC =
(TP · TN)− (FP · FN)√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(1)

F1-shift The F1-shift is a measure to account for structural dynamics in RNAs [27]. The F1-shift
is computed as the F1 score, but for a given pair (i, j) all pairs (i, j + 1), (i+ 1, j), (i, j − 1), and
(i− 1, j) are also considered correct.

2.2 Graph Isomorphism

Graph isomorphism refers to the notion of two graphs being structurally identical. Given two
graphs G1 = (V1, E1) and G2 = (V2, E2), an isomorphism between them is a bijective mapping
f : V1 → V2 that preserves the adjacency relationship between vertices. Formally, for any two
vertices u, v ∈ V1, (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2. Determining graph isomorphism is
a computationally challenging problem with significant implications in various domains.

2.3 The Weisfeiler-Lehman Kernel

The Weisfeiler-Lehman kernel is a graph kernel that captures the structural information of graphs
by iteratively refining node labels based on their local neighborhoods. It operates in two main steps:
label propagation and hash function computation. The kernel assigns each node in the graph a label
representing the node’s local structural information and then computes a hash function that aggregates
these labels to generate a feature vector.

2.3.1 Label Propagation

The label propagation step involves iterating over the nodes of the graph and updating their labels
based on the labels of their neighboring nodes. Initially, each node is assigned a unique label. In
each iteration, the kernel collects the labels of a node’s neighbors, sorts them lexicographically, and
appends the node’s own label to the list. This combined list of labels serves as the input for a hash
function in the next step. Let Li(u) denote the label of node u at iteration i. The label propagation
process can be defined as follows:

Li+1(u) = hash
(
Li(u), sort

((
Li(v1), . . . , Li(v|N(u)|)

)))
, vj ∈ N(u), j ∈ {1, . . . , |N(u)|}, (2)

where N(u) represents the set of neighboring nodes of u, sort(·) sorts the labels lexicographically,
and hash(·) computes a hash value.

2.3.2 Hash Function Computation

The hash function computes a hash value based on the lexicographically sorted list of labels obtained
from the label propagation step. This hash value captures the local structural information of a
node’s neighborhood and is used to refine the node’s label in the subsequent iterations. The hash
function is typically implemented using a simple and efficient algorithm, such as the Rabin-Karp
hash function [30]. The WL kernel computes a similarity score between two graphs G1 and G2 by
comparing their corresponding label distributions obtained from the label propagation process. The
similarity score can be computed as the dot product of the feature vectors generated by the hash
functions:

WL-Similarity(G1, G2) = Φ(G1) · Φ(G2), (3)

where Φ(G) represents the feature vector of graph G obtained by aggregating the labels through the
hash functions.

The WL kernel is a powerful metric for comparing graphs, as it captures the structural information
while being computationally efficient. It has been widely adopted in graph classification, pattern
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Table 1: Evaluation of RNA secondary structure prediction algorithms. Note that we are not interested
in finding the state-of-the-art algorithm but in a comparison of the different performance measures.
Model F1 F1-shift MCC WL F1 Rank F1-shift Rank MCC Rank WL Rank

RNAformer 0.712 0.721 0.731 0.771 1 1 1 1
SPOT-RNA 0.672 0.691 0.687 0.707 2 3 2 3
SPOT-RNA2 0.668 0.701 0.674 0.705 3 2 4 4
RNA-FM 0.665 0.691 0.683 0.709 4 3 3 2
RNAFold 0.636 0.659 0.641 0.695 5 4 5 5
LinearFold-V 0.633 0.659 0.638 0.694 6 4 6 6
ContraFold 0.625 0.659 0.636 0.692 7 4 7 7
pKiss 0.613 0.64 0.62 0.676 8 5 10 9
ipKnot 0.611 0.617 0.624 0.675 9 8 9 10
LinearFold-C 0.61 0.63 0.628 0.686 10 7 8 8
RNAstructure 0.606 0.633 0.611 0.667 11 6 11 11
REDfold 0.487 0.502 0.501 0.619 12 9 12 12

Figure 2: Example of structural shift. (Left) We show a 5SrRNA of Drosophila melanogaster
(Middle) The same structure shifted by one position. (Right) The same structure shifted by two
positions.

recognition, and graph mining tasks, showcasing its effectiveness across various domains. In the
following, we use five iterations of WL for all numbers reported.

