
Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität
Freiburg im Breisgau

Dynamic Algorithm Configuration by
Reinforcement Learning

André Biedenkapp

2022

Dean:
Prof. Dr. Roland Zengerle, University of Freiburg, Germany

PhD advisor and first reviewer:
Prof. Dr. Frank Hutter, University of Freiburg, Germany

Second PhD advisor:
Prof. Dr. Marius Lindauer, Leibniz University Hannover, Germany

Second reviewer:
Dr.-ing. habil. Carola Doerr, Sorbonne Université, CNRS, LIP6, France

Date of defense:
14.10.2022

Abstract

The performance of algorithms, be it in the domain of machine learning, hard combinatorial
problem solving or AI in general depends on their many parameters. Tuning an algorithm
manually, however, is error-prone and very time-consuming. Many, if not most, algorithms
are iterative in nature. Thus, they traverse a potentially diverse solution space, which
might require different parameter settings at different stages to behave optimally. Further,
algorithms are often used for solving a diverse set of problem instances, which by them-
selves might require different parameters. Taking all of this into account is infeasible for a
human designer. Automated methods have therefore been proposed to mitigate human
errors and minimize manual efforts. While such meta-algorithmic methods have shown
large successes, there is still a lot of untapped potentials as prior approaches typically only
consider configurations that do not change during an algorithm’s run or do not adapt to
the problem instance.

In this dissertation, we present the first framework that is capable of dynamically
configuring algorithms, in other words, capable of adapting configurations to the problem
instance at hand during an algorithm’s solving process. To this end, we model the dynamic
algorithm configuration (DAC) problem as a contextual Markov decision process. This
enables us to learn dynamic configuration policies in a data-driven way by means of
reinforcement learning.

We empirically demonstrate the effectiveness of our framework on a diverse set of prob-
lem settings consisting of artificial benchmarks, evolutionary algorithms, AI planning sys-
tems, as well as deep learning. We show that DAC outperforms previous meta-algorithmic
approaches. Building on these successes, we formulate the first standardized interface for
dynamic configuration and an extensive benchmark to facilitate reproducibility and lower
the barrier of entry for new researchers into this novel research field. Lastly, our work
on DAC feeds back into the reinforcement learning paradigm. Through the lens of DAC,
we identify shortcomings in current state-of-the-art approaches and demonstrate how to
solve these. In particular, intending to learn general policies for DAC, our work pushes the
boundaries of generalization in reinforcement learning. We demonstrate how to efficiently
incorporate domain knowledge when training general agents and propose to move from a
reactive way of doing reinforcement learning to a proactive way by learning when to make
new decisions.

Zusammenfassung

Die Leistungsfähigkeit von Algorithmen im Bereich des maschinellen Lernens, kombina-
torischer Optimierungsprobleme oder der künstlichen Intelligenz im Allgemeinen, hängt
von ihren vielen Parametern ab. Das manuelle Konfigurieren eines Algorithmus ist je-
doch fehleranfällig und sehr zeitaufwendig. Des weiteren sind viele, wenn nicht sogar die
meisten, Algorithmen iterativer Natur. Daher durchlaufen sie einen potenziell vielfältigen
Lösungsraum, der in verschiedenen Phasen unterschiedliche Parametereinstellungen er-
fordern kann, um optimal gelöst zu werden. Darüber hinaus werden Algorithmen häufig
zur Lösung einer Vielzahl von Problemfällen eingesetzt, die ihrerseits unterschiedliche
Parameter erfordern können. All dies zu berücksichtigen, ist für einen menschlichen Desi-
gner nicht machbar. Um menschliche Fehler zu vermeiden und den manuellen Aufwand zu
minimieren, wurden automatisierte Methoden entwickelt, die diese Aufgabe übernehmen.
Während solche meta-algorithmischen Methoden enorme Erfolge gezeigt haben, gibt es
jedoch noch viel ungenutztes Potenzial, da bisherige Ansätze typischerweise nur Konfigura-
tionen berücksichtigen, die sich während der Laufzeit eines Algorithmus nicht ändern oder
sich nicht an die Probleminstanz anpassen.

In dieser Dissertation stellen wir das erste Framework vor, das in der Lage ist, Algorith-
men dynamisch zu konfigurieren, d. h. die Konfigurationen während des Lösungsprozesses
eines Algorithmus an die jeweilige Probleminstanz anzupassen. Zu diesem Zweck model-
lieren wir das Problem der dynamischen Algorithmenkonfiguration (dynamic algorithm
configuration – DAC) als einen kontexterweiterten Markov-Entscheidungsprozess. Dies er-
möglicht es uns, dynamische Konfigurationen mittels Reinforcement Learning zu erlernen.

Wir demonstrieren empirisch die Effektivität unseres Frameworks auf einer Vielzahl
von Problemstellungen, bestehend aus künstlichen White-Box Benchmarks, evolutionären
Algorithmen, Planungssystemen sowie Deep Learning und zeigen, dass DAC bisherige meta-
algorithmische Ansätze übertrifft. Aufbauend auf diesen Erfolgen formulieren wir das erste
standardisierte Interface für dynamische Konfiguration und präsentieren eine umfangreiche
Benchmark, die Reproduzierbarkeit erleichtert und die Einstiegshürde für neue Forscher in
dieses neue Forschungsfeld senkt. Schließlich fließt unsere Arbeit an DAC in das Paradigma
des Reinforcement Learning zurück. Aus der Sichtweise von DAC identifizieren wir Mängel
in den aktuellen State-of-the-Art-Ansätzen und zeigen, wie diese gelöst werden können.
Insbesondere mit der Absicht allgemeine Strategien für DAC zu lernen, verschiebt unsere
Arbeit die Grenzen der Generalität von Reinforcement Learning Methoden. Wir zeigen,
wie man beim Training allgemeiner Agenten effizient Domänenwissen einbeziehen kann.
Weiter schlagen wir vor, von einer reaktiven Art des Reinforcement Learning zu einer
proaktiven Art überzugehen, in der gelernt wird wann neue Entscheidungen getroffen
werden müssen.

Acknowledgments

I consider myself unbelievably lucky for the opportunity to have worked with so many
incredible people without whom this dissertation would not have been possible. First and
foremost I want to thank my two advisors Frank Hutter and Marius Lindauer. You created an
incredibly enriching environment in which I felt comfortable and wholeheartedly enjoyed
my time as a Ph.D. student. It is phenomenally empowering that you always take feedback
to heart which allows every member to help shape the environment to our collective needs.
In times of setbacks, you kept me motivated and taught me that even these moments
provide new opportunities. You helped me become the researcher that I am today. For that,
I will always be grateful.

I also want to thank Katharina Eggensperger, Matthias Feurer, Aaron Klein and Stefan
Falkner. You welcomed me with open arms to the group and treated me as a colleague
from day one. It was a pleasure to start my Ph.D. journey with you. I am especially grateful
to Katharina. You are the best office mate one could hope for. From “babysitting” me at my
first conference to always having my back in times when I doubted myself. You are a great
researcher, mentor, and friend.

Still, there are many more members that joined the Freiburg group later and whom
I am thankful to have had the opportunity to work with: Arbër, Raghu, Robin, Thomas,
Steven, Noor, Mahmoud, Fabio, Jörg, Neeratyoy, Samuel, Frederic, Danny, Rhea, and Eddie.
Though a pandemic forced us to work remotely, it was a pleasure to work alongside you.

I further want to extend my thanks to all the fantastic students I got to work with.
Baohe Zhang, Gresa Shala, H. Furkan Bozkurt, Oliver Brunner and Andreas “Andy” Sälinger.
It was a pleasure to work with you on your projects and to see your creativity in action.
Special thanks go out to Andy for all the fun and engaging discussions about RL.

I would be amiss to not mention my fantastic collaborators from Hannover: Theresa
Eimer, Carolin Benjamins, Difan Deng, René Sass, and Aditya Mohan. Thank you all
for sharing your passion for contextual reinforcement learning and AutoML with me. I
particularly would like to thank Theresa who has co-authored many papers with me already.
Through it all, I learned a lot from you and am glad to be able to not only call you a
colleague but a friend.

I would like to thank each and every one of my co-authors: Steven Adriaensen, Noor H.
Awad, Carolin Benjamins, Eddie Bergman, H. Furkan Bozkurt, Roberto Calandra, Kurtland
Chua, Nguyen Dang, Difan Deng, Carola Doerr, Katharina Eggensperger, Theresa Eimer,
Thomas Elsken, Aleksandra Faust, Chris Fawcett, Matthias Feurer, Jörg K. H. Franke, Julia
Guerrero-Viu, Sven Hauns, Holger H. Hoos, Frank Hutter, Sergio Izquierdo, Gregor Köhler,
Martin S. Krejca, Nathan O. Lambert, Marius Lindauer, Neeratyoy Mallik, Joshua Marben,
Robert Mattmüller, Yingjie Miao, Guilherme Miotto, Aditya Mohan, Philipp Müller, Samuel
Müller, Vu Nguyen, Jack Parker-Holder, Luis Pineda, Raghu Rajan, Maximilian Reimer,
Bodo Rosenhahn, Tim Ruhkopf, René Sass, Simon Schrodi, Frederik Schubert, Jendrik

viii

Seipp, Gresa Shala, Silvan Sievers, Xingyou Song, David Speck, Diederick Vermetten, Hao
Wang and Baohe Zhang. Thank you all for sharing your expertise with me and furthering
my passion for research.

Besides fantastic colleagues, I am incredibly lucky to be able to count on a strong
support system. I could always count on my friends Rick Gelhausen, David Speck, Lukas
Gemein, and Julian Kunzelmann. We already shared the joys and pains of bachelor’s and/or
master’s degrees. I am glad to have also shared my Ph.D. journey with you. I am thankful
for all the strolls through the city or the park and all the zoom calls we shared over the
years. I was incredibly happy to have had you all by my side on my wedding day. I am
looking forward to sharing and creating many more memories with you all.

My family was always there for me and always helped me get back up even after
the biggest setbacks. My parents inspired and encouraged me from a young age to ask
questions and explore the world. Without their encouragement and that of my big sister, I
might have faltered and not even dared to dream of a Ph.D. Thank you for encouraging me
to dream and to help make that dream a reality. I also want to thank my mother-in-law
who encouraged and supported me from the moment we met.

Last but not least, I am forever grateful to my incredibly loving and beautiful wife,
Kristin Biedenkapp. I am forever happy to have met you. Your kindness, love, and support
are what kept and keep me going. If I could find the right words I would write pages upon
pages to express my gratitude and love for you. Alas, I’m no poet. All I can say is, I love
you.

Thankyou!

Contents

I Introduction 1

1 Motivation 3
1.1 In a Nutshell . 7
1.2 How to Read This Dissertation . 7

2 Goals of this Dissertation 9
2.1 Key Challenges . 9
2.2 Contributions . 10
2.3 List of Publications . 16

3 Additional Related Work 19

4 Reinforcement Learning 21
4.1 Markov Decision Processes . 22
4.2 Learning the Value of a State . 22

II Dynamic Algorithm Configuration: The Problem 27

5 Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic
Framework 29
5.1 Introduction . 30
5.2 Related Work . 30
5.3 DAC as Contextual MDP . 31
5.4 Reinforcement Learning for DAC . 32
5.5 White-Box Benchmarks for DAC . 33
5.6 Baselines . 34
5.7 Experimental Study . 34
5.8 Discussion . 35
5.9 Conclusion . 36

6 Automated Dynamic Algorithm Configuration 39
6.1 Introduction . 40
6.2 Related Work . 42
6.3 Problem Definition . 47
6.4 Solution Methods . 50
6.5 Benchmark Library . 55
6.6 Empirical Case Studies . 57

x CONTENTS

6.7 Conclusion . 70

III Dynamic Algorithm Configuration: Case Studies 85

7 Learning Step-Size Adaptation in CMA-ES 87
7.1 Introduction . 88
7.2 Related Work . 90
7.3 Background on CMA-ES . 91
7.4 Learning Step-Size Adaptation . 91
7.5 Experiments . 94
7.6 Conclusion . 99

8 Learning Heuristic Selection with Dynamic Algorithm Configuration 105
8.1 Introduction . 106
8.2 Background . 107
8.3 Dynamic Heuristic Selection . 108
8.4 Empirical Evaluation . 110
8.5 Conclusion . 113

IV Dynamic Algorithm Configuration: Benchmarking 115

9 DACBench: A Benchmark Library for Dynamic Algorithm Configuration 117
9.1 Introduction . 118
9.2 Related Work . 119
9.3 Formal Background on DAC . 119
9.4 DACBench . 119
9.5 Empirical Insights Gained from DACBench 121
9.6 Conclusion . 123

10 Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm
Configuration 125
10.1 Introduction . 126
10.2 Parameterized RLS for LeadingOnes . 127
10.3 Optimal Policies and Portfolios for LeadingOnes 128
10.4 Algorithm Configuration With Reinforcement Learning 129
10.5 Conclusion and Outlook . 133

V Improving RL From the Lens of DAC 137

11 TempoRL: Learning When to Act 139
11.1 Introduction . 140
11.2 Related Work . 141
11.3 TempoRL . 141
11.4 Experiments . 143
11.5 Analysis of TempoRL Policies . 147
11.6 Conclusion . 148

12 Self-Paced Context Evaluation for Contextual Reinforcement Learning 151
12.1 Introduction . 152
12.2 Related Work . 153

CONTENTS xi

12.3 Contextual Reinforcement Learning . 153
12.4 Self-Paced Context Evaluation . 154
12.5 Experiments . 156
12.6 Limitations . 160
12.7 Conclusion . 160

13 CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning 163
13.1 Introduction . 164
13.2 CARL’s Theoretical Foundation: Contextual RL (cRL) 165
13.3 Related Work . 166
13.4 The Role of Context in Deep RL and CARL 168
13.5 The CARL Benchmarks . 168
13.6 Experiments . 170
13.7 Further Open Challenges Enabled by CARL 172
13.8 Limitations and Societal and Ethical Implications 172
13.9 Conclusion . 173

VI Conclusion 179

14 Summary and Discussion 181

15 Lessons Learned for a new Research Field 185

16 Future Work 187

Appendices 193

A Appendix for Dynamic Algorithm Configuration: Foundation of a New
Meta-Algorithmic Framework 193

B Appendix for Automated Dynamic Algorithm Configuration 199

C Appendix for Learning Step-Size Adaptation in CMA-ES 215

D Appendix for Learning Heuristic Selection with Dynamic Algorithm Config-
uration 229

E Appendix for DACBench: A Benchmark Library for Dynamic Algorithm
Configuration 233

F Appendix for TempoRL: Learning When to Act 239

G Appendix for Self-Paced Context Evaluation for Contextual Reinforcement
Learning 247

H Appendix for CARL: A Benchmark for Contextual and Adaptive Reinforce-
ment Learning 251

Bibliography 261

Part I

Introduction

CHAPTER 1
Motivation

The vast field of artificial intelligence (AI) has made impressive progress in a variety of
fields, such as satisfiability solving (SAT; see, e. g., Biere et al., 2009), AI planning (see,
e. g., Ghallab et al., 2004), answer set programming (ASP; see, e. g., Dimopoulos et al.,
1997), machine learning (ML; see, e. g., Solomonoff, 1957), reinforcement learning (RL;
see, e. g., Sutton and Barto, 2018) and, most recently and prominently, in deep learning
(DL; see, e. g., Goodfellow et al., 2016). At the heart of this progress lie the tireless efforts
of many researchers aiming to push the boundaries of what is possible with compute power.
On the one hand, researchers are designing ever more powerful computer hardware. On
the other hand, researchers optimize and develop new algorithms that can efficiently1

solve ever more challenging problems.

Take for example chess engines. While in the 1950s the first chess computers were
easily beaten even by beginner players (Heath and Allum, 1997), in 1997 the expert system
Deep Blue (Campbell et al., 2002) was capable of beating the reining world champion
using a purpose-built super-computer. Nowadays, chess engines are just as capable but use
conventional personal computers. This impressive feat can be both attributed to better
software as well as hardware.

In a similar fashion to the chess example above, challenging benchmarks have been used
for decades to advance research progress, which has resulted in a plethora of algorithms
from which one can choose when aiming to solve a novel problem. However, this is not as
straightforward a task as it first might seem. Experts spent months, years, and sometimes
even decades developing algorithms that are tailored to solve particular problems. While
experts develop understanding and intuition on what works for which type of problem,
the typical users often lack this expertise. The question of which algorithm to use for
which problem instance is further complicated by the configurability of algorithms. The
parameters of algorithms determine how exactly the algorithm will be executed. Correctly
configuring the algorithm is crucial to unlocking peak performances. However, this is not
trivially done. Thus, users often make uninformed decisions and take the latest state-of-
the-art (SOTA) algorithm with some default configuration, without paying attention to
how and on which problems the “SOTAness” of the algorithm was determined.

Considerable research efforts have been made to automate and simplify such choices to
reduce human effort and mitigate errors. In this line of research, this dissertation proposes
a novel framework that can select and adapt algorithms, not only to the problem at hand
but also on-the-fly. In the following, we will motivate this line of research and highlight how
the novel framework improves over previous frameworks using an illustrative example.

1For some notion of efficient.

4 CHAPTER 1. MOTIVATION

? Gold
? Silver
? Bronze

Algorithm Parameter Instances Objective

Figure 1.1: An athlete needs to select from different sporting equipment to achieve as
many gold medals as possible.

Which Algorithm to Use? Consider the case of an athlete that wants to compete in
various sporting disciplines. Their goal is to win as many gold medals as possible. Let
us assume the different disciplines are running, swimming and biking. The athlete has
different sporting equipment at their disposal, such as a bike, swimming flippers, and
running shoes. All of the different sporting equipment will lead to gold medals if they are
used in the correct sporting discipline. A visual depiction of this problem setup is given
in Figure 1.1. However, wrong choices will often not even result in a bronze medal. For
example, trying to run as fast as possible using swimming flippers will be much slower
than using running shoes. While this example might seem ridiculous to some readers, we
believe this exaggerated example is not too far from how algorithms are often applied in
practice. If a user has no prior knowledge that they can use to make an informed decision
about what is adequate or good sporting equipment, they might end up trying to run using
swimming flippers.

To mitigate this problem of manually selecting the best algorithm2, already in 1976,
Rice proposed to automate this problem through the use of algorithm selection (AS; Rice,
1976). Instead of relying on human labor to build the expertise by trial-and-error, AS
makes use of machine learning to train a so-called selector to decide which algorithm to
use for a particular problem instance. The selector is trained to learn a mapping from
problem instance to algorithm similar to how a human practitioner might make their
decision. Based on previously recorded performance data of the potential algorithms and
some characteristic features of the problem instance at hand, the selector learns which
mapping will lead to the best result on the training data. The resulting selector is then
able to make informed decisions about which algorithm to use, given that future instances
resemble those the selector was trained on.

AS already enables the athlete to solve the previous example. After the athlete has

2According to some performance metric

5

tried out the different equipment for each task they have perfect knowledge about the
usefulness of the equipment. For example, using the bike in the running task will lead to
disqualification and the flippers to a non-competitive time. Using their expert knowledge
they can win many gold medals in various disciplines, as long as the disciplines are similar
to those their expert knowledge was built on. Otherwise, the selector might not be able to
correctly assign the correct sporting equipment to the new task.

What About Algorithm Parameters? The example so far oversimplified the problem.
The athlete was faced with very distinct choices of which sporting equipment to use for
distinct sporting disciplines. In practice, the choices are often far less straightforward. For
example, novel search techniques or heuristics can be incorporated into existing algorithms,
e. g., for SAT solving or AI planning. The choice of which to use is often left to the user
through the use of parameters. Far worse even, parameter values are often not a finite set
of discrete choices but are numerical and span an infinite range of possibilites.

To reflect this, we can adapt our example and, for now, focus only on the biking task.
The athlete is still faced with the choice of which sporting equipment to use. Now, however,
the equipment itself is variable. In other words, besides a categorical choice parameter
to determine the equipment, there are additional parameters to configure the equipment
itself. For example, consider that the bike’s tires have to be pressurized by the athlete. If
the pressure is too low the athlete risks that the tire gets punctured, stopping them from
competing in the race. On the other hand, if the pressure is too high the bike ride will be
highly uncomfortable and slower as the overinflated tire will have much lower traction (see
Figure 1.2). Using AS the athlete would need to first try out all infinitely many possible
choices of pressure before they could make an informed choice. This, however, is most
often infeasible in practice3.

Figure 1.2: Different tire pres-
sures. Top: Under pressur-
ized/flat tire. Middle: Tire
with appropriate pressure and
good traction. Bottom: Over
pressurized tire with low trac-
tion.

Algorithm configuration (AC; Hutter et al., 2009) alle-
viates users from having to consider potentially infinitely
many parameter values. To do so, a configurator tries out
different parameter values in the potentially infinite search
space. Similar to AS, this generated experience about the
algorithm’s performance can be used to select which con-
figuration, i.e. parameter values, to choose. Counter to AS
methods, AC methods iterate and extend this knowledge to
better probe the space in an informed way. This is typically
done by building predictive models that can be used to es-
timate which configurations will lead to good performance
without having to test every possible parameter value. The
most promising configurations (according to the predictive
model) will be tested to further extend the knowledge and
refine the model. A crucial difference between AC and AS
is that AC recommends a single configuration for a set of
similar tasks and does not learn a mapping from instance
to configuration. Thus, AC would not be able to solve the
full example with highly different sporting disciplines.

Making use of AC, the athlete now only needs to try
out a few tire pressures before they can make an informed
decision about which to use for the biking task. To solve
the full example, the athlete can combine AC with AS to
figure out what are the best parameters for the chosen

3Note that there are meaningful discretizations for this example to make AS feasible. For algorithm
parameters, this is often not trivially done.

6 CHAPTER 1. MOTIVATION

−4 −2 0 2 4 −4
−2

0
2

4

0

500

1,000

1,500

x1

x2

(a) Global View

−2 −1
0

1
2−2

−1
0

1
2

0

2

4

6

8

10

x1

x2

(b) Local View

Figure 1.3: Different views of the Three-Hump Camel function. Note that (b) is only a
zoomed-in version of (a). The orientation of the plots is the same.

sporting equipment even for dissimilar tasks. This combination is referred to as per-instance
algorithm configuration (PIAC; L. Xu et al., 2010). In essence, PIAC uses AC to find a finite
set of well-performing, complementary configurations which ideally work well for different
problem instances. PIAC then uses AS to select which of the possible configurations to use
for a task at hand. Thus, the athlete can now set up their sporting equipment perfect for
the task at hand even when faced with infinitely many possible choices, for a variety of
problem instances.

Algorithms in the Real World Again, the example so far is oversimplifying the problem.
The athlete is still faced with distinct tasks where the goal and how to reach it are
abundantly clear. When aiming for gold in each task, the athlete has to only perform a
single activity as fast as possible. However, in practice, algorithms are often not faced
with such straightforward tasks. This does not mean that AS, AC, and PIAC are not useful
approaches to optimizing algorithms. They have shown tremendous successes, as we
will discuss in Chapter 3. However, there is room for further improvement by taking the
algorithm’s behavior into account.

Many if not most algorithms are iterative in nature. By design, this causes algorithms
to move through a solution space. In practice, the global solution space might look very
different from local patches of the space (see, e. g., Figure 1.3) and thus potentially require
different parameter values. We can again reflect this in the running example, where the
athlete now also wants to compete in biathlons or triathlons. If the athlete were to only use
a single sporting equipment for a whole triathlon they surely would not win the competition.
Based on the stage of the triathlon the athlete will have to switch from running shoes to a
bike to swimming gear. Note that it is not enough to know which equipment to use but
that it also matters when to use which equipment.

The previously discussed methods for optimizing algorithms do help with this problem
to some degree. If only a fixed choice is used over the whole run of the algorithm by AS,
AC or PIAC then the choice will be the best on average. For example, while taking the bike
into the water or trying to run with flippers will result in bad performance for the athlete,
they can at least successfully participate in the triathlon only by using the running shoe. It
will not be optimal and not lead to a win but is the single best static option in the example.
The methods could also be used to optimize a parameterized schedule. For example, the
order of equipment usage could be optimized, or even the length of equipment use. Still,
this has potential failure modes. Imagine that a last-minute change to the triathlon results
in a drastically different course and order of tasks, then sticking to the predetermined

1.1. IN A NUTSHELL 7

schedule will again result in bad performance of the athlete. If, however, the athlete can
make use of their prior knowledge and current observations to decide on-the-fly and for the
problem at hand which equipment to use they will be capable of competing and winning in
different conditions and competitions.

Beyond Black Boxes To achieve on-the-fly configuration for the problem at hand we
have to reevaluate how the previous approaches treated the problem of configuration. The
previously discussed frameworks treated the algorithm as a black box and were content
with only considering the input-output relationship of configuration to final performance.
Instead, to open the black box, we propose to take the algorithm’s step-wise behavior into
account, as well as information about the problem at hand to make more informed decisions
on-the-fly. Our novel meta-algorithmic framework which we dub dynamic algorithm
configuration (DAC)4 is a generalization of the previously mentioned methods and opens
up a new research field on meta-algorithmics research. To this end, at each step, DAC
observes how an algorithm interacts with the problem space. This allows DAC to observe
and identify how quickly an algorithm is progressing or if it is stalling. These observations
can be used to decide if an algorithm’s configuration has to be changed to induce a
different behavior which ideally will result in better progress. In the running example,
this translates to the athlete observing their surroundings and based on changes deciding
which equipment to use. For example, when the athlete is about to enter the water for
the swimming portion of the triathlon this should trigger the change in equipment to the
swimming gear.

1.1 In a Nutshell

In this dissertation, we focus on the problem of how to configure algorithms on-the-fly
and to the problem at hand, to make them as performant as possible. This work enables
improvements of algorithms in a broad variety of fields, leading to potentially much
more efficient algorithms. In particular, we will present case studies in the domains of
evolutionary algorithms and AI planning, and also give an example for deep learning. We
show that DAC is not only an improvement in theory but also provide ample empirical
evidence for its success. Finally, we discuss why modern reinforcement learning (RL)
methods are suitable solution approaches to DAC and how research on DAC enables further
advancements in RL, in particular for generalization through the use of context information.

1.2 How to Read This Dissertation

This dissertation is a cumulative dissertation (dissertation by publication), as such, it con-
solidates previously published works by the author all of which aim to answer a common
scientific question. For improved readability, we structured this dissertation into six parts
which are sorted by topic rather than chronologically. Part I (Introduction) provides the
high-level motivation and concrete goals for our research. It further provides the relevant
background and extends the discussion on related work, of our previous publications, with
a focus on automated machine learning. Part II (Dynamic Algorithm Configuration: The
Problem), Part III (Dynamic Algorithm Configuration: Case Studies), Part IV (Dynamic
Algorithm Configuration: Benchmarking) and Part V (Improving RL From the Lens of DAC)
contain two to three chapters, each of which consist of one publication. Part VI (Conclusion)
then closes the dissertation with an extensive summary and discussion of our contributions
and provides an outlook on potential future work. Each chapter is self-contained, provides

4Pronounced like the English word duck (/d2k/).

8 CHAPTER 1. MOTIVATION

overviews of relevant literature, and could be read independently. Still, as this dissertation
introduces a novel research field for meta-algorithmics we suggest readers first read Parts I
and II before moving to other parts.

CHAPTER 2
Goals of this Dissertation

The continuous growth in AI and ML research results in a seemingly unending growth in
development of algorithms and algorithm components with vast application areas. Still,
the expert knowledge required to make efficient use of these methods is often only held by
a small number of researchers in the particular field while the methods could be beneficial
for many non-experts. This often hinders the cross-pollination of ideas between different
research fields. Lowering the barrier of entry by providing methods to simplify the use of
algorithms while being as efficient and high-performing as possible is crucial to further
advancing AI research in many fields. To make strides towards truly democratized machine
learning and AI we believe that learned configuration policies are a crucial component.
Thus, with this dissertation we set out to answer the question: Can we learn general dynamic
configuration policies using reinforcement learning? Towards this goal, we identified the
following key challenges that we aim to address with this dissertation.

2.1 Key Challenges

Challenge 1: Formal Problem Definition

Many communities have considered dynamic configuration to improve the performance
of algorithms in their domain. One of the best-known examples stems from the deep
learning literature. Learning rates need to be changed dynamically as static learning
rates can lead to sub-optimal training results or, in the worst case, diverging behavior
(Bach and Moulines, 2011). Efforts for dynamic configuration thus far, however, focused
mostly on manually designed heuristics. The few approaches that are aimed at automating
dynamic configuration typically are application specific and do not consider the general
dynamic configuration problem. To consolidate these lines of research and to ensure a joint
research framework the first challenge consists of providing a formal problem definition.
This enables us to study how the dynamic configuration problem relates to optimization
problems. Further, a joint framework makes this line of research more easily accessible and
allows to better identify and discuss open problems that individual solution approaches
might exhibit.

Challenge 2: Application in the Real World

For an emerging research field, theoretical considerations alone might not be enough to
fully understand the problem as the theoretical setting might abstract away issues that can
arise in practice. Thus, studying solution approaches on real-world benchmarks is crucial
in deepening the understanding of the problem as well as different solution approaches.

10 CHAPTER 2. GOALS OF THIS DISSERTATION

By its nature, this challenge blends engineering questions with research questions.
For example, questions, such as “How can algorithm X be dynamically configured?” and
“How should algorithm X be interfaced with the dynamic configurator?” go hand in hand.
Similarly, the question of how to incorporate expert knowledge into a learned dynamic
configuration procedure is both a scientific and an engineering question.

Challenge 3: Reproducible Research

To facilitate meaningful empirical comparison between different solution approaches, it is
crucial to provide standardized implementations of baselines and benchmarks. Previous
research efforts often have designed problem-specific interfaces which do not facilitate easy
comparison between novel methods. Further, code is often not made publicly available or
only partially available. This creates a huge burden on researchers wanting to compare
their methods to existing ones. With the introduction of a new research field, we have the
opportunity to build a community with a focus on reproducible research. Thus from the
outset, we want to tackle the issues listed above. Altogether the challenge is threefold:

• A standard interface for benchmarks is needed to lower the barrier of entry for
researchers.

• To meaningfully compare solution approaches, a diverse set of benchmarks is needed.
These should cover cheap-to-run toy benchmarks up to more complex problem
settings.

• Whenever possible, found solutions should be open-sourced and made publicly
available to lower the cost of comparison for novel research.

