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A More Details on Experiments
A.1 Baseline Methods
In our experiments, we use default settings to run the base-
lines methods as it is reported in their papers or implementa-
tions such as [Blank and Deb, 2020], [Balandat et al., 2020].

Random Search (RS) In each generation, random archi-
tectures are sampled from the configuration space using a uni-
form distribution.

QNPAREGO We use the implementation from [Balandat
et al., 2020]. We use 20 initial samples and a batch size of 5

SMACmean
RF We use the implementation from

https://github.com/automl/SMAC3 we use Hyperparam-
eterOptimizationFacade with MeanAggregationStrategy as
the multi-objective algorithm

NSGA-III We use the implementation for NSGA-III from
pymoo repository[Blank and Deb, 2020]. we use 10 parti-
tions to generate reference direction.

AGE-MOEA We used the implementation for AGE-
MOEA from pymoo repository[Blank and Deb, 2020]. We
use a population of size 100

MOEA/D We used the implementation for MOEA/D from
pymoo repository[Blank and Deb, 2020]. we use 10 parti-
tions to generate reference direction with the default setting
of number of neighbors as 20. We use auto decomposition
and a default setting for probability of neighbor mating as 0.9

A.2 Benchmarks
We collect benchmarks for multi-objective (MO) that op-
timize interesting objectives from three diverse domains:
Neural Architecture Search (NAS), joint NAS and hyper-
parameter optimization (joint NAS & HPO), and algorith-
mic fairness. We build our collection of benchmarks on
HPOBench library [Eggensperger et al., 2021]. For NAS
family, we conduct experiments on NAS-Bench-101 [Ying
et al., 2019b], NAS-Bench-1shot1 [Zela et al., 2020b] and
NAS-Bench-201 [Dong and Yang, 2020b], which are 9 tab-
ular benchmarks. The joint NAS & HPO family involving
tuning Convolutional Neural Networks (CNNs) the Oxford-
Flowers dataset [Nilsback and Zisserman, 2008] and Fashion-
MNIST [Xiao et al., 2017], and also three surrogate bench-
marks [Zela et al., 2022] from the recently introduced JAHS-
Bench-201 suite [Bansal et al., 2022]. For algorithmic fair-

∗Equal Contribution

ness, we have a fair model adopted from [Schmucker et al.,
2021a] on Adult dataset [Kohavi and others, 1996]. In Table
1, we provide a summary for all the benchmarks with details
on search space and its type, optimized objectives and fidelity.

A.3 Results for Neural Architecture Search
In Figure 1, the performance of all baseline algorithms
is evaluated on NAS-Bench-101. We observe that all
baseline algorithms perform similarly except for MOEA/D.
MO-DEHBNSGA−II slightly outperforms the rest on NAS-
Bench-101-A and NAS-Bench-101-B, while QNPAREGO
demonstrates the best overall performance on NAS-Bench-
101-C. Figure 2 presents the results for NAS-Bench-
1Shot11. We observe that that all baseline algorithms, except
MOEA/D, converge with a similar performance . Figure 3
presents the results on NAS-201. For Imagenet benchmark,
we see that RS serves as a strong baseline. Also, however
the MO-DEHB variants perform poorly initially for a short
period of time, later they converge to a similar performance
compared to other baselines. Furthermore, SMACmean

RF
demonstrates a strong performance on all benchmarks, al-
though it is slightly outperformed by MO-DEHB on NAS-
201-Cifar100.

A.4 Results for Joint NAS & HPO
Figure 4 presents the results for Fashion and Flower datasets.
We observe that on Flower benchmark, MO-DEHBEPSNET

performed well initially but it is outperformed by MO-
DEHBNSGA−II later, with AGE-MOEA showing the final
best performance. On the Fashion dataset, we see that while
MO-DEHBEPSNET consistently outperforms all other base-
line methods, it is outperformed by QNPAREGO in the end
of optimization. In Figure 5 we show the results for JAHS-
Bench-201 suite. We observe that MO-DEHBNSGA−II

shows the final best performance on all three benchmarks
while MO-DEHBEPSNET performs competitively. Addi-
tionally, we observe that SMACmean

RF exhibits competi-
tive performance on JAHS-Cifar10 and JAHS-Colorectal-
Histology.

