
Due: 02.05.2023 23:59 CEST Deep Learning
Competition

F. Hutter & A. Valada
WS 2022/2023

The Tree Species Segmentation Challenge

After the success of the flower classification challenge, an optional student competition we organized during
the WS 2022/2023 in context of the Foundations of Deep Learning lecture, we are now organizing a second
optional student competition, spanning the two semesters, to give even more students the opportunity to
get ‘hands-on” with deep learning.

Participation is optional and your submissions will not be graded.

You are allowed to participate alone or in teams of up to 3 students.1 Note that these teams can, but do
not have to be the same as for the DL exercises. The winners will be announced by email, within two weeks
after the deadline, and will receive nothing but eternal glory, AutoML.org T-shirts and a spot on the course
webpage. To mimick a real-world setting, we give you a lot of freedom in how you tackle this challenge.
However, with this freedom comes responsibility. So please play fair and make it easy for us to evaluate your
submission. In doubt, please contact us or create a thread on the ILIAS forum.

To get access to the code, use the following link: https://classroom.github.com/a/9aKtl0Bl

The Challenge:

In this challenge, you are to train a model to perform semantic segmentation on a tree dataset. Specifically,
given an image of a tree as input, your model must predict a per-pixel semantic labeling of the image.

An example of the 12 classes tree dataset

1To participate, you must have been enrolled for the Foundations of Deep Learning course during WS 2022/2023.

1

https://www.automl.org/
https://ml.informatik.uni-freiburg.de/teaching/winter-semester-2022/foundations-of-deep-learning
https://ml.informatik.uni-freiburg.de/teaching/winter-semester-2022/foundations-of-deep-learning
mailto:dl-orga-ws22@cs.uni-freiburg.de
https://ilias.uni-freiburg.de/ilias.php?ref_id=2347170&cmd=showThreads&cmdClass=ilrepositorygui&cmdNode=zf&baseClass=ilrepositorygui
https://classroom.github.com/a/9aKtl0Bl


Due: 02.05.2023 23:59 CEST Competition WS 2022/2023

Image segmentation example using the baseline model

Example of full image segmentation for trees

To encourage everybody to participate, we require submitted models to have less than 25M parameters.
Within these constraints, you are allowed to implement any architecture, and manually or automatically
tune the hyperparameters of the model. The following are just a few of the things you can experiment with:

� Learning rate and its optional scheduler
� Different optimizers and their hyperparameters
� Specialized model architectures
� Activation functions
� Regularization
� Data preprocessing
� Cross-validation to ensure you do not overfit to the validation set

Also, you do not have to shy away from more advanced techniques like warm-starting your model with
weights from other pre-trained models, or self-supervised learning. You are allowed to use all the scripts and
tools you already know from the exercises. However, you are not limited to them.

Here are a few important topics concerning the competition:

� Evaluation:
– The final performance will be measured in terms of the mean per-class Intersection over Union

(mIoU) score of your model on an unseen test set. Assume we will fly our drones out and
photograph some trees.

– To get a taste of how we shall evaluate your model, try running evaluate model.py. The script
loads your saved model from models folder and evaluates its mIoU score on validation data loaded
from the dataset/test folder.

– To evaluate your model, we will populate this folder dataset/test with the unseen test data.
� Hardware:

– Since semantic segmentation is a more challenging task than image classification it requires larger
models, latent representations, data, and training on CPUs will likely take too long. We therefore

2



Due: 02.05.2023 23:59 CEST Competition WS 2022/2023

strongly recommend you to use GPUs.
– You may use any kind of hardware that is available to you. For example, Google Colab repeatedly

offers a VM with a GPU for at most 12 hours at a time for free.2

– You are also free to use the pool computers.3 You can use ssh to log in remotely to these computers
as follows: ssh yourpoolaccount@login.informatik.uni-freiburg.de

See SetupGuideTFPool.pdf for more info on how to use the pool computers.
Also, see Pool-FAQ for further information.