Challenge 4: Generalization in Reinforcement Learning

Based on the problem definition, we identify reinforcement learning (RL) as a highly
suitable solution approach to dynamic algorithm configuration. The typical RL setting is
however not concerned with learning agents that can tackle a broader variety of problem
settings. The most commonly studied problem in RL is arguably game-playing (see, e. g.,
Mnih et al., 2015). In this setting, an RL agent typically has to learn to solve a single
level of a game or individual games. In the DAC setting, however, we are intending to
learn policies that can configure algorithms on-the-fly as well as per-problem instance.
Thus, instead of learning only to play a single game or level, we are interested in learning
policies that are capable of solving multiple such problems. When aiming to use modern
deep RL methods for dynamic algorithm configuration, we have to tackle the problem of
generalization in RL.

2.2 Contributions

In this section, we discuss the contributions of this dissertation. We first use the key
challenges laid out before to define research questions we aim to answer. We then provide
a high-level summary of how the parts of the dissertation address these questions. Finally,
as this work is a cumulative dissertation, we provide individual summaries for each chapter
that contains previously published works.

Research Questions

Based on the challenges above, we pose the following research questions:

• What is the current state of dynamic configuration research?

2.2. CONTRIBUTIONS 11

• What is the formal problem that is being solved?

• How can we make use of reinforcement learning to dynamically configure algorithms?

• How can we make use of prior knowledge when learning novel configuration policies?

• How can we make this line of research more reproducible?

• How can we facilitate generalization in reinforcement learning?

• How does the dynamic configuration problem differ from standard reinforcement
learning problems?

To answer the first question, each chapter of Parts II to V provides a discussion on related
research. Out of these Chapter 6 provides the most extensive and up-to-date discussion
and puts our research in the historic context of related dynamic configuration research as
well as provides an overview of the related meta-algorithmic problems. Building on this
knowledge, the second research question of a formal problem definition is discussed in
Part II. The chapters of this part further provide the first examples of how to use modern
deep reinforcement learning method to solve the novel dynamic algorithm configuration
problem. In particular, the idea of contextual reinforcement learning is explored as a
solution approach to the DAC problem throughout this dissertation. Part III provides
in-depth representative case studies to give detailed answers on how to use reinforcement
learning for dynamic configuration of an AI planning as well as evolutionary algorithms.
The former considers configuration in a continuous configuration space and further explores
how to incorporate prior knowledge into learned policies, whereas the latter considers a
discrete configuration space. By the nature of the DAC problem and the chosen solution
approaches, both chapters also explore generalization in RL. Based on the insights from
the first empirical applications, Part IV considers how to make this line of research more
reproducible by providing a collection of dynamic configuration benchmarks.

Having provided a thorough examination of the DAC problem and example applications,
in Part V we set the focus on reinforcement learning and how to improve it from the lens of
DAC. We first discuss how reinforcement learning can be made more proactive, which, in
essence, uses ideas from DAC to configure action repetitions. We further discuss a curricu-
lum learning approach for faster and better generalization capabilities of reinforcement
learning agents. Lastly, we propose a novel benchmark for contextual reinforcement learn-
ing to further explore and analyze generalization in RL without additional confounding
factors introduced by the DAC problem.

By nature of being a cumulative dissertation, each chapter of the above-summarized
parts consists of a previously published work. In the following, we provide individual
summaries of these chapters which showcase how these works address the common
scientific question of the dissertation and the above-stated research questions.

Chapter 5: Dynamic Algorithm Configuration: Foundation of a New
Meta-Algorithmic Framework

This chapter provides the cornerstone of the dissertation. It provides the first formal
problem definition of dynamic algorithm configuration (DAC). This definition considers
both on-the-fly as well as per-instance configuration. This is in contrast to previous research
efforts which typically either considered the problem only from the per-instance(-set) angle
or only from the on-the-fly angle. Combining both angles results in a more flexible problem
definition that generalizes over the previous approaches. Informally, we discuss how the
DAC problem relates to previous meta-algorithmic frameworks, such as algorithm selection,
algorithm configuration, and per-instance algorithm configuration.

12 CHAPTER 2. GOALS OF THIS DISSERTATION

In this chapter, we further propose to model the dynamic configuration problem as
contextual Markov decision process (cMDP; Hallak et al., 2015). We discuss each part of
the cMDP in detail and discuss how the notion of context influences the learning paradigm.
We then propose to include the context information of the cMDP as part of the state, such
that an RL agent can directly access it and make use of it to learn general policies. This
cMDP formulation enables us to make use of modern deep reinforcement learning methods
as solution methods for DAC problems. In turn, this makes DAC an interesting problem to
study generalization of RL approaches as, in DAC, the goal is to learn configuration policies
across multiple problem instances.

To empirically study the DAC problem and RL as a solution approach, we introduce
cheap-to-run, controllable artificial benchmarks. These benchmarks allow us to study the
applicability of RL to the DAC problem. We compare a standardQ-learning (Watkins, 1989)
approach to baseline agents and show that RL can learn general configuration policies
when paired with function approximation methods (van Hasselt et al., 2016). We further
show that the considered RL methods are more capable of handling various short effective
sequence lengths or levels of stochasticity of the reward signal compared to the baselines.
Finally, this is the first time we considered self-paced learning in the contextual RL setting
and could show that it can improve learning speeds of RL agents.

The problem definition that is discussed in this chapter as well as the proposed solution
approach based on contextual reinforcement learning is used throughout this dissertation.

Chapter 6: Automated Dynamic Algorithm Configuration

This chapter provides a comprehensive account of dynamic algorithm configuration and
extends the preceding chapter. In particular, this chapter extends the previous one by
providing a

• more thorough discussion and classification of related work from different sub-fields
of AI;

• discussion of solution methods for dynamic algorithm configuration beyond reinforce-
ment learning;

• description of three case studies using and extending DACBench, confirming DAC as
a practical alternative to prior meta-algorithmic frameworks;

• discussion of current limitations of dynamic algorithm configuration and the so far
evaluated solution approaches.

Note that chronologically, this chapter was written last during the author’s Ph.D. and
consolidates multiple previous papers that will appear in later chapters.

Chapter 7: Learning Step-Size Adaptation in CMA-ES

In this chapter, we present an in-depth case study of DAC by reinforcement learning on a
real algorithm and problem instances. We make use of the problem definition we defined
in the previous chapters to derive the application-specific problem of learning to adapt the
step-size in an evolutionary algorithm, in the form of CMA-ES (Hansen, 2006). The step
size is continuously variable and typically is adapted while CMA-ES is running through the
use of hand-designed heuristics (Hansen and Ostermeier, 2001).

We define all relevant components of the underlying cMDP to be able to make use of
reinforcement learning. This includes the state- and action spaces as well as the reward
function. Following related work on learning to optimize (LTO; Li and Malik, 2017), we
propose to make use of the guided policy search method (GPS; Levine and Abbeel, 2014;

2.2. CONTRIBUTIONS 13

Levine and Koltun, 2013) to learn step-size adaptation policies. For many algorithms, there
exist meaningful hand-designed heuristics that can take care of adapting an algorithm’s
parameters. To make use of such expert knowledge, we present an extension to the GPS
method which can repeatedly query the heuristics to improve the learned policy. For our
purposes, we use the commonly used CSA heuristic (Hansen and Ostermeier, 2001).

We conduct a large-scale empirical study in which we evaluate the efficacy of our
proposed DAC approach. In the experiments, we compare the performance of the learned
policies to that of the baseline CSA policy with an optimized initial starting value. We
begin by considering the simplest example where we learn a policy for optimization of a
single 10D function. The learned DAC policies outperform the hand-crafted baseline. We
then consider more complex scenarios where we learn policies that are transferred to (i)
functions with higher dimensions, (ii) unseen test functions, and (iii) longer optimization
trajectories. For all the considered scenarios we demonstrate that the learned policies are
capable of generalizing to these settings while still outperforming the baseline policy.

This case study shows how to tackle DAC in a continuous action space, how to incorpo-
rate prior knowledge into DAC policies, and provides ample evidence that the contextual
RL setting allows learning policies that are capable of generalizing to unseen settings.

Chapter 8: Learning Heuristic Selection with Dynamic Algorithm
Configuration

While the previous case study tackles DAC in a continuous configuration space, in this case
study we consider a discrete action space. In this chapter, we propose to learn heuristic
selection via DAC for use in AI planning to increase the speed of planning systems. Further,
this chapter provides a formal analysis of DAC and shows that it is a generalization of
algorithm selection and configuration. We could prove that, for a particular family of
AI planning problems, a DAC policy that dynamically selects which heuristic to follow at
each step, will require exponentially fewer steps than a configuration determined with
previous meta-algorithmic frameworks. Based on this theoretical analysis we propose a
set of white-box benchmarks that can be used to validate the performance of DAC policies
without having to perform expensive algorithm runs on real problem instances.

To empirically validate DAC in this setting, we propose the necessary components of
the cMDP, including the reward function, and the action- and state spaces. We propose
to use a variant of the popular Deep Q-Networks (DQN; Mnih et al., 2015), in the form
of double deep Q-Networks (DDQN; van Hasselt et al., 2016) as DQNs are particularly
suited for discrete action spaces. Further, we propose a general interface that makes use of
communication via sockets. This allows us to easily interface a DAC agent, which is typically
implemented in python, with algorithms that might be written in a different language. In
this specific case study, this allowed us to interface DAC with the FastDownward system
(Helmert, 2006) which is implemented in C++.

We perform a large empirical study, using problem instances from a variety of planning
domains. The learned policies are very capable, readily outperform the considered baselines,
and even outperform the theoretical best (static) algorithm selector, showing the power of
DAC policies.

Chapter 9: DACBench: A Benchmark Library for Dynamic Algorithm
Configuration

Following the insights gained from the preceding case studies, in this chapter, we propose a
benchmark suite for DAC which we dub DACBench. DACBench consolidates all benchmarks
designed in the previous chapters as well as includes benchmarks from prior literature. To

14 CHAPTER 2. GOALS OF THIS DISSERTATION

facilitate better reproducibility and to lower the barrier of entry we propose a standardized
interface, building on the popular OpenAI gym interface (Brockman et al., 2016).

We extensively discuss the desiderata of dynamic configuration benchmarks and how
they influenced DACBench. In particular, DACBench focuses on accessibility, reproducibility
and aims at facilitating further DAC research. To this end, DACBench contains (i) cheap-
to-run artificial benchmarks that do not require running real algorithms, (ii) white-box
benchmarks that require interaction with real algorithms but are designed with specific
problem characteristics in mind, and (iii) benchmarks using real algorithms and real prob-
lem instances. The last category of benchmarks comes from a broad variety of AI domains,
consisting of AI planning, evolutionary algorithms, and deep learning. All benchmarks are
studied along various degrees of difficulty, such as the degree of randomness or the effect
that problem instances have on the benchmark. We conclude this chapter with a discussion
on the challenges of dynamic algorithm configuration in practice as well as research.

Chapter 10: Theory-inspired Parameter Control Benchmarks for Dynamic
Algorithm Configuration

We propose a novel benchmark for dynamic algorithm configuration inspired by theoretical
insights from parameter control research, a closely related research field. Parameter
control adapts hyperparameters on-the-fly but not per-instance and is predominantly used
in evolutionary computation (see, e. g., B. Doerr and C. Doerr, 2018, for an overview).
Parameter control is studied in both theory and practice. Based on the theory research in
this setting, it is possible to compute optimal dynamic configuration schedules for different
algorithms and classes. For this novel benchmark, we study a parameterized version of
the classical randomized local search method (1 + 1) RLS on LEADINGONES. The runtime
distribution is very well understood in this setting (B. Doerr, 2019) which can be used to
verify the performance of proposed DAC solution approaches. In particular, for this setting,
we can compute the exact optimal policies for different problem instance sizes as well
as different configuration spaces of the mutation parameter. This provides novel insights
into this setting as well as enables us to provide the ground truth for real algorithm runs
on real problem instances, which was previously not possible to compute in DACBench.
This benchmark thus closes an important gap in the setup of DACBench and increases its
usability. Finally, we use this benchmark and demonstrate how it can be used to study the
capabilities of a DDQN for learning DAC policies with different action spaces as well as
different problem sizes.

Chapter 11: TempoRL: Learning When to Act

We now turn our attention towards improving reinforcement learning methods following
insights we gained by making use of it for solving DAC problems. In particular, in this
chapter, we discuss an improvement to RL which was inspired by our case study on DAC for
AI Planning. In this case study, we observed that learned successful DAC policies often need
to repeat the same action for multiple steps, as the solution landscape has not significantly
changed. Still, in other situations having the ability to switch configurations at every step
is beneficial to adapt to rapid changes. Thus this raises the question, when is it necessary
to make a new decision with the reinforcement learning agent? To tackle this question we
propose TempoRL, a proactive alternative to the classically more reactive RL paradigm.
Further, to learn such proactive strategies efficiently we propose to dynamically configure
the temporal exploration for value-based RL.

Inspired by cMDPs we formulate skip MDPs to model the problem of learning temporal
exploration. We use this model to derive a hierarchical learning approach that jointly learns
which action to play in a given state as well as how long this action should be repeated.

2.2. CONTRIBUTIONS 15

This hierarchical approach lets us jointly learn to optimize the reward signals as well as the
temporal-exploration hyperparameter. We demonstrate the effectiveness of TempoRL on a
variety of problems, starting from tabular methods on simple grid worlds up to deep RL
methods in more challenging environments, such as Atari games (Bellemare et al., 2013).

Chapter 12: Self-Paced Context Evaluation for Contextual Reinforcement
Learning

While our work on solving DAC by contextual reinforcement learning in the previous
chapters has enabled us to learn general policies across problem instances, we did not
discuss on which instances to learn. Our foundational work mostly employed simple
round-robin switching between instances. Dedicated curricula could increase learning
speed by starting to learn on easier instances before progressing towards more difficult
ones. In our first work on DAC we already considered to use self-paced learning (SPL;
Kumar et al., 2010). In this chapter, however, we build a dedicated self-paced learning
mechanism for value-based contextual reinforcement learning which we dub SPACE.

SPACE makes direct use of the current value function estimates of agents to gauge the
learning progress of the agent. If between learning updates there are vast differences in
predicted value, SPACE treats the problem instance as more difficult for the agent. Over
time, SPACE builds a curriculum using this difficulty estimate, which incorporates more
and more difficult problem instances. In this way, SPACE smoothly progresses through
the collection of problem instances without exposing the agent to large jumps in difficulty.
Further, we prove that SPACEs performance is upper-bounded by the previously used
round-robin selection scheme. Our final evaluation of SPACE demonstrates that it readily
outperforms the round-robin baseline as well as related self-paced learning methods.

Chapter 13: CARL: A Benchmark for Contextual and Adaptive Reinforcement
Learning

Our work on using contextual RL for DAC has proved that it is a powerful approach for
generalization in deep reinforcement learning research. However, so far no dedicated
contextual RL method exists which might be used for learning general agents. We believe
this can in a large part be attributed to the lack of benchmarks dedicated to contextual
reinforcement learning. Most existing benchmarks that could be used to assess the gen-
eralization of deep RL agents hide the notion of context, implicitly provide it as part of
image observations, and procedurally generate problem instances (see, e. g., the survey
by Kirk et al. (2021) for an overview on the topic). Such benchmarks make it difficult to
academically judge the generalization capabilities of trained agents. To facilitate better
studies and development of methods for generalization of (contextual) reinforcement
learning agents we present a novel benchmark collection which we dub CARL.

CARL extends existing reinforcement learning benchmarks for contextual learning
based on easy-to-understand physical properties, such as changes in friction. These
physical properties provide a clear view of what is changing within the environment. While
DACBench can also be considered a benchmark for contextual RL, it comes with additional
confounding factors and not as easily changeable context features. DACBench context
features are dependent on the problem instance and domain and are mostly not as easily
interpretable to non-domain experts. Thus CARL allows to more easily study the influence of
context on RL agents. We use CARL to assess the in- and out-of-distribution generalization
capabilities of commonly used RL agents and study how the context distribution influences
the learning dynamics of agents.

Lastly, in this chapter, we provide a discussion on challenges for learning general
reinforcement learning agents which can be tackled using CARL and which will feedback

16 CHAPTER 2. GOALS OF THIS DISSERTATION

into further DAC research. These challenges include (i) representation learning, (ii)
uncertainty of RL agents, (iii) continual learning, (iv) interpretable and explainable deep
RL, (v) AutoRL and (vi) high confidence generalization.

2.3 List of Publications

In this section, we list all core publications that build the backbone of this dissertation as
well as related work by the author. We provide a detailed description of author contributions
for core publication at the beginning of the respective chapters.

Core Publications This dissertation consolidates the following nine research papers.
All research papers follow the common scientific question of how can we train general
reinforcement learning agents for dynamic configuration of algorithms. To facilitate maximal
reproducibility of all listed works we open-sourced all our code and provide links to the
corresponding code repositories.

• A. Biedenkapp, H. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer (June 2020). “Dy-
namic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework”.
In: Proceedings of the Twenty-fourth European Conference on Artificial Intelligence
(ECAI’20). Ed. by J. Lang, G. De Giacomo, B. Dilkina, and M. Milano, pp. 427–434.
Code: https://github.com/automl/DAC

• G. Shala, A. Biedenkapp, N. Awad, S. Adriaensen, M. Lindauer, and F. Hutter (2020).
“Learning Step-Size Adaptation in CMA-ES”. in: Proceedings of the Sixteenth Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN’20). Ed. by T. Bäck,
M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and H. Trautmann. Lecture
Notes in Computer Science. Springer, pp. 691–706.
Code: https://github.com/automl/LTO-CMA

• D. Speck, A. Biedenkapp, F. Hutter, R. Mattmüller, and M. Lindauer (2021). “Learning
Heuristic Selection with Dynamic Algorithm Configuration”. In: Proceedings of the
31st International Conference on Automated Planning and Scheduling (ICAPS’21).
Ed. by H. H. Zhuo, Q. Yang, M. Do, R. Goldman, S. Biundo, and M. Katz. AAAI,
pp. 597–605.
Code: https://github.com/speckdavid/rl-plan

• T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer
(2021b). “DACBench: A Benchmark Library for Dynamic Algorithm Configuration”.
In: Proceedings of the 30th International Joint Conference on Artificial Intelligence,
IJCAI’21. Ed. by Z. Zhou. ijcai.org, pp. 1668–1674.
Code: https://github.com/automl/DACBench

• A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer (2021). “TempoRL: Learning
When to Act”. In: Proceedings of the 38th International Conference on Machine Learning
(ICML’21). Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, pp. 914–924.
Code: https://github.com/automl/TempoRL

• T. Eimer, A. Biedenkapp, F. Hutter, and M. Lindauer (2021a). “Self-Paced Context
Evaluation for Contextual Reinforcement Learning”. In: Proceedings of the 38th
International Conference on Machine Learning (ICML’21). Ed. by M. Meila and T.
Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 2948–2958.
Code: https://github.com/automl/SPaCE

https://github.com/automl/DAC
https://github.com/automl/LTO-CMA
https://github.com/speckdavid/rl-plan
https://github.com/automl/DACBench
https://github.com/automl/TempoRL
https://github.com/automl/SPaCE

2.3. LIST OF PUBLICATIONS 17

• C. Benjamins, T. Eimer, F. Schubert, A. Biedenkapp, B. Rosenhan, F. Hutter, and M.
Lindauer (2021). “CARL: A Benchmark for Contextual and Adaptive Reinforce-
ment Learning”. In: Workshop on Ecological Theory of Reinforcement Learning
(EcoRL@NeurIPS’21).
Code: https://github.com/automl/CARL

• A. Biedenkapp, N. Dang, M. S. Krejca, F. Hutter, and C. Doerr (2022a). “Theory-
inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration”. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’22).
Ed. by J. Fieldsend. ACM.
Code: https://github.com/ndangtt/LeadingOnesDAC
Note: Best paper award GECCO’22 (GECH Track).

• S. Adriaensen, A. Biedenkapp, G. Shala, N. Awad, T. Eimer, M. Lindauer, and F. Hutter
(2022). “Automated Dynamic Algorithm Configuration”. In: arXiv:2205.13881
[cs.AI].
Code: https://github.com/automl/2022_JAIR_DAC_experiments

Further Publications Here, we list further publications by the author that were conducted
during their doctoral research. While these are related to the ideas and concepts presented
in the following pages, they are out of scope of this dissertation.

The first set of related publications by the author discusses (dynamic) configuration in
the realm of automated reinforcement learning (AutoRL):

• J. Parker-Holder, R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang,
V. Nguyen, R. Calandra, A. Faust, F. Hutter, and M. Lindauer (2022). “Automated
Reinforcement Learning (AutoRL): A Survey and Open Problems”. In: Journal of
Artificial Intelligence Research (JAIR) 74, pp. 517–568.

• B. Zhang, R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua, F. Hutter, and
R. Calandra (2021). “On the Importance of Hyperparameter Optimization for Model-
based Reinforcement Learning”. In: Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics (AISTATS). ed. by A. Banerjee and K. Fukumizu.
Proceedings of Machine Learning Research.

• J. KH Franke, G. Köhler, A. Biedenkapp, and F. Hutter (2021). “Sample-Efficient
Automated Deep Reinforcement Learning”. In: Proceedings of the International
Conference on Learning Representations (ICLR’21). Published online: iclr.cc.

The second set of publications discusses configuration and hyperparameter optimization
tools and methods:

• M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T.
Ruhkopf, R. Sass, and F. Hutter (2022). “SMAC3: A Versatile Bayesian Optimization
Package for Hyperparameter Optimization”. In: Journal of Machine Learning Research
(JMLR) – MLOSS 23.54, pp. 1–9.

• S. Izquierdo, J. Guerrero-Viu, S. Hauns, G. Miotto, S. Schrodi, A. Biedenkapp, T.
Elsken, D. Deng, M. Lindauer, and F. Hutter (2021). “Bag of Baselines for Multi-
objective Joint Neural Architecture Search and Hyperparameter Optimization”. In:
Workshop on Automated Machine Learning (AutoML@ICML’21).

• N. Awad, G. Shala, D. Deng, N. Mallik, M. Feurer, K. Eggensperger, A. Biedenkapp,
D. Vermetten, H. Wang, C. Doerr, M. Lindauer, and F. Hutter (2020). “Squirrel:
A Switching Hyperparameter Optimizer Description of the entry by AutoML.org &
IOHprofiler to the NeurIPS 2020 BBO challenge”. In: arXiv:2012.08180 [cs.LG].

https://github.com/automl/CARL
https://github.com/ndangtt/LeadingOnesDAC
https://github.com/automl/2022_JAIR_DAC_experiments
iclr.cc

18 CHAPTER 2. GOALS OF THIS DISSERTATION

• M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and
F. Hutter (2019a). “BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization &
Analysis of Hyperparameters”. In: arXiv:1908.06756 [cs.LG]. URL: https://arxiv.o
rg/abs/1908.06756.

Lastly, the third set of publications discusses methods and benchmarks to gain a better
understanding of optimization procedures and algorithms:

• René Sass, Eddie Bergman, André Biedenkapp, Frank Hutter, and Marius Lindauer
(2022). “DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning”.
In: Workshop on Adaptive Experimental Design and Active Learning in the Real World
(ReALML@ICML’22). DOI: 10.48550/arXiv.2206.03493.

• R. Rajan, J. L. B. Diaz, S. Guttikonda, F. Ferreira, A. Biedenkapp, J. O. von Hartz,
and Frank Hutter (2020). “MDP Playground: Controlling Dimensions of Hardness in
Reinforcement Learning”. In: arXiv:1909.07750. URL: https://arxiv.org/abs/190
9.07750.

• M. Lindauer, M. Feurer, K. Eggensperger, A. Biedenkapp, and F. Hutter (2019b).
“Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameters”. In:
IJCAI 2019 DSO Workshop. Ed. by P. De Causmaecker, M. Lombardi, and Y. Zhang.

• A. Biedenkapp, J. Marben, M. Lindauer, and F. Hutter (2018). “CAVE: Configuration
Assessment, Visualization and Evaluation”. In: Proceedings of the International
Conference on Learning and Intelligent Optimization (LION). ed. by R. Battiti, M.
Brunato, I. Kotsireas, and P. Pardalos. Lecture Notes in Computer Science. Springer.

Further Achievements As part of the team AutoML.org & IOHprofiler, featuring the
switching squirrel the author contributed to a black-box optimizer that dynamically switches
between black-box optimization methods. This proved to be a powerful approach as
the team won the meta-learning friendly track of NeurIPS’ 2020 black-box optimization
challenge.5 Further, the team would have achieved 3rd place on the main track of the
competition6 if not for a minor bug in the final submission. A description and detailed
analysis of the competition is given in (Turner et al., 2021). The description of the
approach and the resulting switching optimizer is given in (Awad et al., 2020). Further, a
core publication of the dissertation “Theory-inspired Parameter Control Benchmarks for
Dynamic Algorithm Configuration” won a best paper award at the GECCO’22 conference
on the General Evolutionary Computation and Hybrids track.7

5https://bbochallenge.com/altleaderboard
6https://bbochallenge.com/leaderboard
7https://gecco-2022.sigevo.org/Best-Paper-Awards#GECH_Track

https://arxiv.org/abs/1908.06756
https://arxiv.org/abs/1908.06756
https://doi.org/10.48550/arXiv.2206.03493
https://arxiv.org/abs/1909.07750
https://arxiv.org/abs/1909.07750
https://bbochallenge.com/altleaderboard
https://bbochallenge.com/leaderboard
https://gecco-2022.sigevo.org/Best-Paper-Awards#GECH_Track

CHAPTER 3
Additional Related Work

As this work is a cumulative dissertation (dissertation by publication), every chapter comes
with its own related work section. Thus, for an in-depth discussion on dynamic algorithm
configuration in the context of meta-algorithmics we refer to Section 6.2. In the following,
we extend this discussion with an emphasis on automated machine learning (AutoML;
Hutter et al., 2019).

AutoML uses meta-algorithmics to make machine learning (ML) more accessible and
reduce the required computational resources. To this end, AutoML considers tuning all
elements of a potential ML pipeline. Thus, DAC could be a powerful tool to advance
AutoML research. In the following, we discuss a few application areas where learned DAC
policies have been successfully applied to AutoML.

There are many potential applications in machine learning where dynamic configuration
is needed. The prototypical example concerns learning rates in deep learning. Too high
learning rates might lead to diverging learning behavior whereas too small learning rates
might lead to very slow to no training (Bach and Moulines, 2011). Typical solution
approaches to this problem are most often hand-designed schedules which come with their
own parameters that need to be adapted to the problem at hand. With the prominence
of this problem in the machine learning community, it is unsurprising that this is one of
the first problems in machine learning to which – what we have come to call – DAC was
applied to learn dynamic configuration policies. Daniel et al. (2016) proposed to use a
reinforcement learning method to learn to adapt learning rates based on observed progress
of the neural network training process. The trained policies could perform on par or even
outperform the best baseline. Further, the trained policies showed some generalization
capabilities by successfully adapting learning rates for slightly larger networks, related
datasets, as well as architecture types. Similar approaches and results were reported by
C. Xu et al. (2017) and Z. Xu et al. (2019). While these works are only the first steps,
similarly pre-trained policies could help to drastically reduce the required compute for
training deep neural networks by adapting to the context (e.g., dataset and/or architecture)
at hand.

More recently, Almeida et al. (2021) proposed to adapt the hyperparameters of an
optimizer, such as Adam (Kingma and Ba, 2015), instead of learning to directly update
neural network weights. Counter to the previous line of research the authors tuned not
only the learning rate but also parameters affecting weight decay and gradient clipping.
To this end, a reinforcement learning method is used to update the optimizer parameters.
The resulting learned policies improve the training speed by factors up to 2.5 over the
considered baseline and showed promising generalization capabilities by being successfully
transferred to larger training tasks.

Still, in the realm of deep learning, DAC has been considered for dynamically configur-
ing ensemble learning with convolutional neural networks (Malashin, 2021). In this setting,

20 CHAPTER 3. ADDITIONAL RELATED WORK

a large pool of potential classifiers is available to build a smaller ensemble. Following
the DAC setting, taking context into account about which images to classify and which
classifiers are already in the ensemble improved the accuracy over simply returning the
average prediction.

Besides these applications in deep learning, there has been work on using DAC in
genetic algorithms (Pettinger and Everson, 2002), evolutionary algorithms (Sakurai et al.,
2010) and differential evolution (Sharma et al., 2019). The first work used a variant of
Q-learning (see the next chapter for details) to adapt the mutation operator on the fly, and
the learned policy outperformed a static baseline. Similarly, Sakurai et al. (2010) used
Q-learning to learn policies that change the crossover operator on the fly. However, this
proposed method was not extensively evaluated and only theoretical considerations on the
reward are discussed. Lastly, Sharma et al. (2019) proposed to use Q-learning to adapt
the mutation strategy of DE on the fly. The resulting policies improved the performance
of DE and showed some transfer capabilities. As these works share similarities, in future
work it would be interesting to see if a general DAC policy can be trained such that is is
capable of adapting the mutation operator for a variety of different algorithms in the realm
of evolutionary computation.

The discussed works clearly show that DAC can be a powerful tool for AutoML. Still, it is
not trivially done and more work is needed to incorporate DAC fully in the realm of AutoML.
For most parameters, it is not clear if they are better adapted on the fly or fixed at the
beginning of the run. Thus, any application in AutoML will require domain knowledge to
avoid wasting resources only to figure out that a parameter is best not dynamically adapted.
However, of particular interest for this is the emerging field of AutoRL (Parker-Holder et al.,
2022). As most variants of reinforcement learning (RL) iteratively change the data by
interacting with an environment, RL has a large potential to benefit from DAC research and
one can reasonably expect that many parameters will require dynamic configuration. Still,
with the large resource requirements of current RL, there has not yet been any approach
to learning general configuration policies in a DAC-like fashion. We, however, expect that
DAC methods developed in AutoRL will likely also be useful for AutoML.

CHAPTER 4
Reinforcement Learning

Throughout this dissertation, reinforcement learning (RL) plays a crucial role. RL methods
are our chosen go-to solution method for dynamic algorithm configuration problems. In
this chapter, we will give the necessary background on RL (for a comprehensive account of
RL, and in particular theoretical considerations, we refer to Sutton and Barto (2018)). The
subsequent chapters will then discuss RL in the context of DAC and why it is our chosen
solution method.