1Due to minor integration issues, the observation for 1Shot CS 3
is currently unavailable. However, it will be provided in the near
future

https://github.com/automl/SMAC3


Family #benchs #cont(log) #int(log) #cat #ord fidelity type objectives opt. budget #confs Ref.

NAS101 3
0 0 26 0

epochs Tabular
Accuracy 107sec

423k [Ying et al., 2019a]0 0 14 0 Modelsize 428 TAE
21 1 5 0 435 TAE

NAS201 3 0 0 6 0 epochs Tabular Accuracy 107sec
15 625 [Dong and Yang, 2020a]

Modelsize 216 TAE

NAS1shot1 3 0 0
9

0 epochs Tabular
Accuracy 107sec 6 240

[Zela et al., 2020a]9 Model size 260 TAE 29 160
11 285 TAE 363 648

Joint Nas&HPO 2 1(1) 9(7) 3 0 epochs raw Accuracy 86400 sec - [Izquierdo et al., 2021]
Log Modelsize 309 TAE

JAHS-Bench-201 3 2(2) 0 9 3 epochs surrogate Accuracy 107 sec
200k [Bansal et al., 2022]

Latency 320 TAE

FairnessAdult 1 5(5) 5(4) 0 0 epochs raw Accuracy 86400 sec - [Schmucker et al., 2021b]
DSO 273 TAE

Table 1: Overview of used benchmark. We report the number of benchmarks per family (#benchs), the number of continuous (#cont),
integer (#int), categorical (#cat), ordinal (#ord) hyperparameters and if they are on a log scale. We also report benchmark type, optimization
objectives and budgets. We set a upper limit per benchmark of Target Algorithm Executions (TAE) depending on the search space (20+ 80 ∗√

|Search Space|)

Figure 1: Log HV Differences between empirical best and trajectory
on NAS-Bench 101.

Figure 2: Log HV Differences between empirical best and trajectory
on NAS-Bench 1shot1



Figure 3: Log HV Differences between empirical best and trajectory
on NAS-Bench 201

Figure 4: Log HV Differences between empirical best and trajectory
on joint NAS & HPO for CNN Fashion and Flower datasets



Figure 5: Log HV Differences between empirical best and trajectory
on JAHS-Bench-201 Benchmark

A.5 Summary of Results
In Figure 6, we visualize the summary of attainment surfaces
to evaluate the capacity of the baselines methods to approx-
imate the entire Pareto front [Knowles, 2005]. To facilitate
the visual inspection of the differences, we show the first,
median and ninth attainment surfaces, rather than plotting all
10 attainment surfaces. In Figure 6, we observe that almost
all baselines perform competitively on NAS-Bench-201 and
NAS-Bench-1Shot1. For NAS-Bench-101, evolutionary al-
gorithms (EAs) methods (i.e. AGE-MOEA, NSGA-III and
our MO-DEHB variants) perform quite competitively. More-
over, we observe that while SMAC performs better than MO-
DEHB variants on JAHS-Bench, MO-DEHB variants still ex-
hibit consistent and good performance. For fashion dataset,

we see QNPAREGO showing better performance than MO-
DEHB while both variants of MO-DEHB shows better per-
formance than other baselines. Additionally, we observe that
MO-DEHB consistently shows superior performance on the
Adult dataset. In conclusion, we observe that MO-DEHB
consistently demonstrates strong performance on all bench-
marks.
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Figure 6: We report summary-attainment-surfaces for all benchmarks. Upper and lower bound correspond to the first and ninth summary-
attainment-surface.
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