3 The Weisfeiler-Lehman Kernel for RNA Secondary Structure Measure

Before discussing potential misleading properties of the currently used performance measures for
RNA secondary structure prediction, F1 score, F1-shift, and MCC, and displaying the benefits of
WL, we start our discussion with an overview of the results, given by the different measures.

Evaluation of RNA Folding Algorithms We evaluate several RNA secondary structure prediction
algorithms[31–36, 6, 9, 14–16] on the most recently proposed benchmark dataset for RNA secondary
structure prediction, TS-hard [9]. The TS-hard test set is derived from 3D structures of the Protein
Data Bank (PDB) [37] and contains a total of 28 samples; 7 samples without pseudoknots and
nucleotides that pair with more than one other nucleotide (multiplets), 1 sample without pseudoknots
but with multiplets, and 20 samples with both, pseudoknots and multiplets. We rank all algorithms
with respect to the different performance measures. Table 1 shows the results of our evaluation. We
observe that the choice of the performance measure can change the order of algorithms drastically.

Properties of Performance Measures We continue with analyzing, what we believe to be, a
misleading property of the currently used performance measures F1 score, F1-shift, and MCC while
showing that the WL approach can provide more informative scores for the specific setting. As
an example, we use the secondary structure of a 5SrRNA of Drosophila melanogaster as provided
by RNAcentral [38] (RNAcentral ID: URS00003B4856_7227). We then introduce a shift in the
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structure by one and two positions. As shown in Figure 2, the structures all look similar, except
for the positional shift. However, due to the binary nature of the scores, the F1 score as well as the
F1-shift drop to zero for the shifted structures, while the MCC even shows a negative score. Further,
the scores remain unchanged between the one positional and two positional shifts. In contrast, the
WL captures the shift very well, resulting in a score of 0.519 for the single positional shift and 0.469
for the shift by two positions. Similarly, we simulate a bulge migration process, shown in Figure 4 in
Appendix A.1. The F1-shift measure was introduced to capture such events and shows a score of 1.0
for all structures. However, there exist structures that do not show the migrating phenomenon. For
example the HIV-1 TAR RNA shows a specific stabilized tri-nucleotide bulge that is essential for Tat
protein binding and obligatory in virus replication [39–41]. Thus, we think that a score should still
be able to quantify a difference between the structures. We observe that the score of WL gradually
decreases with the bulge moving further away from the original point similar to F1 score and MCC,
however, the decrease is smaller, and less strict than for the other measures. We believe that these are
very valuable and desirable properties of WL, which we can also leverage during training: While
all of the measures, including WL, are not differentiable, there exist surrogate models capable of
accurately modeling graph distances based on graph neural networks (GNNs) [42]. Such a surrogate
model could be used during training to inform a learning algorithm for secondary structure prediction
while being fully differentiable.
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Figure 3: RNA Design guided by Hamming dis-
tance (libLEARNA) or WL (libLEARNA-WL).

Evolutionary Distance A strong advantage
of WL is the inclusion of sequence information
into structure evaluation. We demonstrate this
by simulating mutation events on the sequence
level. The results are shown in Figure 5 in Ap-
pendix A.2. While all other measures cannot
capture the mutation information, the WL de-
creases with the amount of sequence changes.
This could be a useful feature of WL e.g. when
applying it in evolutionary studies to determine
distances on the sequence and structure level.

Application to RNA Design We see another
application of WL in the field of RNA design.
Here, we use WL to guide the design of the most
recently proposed learning-based algorithm, li-
bLEARNA [43], an improved version of the
automated reinforcement learning approach, LEARNA [44]. Specifically, we use a model that was
trained using the Hamming distance to measure the distance between the target structure and the
folding of the predicted candidate sequence and exchange this distance measure with WL during
evaluation. We use version two [45] of the commonly used Eterna100 benchmark [46], with the
proposed evaluation scheme of five independent runs for 24 hours. Figure 3 shows that without
training on it, WL seems to improve the guidance of libLEARNA during evaluation, resulting in
improved performance.