RL is a type of machine learning in which intelligent agents learn by interacting with an
environment in a trial-and-error fashion. The interactions generate experiences that inform
an agent about the consequences of their actions. This generated experience can then be
used to reinforce good behaviors while weakening bad behaviors. Take, for example, a
simple agent that is tasked with navigating a grid world as depicted in Figure 4.1. At every
time-step the agent can choose to execute one of four actions Up, Down, Left or Right. Its
goal is to move from the starting state in the bottom left to the goal in the bottom right as
fast as possible. To do so successfully, it has to avoid falling down a cliff (depicted by black
squares). A single trial stops after a maximum number of steps have been taken, the agent
has fallen down the cliff, or it successfully reached the goal. After every trial (and even after
every step) an agent can see if it was successful or not and adapt its behavior accordingly.
With the updated behavior it can run another trial to further update its behavior. This

GS

Figure 4.1: Example grid world adapted from our publication (Biedenkapp et al., 2021).
Starting from the bottom left, an agent has to reach the goal in the bottom right without
falling down a cliff (black squares).

22 CHAPTER 4. REINFORCEMENT LEARNING

pattern gets repeated until it has learned to perfectly solve the task. In RL, this interaction
between a learning agent and environment is modeled as a Markov decision process (MDP;
Bellman, 1957).

4.1 Markov Decision Processes

An MDP provides a straightforward formulation of the problem of learning by interaction
with the environment. At its core, an MDP is a 4-tupleM = (S,A, T ,R) with S the state
space, A the action space, transition function T :S ×A× S → [0, 1] and reward function
R:S ×A → R. The transition function, also referred to as transition dynamics, gives the
probability of reaching a possible successor state s′ when playing an action a in state s.
The (potentially stochastic) reward function describes the reward r obtained by playing
an action a in state s. Note that typically it is assumed that an MDP fulfills the Markov
property, i.e., the transition dynamics only depend on the immediate predecessor state. If
that is the case, the state contains all relevant information about past interactions and how
they will affect future interactions. For some applications it is convenient to include an
initial state distribution P , discounting factor γ, or a set of terminal states S† into the MDP
formulation though they are typically not directly taken into account by learning agents.8

An agent interacts with an environment at discrete9 time-steps t ≤ T ∈ N0. Starting
out in some initial state st=0 ∼ P the agent decides which action at=0 ∈ A to execute.
This action advances the environment and the consequences of this are made apparent
to the agent at the next time step by receiving a reward signal rt+1 and observing the
successor state st+1. Actions need to be chosen such that the cumulative future reward Jt
is maximized, with Jt = rt + rt+1 + · · ·+ rT =

∑T
k=t rk. As T could potentially be infinite,

we typically consider a discounted variant of this sum

Jt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑

k=0

γkrt+k, (4.1)

where the discount factor 0 ≤ γ ≤ 1 determines how to discount future rewards. The lower
the discount the lower the influence of potential future rewards. Figure 4.2 depicts this
agent-environment interaction.

4.2 Learning the Value of a State

Now that we know how to model the interaction between agents and environments, we
can use this formulation to discuss how agents can learn reward-maximizing behavior.
There are three main variants of reinforcement learning – value-based, policy search and
model-based – that propose different ways of solving MDPs. In this section, we focus on
commonly used value-based methods. Throughout this dissertation, we predominately used
such methods for learning dynamic configuration policies.

As the name suggests, value-based methods are concerned with learning the value of a
state. More precisely, they aim at estimating “how good” it is for an agent to be in a certain
state based on the observed rewards. To this end, value-based methods concern themselves
with learning a value function. These can then be used to derive behavior policies directly

8In some cases these elements are even treated as tunable parameters of the learning problem. For
example, P was progressively adapted to ever more distant starting positions in a curriculum learning fashion
(OpenAI et al., 2019); γ was adapted over time to initially focus on short horizons problems (François-Lavet
et al., 2015) and S† is typically adapted for lower hierarchies in hierarchical RL approaches (see, e.g., Kulkarni
et al., 2016)

9For simplicity’s sake we only consider the discrete-time setting. We refer to Bertsekas and Tsitsiklis (1996)
for discussion of the continuous-time setting.

4.2. LEARNING THE VALUE OF A STATE 23

Agent Environment

action at+1

state st

reward rt

Figure 4.2: Abstract representation of the interaction between agent and environment in a
Markov decision process. Image-based on Figure 3.1 of Sutton and Barto (2018).

from the value function. Formally, a policy π:S ×A → [0, 1] is a mapping from states and
actions to probabilities that determine how likely it is that action a will be played in state s.
Policy search methods, on the other hand, directly search in the space of policies to find
policies that maximize the cumulative reward. This can, for example, be done by using
a neural network as a parameterized policy and iteratively refining the weights, e.g. by
means of evolutionary strategies, to improve the reward that can be gained by the policy.
Lastly, model-based methods aim at learning a model of the underlying transition dynamics
of the MDP. This model is then later used to derive policies by creating action plans based
on the learned model.

While there are impressive results for both policy search methods (see, e.g., Chrabaszcz
et al., 2018) and model-based methods (see, e.g., Hafner et al., 2021), estimating value
functions still plays a central role in most reinforcement learning algorithms (Sutton and
Barto, 2018). The state-value function encodes the expected future cumulative reward
when starting in state s at time t and following a policy π from then on as,

Vπ(s) = Eπ rJt|st = ss = Eπ

« ∞∑

k=0

γkrt+k|st = s

ff

,∀s ∈ S, (4.2)

where Jt is the discounted cumulative future reward as defined in Equation (4.1). Important
to note here is that the value in terminal states is always assumed to be zero. Further, the
state-value function can be written recursively as

Vπ(s) = Eπ rrt + γJt+1|st = ss (4.3)

= Eπ

«

rt + γ

∞∑

k=0

γkrt+1+k|st = s

ff

(4.4)

= Eπ rrt + γV(st+1)|st = ss . (4.5)

Equivalently, we can define the action-value function as

Qπ(s, a) = Eπ rrt + γQπ(st+1, at+1)|st = s, at = as , (4.6)

which defines the value of taking an action a in state s at time t when following policy π
from this point onward and is often referred to as Q-function.

Following from the Bellman optimality equation (Bellman, 1957/2003), once the
optimal value function is known, it is straightforward to obtain optimal policies by taking

24 CHAPTER 4. REINFORCEMENT LEARNING

the action a in state s that maximizes the expected discounted future reward given the
optimal value-function, since

V∗(s) = max
a

E rrt + γV∗(st+1)|st = ss , (4.7)

Q∗(s, a) = E
„

rt +max
a′

γQ∗(st+1, a
′)|st = s, at = a

ȷ

. (4.8)

There are well-known approaches that concern themselves with estimating or learning
value functions and solving MDPs, such as dynamic programming (Bellman, 1957/2003)
or Monte-Carlo methods (see e.g., Chapter 5; Sutton and Barto, 2018). However, dynamic
programming requires full knowledge of the underlying transition model, and Monte-
Carlo methods require full-length episodes to estimate the value function. Value-based RL
methods avoid these problems by learning the value function from temporal differences
(TD; Sutton, 1988), i.e. the difference between two temporally consecutive predictions.

One of the most popular RL algorithms, known as Q-learning (Watkins, 1989), which
we used throughout this dissertation, uses temporal differences to learn the Q-function,
which is in turn used to derive a policy. Using temporal differences, the Q-function can be
learned through straightforward error correction. Given a state s and action a, the Q-value
can be updated through

Q(st, at)← Q(st, at) + α
´

TD-target
hkkkkkkkkkkkkikkkkkkkkkkkkj

rt + γmaxQ(st+1, ·)−Q(st, at)
¯

,
looooooooooooooooooooooomooooooooooooooooooooooon

TD-delta

(4.9)

where γ is the discounting factor and α the learning rate. The TD-target is the observed
current reward together with the discounted maximal future reward when following a
greedy policy from this point on, i.e., the value we want to predict correctly with Q(st, at).
The TD-delta is the temporal difference error between the TD-target and the predicted
future reward in the current state. In other words, the TD-delta represents how wrong the
predicted Q-value was by taking the observed reward into account. The learning rate α
then determines how strongly to update the Q-value according to the computed TD-delta.
To ensure exploration of the state space during learning, typically an ϵ-greedy policy is
used instead of always using a reward maximizing policy π(s) = argmaxa∈AQ(s, ·). The ϵ
determines the probability of replacing an action at with a randomly sampled one a′t ∼ A.
For ϵ > 0, there is a non-zero probability of visiting every state during learning. Once
learning has been completed, however, we can make use of the greedy policy.

In the simplest implementations, the Q-function is represented as a table and function
prediction simply consists of table look-ups. For such tabular approaches, Watkins and
Dayan (1992) proved the convergence of Q-learning. Modern (deep) reinforcement
learning methods make use of sophisticated function approximators to represent value
functions, for which, to the best of our knowledge, no convergence proves or guarantees
exist so far. Still, Mnih et al. (2015) popularized10 the use of deep neural networks (NNs)
in RL and proposed the DQN algorithm which models the Q-function with NNs and applies
Q-learning. In particular, their proposed convolutional neural network (CNN; LeCun et al.,
1999) architecture enabled Q-learning on large image based state-spaces. DQN is capable
of learning policies for playing Atari games (Bellemare et al., 2013) on a level comparable
to human performance.

Many extensions to DQN have been proposed since its introduction11. Of relevance for
this dissertation is the extension of DQN to use doubleQ-learning (van Hasselt et al., 2016).

10Prior works on using NNs in RL existed though none had as big an impact on the research community. For
a survey on the use of NNs for RL up to the inception of DQN we refer to Section 6 of Schmidhuber (2015).

11For an evaluation of many extensions and their combination, we refer to Hessel et al. (2018) and
Obando-Ceron and Castro (2021).

4.2. LEARNING THE VALUE OF A STATE 25

Using a single Q-function (and by extension single Q-network) to select the maximizing
action in the TD-target and to predict the Q-function often leads to instabilities due to
overestimation of the Q-values. To mitigate this, van Hasselt et al. (2016) proposed to use
a second Q-function by copying the network weights to decouple action selection from
value estimation. The first set of weights is used to select the maximizing action. The
second set of weights is kept frozen for short periods at a time and used to predict the
value of the state-action pair. The benefit of this is two-fold as i) the short freezing periods
lead to increased stability in the predictions and ii) the decoupling of action selection from
value prediction reduces value overestimation. This extension is known as double deep Q-
networks (DDQN) and builds on earlier work by van Hasselt (2010) which first introduced
the concept of double Q-learning to decouple action selection from value prediction.12

In most of the following chapters, we make use of either DQN or DDQN when learning
dynamic configuration policies.

In the following Part II, we discuss how we can model the problem of dynamic configu-
ration of algorithms as an MDP and motivate our choice of RL as a solution method for
DAC. Further, in Part V we discuss shortcomings of RL based from the lens of DAC and
propose solutions to fix these problems.

12In the tabular case two completely independent Q-functions are learned to mitigate overestimation bias.

Part II

Dynamic Algorithm Configuration:
The Problem

CHAPTER 5
Dynamic Algorithm Configuration:

Foundation of a New Meta-Algorithmic
Framework

The content of this chapter has been published as:

A. Biedenkapp, H. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer (June 2020). “Dy-
namic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework”.
In: Proceedings of the Twenty-fourth European Conference on Artificial Intelligence
(ECAI’20). Ed. by J. Lang, G. De Giacomo, B. Dilkina, and M. Milano, pp. 427–434.

Project Idea. The idea of using reinforcement learning for dynamic optimization was
proposed by Frank Hutter and Marius Lindauer. André Biedenkapp proposed to model the
process of dynamic optimization as contextual MDP, enabling optimization over time and
across problem instances.

Implementation and experimentation. André Biedenkapp led the implementation
efforts. H. Furkan Bozkurt implemented the initial versions of the artificial benchmarks,
which were extended by André Biedenkapp to allow for the principled study of various
aspects of generalization of learned policies and robustness to perturbations. André
Biedenkapp implemented RL agents and code to perform hyperparameter optimization of
those. Theresa Eimer implemented the self-paced learning (SPL) code. André Biedenkapp
conducted most experiments with the experiments on SPL conducted by Theresa Eimer.

Paper writing. André Biedenkapp prepared the first draft of the paper. The draft was
revised and edited by Frank Hutter and Marius Lindauer and the final paper version was to
a large extent written by André Biedenkapp.

Dynamic Algorithm Configuration:
Foundation of a New Meta-Algorithmic Framework

André Biedenkapp1 and H. Furkan Bozkurt1 and Theresa Eimer3 and
Frank Hutter1,2 and Marius Lindauer3

Abstract. The performance of many algorithms in the fields of
hard combinatorial problem solving, machine learning or AI in gen-
eral depends on parameter tuning. Automated methods have been
proposed to alleviate users from the tedious and error-prone task of
manually searching for performance-optimized configurations across
a set of problem instances. However, there is still a lot of untapped
potential through adjusting an algorithm’s parameters online since
different parameter values can be optimal at different stages of the
algorithm. Prior work showed that reinforcement learning is an ef-
fective approach to learn policies for online adjustments of algorithm
parameters in a data-driven way. We extend that approach by formu-
lating the resulting dynamic algorithm configuration as a contextual
MDP, such that RL not only learns a policy for a single instance, but
across a set of instances. To lay the foundation for studying dynamic
algorithm configuration with RL in a controlled setting, we propose
white-box benchmarks covering major aspects that make dynamic al-
gorithm configuration a hard problem in practice and study the per-
formance of various types of configuration strategies for them. On
these white-box benchmarks, we show that (i) RL is a robust candi-
date for learning configuration policies, outperforming standard pa-
rameter optimization approaches, such as classical algorithm config-
uration; (ii) based on function approximation, RL agents can learn to
generalize to new types of instances; and (iii) self-paced learning can
substantially improve the performance by selecting a useful sequence
of training instances automatically.

1 Introduction

To achieve peak performance of an algorithm, it is often crucial to
tune its parameters. Manually searching for performance-optimizing
parameter configurations is a complex and error prone task. General
algorithm configuration tools [4, 16, 27] free users from the manual
search for well-performing parameters. Such tools have been suc-
cessfully applied to state-of-the-art AI algorithms of various prob-
lem domains, such as mixed integer programming [15], AI planning
[12], machine learning [35], or propositional satisfiability solving
[18]. One drawback of classical algorithm configuration, however,
is that it only yields a fixed configuration that is used during the en-
tire run of the optimized algorithm. It does not take into account that
most AI algorithms are iterative in nature and thereby ignores that
the optimal target parameter configuration may change over time.

1 University of Freiburg, Germany,
email: {biedenka, bozkurf, fh}@cs.uni-freiburg.de

2 Bosch Center for Artificial Intelligence, Germany
3 University of Hannover, Germany, email: lastname@tnt.uni-hannover.de

From the field of adaptive and reactive heuristics, we already
know that non-stationary parameter configurations can indeed im-
prove the performance of algorithms substantially. To automatically
obtain policies adjusting parameter configurations online, prior work
showed that reinforcement learning (RL) can learn those in a data-
driven way and thus the performance of a variety of different algo-
rithms can be automatically improved [23, 32, 6, 10, 34].

Extending prior approaches to be applicable across instances, we
formalize the problem of learning dynamic configuration policies of
an algorithm’s parameters across instance sets (in short dynamic al-
gorithm configuration or DAC) as a contextual Markov decision pro-
cess (MDP) and apply reinforcement learning (RL) to it. Our formu-
lation of DAC as a contextual MDP allows explicit handling of in-
stances, which we combine with the self-paced learning scheme [22]
to focus on subsets of instances, facilitating faster learning of config-
uration policies. Furthermore, we propose white-box benchmarks ex-
plicitly designed to study dynamic algorithm configuration in a prin-
cipled manner without confounding factors. On these benchmarks,
we study the potential and challenges of our approach. Specifically,
our contributions are as follows:

1. We formalize the dynamic configuration of algorithm parameters
as a contextual MDP, taking instances into account;

2. We propose new and highly flexible white-box benchmarks that
allow to study DAC for scenarios involving: (i) budget constraints,
(ii) short effective sequences, (iii) noisy rewards, (iv) different de-
grees of homogeneity of training and testing instances, as well as
(v) strong parameter interaction effects;

3. We propose to use self-paced learning to order instances from easy
to complex, facilitating faster transfer learning, compared to learn-
ing on an unordered set.

4. We are the first to study dynamic algorithm configuration with
reinforcement learning in a controlled setting to shed light on its
strengths and weaknesses.

2 Related Work
Meta-algorithmic Frameworks The goal of algorithm selec-

tion (AS; [31]) is to learn a selection mechanism, that decides which
algorithm, out of a finite set of algorithms is most suited to solve
a given instance. Algorithm configuration (AC; [17]) however, not
only deals with one-dimensional categorical spaces, but with high-
dimensional, conditional and mixed categorical/continuous spaces.
AC by itself struggles with heterogeneous instance sets (in which dif-
ferent configurations work best for different instances), but it can be
combined with AS to search for multiple well-performing configura-
tions and select which of these to apply to new instances [39, 20]. For

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

each problem instance, even this more general form of per-instance
algorithm configuration (PIAC) still uses stationary configurations4.
However for different AI applications, dynamic configuration can be
more powerful than static or stationary ones.

Adaptive Configurations in Practice A prominent example for
parameters that need to be dynamically adjusted is the learning rate
in deep learning: a static learning rate can lead to sub-optimal train-
ing results and training times [30]. To facilitate fast training and con-
vergence, various learning rate schedules or adaptation schemes have
been proposed, but only a few are data-driven [10]. Contrary to hand-
designed adaptation schemes, a learned one was much less sensitive
to initial starting points. Further a learned configuration policy could
generalize to new architectures and larger networks.

In the field of EAs, self-adaptive strategies can change parameters
on the fly [21, 11]. These methods, however, are often tailored to
one individual problem, rely on heuristics and are also only rarely
learned in a data-driven fashion [32], making them applicable only
to homogeneous instances. A learned (and even a random) dynamic
configuration policy that adjusts the mutation strategy in differential
evolution has been shown to outperform non-adaptive strategies [34].

Similarly, reactive search [5] uses handcrafted heuristics to adapt
an algorithm’s parameters online. To adapt heuristics to the task at
hand, hyper-reactive search [3] parameterizes these reactive heuris-
tics and applies PIAC. In contrast, we propose to not only learn which
heuristic to apply, given an instance, but to learn how to configure on-
line without the need of hand-designed reactive heuristics.

Relation to Learning to Learn The work we present here can be
seen as orthogonal to work presented under the heading of learning
to learn (L2L; [2, 25, 8]). Both lines of work intend to learn optimal
instantiations of algorithms. The goal of a L2L agent is to learn how
to traverse a search space and how to directly modify solution can-
didates. In contrast, a dynamic configurator learns how a specific al-
gorithm behaves in a search space, based on which the optimal algo-
rithm parameters are selected;5 modifications of solution candidates
are still handled by the configured algorithm.

For example when configuring iterative optimization heuristics,
DAC learns when to switch between heuristics given the observed
behaviour when applying the heuristics. L2L in essence would learn
or discover new heuristics and thus would directly output how to tra-
verse through the search space.

By exploiting existing algorithms and only focusing on dynami-
cally configuring their parameters, DAC may be more sample effi-
cient and generalize better than directly learning algorithms entirely
from data, while also preserving guarantees that hold for the existing
algorithm regardless of its parameter settings.

3 DAC as Contextual MDP
Definition 3.1 (DAC: Dynamic Algorithm Configuration). Given a
parameterized algorithm A with a configuration space Θ, a proba-
bility distribution p over instances I (which correspond to different
inputs to A), a state description st ∈ S of A solving an instance
i ∈ I at time point t, and a cost metric c : Π × I → R assessing

4 Static configurations are unchanged throughout the solving process and
are not adjusted to new instances. Stationary configurations stay constant
throughout the solving process but might adapt to the instance at hand.

5 We emphasize that we refer to hyperparameters as algorithm parameters.
The goal of DAC is not to update weights (sometimes called the parameters)
of a neural network directly.

the cost of a dynamic configuration policy π ∈ Π on instance i (e.g.,
runtime to solve an instance, cost of a finally returned solution, or
the empirical loss of a predictive model) the goal is to obtain a pol-
icy π∗ : S × I → Θ, that adapts a parameter configuration θ ∈ Θ
at time point t, given a state st ofA solving instance i, by optimizing
its cost across a distribution of instances:

π∗ ∈ arg min
π∈Π

∫

I
p(i)c(π, i) di (1)

Contextual MDP We propose to formulate DAC as a contextual
Markov Decision Process (MDP) MI := {Mi}i∼I with Mi :=
(S,A, Ti ,Ri). The notion of context I induces multiple MDPsMi

with shared action and state spaces, but with different transition and
reward functions for a given instance i sampled from a distribution
I. The MDPMi is a 4-tuple, consisting of a state space S describ-
ing the algorithm state, an action space A changing the algorithm’s
parameter settings, a probability distribution Ti of algorithm state
transitions, and a reward function Ri indicating the progress of the
algorithm. Algorithms are often tasked with solving varied problem
instances from the same, or similar domains. Searching for well-
performing parameter settings on only one instance might lead to a
strong performance on that individual instance but might not general-
ize to new instances. In order to facilitate generalization, we therefore
explicitly take instance distributions I as context into account. In the
following, we describe in detail how this context I influences parts
of the individual MDPs.

State and Action Spaces At each time-step t, in order to make
informed choices about the parameter values to use, the dynamic
configurator needs to be informed about the internal state st of the
dynamically configured algorithm. Many algorithms collect various
statistics that are available at each time-step. For example, a SAT
solver might track how variable assignments change over time. This
information could be used to inform the dynamic configurator about
the algorithm’s current behaviour.

The theoretically possible state space does not change when
switching between instances, and is shared between all MDPs in-
duced by the context. Thus we consider the same state features which
will allow us to learn useful relations across instances. To enrich
the state space, we could also add instance-specific information, so-
called instance features (e.g. problem size), that could allow us to
reason across instances, which could be useful in particular for het-
erogeneous instance sets [24, 33].

Given a state st, the dynamic configurator has to decide how to
change the value v ∈ Ah of a parameter h or directly assign a value
to that parameter, out of a range of valid choices. This gives rise to
the overall action spaceA = Ah1 ×Ah2 × . . .×Ahn for n param-
eters. The action space solely depends on the algorithm at hand and
is also shared across all MDPs inMI , similar to the state space.

Transition Function The transition function describes the dynam-
ics of the system at hand. The probability of reaching state st+1 after
applying action at in state st can be expressed as p(st+1|at, st). For
simple algorithms and a small instance space, it might be possible
to derive the transition function directly from the source code of the
algorithm. However, we believe that the transition function cannot
be explicitly modelled for most interesting algorithms. Nevertheless,
even if the dynamics are not modelled, RL can learn how to optimize
policies directly from observed transitions.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

instance idynamic configuration of h

Dynamic
Config. π

Algorithm A

apply action at

(set parameter h = v)

state st+1

reward rt+1

II

Figure 1: Dynamic configuration of parameter h of an algorithm A
on a given instance i ∈ I, at time-step t ∈ T . Until i is solved
or a maximum budget reached, the dynamic configurator decides to
change value v of parameter h, based on the internal state st of A on
the given instance i .

Contrary to the state and action space, the transition function de-
pends on the given instance. For example, an algorithm might be
faced with different search landscapes where applying different pa-
rameter settings could lead to different state transitions.

Reward Function In order for the dynamic configurator to learn
which actions are better suited for a given state, the dynamic con-
figurator receives a reward signalRi(st, at) ∈ R. Reward functions
for DAC include either sparse rewards, e.g., runtime at the end of the
algorithm run, or dense rewards, e.g., distance estimations to some
goal state or intermediate solution qualities, such as validation error
of a partially trained neural network.

As the transition function depends on the instance at hand, so does
the reward function. Transitions deemed beneficial by the dynamic
configurator on one instance might become unfavorable on another
instance, which is reflected by the reward signal.

Interaction of Dynamic Configurator and Algorithm The dy-
namic configurator’s goal is to learn a policy that can be applied to
various problem instances i out of a set of instances I, treated as the
context of the MDP, see Figure 1. Given an instance i , at time-step
t, the dynamic configurator applies action at to the algorithm, e.g.,
setting parameter h to value v. Given this input, the algorithm ad-
vances to state st+1 producing a reward signal rt+1, based on which
the dynamic configurator will make its next decision. The instance
stays fixed throughout the algorithm run.

Learning Policies across Instances Given the MDP and a distri-
bution of instances I, the goal is to find a policy π∗ from a space of
possible policies Π that performs well across all instances i from a
probability distribution p(i) over I. Formally,

Vπi (st) = E [rt+1(i) + γVπi (st+1)|st+1 ∼ Ti(st, π(st))] (2)

= E

[∞∑

k=0

γkrt+k+1(i)|st = s

]
(3)

π∗ ∈ arg max
π∈Π

∫

I
p(i)

∫

S0
Pr(s0) · Vπi (s0) ds0 di (4)

Vπi is the value function, giving the expected discounted future re-
ward, starting from st, following policy π (i.e. advancing through
st+1, st+2, . . . and adjusting the parameters according to π) on in-
stance i with discounting-rate γ until a termination criterion is met.
For finding the optimal configuration policy, we limit ourselves to the
set of possible start-states S0 of the algorithms, which might depend
on stochastic initialization or pre-processing of a given instance. In
practice, we use simply a Monte-Carlo estimate by performing sev-
eral runs with different seeds of the algorithm at hand.

Relation to Algorithm Configuration and Selection This for-
mulation of DAC allows to recover classical algorithm configuration
(AC) as a special case: in AC, the optimal policy would simply al-
ways return the same action, for each state and instance. Further, this
formulation also allows to recover per-instance algorithm configu-
ration (PIAC) as a special case: in PIAC, the optimal policy would
always return the same action for all states, but potentially different
actions across different instances. Finally, algorithm selection (AS)
is a special case of PIAC with a 1-dimensional categorical action that
merely chooses out of a finite set of algorithms.

Markov Property We argue that most developers in fact already
assume the Markov property by using manually designed rule based
reactive-heuristics that change parameters if certain conditions are
met, independent on how these conditions were met. This behav-
ior satisfies the Markov property since future states (behavior after
adaptations) are independent of past states (prior algorithm behav-
ior), given the present (state features).

4 Reinforcement Learning for DAC

Why Reinforcement Learning? In algorithm configuration, a
typical black-box optimizer (i) has no access to state information
and (ii) sets the parameters only once in the beginning. Both short-
comings hinder classical black-box optimizers from learning optimal
sequences of parameters. As a proof of concept, context-oblivious
agents [1] take state information into account when selecting which
action to play next. This enabled these agents to learn sequences of
parameters. However, only a history of previous actions was used and
employing a richer state information would enable to learn dynamic
policies, that are capable of adapting to the context at hand.

RL is a promising candidate to learn DAC policies in a data driven
fashion as we showed how to formulate it as a contextual MDP. It has
been demonstrated that RL is capable of generalizing to new tasks
given enough examples [9]. Given DAC as an MDP we can sam-
ple large numbers of episodes given enough compute resources. For
small action and state spaces, RL agents can be easily implemented
using table lookups, for large spaces, function approximation meth-
ods can make learning feasible. In our experiments, we evaluated ε-
greedy Q-learning [38] in the tabular setting as well as using function
approximation inspired by DQN [29].

Self-Paced Learning for Dynamic Algorithm Configuration
Since evaluating a policy on a single instance can already require
quite some time (e.g., solving an NP-hard problem), evaluating a
policy on all instances is often not feasible in practice. As, shown
for classical algorithm configuration, using too few instances likelys
result in overfitting and too many instances is too costly [17]. There-
fore, we need an efficient, dynamic approach for selecting a subset
of instances for training a dynamic configurator.

Similarly to curriculum learning [7], self-paced learning
(SPL; [22]) aims to order tasks from easy to complex such that a con-
figurator can transfer knowledge from easier to harder tasks, improv-
ing the overall learning. In DAC, these tasks relate to the instances the
algorithm has to solve. In contrast to curriculum learning, however,
the curriculum is dynamically adjusted to the pace of the learning
process. In SPL, the goal is to maximize the reward achievable by a
dynamic configurator on the current curriculum by jointly learning
the dynamic configuration policy π and the curriculum v ∈ [0, 1]|I|

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Benchmark Outline 1: Luby

1 Benchmark Parameters: minimal episode length L,
maximal episode length T , noise level σ;

2 i ∼ sample instance;
3 Actions: at ∈ {0, 1, . . . , blog2 T c} for all 0 ≤ t ≤ L ≤ T ;
4 States: st ∈ {t,Hist(at−4, at−3, . . . , at), i};
5 for t ∈ {0, 1, . . . , L} do
6 lt ← luby(t, i);
7 if at 6= lt then
8 rewardt ∼ N (−1, σ2);
9 L← min(L+ |at − lt|, T);

10 else rewardt ← 0;
11 end

Benchmark Outline 2: Sigmoid

1 Benchmark Parameters: number of actions H , number of
action values Ch, episode length T ;

2 si ∼ U(−100, 100, H);
3 pi ∼ N (T/2, T/4, H);
4 Actions:

ah,t ∈
{

0
Ch
, 1
Ch
, . . . , Ch

Ch

}
∀ 0 ≤ h < H; 0 ≤ t ≤ T ;

5 States: st ∈ si ∪ pi ∪ {t};
6 for t ∈ {0, 1, . . . , T} do
7 rewardt ←

∏H−1
h=0 1− abs(sig(t, si,h, pi,h)− ah,t);

8 end

(the i-th element vi indicates if instance i belongs to the curriculum):

max
π,v
C(π,v,K) =

|I|∑

i=1

viRi(π)− 1

K

|I|∑

i=1

vi (5)

where Ri(π) is the reward of following the dynamic configuration
policy π on instance i. The term − 1

K

∑|I|
j=1 vi regulates the cur-

riculum size, moving from smaller to larger subsets, given a suitable
increasing schedule of K.

Instead of evaluating the dynamic configurator’s performance on
all instances to determine the true reward Ri(w), we propose to
use the expected reward as given by the Q-function. Easy instances,
for which the dynamic configurator already knows well-performing
policies, will quickly lead to good rewards which will quickly be
reflected in the Q-function. This then lets us efficiently determine
which instances should be included in the current curriculum as:

vi :=

{
1, if C(w,vi := 0,K) ≤ C(w,vi := 1,K)
0, otherwise

(6)

where vi := 0 excludes the instance in computing the expected re-
ward and vi := 1 includes it. In each training-iteration we greed-
ily construct the set of training instances from scratch, such that in-
stances are only included if they are expected to improve the reward
of the dynamic configurator and then train the dynamic configurator
on that set of training instances. If no instance at all is expected to
improve the reward, an instance is randomly sampled.