� Implementation Constraints:
– Your model should be written using PyTorch.
– Do not modify the code inside src/eval. Your model will be evaluated using this code.
– Other than that, you are free to extend/modify the baseline code given to you or write your own

code from scratch.
� Github Repository Constraints:

– Keep your repository under 150 MB.
– Github does not allow files larger than 100MB to be tracked in repositories. So make sure your

trained model is under this limit.
– You are allowed to push only one trained model.
– Your code has to be in the master branch before the deadline.
– There is no limit on the number of pushes to the master branch.

As a starting point, we provide you with the following:

� dataset folder. This folder is initially empty, but will contain a subset of the original tree species
segmentation dataset and train/validation/test split.4 We only consider 12 of the 14 classes provided
by the full dataset, so that is what you are given. The data (roughly 1.3GB) will be downloaded
automatically when first running the starter’s code, or you can manually download the tarball from
Google drive: https://drive.google.com/u/0/uc?id=1nkyipbJ19JR1XsgQumm-X_dV42SDPZbR
Do not push this data to your remote github repository!

� eval/evaluate.py and eval/dataset.py containing the code we shall use to evaluate your model
and load the data. Do not edit these files.

� data augmentations.py containing two sample data augmentation pipelines.
� training.py containing the code to train the model.
� main.py containing the code to load the data, train, evaluate, and, optionally, save the model.
You can run it from the root directory using python -m src.main (will download the data automati-
cally).

� unet.py containing SampleModel, as an example of what a model for semantic segmentation looks
like. More specifically, it implements a small U-Net architecture with 7.8M parameters.

� A sample saved model in src/models. This file contains the weights of the SampleModel given above
trained for 50 epochs using the default pipeline that is provided to you.

� evaluate model.py which the organizers will use to evaluate your model.
You can run it from the root directory using python -m src.evaluate model (will download the data
automatically).

� requirements.txt which contains the list of libraries required to run the given pipeline.
� notebooks/dl2022 competition2 example.ipynb which is a Google Colab notebook example for
training the baseline model on GPUs.

Your submission must include:

� A fully functional training pipeline. This must include the code for your model, data augmenta-

2The baseline model was trained using Google Colab and required 3 - 4 GPU hours.
3Important: Your TF pool home directory disk quota is insufficient to install PyTorch. Please contact us as soon as possible

to request additional storage space.
4You are free to consider different splits, use cross-validation, or even use all the data to train your final model(s).

3

https://colab.research.google.com
http://poolmgr.informatik.uni-freiburg.de/?id=103
https://drive.google.com/u/0/uc?id=1nkyipbJ19JR1XsgQumm-X_dV42SDPZbR


Due: 02.05.2023 23:59 CEST Competition WS 2022/2023

tions you use and the code for training the model.5

� requirements.txt updated with any additional libraries you use.
� The file(s) with the saved weights of your trained model(s), similar to models/sample model,
in the models folder.6

� submission.md must be populated with the answers to the following questions:
– The number of parameters in your model(s). You can find this out using torchsummary.summary.
– A brief description of your approach to the problem.
– Command to run to train your model(s) from scratch with your hyperparameter settings and data

augmentations. For example, from the root directory:
python -m src.main --epochs 50 --batch size 8

You’re free to edit main.py however you please to make this work (E.g., to accept hyper-
parameters as options, or hard-code them). You can also add new files, if you wish. We must
be able to train your model by running a single command.

– Command to run to evaluate your saved model(s) with your data augmentation pipeline.
For example:
python -m src.evaluate model --model SampleModel --saved-model-file sample model

Again, you’re free to edit evaluate model.py however you want, but ultimately, evaluation
MUST be done by invoking evaluate model(...) function in eval/evaluate.py. We
must also be able to evaluate your model by running a single command.

� sample submission.zip contains a sample of what a submission must look like.

This project is due on 02.05.2023 23:59 CEST.

5If you use model warm-starting or other such methods, that should also be included in this pipeline. We must be able to
run your code and train your model from scratch, as you did.

6Github has a limit of 100MB for tracked files. Your model must hence be smaller than 100MB.

4