Limitations A common phenomenon in RNA is base-stacking [47], which cannot be captured
by any of the performance measures compared here. Further, while the WL allows to include
sequence information which makes it aware of changes in the base pairing pattern, vanilla WL is
unaware of the value of exchanging specific base pairs (e.g. Watson-Crick and non-canonical base
pairs). For example, it might be desirable to penalize the introduction of certain base interactions
(e.g. pseudoknots) when these are not formed in the ground-truth structure. However, both, the
base-stacking and base pair penalties, could generally be introduced via weights of edges to inform
the WL about such changes, but such an adapted version of WL demands in-depth analysis in the
future.

4 Conclusion

We show that currently used performance measures for the evaluation of RNA secondary structure
prediction have misleading properties due to their focus on the confusion matrix. We propose to
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use graph distance metrics for the evaluation of the secondary structure prediction and suggest the
Weisfeiler-Lehman graph kernel (WL) as a competent measure of graph similarity. Subsequently,
we compare the Weisfeiler-Lehman graph kernel to current measures in different settings, indicating
its benefits and limitations. Finally, we suggest that GNN-based surrogate models can be used to
train DL algorithms more informed for RNA secondary structure prediction and show that WL can
improve the performance when applied to RNA design.
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A Additional Experiments

In this section, we provide additional results for the comparison of the performance measures, F1
score, MCC, F1-shift, and the proposed Weisfeiler-Lehman graph kernel (WL). In Section A.1, we
show results for a simulated bulge migration experiment. Section A.2 describes an experiment to
analyze the influence of mutations on the scores of the performance measures.

A.1 Analysis of Properties

RNA structures are dynamic [48, 49]. One example of such a dynamic behavior is the phenomenon of
bulge migration [28], where unpaired nucleotides on one strand of a stem move across the stem. For
our analysis, we simulate such a migration event using a synthetic theophylline riboswitch construct,
RS3, proposed by Wachsmuth et al. [50]. The structure of RS3 contains a single nucleotide bulge at
position 60 (see Figure 4, top left) which we successively move by one position downstream in the
stem. The results are shown in Figure 4. Since F1-shift was introduced to capture exactly such shifts,
the F1-shift score constantly stays at 1.0 for all structures. However, the structures differ and not
all bulges show a migration behaviour. Optimally, a performance measure, thus, should be capable
of reflecting this in the scores. While the other measures all show reduced scores with increasing
distance of the bulge from the original position, we observe that the WL shows the best balance since
the decrease in the score is smoother and less drastically compared to the F1-score and the MCC.
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Figure 4: Bulge migration example. We show an example of a simulated bulge migration process
on a synthetic theophylline riboswitch construct RS3 proposed by Wachsmuth et al. [50]. Top left
shows the original construct. With each step, the bulge in the right stem is moving by one position.
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A.2 Application to Analysis

In this section, we show the benefits of the property of WL to consider changes in the sequence
additional to the structure for scoring the distance. We again use the theophylline riboswitch construct,
RS3, and introduce mutations of base pairs. Specifically, we either randomly change one, two, four, or
eight base pairs, all base pairs of the first stem, all base pairs of the second stem, or replace the entire
sequence with A’s only. Figure 5 shows the structures and the respective scores for the performance
measures. Except for WL, all performance measures are not capable of capturing changes in the
sequence for their scores and the scores stay at 1.0 for these measures since the structures remain
unchanged. In contrast, the WL captures the mutation changes very well with decreasing scores
depending on the number of mutations that we introduce. This property is a strong advantage of WL
and could allow to use the WL kernel in evolutionary studies in the future. Further, besides capturing
topological differences in RNA structures, the WL is generally capable of capturing changes in the
base pair composition, which could allow for more fine-grained evaluation of structure prediction.

Figure 5: Mutation Example. We show an example of a simulated mutation process on a synthetic
theophylline riboswitch construct RS3 proposed by Wachsmuth et al. [50]. Top left shows the original
construct. With each step (left to right, top to bottom), we introduce the following mutations: 1 base
pair (bp) mutated, 2 bp, 4 bp, 8 bp, entire first stem, entire second stem, entire sequence to ’A’.

12


	Introduction
	RNA Secondary Structure Measures
	Confusion Matrix Based Measures
	Graph Isomorphism
	The Weisfeiler-Lehman Kernel
	Label Propagation
	Hash Function Computation


	The Weisfeiler-Lehman Kernel for RNA Secondary Structure Measure
	Conclusion
	Additional Experiments
	Analysis of Properties
	Application to Analysis