5 White-Box Benchmarks for DAC
As discussed in the related work, various shades of DAC have already
been applied to a wide range of AI problems. While they already

yielded improved performance in several applications, none of them
studied the general DAC problem, and none of them employed a set
of carefully-controlled benchmarks with ground truth data to allow
a scientific study of when which approaches work well. To remedy
this, and to enable an evaluation of DAC policies with full control
over all aspects and characteristics of the environment, we propose
two highly flexible, white-box benchmarks.

Our benchmarks are designed based on typical challenges in DAC
on real algorithms, such as, (i) budget constraints for running an algo-
rithm until a cutoff is reached, (ii) varying lengths of algorithm runs
depending on the effectiveness of the chosen parameter settings, (iii)
strong parameter interaction effects where the choice of one param-
eter value influences others, (iv) varying degrees of homogeneity of
the instances or (v) noisy rewards because of non-deterministic be-
havior of algorithms. We focus here on a setting with dense rewards,
since in many domains we can approximate the quality of a solu-
tion candidate, e.g., validation performance of partially trained deep
neural networks or plan quality in optimal AI planning.

Luby To evaluate the ability of agents to dynamically configure al-
gorithms with budget constraints, short effective sequences and noisy
rewards across instances of varying degree of heterogeneity, we in-
troduce benchmark Luby (see Benchmark Outline 1). The underlying
task requires an agent to learn the values in a Luby sequence [28],
which is, for example, used for restarting SAT solvers. The sequence
is 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ...; formally, the t-th value in
the sequence can be computed as:

lt =

{
2k−1 if t = 2k − 1,

lt−2k−1+1 if 2k−1 ≤ t < 2k − 1.
(7)

This gives rise to an action space for sequences of length T with
A := {0, 1, . . . , blog2 T c} for all time-steps t ≤ T , with the ac-
tion values giving the exponents used in the Luby sequence. State
information includes the time-step t, the history of actions, and an in-
stance feature describing how the original Luby sequence is shifted.6

Inspired by running real algorithms, this benchmark simulates dif-
ferent execution times that depend on the quality of the used policy.
The short horizon L (which we dub short effective sequences) refers
to the minimal time required to solve an instance and thus determines
the minimal number of configuration steps. The long term horizon T
is equivalent to the cutoff (the maximal time a user wants to run an
algorithm) and thus limits the total number of steps. For real algo-
rithm runs, suboptimal parameter settings can lead to longer execu-
tion times. To reflect that, in our benchmark, L is increased by the
severity of each suboptimal choice, i.e. L← min(L+ |at − lt|, T).

Since most algorithms in AI are non-deterministic and do not pro-
vide a reliable reward signal, the benchmark uses a fuzzy reward
N(−1, σ2) to penalize wrong action choices, i.e. not the true Luby
value lt at time-step t, in a stochastic way. E.g., setting σ2 to 1.5
results in a reward where roughly 3

4
of wrong action choices are cor-

rectly penalized and the rest return a false positive signal.
Finally, we task the agent to learn across a distribution of in-

stances. To generate homogeneous instances, every m-th element of
the sequence either skips or repeats an element of the true Luby se-
quence, leading to largely overlapping instances. To generate hetero-
geneous instances, we sample different starting points of the Luby
sequence, leading to little overlap in the resulting instances. For de-
tails of the sampling strategies, we refer to the appendix.

6 luby(t, i = 0) from Benchmark Outline 1 is given in Equation 7. See
appendix for details on i 6= 0.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Sigmoid Our second benchmark Sigmoid (see Benchmark Out-
line 2) allows to study DAC across instance distributions for a vary-
ing number of parameters (determined by the scalar H) and vary-
ing number of choices per parameter h (determined by Ch). Policies
depend on the sampled instance i, which is described by indepen-
dent sigmoid functions sig(t; si,h, pi,h) = 1

1+e
−si,h·(t−pi,h) , each

of which can be characterized through its inflection points pi,h and
scaling factors si,h. The state consists of a time feature, as well as the
instance information si,h and pi,h for each parameter dimension h.

In order to be successful, for each parameter dimension h, an agent
has to approximate the sigmoid sig(t; si,h, pi,h) at each time-step t
and choose the action ah,t closest to it. For example, for a single pa-
rameter (H = 1) with only two action values a0,t ∈ {0, 1}, an agent
would need to learn which value to play first and when to switch to
the other value (a concrete example is given in the appendix).

In a multi-parameter setting (i.e. H > 1) an agent not only has to
learn a simple policy switching between two actions but to learn to
follow the shape of each sigmoid function that describe the instance
at hand. To simulate interaction effects of the individual parameters,
the reward is computed as the product of the individual approxima-
tion errors, i.e. rewardt ←

∏H−1
h=0 1− abs(sig(t, si,h, pi,h)− ah,t).

Further, the granularity of the discretization of the action space can
be adjusted by Ch, such that an agent can follow the sigmoid more
or less closely, directly affecting its reward.

6 Baselines

As the simplest baseline, we present the best static policy; this defines
an upper bound to the performance that could be reached by static al-
gorithm configuration methods, such as SMAC [16]. Our agents, in
contrast, can find non-stationary policies that outperform (even op-
timal) static choices. One could also use SMAC to learn such non-
stationary policies by searching for an optimal sequence of param-
eter values (which we dub parameter scheduling SMAC, short PS-
SMAC). For each time-step, PS-SMAC sets parameter values, mak-
ing the problem exponentially harder when increasing the episode
length. This relates to an optimized schedule of static parameter con-
figurations which ignores all instance features and state information,
similar to previous approaches, such as aspeed [14].

As second baseline we consider context-oblivious agents [1]. As
state information they only take a history of actions into account.
During training the agents keep track of the number of times an ac-
tion lead from one state to another, as well as the average reward this
transition produced. This tabular approach limits the agents to small
state and action spaces. In our experiments we include URS, which
selects an action uniformly at random during the training phase; and
during the evaluation phase, URS greedily selects the best action
given the observations recorded during training. We did not evalu-
ate additional context-oblivious agents due to their limitations on our
challenging benchmarks, see the appendix for details.

7 Experimental Study

Setup We used SMAC [16, 26] as a state-of-the-art algorithm con-
figurator and black-box optimizer. We implemented URS using sim-
ple tabular 1-greedy Q-learning. Q-learning based approaches (such
as URS and our RL-agents) were evaluated using a discounting factor
of 0.99 and a constant learning rate of 1.0. The ε-greedy agent was
trained using a constant ε = 0.1. To facilitate generalization to un-

seen test instances, we include Q-learning using function approxima-
tion in the form of a double DQN [37] implemented in chainer [36].7

In each training iteration (105 in total) each agent observed a full
episode. Training runs for all methods were repeated 25 times using
different random seeds and each agent was evaluated after updat-
ing its policy. When evaluating on the benchmarks we performed 10
evaluation runs of which we report the mean reward. When using a
fixed instance set of size 100 on Sigmoid we evaluated the agents
once on each instance. To allow the tabular Q-learning approaches
to work on this continuous state-space we round the scaling factor
and inflection point to the closest integer values. We provide further
details and results in the supplementary material.8

Effect of Short Effective Sequence Length On the Luby bench-
mark with a fixed noise level, we first study the effect of changing the
short effective sequence length L, i.e., the minimal sequence length
to solve an instance, see Table 1. By construction of the Luby se-
quence, the optimal static policy is to play the most frequent element
in the sequence, i.e. the lowest value, as it makes up roughly 50% of
the sequence. With increasing length of the short effective sequence,
the reward achievable by this simple policy quickly approaches this
50% threshold (i.e. a reward of 0.5). Given its random behaviour,
URS is only able to learn a random policy, which performs much
worse than the optimal static policy. Increasing the short effective se-
quence length degrades PS-SMAC’s result as it is only able to find a
local optimum, i.e. SMAC identifies that action 0 needs to be played
often but not when it should be played. Therefore PS-SMAC is un-
able to outperform the simple static policy. Contrary to the results of
PS-SMAC, our ε-greedy RL agent is able to adjust its policies better
to the presented instance, regardless of the effective sequence length,
consistently achieving the best anytime and final reward, readily out-
performing the best static policy. However, the greater the intended
short effective sequence length, the longer it takes the ε-greedy agent
to learn (see the appendix for details).

Stochasticity of Reward Signal To study the impact of the
stochasticity, we evaluated the agents with different noise levels of
the reward and a fixed short effective sequence length, see Table 2.
Given very low noise-levels, URS achieves slightly better any-time
performance than purely random policies, but still is far off the best
static policy. With increasing noise-level, however, URS quickly de-
grades to a random policy. Due to its black-box nature, PS-SMAC is
less affected by the noise coming from a symmetric Gaussian; since it
optimizes the cumulative reward of the sequence, the noise is nearly
averaged out. In contrast, the RL agent learns to average out the noise
for each individual state transition. As a result, our ε-greedy agent is
hardly more influenced by the noise-level than PS-SMAC, with a
drop in AUC by 0.20 compared to PS-SMAC’s drop to 0.16.

Homogeneity of Instances The observations made above hold
both for more homogeneous and more heterogeneous instance dis-
tributions, see Table 1a and 1b as well as Table 2a and 2b. Only
PS-SMAC is affected by the change of instance distributions; this is
expected since SMAC uses a racing algorithm that assumes a certain
degree of homogeneity and given its static algorithm configuration
view, PS-SMAC cannot return instance-specific configurations.

7 We expect that proper tuning of these hyperparameters would further im-
prove the performance of the RL agents, but would be fairly expensive in a
real application of DAC.

8 Appendix and code: https://github.com/automl/DAC

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

8 16 32

ε-greedy 0.86 (0.93) 0.72 (0.82) 0.47 (0.65)
PS-SMAC 0.62 (0.72) 0.39 (0.40) 0.39 (0.40)
URS 0.17 (0.17) 0.17 (0.17) 0.17 (0.17)

(a) Homogeneous

8 16 32

ε-greedy 0.89 (0.96) 0.75 (0.84) 0.47 (0.66)
PS-SMAC 0.56 (0.69) 0.37 (0.39) 0.37 (0.39)
URS 0.17 (0.17) 0.17 (0.17) 0.17 (0.17)

(b) Heterogeneous

Table 1: Results on Luby with fuzzy rewards for L ∈ {8, 16, 32} with T = 64 on two instance distributions and a noise factor leading
to roughly 15% of the actions returning a false positive reward. The values represent the normalized area under the learning curve for 105

training episodes. A random policy would achieve 0.17 and the optimal one 1.0. The normalized final performance is given in brackets. The
best achieved rewards are highlighted in bold. Respectively, the performance (on both sets) of the best static policy are 0.88, 0.59 and 0.52.

p(rt > 0)
0.01 0.08 0.15 0.20 0.25

ε-greedy 0.96 0.92 0.86 0.81 0.76
PS-SMAC 0.71 0.63 0.62 0.62 0.55
URS 0.21 0.18 0.17 0.17 0.16

(a) Homogeneous

p(rt > 0)
0.01 0.08 0.15 0.20 0.25

ε-greedy 0.97 0.94 0.89 0.84 0.80
PS-SMAC 0.60 0.63 0.56 0.61 0.52
URS 0.21 0.19 0.17 0.17 0.16

(b) Heterogeneous

Table 2: Sensitivity analysis of the presented agents for varying degrees of noise on Luby. The short effective sequence was set to 8 with a
cutoff of 64. The values represent the normalized area under the learning curve for 105 training episodes. The corresponding standard errors
and plots are contained in the supplementary material. The first columns in Table 1 correspond to the third columns here.

This effect is amplified in the experiments on Sigmoid where PS-
SMAC cannot find a policy better than random (see Figure 2 and
3), since it does not take instance features into account and thus can-
not distinguish between a positive and negative slope of the sigmoid.
Roughly half the instances need completely orthogonal policies to be
solved optimally, as the scaling factor is uniformly sampled.

Generalization We study the ability of generalization to unseen
instances on the Sigmoid benchmark with a single parameter. We
note that we evaluated our RL agent not only based on tabular
ε-greedy, but also based on DQN as we expect function approxi-
mation to be crucial for generalization. For this benchmark, the best
static policy is to play the action value that is closest to 0.5, as it
results in the smallest approximation error on average. This is due
to the sampling of the scaling factor and inflection point, where the
scaling factor is uniformly sampled between −100 and 100 with the
inflection point being normally distributed with a mean at T

2
. In the

binary case both action values are equally preferable. Learning on
a distribution of instances (see Figure 2a), DQN learns faster than
either tabular approaches and is able to learn an instance-dependent
optimal policy, whereas the tabular ε-greedy agent gets stuck in a
local optimum9. Being completely exploratory, URS does not suf-
fer from this problem and recovers the optimal policy. The optimal
static policy and PS-SMAC are unable to adapt to the task at hand,
resulting in the same reward as a random non-stationary policy.

On the fixed training set (see Figure 2b), results are very simi-
lar to the case of learning on a distribution of instances (see Figure
2a); the exception are the tabular agents (URS and ε-greedy), which
learn much faster (since the possible state-space is much smaller), but
which are not able to recover the optimal policy and end up in a lo-
cal optimum. Furthermore, on the test instances, these tabular agents
are incapable of generalization (see Figure 2c), whereas DQN, using
function approximation, is able to generalize. Our DQN can quickly
generalize from observations on the training set to those on the test
instances, resulting in a performance on the test set that only slightly
lacks behind the performance on the training instances.

9 A tuned epsilon schedule might mitigate this problem.

Scaling with the Number of Parameters To study the ability of
agents to dynamically configure multiple, strongly interacting pa-
rameters, we evaluated them for an increasing number of parameters
on the Sigmoid benchmark, see Figure 3.

PS-SMAC slowly approaches the same performance as the op-
timal static policy. For an action space of size 3, PS-SMAC and
the static policy are able to achieve a better reward than a ran-
dom policy. With increasing dimensionality, the static policy out-
performs both tabular-agents. Our DQN agent is capable of learn-
ing instance-dependent policies even on moderately higher dimen-
sional action spaces. With strong parameter interactions, (see re-
ward of Benchmark Outline 2) learning policies for multiple param-
eters across a distribution of instances quickly becomes challenging.
However, even on the highest presented dimensionality, our DQN
is able to outperform the best static policy, while still improving at
the end of training. Without longer training nor tuning of the agents’
parameters, configuration of five very strongly coupled parameters
proves very difficult for the presented agents. Parameter interactions
are quite severe, as incrementing the number of parameters roughly
halves the reward achievable by a random policy. If one parame-
ter is adjusted suboptimally, this can drastically, negatively influence
the overall achievable reward. All agents struggle to cope with such
strong interaction effects. Our DQN agent scales best with the num-
ber of parameters, as tabular agents cannot model interaction effects.

Effect of Self-Paced Learning We study the effect of using SPL
to present a learning agent with new instances ordered from easy to
hard and compare it to a simple round-robin (RR) scheme, see Fig-
ure 4. SPL first performs poorly but then learns to transfer its learned
policies to larger sets of instances. Compared to RR, this substan-
tially improves the final reward, approaching the optimal reward.

8 Discussion

In practice, the feasibility of RL for DAC depends on several fac-
tors. First of all, computing state information and querying the pol-
icy to make a decision will induce some overhead. In scenarios with

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

(a) Sampling from distribution (b) Fixed Training Set (c) Unseen Test Instances

Figure 2: Comparison of generalization to new instances on 1D-Sigmoid with binary action space and T = 11. The solid line represents
the mean reward and the shaded area the standard error over 25 repetitions. To estimate the performance over the distribution of instances
in (a), we sample 10 new random sigmoid functions for evaluation. In (b) we evaluate the agents on 100 training instances. In (c) we show
the generalization capability by evaluating the agents on 100 new, prior unseen test instances, evaluating them after every training-step in (b)
without additional training. A random policy could only achieve a reward of 5.5. The performance of the optimal static policy is given in black.

(a) 1D (b) 2D (c) 3D (d) 5D

Figure 3: Comparison on higher dimensional dynamic configuration problems on {1, 2, 3, 5}D-Sigmoid with |ah,t| = 3 and T = 10. The
solid line is the average performance and the shaded area the standard error over 25 repeated experiments. Due to the interaction effects of the
parameters the reward for random policies is halved when incrementing the number of parameters.

Figure 4: Comparison of training rewards for the ε-greedy agent using
a round robin (RR) scheme against the same agent using self-paced
learning (SPL) on a 1D-Sigmoid with binary actions and T = 11.

runtime as a performance metric, it will therefore be of importance
to find a good trade-off between the granularity of making decisions
and minimizing the overhead. In future work, we plan to jointly learn
the optimal parameter value as well as when to adjust the parameter
value using recent advances in hierarchical RL.

Furthermore, it is important to have informative state features
based on which a policy can change parameter configurations. This is
a known problem for RL in general. However, we argue that most AI
algorithms anyway collect information for reactive heuristics which
could also be used as state information in DAC. Regarding context in-
formation, there exists a plethora of work on descriptive instance fea-
tures, e.g. for AI-planning [13], mixed integer programming [20, 19]
or propositional satisfiability solving [40], which can be used for con-
figuration of algorithms from their respective domains.

As always with RL, the reward function is crucial for learning a
correct behavior. If an algorithm is able to approximate the quality of
solution candidates well, this can be directly used as a reward signal.
However, for some algorithms, the quality of solution candidates is
hard to approximate and in some domains, runtime-related perfor-
mance metrics are relevant, e.g., in SAT solving, which cannot be

easily approximated ahead of time. Nevertheless even for SAT solv-
ing, proxy reward functions were proposed [6] which led to well-
performing SAT solvers. Therefore, we believe it viable in future
work to carefully design reward functions for many AI domains.

9 Conclusion
We proposed a general framework that enables us to learn configu-
ration policies across instances. To the best of our knowledge we are
the first to formalize the dynamic algorithm configuration problem as
a contextual MDP, explicitly taking problem instances into account.
To study different agent types for the problem of DAC in a controlled
setting, we introduced new white-box benchmarks, which enabled us
to study DAC with a variety of different properties.

Using these white-box benchmarks, we demonstrated the robust-
ness of using RL for DAC in scenarios with budget constraints, short
effective sequences, noisy rewards and demonstrate the ability of RL
to handle not only homogeneous but also heterogeneous instances,
readily outperforming classical algorithm configuration. We showed
the effectiveness of function approximation to handle more chal-
lenging state and configuration spaces. We explored the open issue
of handling high-dimensional strong parameter interaction effects,
where out-of-the box RL methods struggled to scale to higher dimen-
sions. Finally we showed the efficacy of self-paced learning for dy-
namic algorithm configuration, ordering instances from easy to hard
to facilitate faster transfer across instances.

ACKNOWLEDGEMENTS
The authors acknowledge funding by the Robert Bosch GmbH, sup-
port by the state of Baden-Württemberg through bwHPC and the
German Research Foundation through INST 39/963-1 FUGG.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

REFERENCES

[1] S. Adriaensen and A. Nowé, ‘Towards a white box approach to auto-
mated algorithm design.’, in Proc. of IJCAI’16, pp. 554–560, (2016).

[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, ‘Learning to learn by gra-
dient descent by gradient descent’, in Proc. of NeurIPS’16, pp. 3981–
3989, (2016).

[3] C. Ansótegui, J. Pon, M. Sellmann, and K. Tierney, ‘Reactive dialectic
search portfolios for maxsat’, in Proc. of AAAI’17, (2017).

[4] C. Ansótegui, M. Sellmann, and K. Tierney, ‘A gender-based genetic
algorithm for the automatic configuration of algorithms’, in Proc. of
CP’09, pp. 142–157, (2009).

[5] R. Battiti, M. Brunato, and F. Mascia, Reactive search and intelligent
optimization, volume 45, Springer Science & Business Media, 2008.

[6] R. Battiti and P. Campigotto, ‘An investigation of reinforcement learn-
ing for reactive search optimization’, in Autonomous Search, 131–160,
Springer, (2011).

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘Curriculum
learning’, in Proc. of ICML’09, pp. 41–48, (2009).

[8] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. De Freitas, ‘Learning to learn without gradient de-
scent by gradient descent’, in Proc. of ICML’17, pp. 748–756, (2017).

[9] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, ‘Quantify-
ing generalization in reinforcement learning’, in Proc. of ICML’19, pp.
1282–1289, (2019).

[10] C. Daniel, J. Taylor, and S. Nowozin, ‘Learning step size controllers for
robust neural network training’, in Proc. of AAAI’16, (2016).

[11] B. Doerr and C. Doerr, ‘Theory of parameter control for discrete black-
box optimization: Provable performance gains through dynamic param-
eter choices’, arXiv:1804.05650, (2018).

[12] C. Fawcett, M. Helmert, H. Hoos, E. Karpas, G. Roger, and J. Seipp,
‘Fd-autotune: Domain-specific configuration using fast-downward’, in
Proc. of ICAPS’11, (2011).

[13] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. Hoos, and
K. Leyton-Brown, ‘Improved features for runtime prediction of
domain-independent planners’, in Proc. of ICAPS’14, pp. 355–359,
(2014).

[14] H. Hoos, R. Kaminski, M. Lindauer, and T. Schaub, ‘aspeed: Solver
scheduling via answer set programming’, TPLP, 15, 117–142, (2015).

[15] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Automated configuration of
mixed integer programming solvers’, in Proc. of CPAIOR’10, pp. 186–
202, (2010).

[16] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Sequential model-based op-
timization for general algorithm configuration’, in Proc. of LION’11,
pp. 507–523, (2011).

[17] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle, ‘ParamILS: An
automatic algorithm configuration framework’, JAIR, 36, 267–306,
(2009).

[18] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. Hoos, and K. Leyton-
Brown, ‘The configurable SAT solver challenge (CSSC)’, AIJ, 243, 1–
25, (2017).

[19] F. Hutter, L. Xu, H. Hoos, and K. Leyton-Brown, ‘Algorithm runtime
prediction: Methods and evaluation’, AIJ, 206, 79–111, (2014).

[20] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘ISAC -
instance-specific algorithm configuration’, in Proc. of ECAI’10, pp.
751–756, (2010).

[21] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, ‘Parameter control
in evolutionary algorithms: Trends and challenges’, IEEE Transactions
on Evolutionary Computation, 19(2), 167–187, (2015).

[22] M. P. Kumar, B. Packer, and D. Koller, ‘Self-paced learning for latent
variable models’, in Proc. of NeurIPS’10, pp. 1189–1197, (2010).

[23] M. G. Lagoudakis and M. L. Littman, ‘Learning to select branching
rules in the DPLL procedure for satisfiability’, Electronic Notes in Dis-
crete Mathematics, 9, 344–359, (2001).

[24] K. Leyton-Brown, E. Nudelman, and Y. Shoham, ‘Empirical hardness
models: Methodology and a case study on combinatorial auctions’,
Journal of ACM, 56(4), 1–52, (2009).

[25] K. Li and J. Malik, ‘Learning to optimize’, in Proc. of ICLR’17, (2017).
[26] M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp,

and F. Hutter. SMAC v3: Algorithm configuration in Python. https:
//github.com/automl/SMAC3, 2017.

[27] M. López-Ibáñez, J. Dubois-Lacoste, L. Perez Caceres, M. Birattari,
and T. Stützle, ‘The irace package: Iterated racing for automatic al-

gorithm configuration’, Operations Research Perspectives, 3, 43–58,
(2016).

[28] M. Luby, A. Sinclair, and D. Zuckerman, ‘Optimal speedup of las vegas
algorithms’, Information Processing Letters, 47(4), 173–180, (1993).

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘Human-level control through
deep reinforcement learning’, Nature, 518(7540), 529–533, (2015).

[30] E. Moulines and F. R. Bach, ‘Non-asymptotic analysis of stochastic ap-
proximation algorithms for machine learning’, in Proc. of NeurIPS’11,
pp. 451–459, (2011).

[31] J. Rice, ‘The algorithm selection problem’, Advances in Computers, 15,
65–118, (1976).

[32] Y. Sakurai, K. Takada, T. Kawabe, and S. Tsuruta, ‘A method to control
parameters of evolutionary algorithms by using reinforcement learn-
ing’, in Proc. of SITIS, pp. 74–79, (2010).

[33] M. Schneider and H. Hoos, ‘Quantifying homogeneity of instance sets
for algorithm configuration’, in Proc. of LION’12, pp. 190–204, (2012).

[34] M. Sharma, A. Komninos, M. López-Ibáñez, and D. Kazakov, ‘Deep re-
inforcement learning based parameter control in differential evolution’,
in Proc. of GECCO’19, pp. 709–717, (2019).

[35] J. Snoek, H. Larochelle, and R. Adams, ‘Practical Bayesian optimiza-
tion of machine learning algorithms’, in Proc. of NeurIPS’12, pp. 2960–
2968, (2012).

[36] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, and H. V. Yamazaki, ‘Chainer: A deep learning
framework for accelerating the research cycle’, in Proc. of KDD’19, pp.
2002–2011, (2019).

[37] H. van Hasselt, A. Guez, and D. Silver, ‘Deep reinforcement learning
with double q-learning’, in Proc. of AAAI’16, pp. 2094–2100, (2016).

[38] C. Watkins and P. Dayan, ‘Q-learning’, Machine learning, 8(3-4), 279–
292, (1992).

[39] L. Xu, H. Hoos, and K. Leyton-Brown, ‘Hydra: Automatically config-
uring algorithms for portfolio-based selection’, in Proc. of AAAI’10, pp.
210–216, (2010).

[40] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, ‘SATzilla: Portfolio-
based algorithm selection for SAT’, JAIR, 32, 565–606, (2008).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

CHAPTER 6
Automated Dynamic Algorithm Configuration

The content of this chapter has been published as:

S. Adriaensen, A. Biedenkapp, G. Shala, N. Awad, T. Eimer, M. Lindauer, and F. Hutter
(2022). “Automated Dynamic Algorithm Configuration”. In: arXiv:2205.13881 [cs.AI].

Project Idea. The comprehensive journal paper was proposed by Marius Lindauer and
Frank Hutter. Steven Adriaensen proposed the discussion of solution approaches beyond
reinforcement learning. Based on his ICAPS 2020 keynote, Frank Hutter proposed the
formalizations of AC, AS, PIAC, and DAC in very similar terms that directly show DAC’s
subsumption of the others.

Implementation and experimentation. Implementation and experimentation were
jointly carried out by Steven Adriaensen, André Biedenkapp and Gresa Shala with support
by Theresa Eimer. Steven Adriaensen implemented and evaluated methods on the SGD
benchmark. Gresa Shala implemented and evaluated methods on the CMA-ES benchmark.
André Biedenkapp implemented and evaluated methods on the FastDownward benchmark.
André Biedenkapp further implemented the code necessary to evaluate the previous meta-
algorithmic frameworks in the form of SMACv3 and Hydra.

Paper writing. Paper writing was led by Steven Adriaensen. André Biedenkapp con-
tributed to various sections in part (including related work) and wrote Section 6.213 in
full. Noor Awad contributed to the related work section. Theresa Eimer wrote Section 5
and Gresa Shala wrote Section 6.1. Marius Lindauer and Frank Hutter revised and edited
the final version of the paper.

13Section numbering refers to the numbering of the original publication.

Automated Dynamic Algorithm Configuration

Automated Dynamic Algorithm Configuration

Steven Adriaensen adriaens@cs.uni-freiburg.de
André Biedenkapp biedenka@cs.uni-freiburg.de
Gresa Shala shalag@cs.uni-freiburg.de
Noor Awad awad@cs.uni-freiburg.de
University of Freiburg, Machine Learning Lab

Theresa Eimer eimer@tnt.uni-hannover.de
Marius Lindauer lindauer@tnt.uni-hannover.de
Leibniz University Hannover, Institute for Information Processing

Frank Hutter fh@cs.uni-freiburg.de

University of Freiburg, Machine Learning Lab & Bosch Center for Artificial Intelligence

Abstract

The performance of an algorithm often critically depends on its parameter configura-
tion. While a variety of automated algorithm configuration methods have been proposed to
relieve users from the tedious and error-prone task of manually tuning parameters, there is
still a lot of untapped potential as the learned configuration is static, i.e., parameter settings
remain fixed throughout the run. However, it has been shown that some algorithm param-
eters are best adjusted dynamically during execution, e.g., to adapt to the current part
of the optimization landscape. Thus far, this is most commonly achieved through hand-
crafted heuristics. A promising recent alternative is to automatically learn such dynamic
parameter adaptation policies from data. In this article, we give the first comprehensive
account of this new field of automated dynamic algorithm configuration (DAC), present a
series of recent advances, and provide a solid foundation for future research in this field.
Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) for-
malize DAC as a computational problem; (iii) identify the methods used in prior-art to
tackle this problem; and (iv) conduct empirical case studies for using DAC in evolutionary
optimization, AI planning, and machine learning.

1. Introduction

Designing robust, state-of-the-art algorithms requires careful design of multiple components.
It is infeasible to know how these components will interact for all possible applications. This
is particularly true in the field of artificial intelligence (AI), pursuing ever more general
problem-solving methods. This generality necessarily comes at the cost of an increased
uncertainty about the problem instances the algorithm will have to solve in practice. To
account for this uncertainty, it is common practice to expose difficult design choices as
parameters of the algorithm, allowing users to customize them to their specific use case.
These algorithm parameters can be numerical (e.g., crossover rate or population size in
evolutionary algorithms, and the learning rate or batch size in deep learning), but also
categorical (e.g., the choice of optimizer in deep learning or the choice of heuristic or search
operator in classical planning and meta-heuristics).

1

ar
X

iv
:2

20
5.

13
88

1v
1

 [
cs

.A
I]

 2
7

M
ay

 2
02

2

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

1.1 Algorithm Configuration

It is widely recognized that appropriate parameter settings are often instrumental for AI
algorithms to reach a desired performance level (Hutter et al., 2010; Probst et al., 2019).
In this paper, we will use the term algorithm configuration (AC) to refer to the process of
determining a policy for setting algorithm parameters as to maximize performance across
a problem instance distribution. AC has been widely studied, both in general (Birattari
et al., 2002; Hutter et al., 2009; Ansótegui et al., 2009; Hutter et al., 2011; López-Ibáñez
et al., 2016), as well as in specific research communities (Lobo et al., 2007; Snoek et al.,
2012; Feurer & Hutter, 2019).

In this work, we focus on a particular kind of AC that is both (i) automated and
(ii) dynamic. This general framework was recently proposed in a conference paper by
Biedenkapp et al. (2020), and in this article we provide the first comprehensive treatment
of the topic. In the remainder of this subsection, we contrast the dynamic/static and
automated/manual approaches and position automated dynamic AC as a natural next step.

Dynamic vs. Static AC: In static AC, parameter settings are fixed prior to execution,
using the information available at that time, and remain invariant during execution. For
example, in evolutionary optimization, the population size is commonly set statically, e.g.,
as a function of the input dimensionality. In contrast, in dynamic AC (DAC), parameter
settings are varied during execution using information that becomes available at run time.
For example, in machine learning, while static AC would choose a learning rate, possi-
bly dependent on meta-data (e.g., size or modality of the dataset), DAC would propose
a learning rate schedule that could additionally be a function of time, alignment of past
gradients, training/validation losses, etc. While not all parameters can be varied dynami-
cally, in practice many can, and it often makes sense to do so. As a general motivating use
case, consider parameters that (indirectly) control the exploration/exploitation trade-off:
Typically, it makes sense to explore more early on, and to exploit this knowledge in later
stages. Even if the optimal configuration happens to be static, predicting it upfront may be
very hard, yet the best static configuration may quickly become apparent while solving the
problem. For instance, if our learning rate is too high, training loss may diverge (Bengio,
2012). DAC has been an active research area that has produced various highly practical
algorithms leveraging dynamic parameter adaptation mechanisms to empirically outper-
form their static counter-parts, e.g., Reactive Tabu Search (Battiti & Tecchiolli, 1994),
CMA-ES (Hansen et al., 2003), and Adam (Kingma & Ba, 2015). Beyond these empirical
successes, the potential of DAC has also been shown theoretically (Moulines & Bach, 2011;
Senior et al., 2013; van Rijn et al., 2018; Doerr & Doerr, 2020; Speck et al., 2021).

Automated vs. Manual AC: The difference between manual and automated AC is
who performs AC : A human or a machine. Over the last two decades, a variety of general-
purpose automated algorithm configurators have been proposed that effectively relieve users
from the tedious and time-consuming task of optimizing parameter settings manually (Hut-
ter et al., 2009; Ansótegui et al., 2009; Kadioglu et al., 2010; Xu et al., 2010; Hutter et al.,
2011; Seipp et al., 2015; López-Ibáñez et al., 2016; Falkner et al., 2018; Pushak & Hoos,
2020). However, there is still a lot of untapped potential, as all of these tools perform
static AC. In contrast, dynamic AC is mostly done manually. Clearly, the human does not
directly adjust the parameters during execution; rather, the mechanisms doing this auto-

2

Automated Dynamic Algorithm Configuration

matically, e.g., learning rate schedules, are products of human engineering. In this work, we
will consider deriving such dynamic configuration policies in an automated and data-driven
fashion.

1.2 Summary of Contributions

In this article, we provide the first comprehensive account of automated DAC. It subsumes
and extends four prior conference papers, in which we

1. established DAC as a new meta-algorithmic framework and proposed solving it using
contextual reinforcement learning (Biedenkapp et al., 2020);

2. applied DAC to evolutionary optimization, tackling the problem of step-size adapta-
tion in CMA-ES (Hansen et al., 2003), and showed that existing manually-designed
heuristics can be used to guide learning of DAC policies (Shala et al., 2020);

3. applied DAC to AI planning, tackling the problem of heuristic selection in FastDown-
ward (Helmert, 2006), and showed how DAC subsumes static algorithm configuration
and can improve upon the best possible algorithm selector (Speck et al., 2021); and

4. presented DACBench, the first benchmark library for DAC, facilitating reproducible
results through a unified interface (Eimer et al., 2021b).

Here, we go well beyond this previous work, by

i more thoroughly discussing and classifying related work in different areas (Section 2),
placing recent work on automated DAC in its scientific and historical context;

ii establishing a formal problem formulation (Section 3), offering a novel theoretical per-
spective on DAC and its relation to existing computational problems;

iii discussing possible methods for solving DAC problems (Section 4), beyond reinforcement
learning, and classifying previous work according to their methodology;

iv extending and using DACBench (Section 5) to perform empirical case studies that

- demonstrate recent successes of automated DAC
- provide empirical validation for the benchmark library, and
- show that DAC presents a practical alternative to static AC, in various areas of

AI: evolutionary optimization (Section 6.1), AI planning (Section 6.2), and machine
learning (Section 6.3); and

v discussing current limitations of DAC (Section 7).

As such, we provide the first comprehensive overview of automated DAC, a standard refer-
ence and a solid foundation for future research in this area.

2. Related Work

Automated DAC is a new and exciting research area. However, it did not arise out of thin
air, rather it closely relates to, builds on, and tries to consolidate past research efforts. In
this section, we place recent work on automated DAC in its scientific and historical context.
We start by introducing the terminology we use (Section 2.1). Then, we situate DAC in
the broader context of AI (Section 2.2). Finally, we discuss some specific prior-art, covering
historical work as well as the most recent developments (Section 2.3).

3

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

2.1 Terminology

Algorithm parameters are omnipresent in computer science. Unsurprisingly, no single set of
terms has been consistently used when discussing the problem of how to best set them. In
this section, we briefly clarify some of the terms we use, relating them to known alternatives.

We use the term algorithm configuration (AC) to refer to the process of determining a
policy for setting an algorithm’s parameters as to maximize performance (or equivalently,
minimize cost) across an input distribution. In the classical AC literature (Birattari et al.,
2002; Hutter et al., 2009; Ansótegui et al., 2009), this process results in a single parameter
setting (i.e., a complete assignment of values to parameters) and is called a configuration.
Later work generalized AC to produce configurations that are a function of the context in
which they are used, e.g., the problem instance at hand (Kadioglu et al., 2010; Xu et al.,
2010), and most recently the dynamic execution state (Biedenkapp et al., 2020). We will
use the term configuration policy to refer to the result of AC in general. To disambiguate
the aforementioned AC variants, we add the prefixes per-distribution (or also classical),
per-instance and dynamic, respectively. Finally, while AC terminology was introduced in
the context of attempts to automate this process, the term itself does not imply automation,
i.e., we add prefixes automated and manual to specify whether configuration policies are
determined automatically or through a manual engineering process, respectively.

In this work, we follow a meta-algorithmic approach to automating AC: We will treat
AC as a computational problem to be solved by executing an algorithm. Hence, we have
problem instances and algorithms at two different levels and will use the prefixes (D)AC and
target to disambiguate these: For example, research on automated DAC aims to find a DAC
algorithm for tackling the general DAC problem. In a given DAC problem instance, we aim
to find a policy for configuring the parameters of a given target algorithm as to optimize its
performance across a distribution of target problem instances. We also use DAC method and
DAC scenario as a synonym for DAC algorithm and DAC problem instance, respectively.

In machine learning, the problem of setting the hyperparameters of the learning pipeline
is known as hyperparameter optimization (HPO, Feurer & Hutter, 2019). We consider the
more general problem of setting the parameters of any target algorithm and therefore adopt
a more general terminology (Eggensperger et al., 2018). In meta-learning terms, AC problem
solving corresponds to the outer-loop and target problem solving to the inner-loop.

In heuristic optimization, the terms parameter tuning and parameter control are com-
monly used to refer to static and dynamic algorithm configuration, respectively (Lobo et al.,
2007). Also, the terms online (during use) and offline (before use) are sometimes used as
synonyms for dynamic and static, respectively. In this work, we refrain from doing so, re-
serving these terms to refer to when (D)AC takes place (see Figure 1). In the offline setting,
AC takes place in a dedicated configuration phase (similar to training in machine learning)
where we determine which configuration to use later to solve the problems of actual interest
to the user (i.e., at use time). In the online setting, AC happens at use time (Fitzgerald,
2021). In that sense, offline and dynamic are not mutually exclusive. In fact, most prior-art
does DAC offline, determining a dynamic policy offline by using a training set, and at use
time simply executing that dynamic policy on new problem instances.

4

Automated Dynamic Algorithm Configuration

Figure 1: Offline vs. online learning of DAC policies.

2.2 Related Research Areas

While automating DAC is a relatively understudied problem, much research has been per-
formed studying related problems. In what follows, we briefly characterize this work and
how it relates to automating DAC. See Appendix A for a more formal treatment of this
topic, where we provide problem definitions, possible reductions, and proof their correctness.

2.2.1 Automated Design of Algorithms / Components

The idea of letting computers, rather than humans, design algorithms has been studied in
many different communities, using a variety of different methods. Some well-known, his-
torical examples are program synthesis, using logical inference (Manna & Waldinger, 1980),
and genetic programming, using evolutionary algorithms (Koza, 1992). Recent advances in
machine learning have prompted a surge in approaches learning algorithms, e.g., Neural
Turing machines (Graves et al., 2014), learning-to-learn (L2L , Andrychowicz et al., 2016;
Lv et al., 2017; Bello et al., 2017; Metz et al., 2020), and learning-to-optimize (L2O, Li &
Malik, 2017; Kool et al., 2018; Chen et al., 2021).

Generally speaking, algorithm parameters can be seen as “algorithmic design choices”
that are left open at design time. In that sense, automated configuration is naturally
viewed as a way of automating part of the algorithm design process. This approach has
been referred to as “programming by optimization” (PbO, Hoos, 2012). While previous
PbO applications used static AC approaches, the original PbO philosophy envisioned the
possibility of varying design decisions at runtime, something naturally achieved by DAC.

A key difference between PbO and the aforementioned design automation approaches is
that in PbO algorithms are not designed “from scratch”, instead only design choices that are
“difficult” for the human designer are made automatically by the configurator. For instance,
DAC aims to design learning rate schedules (e.g., Daniel et al., 2016), but not entire
optimizers as in L2L/L2O. In summary, DAC can be viewed as automatically designing
parameter controlling components, and “DAC powered PbO” as a general semi-automated
algorithm design approach that enables the human designer to bias the design process
by embedding prior knowledge (e.g., obtained through decades of algorithmic research),
thereby reducing the computational requirements and improving generalization.

5

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

2.2.2 Meta-Algorithmic Frameworks

Algorithm Selection Problems can be solved using a variety of different algorithms.
For example, if we want to sort a sequence of numbers, we could do so using insertion sort,
merge sort, quick sort, etc. In algorithm selection, we determine a mapping from features
of the problem instance (e.g., sequence length) to the algorithm best suited to solve it (e.g.,
that sorts the sequence fastest). While first formalized by Rice (1976), this computational
problem only received wide-spread attention two decades later, when it was independently
rediscovered by Fink (1998), and Leyton-Brown et al. (2003) proposed to solve it using
machine learning methods. This approach has resulted in various successful applications,
e.g., SATzilla (Xu et al., 2008), a portfolio solver selecting between state-of-the-art SAT
solvers to win multiple (gold) medals at the 2007 and 2009 SAT competitions. We refer to
Kotthoff (2014) and Kerschke et al. (2019) for surveys on this topic.

Algorithm Scheduling It is often difficult to efficiently predict which algorithm will per-
form best on a given problem instance. In many settings, poor choices may require orders
of magnitude longer than optimal choices, and tend to dominate average performance. In
algorithm scheduling, instead of selecting a single algorithm, we aim to find an optimal time
allocation. Automated algorithm scheduling was first extensively studied in seminal work
by Huberman et al. (1997) and Gomes and Selman (2001), and follow-up work, e.g., by Hoos
et al. (2015), typically focuses on finding a fixed time allocation that works best on average
across instances (i.e., per-distribution). These kind of algorithm schedules are also very
popular in the AI planning community, e.g., in Fast Downward Stonesoup (Helmert et al.,
2011). Scheduling has also been combined with algorithm selection to find instance-specific
schedules (Kadioglu et al., 2011; Lindauer et al., 2016). Dynamic scheduling approaches
allocate resources to the algorithms based on runtime information (e.g., Carchrae & Beck,
2004; Gagliolo & Schmidhuber, 2006; Nguyen et al., 2021). This allows them to exploit the
fact that, while it may be difficult to predict which algorithm performs best in advance,
their relative performance may become apparent early-on in their executions. DAC also
takes advantage of this property. However, unlike DAC, dynamic scheduling is restricted
to allocating resources to independent processes; i.e., in scheduling, no information is ex-
changed between algorithm runs, and resources allocated to all but the one producing the
eventual solution are effectively wasted.

Algorithm Configuration While algorithm selection chooses between multiple target
algorithms on a per-instance basis, classical per-distribution algorithm configuration (AC)
is concerned with finding the parameter setting of a single algorithm that performs best
across all given instances. As the space of possible configurations grows exponentially in
terms of the number of parameters, research on AC has traditionally focused on (i) efficient
search methods, e.g., local search (Hutter et al., 2009), genetic algorithms (Ansótegui et al.,
2009) and Bayesian optimization (Hutter et al., 2011); and (ii) efficient evaluation of con-
figurations, e.g., using racing (Birattari et al., 2002), adaptive capping (Hutter et al., 2009),
structured procrastination (Kleinberg et al., 2017) and multi-fidelity optimization (Li et al.,
2018). This line of work has resulted in a variety of automated tools known as configura-
tors that for any given target algorithm quickly find a configuration that performs well
on average across a set of target problem instances, e.g., ParamILS (Hutter et al., 2009),
GGA (Ansótegui et al., 2009, 2015, 2021), SMAC (Hutter et al., 2011), iRace (López-

6

Automated Dynamic Algorithm Configuration

Ibáñez et al., 2016), and Golden Parameter Search (Pushak & Hoos, 2020); as well as
various theoretical insights (Kleinberg et al., 2017; Weisz et al., 2019; Hall et al., 2019,
2020). Configuration has further been combined with algorithm selection (Kadioglu et al.,
2010; Xu et al., 2010), and algorithm scheduling (Seipp et al., 2015). However, all of these
consider determining a static configuration policy, and the pursuit of similar automated
tools and theory for DAC is a natural extension of this line of work.

2.2.3 Adaptive Operator Selection and Parameter Control

Heuristic Approaches The potential of varying parameters during execution time is
widely recognized and has been extensively studied in various areas of AI. For instance, in
heuristic optimization, this problem has been studied in the context of parameter control for
evolutionary algorithms (Aleti & Moser, 2016), reactive search (Battiti et al., 2008), and se-
lection hyper-heuristics (Drake et al., 2020). In machine learning, one hyperparameter that
is typically varied is the learning rate, e.g., using global learning rate schedules (Loshchilov
& Hutter, 2017; Smith, 2017) or adaptive gradient methods (Kingma & Ba, 2015) adopting
weight-specific step-sizes. These works typically consider the dynamic configuration policy
as a given and present an empirical/theoretical analysis thereof. Furthermore, the policies
themselves were designed by human experts. In contrast, automated DAC is concerned
with finding such policies automatically in a data-driven fashion. That being said, prior-art
automating DAC does exist and is discussed in Section 2.3. Before doing so, we will briefly
discuss a broad class of methods that rely less on human expert knowledge, but that we
nonetheless do not generally regard as automated DAC.

Online Learning Approaches Many parameter control mechanisms integrate complex
feedback loops, learning and optimization mechanisms, creating the potential that the DAC
policy is not entirely predetermined by the human, but is rather learned online, while solving
the problem instance at hand. All depends on the relative contribution to performance due
to (i) the exploration of the hand-crafted DAC algorithm, and (ii) the exploitation of the
DAC policy it learns. In an offline setting, distinguishing between (i) and (ii) is easy, as
(i) does not occur at test/use time. In online settings, both are intertwined by nature.
Note that this does not rule out “online DAC”, but rather necessitates dedicated analysis
that learning indeed takes place. Furthermore, in Section 3.2, we will define DAC as the
problem of finding dynamic configuration policies “that generalize across a distribution of
target problem instances”. Therefore, in our nomenclature, in order to qualify as automated
DAC, an approach must demonstrate the ability to successfully transfer experience across
runs of the target algorithm on target problem instances drawn from the same distribution.
In machine learning terms, automated DAC does not only require learning, but also meta-
learning. Please note that most previous online learning approaches to parameter control
(e.g., Muller et al., 2002; Carchrae & Beck, 2004; Chen et al., 2005; Eiben et al., 2006;
Prestwich, 2008; Wessing et al., 2011; Gaspero & Urli, 2012; Schaul et al., 2013; Karafotias
et al., 2014; Baydin et al., 2018) trivially do not meet this criterion, as no information is
transferred across runs. Note that massive parallel online HPO methods such as Population
Based Training (PBT, Jaderberg et al., 2017) also fall into this category.

7

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

2.3 Prior-Art: Automated Dynamic Algorithm Configuration

The term dynamic algorithm configuration (DAC) was only recently introduced by Biedenkapp
et al. (2020). However, various authors had previously (or, in a few cases, concurrently)
investigated the possibility of automatically determining policies for varying the configu-
ration of an algorithm on-the-fly. In what follows, we give a brief overview of literature
on automated DAC (“avant-la-lettre”).1 Here, we discuss these by application domain, a
methodological overview is presented in Section 4.

Pioneering work by Lagoudakis and Littman (2000, 2001) explored this setting in the
context of recursive algorithm selection, observing that sub-problems are better solved using
different algorithms (e.g., sorting sub-sequences using different sorting algorithms). While
initial results were promising, their approach was limited to recursive target algorithms.
Pettinger and Everson (2002) considered a more general setting, learning a policy jointly
selecting mutation and crossover operators in a genetic algorithm, per generation, based on
statistics of the current population.2 Various other works have explored automating DAC
in the context of genetic algorithms (Fialho et al., 2010; Sakurai et al., 2010; Andersson
et al., 2016), evolutionary strategies (Sharma et al., 2019), and heuristic optimization in
general (Battiti & Campigotto, 2012; López-Ibánez & Stützle, 2014; Ansótegui et al., 2017;
Kadioglu et al., 2017; Sae-Dan et al., 2020). Similar investigations were also conducted in
various other communities, e.g., machine learning (Daniel et al., 2016; Hansen, 2016; Fu,
2016; Xu et al., 2017, 2019; Almeida et al., 2021), AI planning (Gomoluch et al., 2019, 2020),
exact search (Bhatia et al., 2021), and quadratic programming (Getzelman & Balaprakash,
2021; Ichnowski et al., 2021).

Biedenkapp et al. (2020) introduced DAC in an attempt to consolidate these isolated
efforts and to raise the level of generality in pursuit of algorithms similar to those that exist
for static AC. Direct follow-up work has provided additional evidence for the practicality
of DAC by learning step-size adaptation in CMA-ES (Shala et al., 2020), and by learning
to select heuristics in the FastDownward planner (Speck et al., 2021). These application
domains, together with the learning rate control setting from (Daniel et al., 2016), have later
been released as part of a benchmark suite, called DACbench (Eimer et al., 2021b), offering a
unified interface that facilitates comparisons between different DAC methods across different
DAC scenarios. In this article, we extend this initial discussion of Biedenkapp et al. (2020)
and present a thorough empirical comparison of AC and DAC on these three different real-
world DAC applications (Daniel et al., 2016; Shala et al., 2020; Speck et al., 2021) using
the unified DACbench interface.

3. Problem Definition

In this section, we formalize the computational problem underlying DAC. Here, we first
introduce formulations for static AC variants (Section 3.1), and then define the dynamic
AC problem (Section 3.2).

1. We maintain a list of work on automated DAC here:
https://www.automl.org/automated-algorithm-design/dac/literature-overview/

2. Notably, direct follow-up work by Chen et al. (2005), no longer transferred experience across runs and
is therefore not considered prior-art automating DAC (see Section 2.2.3).

8

Automated Dynamic Algorithm Configuration

3.1 Static Algorithm Configuration

In algorithm configuration, we have some target algorithm A with parameters p1, p2, . . . , pk
that we would like to configure, i.e., assign a value in the domains Θ1,Θ2, . . . ,Θk, respec-
tively. Furthermore, we may wish to exclude certain invalid combinations, giving rise to the
space of candidate configurations Θ ⊆ Θ1 × Θ2 × · · · × Θk, called the configuration space
of A. In classical per-distribution algorithm configuration, we aim to determine a single
θ∗ ∈ Θ that minimizes a given cost metric c in expectation across instances i ∈ I of our
target problem distribution D. This problem can be formalized as follows:

Definition 1: Classical / Per-distribution Algorithm Configuration (AC)

Given 〈A,Θ,D, c〉:

– A target algorithm A with configuration space Θ

– A distribution D over target problem instances with domain I

– A cost metric c : Θ× I → R assessing the cost of using A with θ ∈ Θ on i ∈ I

Find a θ∗ ∈ arg minθ∈Θ Ei∼D [c(θ, i)].

In practice, A, D, and c are not given in closed form. Instead, c is typically a black-box
procedure that executes A with configuration θ on a problem instance i and quantifies cost
as a function of the desirability of this execution, e.g., how long the execution took, and/or
the quality of the solution it found. Note that D is our true target distribution, i.e., the
likelihood A is presented with an instance i at use time. In the online setting, we are given
a sequence of samples from the actual distribution in real time (Fitzgerald, 2021). In the
offline setting, we typically do not have access to i ∼ D, and are given a set of instances I ′

sampled i.i.d. from some representative training distribution D′ ≈ D instead.
Note that unless a single configuration is non-dominated on all instances, better perfor-

mance may be achieved by making the choice of θ dependent on the problem instance i at
hand. This extension is known as:

Definition 2: Per-instance Algorithm Configuration (PIAC)

Given 〈A,Θ,D,Ψ, c〉:

– A target algorithm A with configuration space Θ

– A distribution D over target problem instances with domain I

– A space of per-instance configuration policies ψ ∈ Ψ with ψ : I → Θ that
choose a configuration θ ∈ Θ for each instance i ∈ I.

– A cost metric c : Ψ× I → R assessing the cost of using A with ψ ∈ Ψ on i ∈ I

Find a ψ∗ ∈ arg minψ∈Ψ Ei∼D [c(ψ, i)]

Note that the definition above is highly general. For example, by specifying Ψ accordingly
PIAC can put arbitrary constraints on the configuration policies of interest. As a conse-

9

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

quence, classical per-distribution AC can be seen as a special case of PIAC only considering
constant ψ, i.e., Ψ = {ψ |ψ(i) = ψ(i′), ∀ i, i′ ∈ I}. More generally, configuration policies
could be restricted to be a function of specific features of i, or to belong to a specific (e.g.,
linear) function class. Note that this definition is also strictly more general than uncon-
strained PIAC, which is itself a special case. Also worth noting is that the cost metric c in
this definition can be an arbitrary function of ψ (and i). In particular, we do not constrain
c to be a function of ψ(i), but allow it to quantify non-functional aspects of ψ, e.g., its
minimal description length or computational complexity. That being said, most practical
PIAC approaches are limited to minimizing Ei∼D [c′(ψ(i), i)], given some c′ : Θ× I → R.

3.2 Dynamic Algorithm Configuration

In dynamic AC, we aim to optimally vary θ ∈ Θ while executing A. In order to formalize
this problem, we need to define points of interaction where A can be reconfigured. To this
end, we decompose the execution of A with dynamic configuration policy π ∈ Π on problem
instance i ∈ I as shown in Algorithm 1. Here, we start executing an “init” sub-routine
bringing A in some initial state s ∈ S only depending on i. Subsequently, we iteratively
execute “step” to determine the next state s′ ∈ S of A as a function the current state s, in-
stance i, and configuration π(s, i) ∈ Θ. This process continues until is final(s, i) signalling
termination and s is returned as solution. When such decomposition 〈init, step, is final〉
is given, we will call A step-wise reconfigurable and define DAC as follows:

Definition 3: Dynamic Algorithm Configuration (DAC)

Given 〈A,Θ,D,Π, c〉:

– A step-wise reconfigurable target algorithm A with configuration space Θ.

– A distribution D over target problem instances with domain I

– A space of dynamic configuration policies π ∈ Π with π : S × I → Θ that
choose a configuration θ ∈ Θ for each instance i ∈ I and state s ∈ S of A

– A cost metric c : Π× I → R assessing the cost of using π ∈ Π on i ∈ I.

Find a π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]

Algorithm 1 Step-wise execution of a dynamically configured target algorithm A
Input: Dynamic configuration policy π ∈ Π; target problem instance i ∈ I
Output: Solution for i found by A (following π)

1: procedure A(π, i)
2: s← init(i) . Initial state by starting the execution of A on i
3: while ¬ is final(s, i) do
4: θ ← π(s, i) . Reconfiguration point: Use π to choose next θ
5: s← step(s, i,θ) . Continue executing A using θ

6: return s . Execution terminated: Return solution

10

Automated Dynamic Algorithm Configuration

Here, we define DAC as a generalization of PIAC, considering configuration policies that
do not only depend on i, but also the dynamically changing state s ∈ S of the target
algorithm A, i.e., Ψ ⊆ {π |π(i, s) = π(i, s′), ∀ s, s′ ∈ S,∀ i ∈ I}. This dynamic state, by
definition, provides all information required for continuing the execution of A, however can
additionally contain arbitrary features of the execution thus far. As in PIAC, c can be an
arbitrary function of π (and i). However, often the total cost of executing A with π on i
can be decomposed and attributed to the T individual execution steps. Formally: In DAC
with step-wise decomposable cost, we are given functions 〈cinit, cstep〉, such that

c(π, i) = cinit(i) +

T−1∑

t=0

cstep(st, i, π(st, i))

where st =

{
init(i) t = 0

step(st−1, i, π(st−1, i)) t > 0
∧ is final(st, i)⇔ t = T.

Note that cinit and cstep only depend on i and π(st, i), i.e., cannot measure non-functional
aspects of π.

4. Solution Methods

In this section, we discuss methods for solving DAC. As discussed in Section 2.2.3, DAC has
so far been primarily solved manually, i.e., dynamic configuration policies have been deter-
mined by humans and not in an automatic and data-driven way. In Section 2.3, we discussed
previous work exploring automated DAC, and in what follows we will give an overview of
the methods they used for doing so. Please note that no dedicated, general DAC solvers
exist to date. Instead, prior-art can be viewed as solving DAC by reduction to some other
well-studied computational problem.3 Considering the fact that most of this work has been
performed in isolation and tackles very different DAC scenarios, the high-level solution ap-
proaches followed are remarkably similar. In particular, we will roughly distinguish between
two approaches: “DAC by reinforcement learning” (Section 4.1) and “DAC by optimiza-
tion” (Section 4.2), and discuss their relative strengths and weaknesses (Section 4.3).

4.1 DAC by Reinforcement Learning

In reinforcement learning (RL, Sutton & Barto, 2018), an agent learns to optimize an
unknown reward signal by means of interaction with an unknown environment. The RL
agent takes actions a ∈ A, observes a transition T from the current state s ∈ S of the
environment to T (s, a) ∈ S, receives a reward R(s, a) ∈ R, and learns for any state the
action maximizing its expected future reward. Formally, the RL agent solves a Markov
decision problem 〈S,A, T,R〉 (MDP, Definition 10 in Appendix A.3.5). Here, the transition
T and reward R are given in the form of a black box method. Also, the state space S is
typically not given explicitly; instead, we are given a procedure for generating initial states
and can generate further states using T .

3. In Appendix A, we define these related computational problems and discuss reductions more formally.

11

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Figure 2: Illustration of DAC by Reinforcement Learning (DAC components in blue)

The RL problem described above is closely related to DAC, and prior art has commonly
solved DAC using reinforcement learning methods. In DAC by RL, the environment consists
of the target algorithm A solving some target problem instance i ∈ I. The state of this envi-
ronment is s = (s′, i) ∈ S with s′ ∈ S the state of the algorithm, and initial states (init(i), i)
with i ∼ D. At every reconfiguration point, the RL agent interacts with this algorithm
choosing a configuration θ ∈ Θ as action. The transition dynamics of the environment are
fully determined by step-wise algorithm execution, i.e., T ((s′, i), θ) = (step(s′, i, θ), i), and
the reward is R((s′, i), θ) = − cstep(s′, i, θ). See Figure 2 for an illustration of this approach.
The power of this reduction lies in the fact that the resulting MDP can be solved using the
full gamut of existing reinforcement learning methods.

Traditional RL: Early DAC by RL work (e.g., Lagoudakis & Littman, 2000, 2001; Pet-
tinger & Everson, 2002; Sakurai et al., 2010; Battiti & Campigotto, 2012) used traditional
value-based RL methods that learn the optimal state-action value function Q∗(s, a) and
return the policy π(s) ∈ arg maxa∈AQ

∗(s, a). These methods work well when S × A is
small enough to be represented explicitly by a table, but do not scale up. Note that both
S and A = Θ are typically too large in DAC to be modelled in tables.

Modern RL: Over the last decade, a series of methodological advances have given rise
to a new generation of RL methods that can tackle complex real-world problems (Mnih
et al., 2015; Silver et al., 2016; Barozet et al., 2020; Lee et al., 2020), and that have also
been successfully applied to DAC. In particular, modern RL methods based on deep neural
networks can effectively learn useful representations that allow them to handle complex state
and action spaces, using, e.g., (double) deep Q-learning (DDQN, Hansen, 2016; Sharma

12

Automated Dynamic Algorithm Configuration

et al., 2019; Speck et al., 2021; Bhatia et al., 2021), modern actor critic (Andersson et al.,
2016; Xu et al., 2017; Ichnowski et al., 2021), and policy gradient methods (Daniel et al.,
2016; Xu et al., 2019; Gomoluch et al., 2019; Shala et al., 2020; Getzelman & Balaprakash,
2021; Almeida et al., 2021).

Contextual RL: It is worth noting that standard RL methods are not instance-aware
and will generally not choose their initial state (see Figure 2, where i is hidden inside the
environment). This is one of the reasons Biedenkapp et al. (2020) proposed to model DAC
as a contextual MDP (cMDP, Hallak et al., 2015), which consists of a collection of MDPs,
one for each instance i (see Definition 11 in Appendix A.3.5). Each MDP M(i) shares a
common action space S and state space A as in traditional RL, but possesses an instance-
specific transition function Ti and reward function Ri. This more general formulation
allows DAC practitioners to explicitly model variation between instances: Variations in
transition dynamics model the differences in target algorithm behaviour between instances
(i.e., how the target algorithm progresses in solving an instance) while different reward
functions reflect the instance-specific objectives. Although a single MDP can capture these
dependencies implicitly, the explicit model allows the contextual RL agent to directly exploit
this knowledge. For example, instances may vary in difficulty. A contextual RL agent, being
aware of different instances and their characteristics, can more easily learn this, allowing
the agent to more accurately assign credit for high/low rewards to (i) following a good/poor
policy or (ii) solving easy/hard instances. Furthermore, the agent can choose which MDP
M(i) it interacts with, e.g., to gather more experience on harder instances (Klink et al.,
2020; Eimer et al., 2021a).

4.2 DAC by Optimization

Not all prior art automating DAC has done so using reinforcement learning. Instead,
some previous works can be viewed as reformulating DAC as a (non-sequential) optimiza-
tion problem: Given a search space Π and an objective function f(π) = Ei∼D [c(π, i)], find
π∗ ∈ arg minπ∈Π f(π). This approach is illustrated in Figure 3. Optimization covers a wide
variety of different methods. In what follows, we give an overview of those used in prior
art for “DAC by optimization”, and distinguish between different variants of optimization
depending on (i) search space representation, and (ii) what information about f is used.

Noisy Black Box Optimization: In black box optimization (BBO), the only interaction
between f and the optimizer is through an evaluation procedure e that returns f(π) for any
given π ∈ Π. A wide variety of black box optimizers exist, specialized for particular kinds
of representations. In the reduction, dynamic configuration policies can be represented in a
variety of different ways. For example, prior-art (Gomoluch et al., 2020) represents policies
as real-valued vectors that correspond to the weights of a neural network policy, and opti-
mizes these using evolution strategies. It is worth noting that a similar approach is currently
state-of-the-art in learning-to-learn (Metz et al., 2020) (see Section 2.2.1). However, one
could go further and also vary the architecture and optimize directly in the space of neural
networks, e.g., using methods from neuroevolution (Stanley & Miikkulainen, 2002; Stanley
et al., 2021). Alternatively, one could follow a symbolic approach, representing policies as
programs and use genetic programming (Koza, 1992). Remark that this freedom comes

13

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Figure 3: Illustration of DAC by Optimization (DAC components in blue)

with responsibility, i.e., making an appropriate choice of representation may be crucial to
achieve satisfactory performance. Next to representation, another difficult choice in this
reduction is the evaluation procedure. Since D is unknown, e cannot evaluate f exactly in
general. Instead, we typically evaluate the cost on some finite sample of target problem
instances I ′ ⊆ I with ∀i ∈ I ′ : i ∼ D, and e(π) = 1

|I′|
∑

i∈I′ c(π, i). However, the choice

of |I ′| still poses a trade-off between accuracy and cost of evaluation to the DAC by BBO
practitioner.

Static Algorithm Configuration: We can also solve DAC using classical static algo-
rithm configurators (e.g., SMAC and irace). Assuming we choose a parametric representa-
tion Λ for the policy space, i.e., Π = {πλ |λ ∈ Λ}, the DAC problem can be reformulated
as classical AC, where we configure the parameters λ of the dynamic configuration policy
πλ, instead of configuring the parameters θ of the target algorithm.4 While solving DAC
using static AC may at first sight seem contradictory, this reduction gives rise to a highly
practical solution approach that has been explored extensively in prior art (Fialho et al.,
2010; López-Ibánez & Stützle, 2014; Andersson et al., 2016; Ansótegui et al., 2017; Kadioglu
et al., 2017; Sae-Dan et al., 2020). An important benefit specific to this approach is that al-
gorithm configurators are instance-aware and therefore automate the trade-off between the
accuracy/cost of evaluation (using so-called racing mechanisms), and can even vary I ′ ⊂ I
dynamically to focus evaluation on those instances providing the most useful information.

Gradient-based Optimization In AC, we typically use gradient-free optimization. The
motivation is that we cannot generally compute analytical gradients. While this is true in
general, we would like to argue that the specific cases where we can actually compute them
are more prominent than one might expect. Assuming a step-wise decomposable cost, we
can compute the derivative ∇λci = ∂c(πλ,i)

∂λ from the derivatives of the step-wise cost, the
step, and the policy, using the chain rule (see Appendix A.3.6). When cstep, step, and π
can be implemented using the operations in an automated differentiation framework (e.g.,
autograd in Pytorch, Paszke et al., 2017), these gradients can be calculated efficiently, reli-
ably, without requiring any additional mathematical knowledge from the DAC practitioner.
In fact, in the machine learning community, in particular meta-learning, differentiating
through the entire learning process is almost standard practice (Maclaurin et al., 2015;
Andrychowicz et al., 2016; Finn et al., 2017). The potential benefit of this extra piece of
information is not to be underestimated. DAC policies may have many hyperparameters,
e.g., a neural network with thousands of weights. Gradient-based optimization is an effi-

4. We proof the correctness of this reduction in Appendix A.3.1

14

Automated Dynamic Algorithm Configuration

cient way to navigate extremely high-dimensional spaces, as is evidenced by deep neural
networks with millions of parameters being trained almost exclusively using simple first
order optimization methods. That being said, gradients for DAC are no silver bullet. Com-
puting them, while possible, may require too many computational resources. Furthermore,
gradients only provide local information, i.e., an infinitesimal change to every parameter
that is guaranteed to reduce cost. When f is particularly rugged, gradients may not provide
information about the effect of any reasonably sized change. This phenomena has, in fact,
been observed in the context of learning-to-learn (Metz et al., 2019).

4.3 Reinforcement Learning vs. Optimization?

Now, we discuss the relative strengths and weaknesses, and argue for the potential of com-
bining both approaches.

Why DAC by RL? The sequential nature of the problem is arguably the key feature that
sets DAC apart from static AC: In static AC, we only have to select a single configuration,
while in DAC we must select a sequence of such configurations. RL provides a very general
framework for tackling sequential decision problems and was presented as the method of
choice for DAC by Biedenkapp et al. (2020). DAC by optimization approaches reduce
DAC to a non-sequential optimization problem. In doing so, valuable information about
the problem is lost that may otherwise be used to solve it more efficiently (Adriaensen
& Nowé, 2016). While executing a target algorithm, an RL agent observes at every step
what configurations were used, the (immediate) costs this incurred, and how this affected
the dynamic state of the algorithm. In contrast, the same evaluation provides a black box
optimizer with a single value (i.e., the sum of costs incurred), at the end of the run. This
inherent relative sample-inefficiency of black box optimization is particularly problematic
when target algorithm execution is costly, e.g., takes multiple hours.

Why DAC by Optimization? Previous work has shown that optimization can be a
practical alternative to RL in simulated environments (Mannor et al., 2003; Szita & Lörincz,
2006; Salimans et al., 2017; Chrabaszcz et al., 2018; Majid, 2021). While RL aims to exploit
sequential information, contemporary RL methods do not always do so successfully. Also,
in some scenarios, this information may not add much value, or may even be deceptive (e.g.,
delayed rewards). Finally, these mechanisms add considerable computational overhead, and
complicate implementation. In contrast, optimization methods tend to be simpler, have
fewer failure modes, and their often parallel nature makes them well-suited for modern
high-performance computing infrastructure. Adding to these limitations of RL methods
are limitations of the reduction. While DAC is generally reducible to a (noisy) black box
optimization problem, the previously discussed reduction to an MDP implicitely assumes
(i) the cost function c to be step-wise decomposable an (ii) the space of policies Π to
be unconstrained. As a consequence, it cannot be used when optimizing non-functional
aspects of the policy (e.g., resources it requires to make decisions) or to impose arbitrary
hard constraints on Π (e.g., which of these N policies is best?).

Beyond RL or Optimization: Our discussion thus far focused on contrasting both
approaches. In what remains, we look at their relation, and argue for the potential of
combining them. First, our “sequential vs. non-sequential” discussion can be extended to

15

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

“a method’s ability to exploit a certain characteristic of DAC”, or not. A good example
of a cross-cutting characteristic is instance-awareness, both contextual RL and static AC
can be viewed as instance-aware extensions of RL and black box optimization, respectively.
Second, the pitfalls of RL also apply to approaches exploiting other characteristics. For
example, gradients in optimization can be similarly deceptive (e.g, exploding/vanishing
gradient problem) as immediate rewards. Therefore, while artificially hiding information is
useless, blindly relying on it introduces failure modes, and general DAC methods should be
carefully designed to only rely on information that is available and useful for the scenario
at hand. In the context of “sequential vs. non-sequential”, this suggests the importance of
combining reinforcement learning and optimization. Further underpinning this conjecture,
is the observation that state-of-the-art static AC methods combine optimization with ma-
chine learning, and reinforcement learning is essentially a dynamic extension of the latter.

5. Benchmark Library

In this section, we present DACBench (Eimer et al., 2021b), a novel benchmark library for
DAC that we will be using in our experiments in Section 6. We have seen related fields like
hyperparameter optimization, static algorithm configuration and algorithm selection profit
greatly from focusing on shared benchmark problems (Eggensperger et al., 2013; Hutter
et al., 2014; Bischl et al., 2016). In these meta-algorithmic domains, standardizing the
target algorithm setup did not only increase the accessibility of the field by reducing some
of the specialized knowledge required to get started in the field, it also made comparisons
between different methods more reliable and reproducible. DACBench provides such a
standard for DAC. In what follows, we give a brief overview of the interface it provides,
the benchmarks it implements, and prior empirical validation it has undergone. We also
discuss novel developments and highlight extensions that were motivated by and/or made
specifically in the context of this work.5

Interface: DACBench builds upon a common RL interface, OpenAI’s gym (Brockman
et al., 2016), as it provides a flexible template for step-wise interaction with the target
algorithm. The target algorithm init is handled in the gym.Env.reset method, with
each step-wise interaction handled by the gym.Env.step method. DACBench extends the
gym.Env.reset method to provide the ability to select the problem instance i to be solved.
Listing 1 shows how DAC components are mapped onto the gym interface in the bench-
marks. These essentially implement the DAC by contextual RL reduction, discussed in
Section 4.1. The result is a simple-to-use interface, allowing DAC researchers to work
across application domains, without requiring domain expertise, and providing an easy-to-
use template for applying DAC to new domains. While the interface is modelled after the
RL formulation of DAC, it can be used with a variety of approaches described in Section 4.2.
That being said, the original DACbench interface strongly focused on conventional RL. In
the scope of this work, we have extended the interface from the first release of DACBench.
In accordance with our proposed definition of DAC, we have taken a broader perspective
beyond standard RL, and made various interface changes to provide better support for
alternative approaches. For example, users can now specify rich structured configuration

5. A new version of https://github.com/automl/DACBench (v. 0.1) was released alongside this article.

16

Automated Dynamic Algorithm Configuration

spaces as opposed to the simplistic action spaces supported by conventional RL methods.
Directly controlling instance progression is easier now as well, providing a better base for
developing instance-aware solution methods for DAC.

class DACEnv(gym.Env):

def __init__(self , A, Θ, D, Πφ, cstep):

self.A, self.D, self.cstep, self.φ = A, D, cstep, Πφ.φ
self.action_space = Θ

def reset(self , i=sample(self.D)):
s = self.A.init(i)
self.state = (s, i)

return self.φ(s, i)

def step(self , θ):
s, i = self.state

s = self.A.step(s, i, θ)
r = self.cstep(s, i, θ)
done = self.A.is final(s, i)

self.state = (s, i)

return self.φ(s, i), r, done , None

Listing 1: A generic python implementation of a gym environment using components of a
DAC scenario (in blue) with decomposable cost and an input-constrained policy space Πφ.
Practical DACBench benchmarks implement a similar mapping, but DAC components are
typically not strictly separated, e.g., A. step and cstep would typically be calculated jointly.
Note that the gym.Env.step method, despite its name, does far more than merely comput-
ingA. step: It implements the transition dynamics (T) and reward signal (R). Furthermore,
unlike A. step, it is stateful, does not take the state (s, i) as input, and does not necessarily
return the new state. Instead, it more generally returns what is called an observation φ(s, i)
which may abstract arbitrary aspects of the internal state, i.e., DACBench technically re-
duces DAC to a contextual partially observable MDP (cPOMDP). Note that the learned pol-
icy in POMDPs is a function of the observable state, and hence φ can be viewed as modeling
a policy space constraint of the form Πφ = {π |φ(s, i) = φ(s′, i′) =⇒ π(s, i) = π(s′, i′)}.

Benchmarks: An overview of the benchmarks currently included in DACBench is given
in Table 1. It includes several benchmarks that we have either added in the latest release
or at least improved significantly. The original SGD-DL benchmark (see Section 6.3 for
a thorough description) was extended to mimic the experimental setup from Daniel et al.
(2016) as closely as possible. The CMA-ES benchmarks (CMAStepSize and ModCMA)
are now based on IOHProfiler (Doerr et al., 2018) and thus provide a DAC interface for a
well-known and important tool in the EA community.6 TheoryBench is a completely new
benchmark, published by Biedenkapp et al. (2022), where one is to dynamically configure
the mutation rate of a (1+1) random local search algorithm for the LeadingOnes problem.

6. The original pycma version of CMAStepSize is still supported and used in Section 6.1.

17

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

This is a particularly interesting setting as the exact runtime distribution is very well
understood in this setting (Doerr, 2019). In particular, it is possible to compute optimal
dynamic configuration policies for various different problem sizes and configuration spaces.
Finally, a continuous Sigmoid variation and SGD on polynomials provide additional artificial
benchmarks for efficient evaluation of DAC algorithms.

Empirical Validation: DACBench is a very recent library. As a consequence, it has not
yet been used in prior-art. Eimer et al. (2021b) focused on providing a unified interface to
a variety of benchmarks and analyzed specific properties of these benchmarks based on the
behavior of static policies and simple hand-crafted dynamic policies. Here, we describe the
first applications of practical DAC methods to these benchmarks, and provide important
empirical validation for DACBench.

Benchmark Domain Status Description

Sigmoid Toy Extended Control k parameters to trace a different sigmoids each (Biedenkapp et al., 2020).
Luby Toy Original Select the correct next term in a shifted luby sequence (Biedenkapp et al., 2020).

CMAStepSize EA Extended Control the step size in CMA-ES (Shala et al., 2020).
FastDownward Planning Original Control heuristic selection in FastDownward (Speck et al., 2021).

SGD-DL DL Extended Control the SGD for neural network training (Daniel et al., 2016).
TheoryBench EA New Control the mutation rate of (1+1)RLS for LeadingOnes (Biedenkapp et al., 2022).

ModCMA EA New Control design choices (e.g., base sampler used) of CMA-ES (Vermetten et al., 2019).
ToyGD Toy New Control the learning rate of gradient descent on polynomial functions.

Table 1: DACBench Benchmarks. “Status” compares the current state of each benchmark
to the benchmarks originally introduced by Eimer et al. (2021b).

6. Empirical Case Studies

In this section, we discuss in more detail three successful applications of automated DAC
in different areas of AI: evolutionary optimization (Shala et al., 2020, Section 6.1), AI plan-
ning (Speck et al., 2021, Section 6.2), and machine learning (Daniel et al., 2016, Section 6.3).
The primary purpose of this section is to complement the general, big picture discussions
in previous sections with some concrete practical examples of automated DAC. Here, we
cover our own work in this area (Shala et al., 2020; Speck et al., 2021), supplemented with
a machine learning application (Daniel et al., 2016) for diversity. In these case studies, we
also conducted additional experiments to answer the following research questions.

RQ1: Can we reproduce the main results of the original papers using DACBench?
Since it is well known that RL results are hard to reproduce (Henderson et al., 2018), in
order to provide a solid foundation for experimental work in the field we believe it to
be important to repeat the original experiments, this time using the publicly available
re-implementations provided by DACBench (i.e., the CMAStepSize, FastDownward, and
SGD-DL benchmarks) and to compare the results obtained to those of the original papers.
Beyond insights into the reproducibility of the prior work, this analysis provides empirical
validation for DACBench: This is the first study investigating whether, and to what extent,
the benchmarks in DACBench permit reproducing the original results. Further, it is worth
noting that the work by Daniel et al. (2016) is closed source, and that this is the first
reproduction of their experiments with open-source code.

18

Automated Dynamic Algorithm Configuration

RQ2: Does DAC outperform static AC in practice?
Theoretically, an optimal DAC policy will be at least as good as an optimal static AC
policy. In practice, however, the superiority of DAC is not guaranteed, since practical
DAC methods may not be capable of finding an optimal/better DAC policy and/or doing
so may require more computational resources than available. To investigate this, for each
scenario in our case studies, we compare the anytime performance of the DAC method used
to that of static AC baselines: We run SMAC (as a classical AC method, Hutter et al.,
2011; Lindauer et al., 2022) and Hydra7 (as a PIAC method, Xu et al., 2010) on the same
problem, and compare the performance of the best dynamic/static policies found at any
time during the configuration process. We further include the theoretical upper bounds for
classical AC (SBS = minθ∈Θ

1
|I′|
∑

i∈I′ c(θ, i)) and PIAC (VBS = 1
|I′|
∑

i∈I′ minθ∈Θ c(θ, i))

as reference, to distinguish practical from inherent limitations of static AC.8

In what follows, we discuss our three case studies, in each case presenting an introduction
to the domain, the problem formulation as an instance of DAC, the solution method, the
experimental setup, the results, and a discussion thereof.9

6.1 Step Size Adaptation in CMA-ES

The first problem we consider is to dynamically set the step-size parameter of the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES, Hansen et al., 2003), an evolutionary al-
gorithm for continuous black box optimization. Each generation g, CMA-ES evaluates the

objective value f of λ individuals x
(g+1)
1 , ..., x

(g+1)
λ sampled from a non-stationary multi-

variate Gaussian distribution N (µ(g), σ(g)2 · C(g)). Then, based on the outcome of these
evaluations, CMA-ES heuristically adapts the parameters µ, σ, C of the search distribution
aiming to increase the likelihood of generating better individuals next generation. In partic-
ular, the step-size parameter σ controls the scale of the search distribution and CMA-ES by
default adjusts it using Cumulative Step Length Adaptation (CSA, Hansen & Ostermeier,
1996). CSA is a hand-designed heuristic and thus implicitly makes assumptions about the
properties of the tasks it is applied on. In Shala et al. (2020), we investigated the possibility
of learning step-size adaptation in a data-driven fashion, optimized for the task distribution
at hand, i.e. automated DAC.

Problem Formulation: Below, we briefly detail each of the DAC components:

A, Θ: The target algorithm to configure in this scenario is CMA-ES. As in Shala et al.
(2020), we use the pycma distribution of CMA-ES. Its interface allows for step-wise
execution of CMA-ES. CMA-ES is initialized with a given initial mean µ(0) and step-
size σ(0) (C(0) = 1). Each generation g, we

7. Hydra combines SMAC with an algorithm selection method of choice. Since most of the considered
benchmarks do not have instance features, we will assume an oracle selecting the best configuration in
the portfolio. We treat the maximum size of the portfolio as a case study dependent hyperparameter
and detail this choice in the respective experimental setups.

8. Note that the acronyms SBS (single best solver) and VBS (virtual best solver) stem from the algorithm
selection literature. More details on how these theoretical bounds were determined can be found in the
experimental setup of the respective case studies.

9. Code for reproducing these experiments is publicly available:
https://github.com/automl/2022_JAIR_DAC_experiments

19

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

1. sample λ individuals x
(g+1)
1 , ..., x

(g+1)
λ from N (µ(g), σ(g)2 · C(g))

2. evaluate the objective function values f(x
(g+1)
1), ..., f(x

(g+1)
λ) of these individuals

3. adapt the distribution parameters µ(g+1), σ(g+1), C(g+1) for the next generation.

In this final step, the mean µ and covariance C are adapted as usual in CMA-ES,
while the step-size σ is to be reconfigured dynamically in the range Θ = R+.

D, I: Instances correspond to tuples consisting of a black box function f and an initial
search distribution. Here, the latter is isotropic and defined by an initial mean m(0)

and step-size σ(0).

Π : The policies are constrained to be functions of a specific observable state composed of:

(i) the current step-size value σ(g); (ii) the current cumulative path length p
(g)
σ (Hansen

& Ostermeier, 1996); (iii) the history of changes in objective value, i.e., the normalized
differences between successive objective values, from h previous iterations; and (iv) the
history of step-sizes from h previous iterations.

c : The cost metric used is “the likelihood of outperforming CSA”. Assuming we perform
two runs of CMA-ES, one using π, the other CSA, it measures how likely the latter is
to obtain a better final solution than the former. We estimate this probability based
on pairwise comparisons of n = 25 runs varying only the random seed of CMA-ES,
i.e.,

c(π, i) =

∑n
j

∑n
k 1πj<CSAk
n2

where 1πj<CSAk is the function indicating that our policy resulted in a lower final
objective value than the baseline using CSA, when comparing runs j and k. Note
that a benefit of this cost metric is that it is easy to interpret, both conceptually
and in terms of statistical significance. As explained in more detail in the original
publication (Shala et al., 2020, Appendix C), it has a direct correspondence with the
Wilcoxon rank sum statistic. For n = 25, estimates c(π, i) ≥ 0.64 imply π significantly
outperformed CSA (at 95% confidence, one-sided).

Solution Method: In Shala et al. (2020), we proposed to use existing hand-crafted heuris-
tics to warm-start DAC. To this end, we adopted the methodology proposed by Li and Malik
(2017) in the context of L2O and used guided policy search (GPS, Levine & Abbeel, 2014), a
reinforcement learning method originating from the robotics community. In GPS, a teacher
(typically a human) provides some initial sample trajectories that the RL agent first learns
to imitate and then iteratively refines without further interaction with the teacher. To learn
step-size adaptation policies, in Shala et al. (2020), we used CSA as a teacher and extended
GPS with persistent teaching, meaning that at each iteration the GPS agent obtains a fixed
fraction (the sampling rate, a hyperparameter) of its sample trajectories from the teacher,
encouraging it to continually learn from CSA. Folowing Li and Malik, the area under the
curve (AUC) was used as a reward signal for GPS, instead of negated cost. Here, the re-

ward at step t is −minx∈Xt f(x) where Xt = {x(g)
i | g ≤ t} is the set of individuals evaluated

up until step t. This reward signal, unlike negated cost, is dense and actively encourages
learning policies with good anytime performance.

20

Automated Dynamic Algorithm Configuration

Figure 4: Incumbent performance of DAC (GPS), PIAC (Hydra), and classical AC (SMAC)
when determining a step-size configuration policy for CMA-ES. Solid lines depict the mean
of five independent configuration runs and the shaded area the standard deviation. SBS
depicts the single best configuration and VBS the oracle configuration portfolio across all
instances.

Experimental Setup: In our experiments, we used the DACBench implementation of
the CMAStepSize benchmark. Replicating the original setup, we set population size λ = 10,
history length h = 40, terminate CMA-ES after 50 generations, and model policies as fully
connected feed-forward neural networks having two hidden layers with 50 hidden units each
and ReLU activations. Note that in Shala et al. (2020), we considered a collection of different
scenarios varying in target distribution: (i) single black box function, different initial search
distributions; (ii) black box functions of the same type, but different dimensionalities and
initial search distributions; and (iii) black box functions of different types and initial search
distributions. In our case study here, we only reproduce and discuss the results for the
third scenario, as it considers learning policies that generalize across different black box
functions. Here, the training setup consists of 100 training instances: 10 different black box
functions, with 10 different initial search distributions each. For testing, 12 other black box
functions were used with a specific initial search distribution. In both cases, the functions
used were taken from the BBOB-2009 competition (Hansen et al., 2009). We perform five
independent GPS training runs using the original hyperparameters, each performing a total
of 40000 CMA-ES runs and taking 8-10 CPU hours on our system. In our comparison of
anytime performance to static AC, the same budget was used for classical AC (SMAC) and
PIAC (Hydra). A maximum portfolio size of 10 was used for Hydra. To determine SBS
and VBS, we discretized Θ (1000 values equidistant in [0.1, 2.0]) and evaluated c(θ, i) for
all (1000 × 100) combinations of θ ∈ Θ and i ∈ I ′.

Results: Figure 4 compares the anytime training performance of DAC (GPS) to that
of classical AC (SMAC) and PIAC (Hydra) when learning step-size adaptation. Classi-
cal AC and PIAC initially show similar anytime behavior, where the former reaches SBS
performance after 1000 evaluations, the latter further improves, but does not reach VBS
performance within the given budget of 40000 evaluations. In contrast, DAC (GPS) has

21

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Figure 5: Likelihood of the policies learned by GPS (for five runs) outperforming CSA on
12 unseen test functions. The reported values from (Shala et al., 2020) are shown in blue,
whereas the results for the five learned policies are shown in yellow, in a consistent order.

a minimum budget of 5000 evaluations, however, the initial incumbent immediately out-
performs the VBS and further improves to eventually find a DAC policy that on average
outperforms CSA on 87% of the runs on the training setting. Figure 5 shows the likelihood
of the five learned policies outperforming CSA on the 12 unseen test functions. Here, for
each of five individual seeds, we observe that the learned policies significantly (p(π < CSA)
≥ 0.64, α = 0.05) outperformed CSA on 10, 9, 10, 8, 8 of the 12 unseen test functions, while
being significantly outperformed on 0, 1, 0, 3, 3, respectively. In comparison to the original,
the learned policies performed similarly when averaging costs across all test functions/poli-
cies (0.74 vs 0.75 originally). However, it is worth noting that the average performance
of the individual policies and the performance profile across the test functions varies more
strongly.

Discussion: On a high level, we could reproduce our results from Shala et al. (2020),
showing that the learned policies for step-size adaptation can outperform CSA even on
functions not seen during training. Since the DACBench implementation, to the best of
our knowledge, exactly replicates the original setup, we assume the observed differences to
be a consequence of variability across training runs. This is supported by our observation
that the five different runs of GPS (varying only in random seed) resulted in policies whose
test cost ranged from -0.83 to -0.65 (vs. -0.75 originally). Our analysis of the anytime
performance revealed another weakness of the approach: Its relatively high up front cost.
It is worth noting that this cost includes the teacher runs (25 × 100 runs using CSA) we
performed to warm-start GPS. Nonetheless, since GPS maintains an independent controller

22

Automated Dynamic Algorithm Configuration

per instance, its computational cost will generally scale linearly with the number of training
instances. Further, it is difficult to predict in advance how many training instances and
runs per training instance suffice. In comparison, the static approaches in our comparison
follow a more incremental approach resulting in a better anytime performance. That being
said, the best static policy did not significantly outperform CSA. As such, independent of
the specific approaches, our results provide further evidence of the importance of dynamic
step-size adaptation, showing that DAC policies (learned, but also CSA) are competitive
with and/or outperform their static counterparts, even on relatively short CMA-ES runs.

6.2 Heuristic Selection in FastDownward

Heuristic search is one of the most widely used and successful approaches to AI planning.
This type of search makes use of heuristics to estimate the distance to some desired goal
state as a cheap proxy of having to directly evaluate the true distance. Over decades of re-
search, many different heuristics have been developed for a variety of problem domains. No
single heuristic works best on all problem instances (Wolpert & Macready, 1995). Thus, the
AI planning community has made use of meta-algorithmic approaches such as algorithm se-
lection, algorithm scheduling and algorithm configuration (Helmert et al., 2011; Seipp et al.,
2014; Fawcett et al., 2014; Seipp et al., 2015; Sievers et al., 2019). However, one limiting
factor of these approaches is that they do not take the internal dynamics of the planning
system into account and only adapt to a set of problem instances (per-distribution) or indi-
vidual problem instances (per-instance). It has been shown that using hand-crafted policies
to switch between heuristics to adapt to changing conditions can greatly improve perfor-
mance (Richter & Helmert, 2009; Röger & Helmert, 2010). Speck et al. (2021) proposed to
use dynamic algorithm configuration (DAC) to automatically determine a policy that selects
at each individual planning step which heuristic to follow, out of a set of heuristics sharing
their progress. That work showed that DAC is in theory able to outperform prior meta-
algorithmic approaches and empirically validated this by outperforming the theoretical best
algorithm selector (a.k.a. virtual best solver) on multiple domains. Relatedly, Gomoluch
et al. (2019, 2020) previously investigated automated DAC in the context of switching be-
tween different search strategies in AI planning. To provide an exemplary showcase of the
potential of DAC in AI planning, we focus on the heuristic selection problem here.

Problem Formulation: Below, we briefly detail each of the DAC components:

A, Θ: The target algorithm to configure in this scenario is the popular FastDownward Plan-
ner (Helmert, 2006). To make it step-wise executable, and to allow communication
with a dynamic configuration policy, Speck et al. (2021) proposed to set up a socket
communication such that DAC can change heuristics after each node expansion. The
configuration space consists of four heuristics10 (i.e., a single categorical parameter),
commonly used in satisficing planning: (i) the FF heuristic hff (Hoffmann & Nebel,
2001), (ii) the causal graph heuristic hcg (Helmert, 2004), (iii) the context-enhanced
additive heuristic hcea (Helmert & Geffner, 2008), and (iv) the additive heuristic

10. In an additional experiment, Speck et al. (2021) showed that even with an increased action space,
including the landmark-count heuristic (Richter et al., 2008), DAC was still capable of learning better
policies than the considered baselines. Here, we limit ourselves to the original configuration space which
only includes four heuristics.

23

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

hadd (Bonet & Geffner, 2001). The planning system is terminated when a solution is
found. Since some runs may fail to find a solution, Speck et al. (2021) also limited
the maximal run length. During the configuration phase (training of the RL agent)
an individual solution attempt can run for at most 7500 steps. During evaluation,
this conservative step-limit of 7500 steps is removed and instead a maximum of five
minutes running time is used.

D, I: The target problems consist of 100 training and 100 disjoint test problem instances
taken from each of six different domains from the international planning competition
(IPC). The instances, however, were not taken from a particular round of the IPC as
some domains only contain few instances. Instead, Speck et al. (2021) used instance
generators to generate instances that resemble those of the IPC tracks.

Π: The policies are constrained to be a function of a specified observable state. The observ-
able state consists of simple statistics about the heuristics in the configuration space.
Specifically, for every heuristic h, it contains the (i) maximum h value; (ii) minimum h
value; (iii) average h value; (iv) variance of h over all possible next states; (v) number
of possible next states as determined by h; and (vi) current expansion step t. In order
to encode progress towards solving a problem instance, Speck et al. (2021) did not
use these state features as is, but rather their change w.r.t. the previous step (i.e.,
the difference between consecutive observations).

c: The considered cost metric is the total number of node expansions, i.e., the number of
planning steps until a solution is found. The decomposed cost metric is +1 for every
step. Thus, configuration policies that minimize the average number of planning steps
are preferential. Note that, given the termination criterion of A, the maximal cost at
configuration time is 7500, corresponding to not finding a solution in time. During
evaluation, coverage is analyzed instead, i.e., the number of instances solved within
the five minute budget.

Solution Method: The proposed solution approach by Speck et al. (2021) uses a small
double deep Q-network (DDQN, van Hasselt et al., 2016) to learn a dynamic configuration
policy via reinforcement learning. In our experiments, we use the original reinforcement
learning code with the exact same hyperparameters as provided by the original authors.
Since DACBench offers a standard RL interface (see Section 5), the original RL code could
be reused without modification.

Experimental Setup: In our experiments, we make use of the implementation of the
interface as provided via DACBench (FastDownward benchmark). Following Speck et al.
(2021), we learn a separate policy for each domain, however, to reduce the computational
cost, we limit ourselves to a representative set of three out of six domains. Following Speck
et al. (2021), we perform five independent training runs for each domain. In each training
run, an RL agent experiences 106 steps of the planning system, taking 8-12 hours on our
system. Since |Θ| = 4, SBS and VBS could be determined exactly for each domain by
evaluating c(θ, i) for all (4 × 100) combinations. For Hydra, we used a maximum portfolio
size of three which is sufficient to cover the optimal portfolio.

24

Automated Dynamic Algorithm Configuration

(a) barman domain (b) blocksworld domain

(c) visitall domain

Figure 6: Incumbent performance of DAC (DDQN), PIAC (Hydra), and classical AC
(SMAC) when determining a heuristic selection policy for FastDownward on (a) the bar-
man, (b) blocksworld, and (c) visitall domains. Solid lines depict the mean of five
independent configuration runs and the shaded area the standard deviation. SBS depicts
the single best configuration and VBS the oracle configuration portfolio across all instances.
Oracle-DAC is the oracle portfolio of all dynamic policies evaluated by DAC (DDQN), pro-
viding a pessimistic performance estimate of optimal dynamic configuration policy.

Results: Figure 6 compares the anytime performance of DAC (DDQN) to that of classical
AC (SMAC) and PIAC (Hydra) for all three domains. On the barman domain, DAC finds
policies that on average clearly outperform the best static baseline in less than 10% of
the total budget. On the blocksworld domain, DAC almost needs the full budget, but
eventually finds policies that marginally outperform the VBS. The visitall domain is
even slightly harder and DAC (DDQN) does not confidently find policies outperforming the
static baselines within the limited budget. For lower budgets, classical AC and PIAC obtain
clearly better policies on visitall / blocksworld, and PIAC eventually approaches VBS
performance on both domains. Table 2 compares the coverage results for all learned policies
on the test problem instances with a static baseline. Here, we find that our learned policies
generalize well to the test scenarios and achieve similar coverage as reported in the original
paper. In the barman domain, DAC policies dominate, and while we achieve a slightly
lower coverage on this domain than originally, this can largely be attributed to an individual
training run of ours performing worse than the others, with the individual coverages 85.00,
88.32, 67.00, 84.00, and 84.00. In the other two domains, we achieve slightly higher coverages
than originally, and the DAC policies perform similarly well as the best static policies.

25

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Algorithm dac policy single heuristic as oracle

Domain (# Inst.)
rl

rl† hff hcg hcea hadd single h
Run#1 Run#2 Run#3 Run#4 Run#5

81.7
barman (100)

85.0 88.3 67.0 84.0 84.0
84.4 66.0 17.0 18.0 18.0 67.0

blocksworld (100)
93.6

92.9 75.0 60.0 92.0 92.0 93.0
95.0 95.0 91.0 94.0 93.0

58.6
visitall (100)

58.1 56.1 57.8 60.0 61.0
56.9 37.0 60.0 60.0 60.0 60.0

sum (300) 233.9 234.2 178.0 137.0 170.0 170.0 220.0

Table 2: Number of solved unseen test problem instances averaged over five independently
repeated training runs. Column rl provides the results of our experiment, with the results
of the individual runs given in a smaller font, whereas rl† contains the original coverage
values as reported by Speck et al. (2021). All hi columns contain the number of solved
problem instances when only using the specific heuristic. as oracle reports the coverage
results of the theoretically best algorithm selector.

Discussion: Our results confirm the results of Speck et al. (2021) where the DAC policies
(i) obtain slightly lower coverage than the single best heuristic in the visitall domain, (ii)
outperform the single best heuristic and are close in performance to the theoretical best
algorithm selector on the blocksworld domain and (iii) provide the best coverage by far
in the barman domain. Most notably, on average, the learned DAC policies are capable of
solving more problem instances than the theoretical best algorithm selector, which already
provides a significant improvement over using the single best heuristic. Our analysis of the
approach’s anytime performance also revealed that when less time is available, static AC
approaches, in particular PIAC (Hydra), outperform DAC (DDQN) on two of the three
domains. However, on the remaining domain (barman), superior dynamic policies are
easily found. It is worth noting that on all three domains, oracle-DAC is clearly superior,
suggesting the potential to further improve performance by using better DAC methods
and/or more informative state features.

6.3 Learning Rate Control in Neural Network Training

Daniel et al. (2016) investigated meta-learning a controller for the learning rate hyperpa-
rameter η in Stochastic Gradient Descent (SGD) style neural network optimizers. SGD is
the method of choice for optimizing the parameters w of deep neural networks, i.e., solve
arg minw L(w, D), where L is some differentiable measure of loss on the training data D. In
deep learning, it is common to have millions of parameters. To scale up to such extremely
high-dimensional w, SGD exploits the fact that ∇wL(w, D) = ∂L(w,D)

∂w can be computed
exactly, and updates w in the opposite direction of the gradient. As datasets in deep
learning are huge, computing the “full batch” gradient is typically too expensive. Instead,
SGD computes the gradient at every optimization step for a different randomly selected
“mini-batch” B ⊂ D. While this gradient is an unbiased estimate of the actual gradient,
i.e., E[∇wL(w, B)] = ∇wL(w,D), variance can cause gradients to occasionally point in the
wrong direction. Furthermore, gradients only provide local information and do not tell us

26

Automated Dynamic Algorithm Configuration

how far we can move without overshooting. Moreover, the optimal step sizes per dimension
may vary strongly, a problem known as ill-conditioning. Over the last decade a variety
of different variants of SGD, e.g., Momentum (Jacobs, 1988), RMSprop (Tieleman et al.,
2012), and Adam (Kingma & Ba, 2015), have been proposed that aim to address these and
other issues. However, despite their popularity, modern SGD variants are still sensitive to
their hyperparameter settings. In particular, they still have a global/initial learning rate
η, that uniformly scales the step taken in each dimension, and that must typically be op-
timized for the problem at hand (Bengio, 2012). When setting η too low, optimization is
slow, while too high η might even lead to divergence. To the best of our knowledge, Daniel
et al. (2016) was the first work that explored replacing η by a meta-learned controller,
producing more robust SGD methods. Xu et al. (2019) followed up on this idea, and most
recently Almeida et al. (2021) considered meta-learning the control of learning rate and
various other hyperparameters (e.g., weight-decay and gradient clipping).

Problem Formulation: The meta-learning approach by Daniel et al. (2016) is readily
seen as automated DAC. Below, we briefly detail each of the DAC components:

A, Θ: Daniel et al. (2016) present a general method for dynamically configuring the learning
rate ηt ∈ R+ at every optimization step of SGD. In their experiments, they do this for
two SGD variants: RMSprop and Momentum.11 Note that in the first optimization
step, a fixed learning rate η0 is used.

D, I: Instances correspond to neural network optimization problems, and are represented
by the quadruple 〈D,L, k, ξ〉, where

• D is the data we want to fit the neural network to. In their experiments, Daniel
et al. (2016) consider image classification, using examples from the MNIST and
CIFAR10 datasets.

• L is the differentiable loss function to be minimized. Daniel et al. used cross-
entropy loss, i.e., the negative log-likelihood of the data D under the model with
parameters w, where this model can be any parametric model. Daniel et al.
(2016) used small convolutional neural networks (CNNs).

• k is the cutoff: SGD is terminated after k optimization steps.

• ξ is the seed of the pseudo-random number generator used for random neural
network initialisation and mini-batch sampling.

Π : Daniel et al. (2016) considered dynamic configuration policies that are a log-linear
function πλ(φ) = exp(λ0 +

∑4
j=1 λjφj) of four expert features φ that in turn depend

on the previous learning rate ηt−1 and the current loss/gradients for each data point.
See the original paper for a detailed description of φ.

c : Daniel et al. (2016) aim to control the learning rate η as to maximally reduce the training
loss. Specifically, the cost of a run is quantified as min(1

k−1 log(EkE1
), 0), where Et is

the full batch training loss after t optimization steps. Note that we handle divergence
cases by setting the costs of runs that fail to reduce the training loss to 0.

11. In the original paper, Momentum was simply referred to as “SGD”.

27

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

A D L k ξ
meta-training RMSprop MNIST-small c-p-c-p-c-r-fc-s (varying # filters) 300-1000 varying

Momentum MNIST-small c-p-c-p-c-r-fc-s (varying # filters) 300-1000 varying

meta-testing RMSprop MNIST c-p-c-p-c-r-fc-s (20-50-200 filters) 2000 fixed
Momentum MNIST c-p-c-p-c-r-fc-s (20-50-200 filters) 2000 fixed
RMSprop CIFAR10 c-p-r-c-r-p-c-r-p-c-r-fc-s (32-32-64-64 filters) 6000 fixed

Momentum CIFAR10 c-p-r-c-r-p-c-r-p-c-r-fc-s (32-32-64-64 filters) 12000 fixed

Table 3: A summary of the six different DAC setups used in (Daniel et al., 2016). During
meta-training, 100 target problem instances are considered, generated by randomly varying
D (dataset), L (loss), k (cutoff), and ξ (seed). The meta-testing setups consider a single
instance. MNIST-small: To avoid bias towards specific training examples, a randomly
varied subset of 6K-30K of the 60K MNIST training examples is used during meta-training.
The losses L differ only in the predictive model. All use CNNs, but a different layered
architecture (c: same convolution with 3x3 filter, r: ReLU, fc: fully connected, s: softmax).
To avoid bias towards specific architectures, the number of filters used is varied randomly
in meta-training (in ranges [2-10]-[5-25]-[50-250]).

Solution Method: Daniel et al. (2016) solved this DAC problem by directly optimizing
the policy parameters λ using the Relative Entropy Policy Search (REPS) policy gradient
method. In our experiments, we will also optimize λ directly, but instead use Sequential
Model-based Algorithm Configuration (SMAC, Hutter et al., 2011). Note that we follow a
DAC by static AC, instead of a DAC by RL approach (see Section 4.2). This decision was
motivated by the fact that Daniel et al. (2016) provide too little details about the method
and its implementation, to allow us to confidently reproduce the original meta-training
pipeline. On the other hand, SMAC is a popular open source (Lindauer et al., 2022) tool
for Bayesian optimization that we conjecture to be suitable to reliably and globally optimize
λ within a reasonable time frame.

Experimental Setup: In our experiments, we used the DACBench implementation of
the DAC scenario described above (SGD-DL). Apart from using SMAC instead of REPS,
we aimed to maximally replicate the setup used in the original paper. Note that Daniel
et al. (2016) actually considered six slightly different scenarios: Two for learning the η-
controller for RMSprop/Momentum, resp., and two for testing each of the meta-learned
controllers on MNIST/CIFAR10, resp. The differences between these setups are summarized
in Table 3. As we did not have access to the original code, replication was restricted by the
details disclosed in the original paper.12 The remaining design choices were mostly made
heuristically. Some had to be optimized to obtain similar baseline behavior. Here, we found
the use of a sufficiently large mini-batch size (64 at meta-training, 512 at meta-testing),
and Xavier weight initialisation, to be particularly important. For meta-training the two
η-controllers, we used a meta-training set I ′ ∼ D of 100 instances and the default parameter
settings of SMAC, and optimized λ ∈ [−10, 10]5, using a symmetric log-scale with linear
threshold 10−6, for 5000 inner training runs. Each SMAC run took less than 2 CPU-days
on our system. To assess meta-training variability, we performed five such runs in parallel,

12. We also contacted Chris Daniel, the first author, but he did not have access to the proprietary code
anymore, either, and was thus not able to help us replicate the original setup.

28

Automated Dynamic Algorithm Configuration

(a) Meta-Training RMSprop (b) Meta-Training Momentum

Figure 7: Incumbent performance of DAC (SMAC configuring a parametric DAC policy),
PIAC, and classical AC when meta-learning learning rate configuration for RMSprop (left)
and Momentum (right). Solid lines depict the mean of five independent meta-learning runs
and the shaded area the standard deviation. SBS depicts the single best configuration and
VBS the oracle configuration selection portfolio across all instances.

selecting the configuration with the highest meta-training performance for meta-testing.
For Hydra, we used the same parameters as SMAC, and a maximum portfolio size of 10.
Finally, to determine SBS and VBS, we discretized Θ (1000 values, log-scale in [10−5, 100])
and evaluated c(θ, i) for all (1000 × 100) combinations.

Results: Figure 7 compares the anytime performance of DAC (SMAC) to that of PIAC
(Hydra) and classical AC (SMAC) for RMSprop (left) and Momentum (right). In both
cases, DAC’s initial performance is worse than its static counterparts. This difference in
relative performance is most blatant for RMSprop, where DAC takes over 100 evaluations
to find a non-diverging policy (i.e., with negative average cost), while classical AC achieves
near SBS performance in that time. PIAC (Hydra) only marginally improves upon classical
AC (SMAC) and SBS, and does not attain VBS performance. Despite the slow start, all
DAC runs eventually outperform all classical AC and PIAC runs, ultimately attaining a
policy that reduces training loss 0.71% (RMSprop) and 0.46% (Momentum) more per step
than the VBS on average (∼ 58% and 35% after 650 steps). Figure 8 shows the full batch
training loss L(wt, D) at each optimization step using the meta-learned η-controller that
performed best in meta-training, and various static baselines, in each of the four meta-test
setups. Overall, the training curves for our baselines look similar to the original, both in
terms of absolute and relative performance. An exception are high learning rates. For
RMSprop, our curves look quite different, but are similarly chaotic. For momentum, the
highest learning rate performs best for us, while the original diverges. On MNIST, both
meta-learned controllers (π) clearly outperform the best static baseline, even though the
cutoff k is two times higher than the highest cutoff considered during meta-training. This
result is similar to that of the original paper, but our learned controller arguably even
does better. On CIFAR10, the meta-learned controller (π) performs similar to (RMSprop),
or better than (Momentum) the best baseline in the first 1000 update steps, but fails to
achieve the best final performance. Here, our results differ from the original, where the final
performance was similar (RMSprop) or better (Momentum) than the best static baseline.

29

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Figure 8: Comparison of learning curves for RMSprop/Momentum using the meta-learned
η-controllers (π) vs. several static baselines, on MNIST/CIFAR10. Each dataset/optimizer
combination appears in its own sub-figure. For ease of comparison, the corresponding figure
in the original paper is shown in the bottom left corner of each sub-figure.

Discussion: The “flavour of AC” prevailing on these scenarios depends on the budget
available: For sufficiently large budgets (> 1000 evaluations), DAC confidently outperforms
static AC. However, DAC is clearly outperformed by classical AC for smaller budgets.
While the best DAC policies are better, arbitrary static policies tend to outperform ar-
bitrary DAC policies for this scenario, e.g., the vast majority of DAC policies diverge for
RMSprop. Nonetheless, the poor relative initial performance of DAC is not inherent, and
could, e.g., be addressed by using a different initial design that prioritizes static policies
(πλ : λk = 0,∀ k > 0). Also note that we cannot compare our meta-training results to those
obtained by REPS, since Daniel et al. (2016) did not analyze meta-training. Our meta-
testing results, however, validate that the SGD-DL benchmark considers a highly similar
setup and that it can be used to learn controllers that perform similarly well as in the
original paper. On the other hand, we also observed differences that are unlikely explained
by random noise alone. For example, momentum seems to prefer higher learning rates in
our experiments, and our meta-learned controller does not transfer as well to higher cutoffs
on CIFAR10. Finally, the configurations λ we found differ strongly from those reported
in the original paper, and using the latter even caused divergence in our experiments. We
currently cannot explain those differences, and lacking the original code, further insight can
only be gained through trial & error. We emphasize that, in contrast to the original code,
our benchmark is publicly available to facilitate future research on DAC.

30

Automated Dynamic Algorithm Configuration

7. Conclusion

To conclude, we again summarize our main insights and results, and discuss possible future
research directions opened up by this work.

7.1 Summary

In this article, we presented the first comprehensive overview of automated Dynamic Algo-
rithm Configuration (DAC), a novel meta-algorithmic framework proposed by Biedenkapp
et al. (2020). To this end, we introduced automated DAC as a natural extension of previous
research efforts in automated static algorithm configuration and manual DAC. Furthermore,
we situated automated DAC in a broader context of AI, discussing how it can be viewed as
a form of “semi-automated” programming, as a generalization of existing meta-algorithmic
frameworks, and as an automated approach to the design of operator selection and param-
eter control mechanisms. After formalizing DAC further, we introduced its methodology
and showed how prior art can be roughly subdivided in two schools, tackling the prob-
lem using reinforcement learning and optimization methods, respectively. On the empirical
side, we presented and extended DACBench, a novel benchmark library for DAC proposed
by Eimer et al. (2021b) and showed that DAC can be successfully applied to evolutionary
optimization, AI planning, and machine learning. As the first paper, we provided thorough
empirical evidence that automated DAC can outperform prior static AC methods. In sum-
mary, we found that on all scenarios considered, automated DAC discovered policies that
were at least as good as, and typically better than, their static counterparts. Depending
on the scenario, this sometimes required less, but usually more (up to 10×) computational
budget than a state-of-the-art static AC method needed to converge on the same scenario,
on average.

7.2 Limitations and Further Research

While these case studies and other previous applications provide a “proof of concept” for
automated DAC, we point out that much remains to be done to unlock its full potential, and
we hope that this work may serve as a stepping stone for further exploring this promising
line of research. In what remains, we will discuss some of the limitations of contemporary
work and provide specific directions for future research.

Jointly configuring many parameters: While static approaches are capable of jointly
configuring hundreds of parameters, the configuration space in contemporary DAC is typ-
ically much smaller, often considering only a single parameter. While the configuration
space is smaller, the candidate solution space (i.e., the dynamic configuration policy space)
grows exponentially with the number of reconfiguration points, in the worst case, and is
thus typically drastically larger than static configuration policy spaces. Although modern
techniques from reinforcement learning scale much better than ever before, we still know too
little about the internal structure of DAC problems to handle this exploding space of pos-
sible policies. For example, not much is known regarding interaction effects of parameters
in the DAC setting. If there should be only a few interaction effects between parameters as
in static AC (Hutter et al., 2014; Wang et al., 2016), learning several independent policies
might be a way forward.

31

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Temporally sparse DAC: Note that not all parameters can/must be reconfigured at
every time step. Also, our results suggest that an initial bias towards static configuration
policies could improve the anytime performance of DAC in various scenarios. Mixed static
and dynamic configuration, and learning “when to reconfigure” (Biedenkapp et al., 2021)
therefore present one opportunity to scaling up DAC. Furthermore, we plan to extend the
DAC formalism with partial reconfiguration to capture intrinsic temporal conditionalities,
e.g., a parameter not being used in some execution steps.

Warm-starting DAC: Most prior art derives dynamic configuration policies from scratch,
while in many cases good default parameter control mechanisms are known. Beyond strong
baselines, these existing policies could also be used to warm-start the automated process.
This idea has already been explored by Shala et al. (2020) (see also Section 6.1), but could
be extended in various ways. For example, we could learn from an ensemble of teachers to
exploit their complementary strengths.

Online DAC: Most prior art performs algorithm configuration offline, i.e., the optimal
static/dynamic configuration policy is derived in a dedicated configuration phase proceeding
use/test time (see Figure 1).13 However, when using the target algorithm, more information
about the target problem distribution and relative performance of candidate policies be-
comes available, and online algorithm configuration approaches (Fitzgerald, 2021) capable
of exploiting this information and transferring experience across test instances, continually
refining the policy are an interesting direction of future research.

Better DAC methods: Successful DAC requires more than just computational re-
sources. To apply DAC, a practitioner must make many choices that critically affect not
just its efficiency, but also its effectiveness. As a consequence, key ingredients for successful
DAC are currently (i) target domain expertise, (ii) DAC methodology expertise, and (iii)
trial and error. Note that this conflicts with the main objective of automated DAC, i.e.,
reducing reliance on human effort and expertise. To address this shortcoming, we need
better methods. In particular, as discussed in Section 4.3, we believe that there is a need
for dedicated dynamic algorithm configuration packages capable of combining the strengths
of the contemporary DAC by reinforcement learning and optimization approaches.

Domain-Expert driven DAC: From working on static AC for more than a decade, we
know that a challenge AC poses to users is to specify the inputs, including questions such as:
(i) Which instances will reflect future real-world use cases well? (ii) Which parameters are
important and should be configured, and using which domain (upper & lower bounds, etc)?
(iii) Which metric will accurately quantify the true desirability of a configuration or policy?
This hinders the adoption of such meta-algorithmic approaches in practice. To tackle this
problem, we envision a new paradigm which is driven by the domain expert and allows
for monitoring of the training and deployment performance, and for live adjustments of
training distributions, configuration spaces and performance metrics by the domain expert.
Likewise, we would like to enable experts to express priors over the policies they would
expect to work well, extending similar work in static AC (Hvarfner et al., 2022). Finally,
we would like domain experts to not only be able to steer DAC, but to also gain new and

13. As discussed in Section 2.2.3, we do not regard the majority of previous “online learning approaches” to
parameter control as prior art in automating DAC.

32

Automated Dynamic Algorithm Configuration

deeper insights from the automated search process, similar to various existing methods that
capture the importance of hyperparameters in static AC (Hutter et al., 2014; Biedenkapp
et al., 2017, 2018; van Rijn & Hutter, 2018; Probst et al., 2019).

Extending DAC Benchmarks: To stay relevant, these future directions will also have
to be reflected in a set of contemporary DAC benchmarks, such as in DACBench, alongside
continuing work on further expanding the scope of existing benchmarks. While DACBench
covers a range of domains, some like SAT or MIP, which are commonly used in AC, are
absent at the moment. Partnering with domain experts could help broaden the scope of
DACBench and thus DAC in general. Beyond real-world benchmarks, there is also a need for
additional “toy” benchmarks that permit efficient evaluation of DAC methods, something
especially crucial in (i) the early stages of developing new methods and (ii) enabling meta-
algoritmics to be applied to DAC itself. Finally, prior art, our own work included, rarely
compares different DAC methods. To facilitate this, we need more than just benchmarks,
we need a library of DAC methods and standard protocols to compare them.

Acknowledgments

All authors acknowledge funding by the Robert Bosch GmbH. Theresa Eimer and Mar-
ius Lindauer acknowledge funding by the German Research Foundation (DFG) under LI
2801/4-1. We thank Maximilian Reimer, Rishan Senanayake, Göktuğ Karakaşlı, Nguyen
Dang, Diederick Vermetten, Jacob de Nobel and Carolin Benjamins for their contributions
to DACBench, and Carola Doerr for the many discussions on related work and problem
formulation.

33

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

References

Adriaensen, S., & Nowé, A. (2016). Towards a white box approach to automated algo-
rithm design.. In Kambhampati, S. (Ed.), Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI’16), pp. 554–560.

Adriaensen, S. (2018). On the Semi-automated Design of Reusable Heuristics. Ph.D. thesis,
Vrije Universiteit Brussel.

Aleti, A., & Moser, I. (2016). A systematic literature review of adaptive parameter control
methods for evolutionary algorithms. ACM Comput. Surv., 49 (3), 1–35.

Almeida, D., Winter, C., Tang, J., & Zaremba, W. (2021). A generalizable approach to
learning optimizers. arXiv preprint arXiv:2106.00958, [cs.LG].

Andersson, M., Bandaru, S., & Ng, A. H. (2016). Tuning of multiple parameter sets in
evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016, pp. 533–540.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman, M., Pfau, D., Schaul, T., &
de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In
Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., & Garnett, R. (Eds.), Proceedings
of the 29th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’16), pp. 3981–3989. Curran Associates.

Ansótegui, C., Malitsky, Y., Sellmann, M., & Tierney, K. (2015). Model-based genetic algo-
rithms for algorithm configuration. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), pp.
733–739.

Ansótegui, C., Pon, J., Sellmann, M., & Tierney, K. (2021). PyDGGA: Distributed GGA
for automatic configuration. In Li, C., & Manyà, F. (Eds.), Theory and Applications
of Satisfiability Testing - SAT, Vol. 12831 of Lecture Notes in Computer Science, pp.
11–20. Springer.

Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic algorithm
for the automatic configuration of algorithms. In Gent, I. (Ed.), Proceedings of the
Fifteenth International Conference on Principles and Practice of Constraint Program-
ming (CP’09), Vol. 5732 of Lecture Notes in Computer Science, pp. 142–157. Springer.

Ansótegui, C., Pon, J., Sellmann, M., & Tierney, K. (2017). Reactive dialectic search
portfolios for MaxSAT. In S.Singh, & Markovitch, S. (Eds.), Proceedings of the Thirty-
First Conference on Artificial Intelligence (AAAI’17), pp. 765–772. AAAI Press.

Barozet, A., Molloy, K., Vaisset, M., Siméon, T., & Cortés, J. (2020). A reinforcement-
learning-based approach to enhance exhaustive protein loop sampling. Bioinform.,
36 (4), 1099–1106.

Battiti, R., & Campigotto, P. (2012). An investigation of reinforcement learning for reactive
search optimization. In Hamadi, Y., Monfroy, E., & Saubion, F. (Eds.), Autonomous
Search, pp. 131–160. Springer.

Battiti, R., Brunato, M., & Mascia, F. (2008). Reactive search and intelligent optimization,
Vol. 45. Springer Science & Business Media.

34

Automated Dynamic Algorithm Configuration

Battiti, R., & Tecchiolli, G. (1994). The reactive tabu search. ORSA journal on computing,
6 (2), 126–140.

Baydin, A., Cornish, R., Rubio, D., Schmidt, M., & Wood, F. (2018). Online learning rate
adaption with hypergradient descent. In Proceedings of the International Conference
on Learning Representations (ICLR’18). Published online: iclr.cc.

Bello, I., Zoph, B., Vasudevan, V., & Le, Q. V. (2017). Neural optimizer search with
reinforcement learning. In International Conference on Machine Learning, pp. 459–
468. PMLR.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architec-
tures. In Neural networks: Tricks of the trade, pp. 437–478. Springer.

Bhatia, A., Svegliato, J., & Zilberstein, S. (2021). Tuning the hyperparameters of anytime
planning: A deep reinforcement learning approach. In ICAPS 2021 Workshop on
Heuristics and Search for Domain-independent Planning.

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., & Lindauer, M. (2020). Dynamic
algorithm configuration: Foundation of a new meta-algorithmic framework. In Lang,
J., Giacomo, G. D., Dilkina, B., & Milano, M. (Eds.), Proceedings of the Twenty-fourth
European Conference on Artificial Intelligence (ECAI’20), pp. 427–434.

Biedenkapp, A., Dang, N., Krejca, M. S., Hutter, F., & Doerr, C. (2022). Theory-
inspired parameter control benchmarks for dynamic algorithm configuration. In Field-
send, J. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’22). ACM.

Biedenkapp, A., Lindauer, M., Eggensperger, K., Fawcett, C., Hoos, H., & Hutter, F. (2017).
Efficient parameter importance analysis via ablation with surrogates. In S.Singh, &
Markovitch, S. (Eds.), Proceedings of the Thirty-First Conference on Artificial Intel-
ligence (AAAI’17), pp. 773–779. AAAI Press.

Biedenkapp, A., Marben, J., Lindauer, M., & Hutter, F. (2018). CAVE: Configuration
assessment, visualization and evaluation. In Battiti, R., Brunato, M., Kotsireas, I.,
& Pardalos, P. (Eds.), Proceedings of the International Conference on Learning and
Intelligent Optimization (LION), Lecture Notes in Computer Science. Springer.

Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. (2021). TempoRL: Learning when to
act. In Proceedings of the 38th International Conference on Machine Learning (ICML
2021).

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for
configuring metaheuristics. In Langdon, W., Cantu-Paz, E., Mathias, K., Roy, R.,
Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull,
L., Potter, M., Schultz, A., Miller, J., Burke, E., & Jonoska, N. (Eds.), Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’02), pp. 11–18.
Morgan Kaufmann Publishers.

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechétte, A., Hoos,
H., Hutter, F., Leyton-Brown, K., Tierney, K., & Vanschoren, J. (2016). ASlib: A
benchmark library for algorithm selection. Artificial Intelligence, 237, 41–58.

35

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1),
5–33.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAI Gym. arXiv preprint arXiv:1606.01540, [cs.LG].

Carchrae, T., & Beck, J. (2004). Low-knowledge algorithm control. In Proceedings of the
19th National Conference on Artifical Intelligence, AAAI’04, p. 49–54. AAAI Press.

Chen, F., Gao, Y., qian Chen, Z., & fu Chen, S. (2005). SCGA: Controlling genetic al-
gorithms with sarsa(0). In International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vol. 1, pp.
1177–1183.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z., & Yin, W. (2021). Learning
to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828, [cs.LG].

Chrabaszcz, P., Loshchilov, I., & Hutter, F. (2018). Back to basics: Benchmarking canon-
ical evolution strategies for playing atari. In Lang, J. (Ed.), Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI’18), pp. 1419–1426.
ijcai.org.

Daniel, C., Taylor, J., & Nowozin, S. (2016). Learning step size controllers for robust
neural network training. In Schuurmans, D., & Wellman, M. (Eds.), Proceedings of
the Thirtieth National Conference on Artificial Intelligence (AAAI’16). AAAI Press.

Doerr, B. (2019). Analyzing randomized search heuristics via stochastic domination. The-
oretical Computer Science, 773, 115–137.

Doerr, B., & Doerr, C. (2020). Theory of parameter control for discrete black-box optimiza-
tion: Provable performance gains through dynamic parameter choices. In Doerr, B.,
& Neumann, F. (Eds.), Theory of Evolutionary Computation, pp. 271–321. Springer.

Doerr, C., Wang, H., Ye, F., van Rijn, S., & Bäck, T. (2018). IOHprofiler: A bench-
marking and profiling tool for iterative optimization heuristics. arXiv preprint
arXiv:1810.05281, [cs.NE].

Drake, J. H., Kheiri, A., Özcan, E., & Burke, E. K. (2020). Recent advances in selection
hyper-heuristics. European Journal of Operational Research, 285 (2), 405–428.

Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., & Leyton-Brown,
K. (2013). Towards an empirical foundation for assessing Bayesian optimization of
hyperparameters. In NeurIPS Workshop on Bayesian Optimization in Theory and
Practice (BayesOpt’13).

Eggensperger, K., Lindauer, M., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2018). Effi-
cient benchmarking of algorithm configurators via model-based surrogates. Machine
Learning, 107 (1), 15–41.

Eiben, A., Horvath, M., Kowalczyk, W., & Schut, M. (2006). Reinforcement learning for
online control of evolutionary algorithms. In International Workshop on Engineering
Self-Organising Applications, pp. 151–160. Springer.

36

Automated Dynamic Algorithm Configuration

Eimer, T., Biedenkapp, A., Hutter, F., & Lindauer, M. (2021a). Self-paced context evalu-
ation for contextual reinforcement learning. In Meila, M., & Zhang, T. (Eds.), Pro-
ceedings of the 38th International Conference on Machine Learning (ICML’21), Vol.
139 of Proceedings of Machine Learning Research, pp. 2948–2958. PMLR.

Eimer, T., Biedenkapp, A., Reimer, M., Adriaensen, S., Hutter, F., & Lindauer, M. (2021b).
DACBench: A benchmark library for dynamic algorithm configuration. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI’21).
ijcai.org.

Falkner, S., Klein, A., & Hutter, F. (2018). BOHB: Robust and efficient hyperparame-
ter optimization at scale. In Dy, J., & Krause, A. (Eds.), Proceedings of the 35th
International Conference on Machine Learning (ICML’18), Vol. 80, pp. 1437–1446.
Proceedings of Machine Learning Research.

Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., & Leyton-Brown, K. (2014).
Improved features for runtime prediction of domain-independent planners. In Chien,
S., Minh, D., Fern, A., & Ruml, W. (Eds.), Proceedings of the Twenty-Fourth Interna-
tional Conference on Automated Planning and Scheduling (ICAPS-14), pp. 355–359.
AAAI.

Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. In Hutter, F., Kotthoff, L.,
& Vanschoren, J. (Eds.), Automated Machine Learning: Methods, Systems, Challenges,
pp. 3–38. Springer. Available for free at http://automl.org/book.

Fialho, A., Da Costa, L., Schoenauer, M., & Sebag, M. (2010). Analyzing bandit-based
adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intel-
ligence, 60 (1), 25–64.

Fink, E. (1998). How to solve it automatically: Selection among problem solving methods..
In AIPS, pp. 128–136.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation
of deep networks. In Precup, D., & Teh, Y. W. (Eds.), Proceedings of the 34th Inter-
national Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning
Research, pp. 1126–1135. PMLR.

Fitzgerald, T. (2021). Real-time algorithm configuration. Ph.D. thesis, University College
Cork.

Fu, J. (2016). Deep q-networks for accelerating the training of deep neural networks. arXiv
preprint arXiv:1606.01467, [cs.LG].

Gagliolo, M., & Schmidhuber, J. (2006). Learning dynamic algorithm portfolios. Annals of
Mathematics and Artificial Intelligence, 47 (3-4), 295–328.

Gaspero, L. D., & Urli, T. (2012). Evaluation of a family of reinforcement learning cross-
domain optimization heuristics. In Hamadi, Y., & Schoenauer, M. (Eds.), Proceed-
ings of the Sixth International Conference on Learning and Intelligent Optimization
(LION’12), Vol. 7219 of Lecture Notes in Computer Science, pp. 384–389. Springer.

Getzelman, G., & Balaprakash, P. (2021). Learning to switch optimizers for quadratic
programming. In Asian Conference on Machine Learning, pp. 1553–1568. PMLR.

37

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Gomes, C., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126 (1-2),
43–62.

Gomoluch, P., Alrajeh, D., & Russo, A. (2019). Learning classical planning strategies
with policy gradient. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 29, pp. 637–645.

Gomoluch, P., Alrajeh, D., Russo, A., & Bucchiarone, A. (2020). Learning neural search
policies for classical planning. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, Vol. 30, pp. 522–530.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401, [cs.NE].

Hall, G. T., Oliveto, P. S., & Sudholt, D. (2019). On the impact of the cutoff time on the per-
formance of algorithm configurators. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 907–915.

Hall, G. T., Oliveto, P. S., & Sudholt, D. (2020). Fast perturbative algorithm configura-
tors. In International Conference on Parallel Problem Solving from Nature, pp. 19–32.
Springer.

Hallak, A., Di Castro, D., & Mannor, S. (2015). Contextual markov decision processes.
arXiv preprint arXiv:1502.02259, [stat.ML].

Hansen, N., Finck, S., Ros, R., & Auger, A. (2009). Real-Parameter Black-Box Optimiza-
tion Benchmarking 2009: Noiseless Functions Definitions. Research report RR-6829,
INRIA.

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computing, 11 (1), 1–18.

Hansen, N., & Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE
international conference on evolutionary computation, pp. 312–317. IEEE.

Hansen, S. (2016). Using deep q-learning to control optimization hyperparameters. arXiv
preprint arXiv:1602.04062, [math.OC].

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Helmert, M., Röger, G., & Karpas, E. (2011). Fast downward stone soup: A baseline for
building planner portfolios. In ICAPS-2011 Workshop on Planning and Learning
(PAL), pp. 28–35.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Zilberstein, S.,
Koehler, J., & Koenig, S. (Eds.), Proceedings of the Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS-04), pp. 161–170. AAAI Press.

Helmert, M., & Geffner, H. (2008). Unifying the causal graph and additive heuristics. In
Rintanen, J., Nebel, B., Beck, J. C., & Hansen, E. (Eds.), Proceedings of the Eighteenth
International Conference on Automated Planning and Scheduling (ICAPS-08), pp.
140–147. AAAI Press.

38

Automated Dynamic Algorithm Configuration

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2018). Deep
reinforcement learning that matters. In McIlraith, S., & Weinberger, K. (Eds.), Pro-
ceedings of the Conference on Artificial Intelligence (AAAI’18). AAAI Press.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Hoos, H. (2012). Programming by optimization. Communications of the ACM, 55 (2),
70–80.

Hoos, H., Kaminski, R., Lindauer, M., & Schaub, T. (2015). aspeed: Solver scheduling via
answer set programming. Theory and Practice of Logic Programming, 15, 117–142.

Huberman, B., Lukose, R., & Hogg, T. (1997). An economic approach to hard computational
problems. Science, 275, 51–54.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2010). Automated configuration of mixed integer
programming solvers. In Lodi, A., Milano, M., & Toth, P. (Eds.), Proceedings of the
Seventh International Conference on Integration of AI and OR Techniques in Con-
straint Programming (CPAIOR’10), Vol. 6140 of Lecture Notes in Computer Science,
pp. 186–202. Springer.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Sequential model-based optimization
for general algorithm configuration. In Coello, C. (Ed.), Proceedings of the Fifth
International Conference on Learning and Intelligent Optimization (LION’11), Vol.
6683 of Lecture Notes in Computer Science, pp. 507–523. Springer.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2014). An efficient approach for assessing
hyperparameter importance. In Xing, E., & Jebara, T. (Eds.), Proceedings of the 31th
International Conference on Machine Learning, (ICML’14), pp. 754–762. Omnipress.

Hutter, F., Hoos, H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36,
267–306.

Hutter, F., López-Ibánez, M., Fawcett, C., Lindauer, M., Hoos, H., Leyton-Brown, K., &
Stützle, T. (2014). AClib: a benchmark library for algorithm configuration. In Parda-
los, P., & Resende, M. (Eds.), Proceedings of the Eighth International Conference on
Learning and Intelligent Optimization (LION’14), Lecture Notes in Computer Science,
pp. 36–40. Springer.

Hvarfner, C., Stoll, D., Souza, A., Nardi, L., Lindauer, M., & Hutter, F. (2022). PiBO:
Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In
International Conference on Learning Representations.

Ichnowski, J., Jain, P., Stellato, B., Banjac, G., Luo, M., Borrelli, F., Gonzalez, J. E., Stoica,
I., & Goldberg, K. (2021). Accelerating quadratic optimization with reinforcement
learning. In Thirty-Fifth Conference on Neural Information Processing Systems.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation.
Neural networks, 1 (4), 295–307.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W., Donahue, J., Razavi, A., Vinyals,
O., Green, T., Dunning, I., Simonyan, K., Fernando, C., & Kavukcuoglu, K. (2017).

39

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Population based training of neural networks. arXiv preprint arXiv:1711.09846,
[cs.LG].

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algo-
rithm selection and scheduling. In Lee, J. (Ed.), Proceedings of the Seventeenth Inter-
national Conference on Principles and Practice of Constraint Programming (CP’11),
Vol. 6876 of Lecture Notes in Computer Science, pp. 454–469. Springer.

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). ISAC - instance-specific
algorithm configuration. In Coelho, H., Studer, R., & Wooldridge, M. (Eds.), Pro-
ceedings of the Nineteenth European Conference on Artificial Intelligence (ECAI’10),
pp. 751–756. IOS Press.

Kadioglu, S., Sellmann, M., & Wagner, M. (2017). Learning a reactive restart strategy to
improve stochastic search. In International Conference on Learning and Intelligent
Optimization, pp. 109–123. Springer.

Karafotias, G., Eiben, A. E., & Hoogendoorn, M. (2014). Generic parameter control with
reinforcement learning. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pp. 1319–1326.

Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm
selection: Survey and perspectives. Evolutionary computation, 27 (1), 3–45.

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations (ICLR’15). Published
online: iclr.cc.

Kleinberg, R., Leyton-Brown, K., & Lucier, B. (2017). Efficiency through procrastination:
Approximately optimal algorithm configuration with runtime guarantees.. In Sierra,
C. (Ed.), Proceedings of the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI’17), pp. 2023–2031.

Klink, P., D’Eramo, C., Peters, J., & Pajarinen, J. (2020). Self-paced deep reinforcement
learning. In Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS.

Kool, W., van Hoof, H., & Welling, M. (2018). Attention, learn to solve routing problems!.
In International Conference on Learning Representations.

Kotthoff, L. (2014). Algorithm selection for combinatorial search problems: A survey. AI
Magazine, 35 (3), 48–60.

Koza, J. R. (1992). Genetic programming, Vol. 4. MIT Press.

Lagoudakis, M., & Littman, M. (2001). Learning to select branching rules in the DPLL
procedure for satisfiability. Electronic Notes in Discrete Mathematics, 9, 344–359.

Lagoudakis, M. G., & Littman, M. L. (2000). Algorithm selection using reinforcement
learning.. In ICML, pp. 511–518.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & Hutter, M. (2020). Learning
quadrupedal locomotion over challenging terrain. Science in Robotics, 5.

40

Automated Dynamic Algorithm Configuration

Levine, S., & Abbeel, P. (2014). Learning neural network policies with guided policy search
under unknown dynamics. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N., & Weinberger, K. (Eds.), Proceedings of the 27th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’14), pp. 1071–1079.
Curran Associates.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003). A
portfolio approach to algorithm selection. In IJCAI, Vol. 3, pp. 1542–1543.

Li, K., & Malik, J. (2017). Learning to optimize. In Proceedings of the International
Conference on Learning Representations (ICLR’17).

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18 (185), 1–52.

Lindauer, M., Bergdoll, D., & Hutter, F. (2016). An empirical study of per-instance al-
gorithm scheduling. In Festa, P., Sellmann, M., & Vanschoren, J. (Eds.), Proceed-
ings of the Tenth International Conference on Learning and Intelligent Optimization
(LION’16), Lecture Notes in Computer Science. Springer. to appear.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C.,
Ruhkopf, T., Sass, R., & Hutter, F. (2022). SMAC3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research
(JMLR) – MLOSS, 23 (54), 1–9.

Lobo, F., Lima, C. F., & Michalewicz, Z. (2007). Parameter setting in evolutionary algo-
rithms, Vol. 54. Springer Science & Business Media.

López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L. P., Birattari, M., & Stützle, T. (2016).
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3, 43–58.

López-Ibánez, M., & Stützle, T. (2014). Automatically improving the anytime behaviour of
optimisation algorithms. European Journal of Operational Research, 235 (3), 569–582.

Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm
restarts. In Proceedings of the International Conference on Learning Representations
(ICLR’17).

Lv, K., Jiang, S., & Li, J. (2017). Learning gradient descent: Better generalization and
longer horizons. In International Conference on Machine Learning, pp. 2247–2255.
PMLR.

Maclaurin, D., Duvenaud, D., & Adams, R. (2015). Gradient-based Hyperparameter Op-
timization through Reversible Learning. In Bach, F., & Blei, D. (Eds.), Proceedings
of the 32nd International Conference on Machine Learning (ICML’15), Vol. 37, pp.
2113–2122. Omnipress.

Majid, A. (2021). Deep reinforcement learning versus evolution strategies: A comparative
survey. arXiv preprint arXiv:2110.01411, [cs.LG].

Manna, Z., & Waldinger, R. (1980). A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2 (1), 90–121.

41

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Mannor, S., Rubinstein, R. Y., & Gat, Y. (2003). The cross entropy method for fast policy
search. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pp. 512–519.

Metz, L., Maheswaranathan, N., Freeman, C., Poole, B., & Sohl-Dickstein, J. (2020). Tasks,
stability, architecture, and compute: Training more effective learned optimizers, and
using them to train themselves. arXiv preprint arXiv:2009.11243, [cs.LG].

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., & Sohl-Dickstein, J. (2019). Under-
standing and correcting pathologies in the training of learned optimizers. In Chaud-
huri, K., & Salakhutdinov, R. (Eds.), Proceedings of the 36th International Conference
on Machine Learning (ICML’19), Vol. 97. Proceedings of Machine Learning Research.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D.
(2015). Human-level control through deep reinforcement learning. Nature, 518 (7540),
529–533.

Moulines, E., & Bach, F. R. (2011). Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F., & Weinberger, K. (Eds.), Proceedings of the 24th International Conference on Ad-
vances in Neural Information Processing Systems (NeurIPS’11), pp. 451–459. Curran
Associates.

Muller, S. D., Schraudolph, N. N., & Koumoutsakos, P. D. (2002). Step size adaptation in
evolution strategies using reinforcement learning. In Proceedings of the 2002 Congress
on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 1, pp. 151–156.
IEEE.

Nguyen, M. H., Grinsztajn, N., Guyon, I., & Sun-Hosoya, L. (2021). MetaREVEAL: RL-
based meta-learning from learning curves. In Workshop on Interactive Adaptive Learn-
ing.

Papadimitriou, C. H. (1994). On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and system Sciences, 48 (3), 498–532.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch. In Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., & Garnett,
R. (Eds.), Proceedings of the 30th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’17). Curran Associates.

Pettinger, J., & Everson, R. (2002). Controlling genetic algorithms with reinforcement
learning. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation, pp. 692–692.

Prestwich, S. (2008). Tuning local search by average-reward reinforcement learning. In
Maniezzo, V., Battiti, R., & Watson, J. (Eds.), Proceedings of the International Con-
ference on Learning and Intelligent Optimization (LION), Vol. 5313 of Lecture Notes
in Computer Science, pp. 192–205. Springer.

42

Automated Dynamic Algorithm Configuration

Probst, P., Boulesteix, A., & Bischl, B. (2019). Tunability: Importance of hyperparameters
of machine learning algorithms. Journal of Machine Learning Research, 20 (53), 1–32.

Pushak, Y., & Hoos, H. (2020). Golden parameter search: exploiting structure to quickly
configure parameters in parallel. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pp. 245–253.

Rice, J. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.

Richter, S., & Helmert, M. (2009). Preferred operators and deferred evaluation in satisficing
planning. In Gerevini, A., Howe, A., Cesta, A., & Refanidis, I. (Eds.), Proceedings
of the Nineteenth International Conference on Automated Planning and Scheduling
(ICAPS-09), pp. 273–280. AAAI Press.

Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. In Fox, D., & Gomes,
C. P. (Eds.), Proceedings of the Twenty-third Conference on Artificial Intelligence
(AAAI’08), pp. 975–982. AAAI Press.

Röger, G., & Helmert, M. (2010). The more, the merrier: Combining heuristic estimators for
satisficing planning. In Brafman, R., Geffner, H., Hoffmann, J., & Kautz, H. (Eds.),
Working notes of the Twenty-first International Conference on Automated Planning
and Scheduling (ICAPS-10), Workshop on Planning and Learning., pp. 246–249.

Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L. (2020). Time-dependent au-
tomatic parameter configuration of a local search algorithm. In Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20, p.
1898–1905.

Sakurai, Y., Takada, K., Kawabe, T., & Tsuruta, S. (2010). A method to control pa-
rameters of evolutionary algorithms by using reinforcement learning. In Yétongnon,
K., Dipanda, A., & Chbeir, R. (Eds.), Proceedings of Sixth International Conference
on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 74–79. IEEE
Computer Society.

Salimans, T., Ho, J., Chen, X., & Sutskever, I. (2017). Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, [stat.ML].

Schaul, T., Zhang, S., & LeCun, Y. (2013). No More Pesky Learning Rates. In Dasgupta, S.,
& McAllester, D. (Eds.), Proceedings of the 30th International Conference on Machine
Learning (ICML’13). Omnipress.

Seipp, J., Sievers, S., Helmert, M., & Hutter, F. (2015). Automatic configuration of se-
quential planning portfolios. In Bonet, B., & Koenig, S. (Eds.), Proceedings of the
Twenty-ninth National Conference on Artificial Intelligence (AAAI’15). AAAI Press.

Seipp, J., Sievers, S., & Hutter, F. (2014). Fast downward SMAC.. Planner abstract, IPC
2014 Planning and Learning Track.

Senior, A., Heigold, G., Ranzato, M., & Yang, K. (2013). An empirical study of learning
rates in deep neural networks for speech recognition. In Proc. of ICASSP.

Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., & Hutter, F. (2020).
Learning step-size adaptation in CMA-ES. In Bäck, T., Preuss, M., Deutz, A., Wang,
H., Doerr, C., Emmerich, M., & Trautmann, H. (Eds.), Proceedings of the Sixteenth

43

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

International Conference on Parallel Problem Solving from Nature (PPSN’20), Lec-
ture Notes in Computer Science, pp. 691–706. Springer.

Sharma, M., Komninos, A., López-Ibáñez, M., & Kazakov, D. (2019). Deep reinforcement
learning based parameter control in differential evolution. In López-Ibáñez, M. (Ed.),
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 709–717.
ACM.

Sievers, S., Katz, M., Sohrabi, S., Samulowitz, H., & Ferber, P. (2019). Deep learning for
cost-optimal planning: Task-dependent planner selection. In Hentenryck, P. V., &
Zhou, Z. (Eds.), Proceedings of the Thirty-Third Conference on Artificial Intelligence
(AAAI’19), pp. 7715–7723. AAAI Press.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., & Hassabis, D. (2016). Mastering the game of go with deep neural networks and
tree search. Nature, 529 (7587), 484–489.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE
winter conference on applications of computer vision (WACV), pp. 464–472. IEEE.

Snoek, J., Larochelle, H., & Adams, R. (2012). Practical Bayesian optimization of machine
learning algorithms. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., & Weinberger,
K. (Eds.), Proceedings of the 25th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’12), pp. 2960–2968. Curran Associates.

Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., & Lindauer, M. (2021). Learning
heuristic selection with dynamic algorithm configuration. In Proceedings of the 31st
International Conference on Automated Planning and Scheduling (ICAPS’21).

Stanley, K. O., Clune, J., Lehman, J., & Miikkulainen, R. (2021). Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1, 24–35.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10, 99–127.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Szita, I., & Lörincz, A. (2006). Learning tetris using the noisy cross-entropy method. Neural
computation, 18 (12), 2936–2941.

Tieleman, T., Hinton, G., et al. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4 (2), 26–31.

van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Schuurmans, D., & Wellman, M. (Eds.), Proceedings of the Thirtieth
National Conference on Artificial Intelligence (AAAI’16). AAAI Press.

van Rijn, J., & Hutter, F. (2018). Hyperparameter importance across datasets. In Guo, Y.,
& F.Farooq (Eds.), Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 2367–2376. ACM Press.

44

Automated Dynamic Algorithm Configuration

van Rijn, S., Doerr, C., & Bäck, T. (2018). Towards an adaptive CMA-ES configurator. In
Auger, A., Fonseca, C. M., Lourenço, N., Machado, P., Paquete, L., & Whitley, L. D.
(Eds.), Proceedings of the 15th International Conference on Parallel Problem Solving
from Nature (PPSN’18), Vol. 11101 of Lecture Notes in Computer Science, pp. 54–65.
Springer.

Vermetten, D., van Rijn, S., Bäck, T., & Doerr, C. (2019). Online selection of CMA-ES
variants. In Proc. of GECCO, pp. 951–959. ACM.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., & de Feitas, N. (2016). Bayesian optimiza-
tion in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55, 361–387.

Weisz, G., György, A., & Szepesvári, C. (2019). CapsAndRuns: An improved method for
approximately optimal algorithm configuration. In Chaudhuri, K., & Salakhutdinov,
R. (Eds.), Proceedings of the 36th International Conference on Machine Learning
(ICML’19), Vol. 97, pp. 6707–6715. Proceedings of Machine Learning Research.

Wessing, S., Preuss, M., & Rudolph, G. (2011). When parameter tuning actually is parame-
ter control. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 821–828.

Wolpert, D. H., & Macready, W. G. (1995). No free lunch theorems for search. Tech. rep.
SFI-TR-95-02-010, Santa Fe Institute.

Xu, C., Qin, T., Wang, G., & Liu, T.-Y. (2017). Reinforcement learning for learning rate
control. arXiv preprint arXiv:1705.11159, [cs.LG].

Xu, L., Hoos, H., & Leyton-Brown, K. (2010). Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In Fox, M., & Poole, D. (Eds.), Proceedings of the
Twenty-fourth National Conference on Artificial Intelligence (AAAI’10), pp. 210–216.
AAAI Press.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research, 32, 565–606.

Xu, Z., Dai, A. M., Kemp, J., & Metz, L. (2019). Learning an adaptive learning rate
schedule. arXiv preprint arXiv:1909.09712, [cs.LG].

45

Part III

Dynamic Algorithm Configuration:
Case Studies

CHAPTER 7
Learning Step-Size Adaptation in CMA-ES

The content of this chapter has been published as:

G. Shala, A. Biedenkapp, N. Awad, S. Adriaensen, M. Lindauer, and F. Hutter (2020).
“Learning Step-Size Adaptation in CMA-ES”. in: Proceedings of the Sixteenth Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN’20). Ed. by T. Bäck,
M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and H. Trautmann. Lecture
Notes in Computer Science. Springer, pp. 691–706.

Project Idea. The idea was proposed by Frank Hutter. André Biedenkapp proposed the
extension to GPS for improved sample efficiency. Gresa Shala proposed the initial state
and action spaces, building on work by Ke Li and Jitendra Malik. Gresa Shala and André
Biedenkapp jointly refined these spaces. Marius Lindauer and Noor Awad proposed the set
of benchmarks for evaluation.

Implementation and experimentation. Gresa Shala led the implementation. André
Biedenkapp, Noor Awad and Marius Lindauer proposed the experiment design to study
the generality of the learned policies. André Biedenkapp proposed to use the performance
metric and Steven Adriaensen demonstrated that this metric can be interpreted statistically
as it has a correspondence with the “sum of ranks” statistic of the Wilcoxon rank-sum test.
Experiments were conducted by Gresa Shala under the supervision of André Biedenkapp.

Paper writing. A first draft of the paper was prepared by André Biedenkapp. Gresa Shala
and André Biedenkapp jointly wrote the experiments section. Steven Adriaensen provided
the final related work section. Noor Awad aided in writing the background section. André
Biedenkapp revised this draft which was further revised and edited by Marius Lindauer
and Frank Hutter.

Learning Step-Size Adaptation in CMA-ES

Gresa Shala1?, André Biedenkapp1?, Noor Awad1, Steven Adriaensen1,
Marius Lindauer2, and Frank Hutter1,3

1 University of Freiburg, Germany
{shalag, biedenka, awad, adriaens, fh}@cs.uni-freiburg.de

2 Leibniz University Hannover, Germany
lindauer@tnt.uni-hannover.de

3 Bosch Center for Artificial Intelligence

Abstract. An algorithm’s parameter setting often affects its ability to
solve a given problem, e.g., population-size, mutation-rate or crossover-
rate of an evolutionary algorithm. Furthermore, some parameters have
to be adjusted dynamically, such as lowering the mutation-strength over
time. While hand-crafted heuristics offer a way to fine-tune and dynami-
cally configure these parameters, their design is tedious, time-consuming
and typically involves analyzing the algorithm’s behavior on simple prob-
lems that may not be representative for those that arise in practice. In
this paper, we show that formulating dynamic algorithm configuration
as a reinforcement learning problem allows us to automatically learn
policies that can dynamically configure the mutation step-size parame-
ter of Covariance Matrix Adaptation Evolution Strategy (CMA-ES). We
evaluate our approach on a wide range of black-box optimization prob-
lems, and show that (i) learning step-size policies has the potential to
improve the performance of CMA-ES; (ii) learned step-size policies can
outperform the default Cumulative Step-Size Adaptation of CMA-ES;
and transferring the policies to (iii) different function classes and to (iv)
higher dimensions is also possible.

Keywords: Evolutionary Algorithms · Reinforcement Learning · Algo-
rithm Configuration.

1 Introduction

Designing algorithms requires careful design of multiple components. Having the
foresight of how these components will interact for all possible applications is an
infeasible task. Therefore, instead of hard-wiring algorithms, human developers
often expose difficult design decisions as parameters of the algorithm [26]. To
make the algorithm usable off-the-shelf, they provide a default configuration that
is a myopic compromise for different use-cases and often leads to sub-optimal
performance on new applications.

Automated algorithm configuration can alleviate users from the burden of
having to manually configure an algorithm and exceeds human performance in

? Equal Contribution

2 Shala et al.

a wide variety of domains [7, 27, 43, 42, 5, 29]. One shortcoming, however, is
that the learned configuration is static. In practice, many algorithms are of an
iterative nature and might require different parameter configurations at different
stages of their execution. In evolutionary algorithms this kind of “parameter
control” is often achieved through so-called self-adaptive mechanisms [9, 34, 2].
Based on some statistics of the algorithm’s behavior, self-adaptation adjusts the
parameter on-the-fly and thereby directly influences the algorithm’s execution.

Similarly in the well-known CMA-ES [19] the step-size is adapted based on
the observed evolution path by a handcrafted heuristic, called CSA [25]. Through
this step-size control, CMA-ES is able to avoid premature convergence of the
population [21]. However, designing heuristics to adapt not only over a time-
horizon but also to the task at hand is more difficult than to simply expose the
parameters and configure them at every step.

In this work, we aim to strike a balance between self-adaptive mechanisms
and automated algorithm configuration by making use of dynamic algorithm
configuration (DAC) [10]. Instead of only learning the optimal initial step-size
and adapting that by a handcrafted heuristic throughout the run of the algo-
rithm, we learn a DAC policy in a fully automatic and data-driven way that
determines how the step-size should be adjusted during the CMA-ES execution.

To learn DAC policies, we make use of guided policy search (GPS) [37],
a commonly used reinforcement learning (RL) technique, originating from the
robotics community, capable of learning complex non-linear policies from fairly
few trials. Our choice for this particular method was motivated by its capability
to learn simple first-order optimizers from scratch [39]. An appealing feature
of GPS is that it allows us to employ known adaptation schemes as teacher
mechanism to warm-start the search. This learning paradigm allows the agent
to simply imitate the teacher if it was already optimal for a specific problem,
while learning to do better in areas where the teacher struggled to perform well.

We study the potential of this DAC approach to step-size adaptation in
CMA-ES for a variety of black-box optimization problems. One important open
question so far is how such data-driven approaches can generalize to different
settings (e.g., longer optimization runs, higher-dimensional problems or different
problem classes) that were not observed during training. More specifically, our
contributions are:

1. We address the problem of learning step-size control for CMA-ES from a
reinforcement learning perspective;

2. We propose how to model the state space, action space and reward function;

3. To use guided policy search for learning a DAC policy in efficient way, we
propose to use a strong teacher guidance.

4. We empirically demonstrate that our learned DAC policies are able to out-
perform CMA-ES’ handcrafted step-size adaptation;

5. We demonstrate the generality of our DAC approach by transferring the
learned policies to (i) functions of higher dimensions, (ii) unseen test function
and (iii) to a certain degree to longer optimization trajectories.

Learning Step-Size Adaptation in CMA-ES 3

2 Related Work

Parameter Control using Reinforcement Learning The potential generality of
DAC via RL is widely recognized [33, 1, 10] and RL has been applied to various
specific parameter control settings [45, 46, 12, 15, 49, 8, 18, 33, 51]. However, RL
covers a wide variety of techniques, and our methodology differs from prior-art in
the area, in two important ways. First, GPS learns configuration policies offline,
while most previous research considers the online setting. They attempt to learn
how to adapt the parameters of an algorithm “while it is being used”, i.e. without
separate training phase. While desirable, online learning introduces a challenging
exploration-exploitation trade-off. Also, experience is typically not transferred
across runs, similar to hand-crafted adaptation mechanisms. That being said,
prior-art considering the offline setting does exist, e.g., Battiti et al. [8] for local
search SAT solvers and Sharma et al. [51] for EA. Second, GPS belongs to
the family of policy search methods, which are often able to handle partially
observable state spaces and continuous actions spaces better than previously
used value-based RL methods.

Black-Box Dynamic Algorithm Configuration In a sense, our methodology more
closely resembles static algorithm configuration (AC) than traditional RL ap-
proaches. We represent configuration policies as a neural network; and as in AC,
train it offline. Instead of GPS, black-box optimizers, e.g. ES, could also be used
to optimize these weights [31, 50, 17]. In fact, prior-art exists that performs
DAC using static AC methods [35, 3, 6, 32]. A limitation of these “black-box”
approaches is that they are unaware of the dynamic nature of the problem [1],
e.g. which configurations where used at each time step, and how this affected
execution. As a consequence, they are not sample-efficient, and practical appli-
cations with long trajectories are forced to consider restrictive policy spaces.

Learning to Optimize in Machine Learning Learning to Learn (L2L) is a form of
meta-learning, aiming to use machine learning methods to learn better machine
learning systems [53]. Research in the area has recently surged in popularity,
resulting in various applications learning better neural network architectures [57,
41], hyper-parameters [44], initialization [16], and optimizers [4, 13, 11, 39, 56,
14]. As we are learning a component of an optimizer, our work is closely related
to Learning to Optimize (L2O). Note that most L2O research [4, 39, 56, 14]
focuses on learning better gradient-based methods (e.g. Adam [36]), as these are
most commonly used to optimize neural networks. Notable exceptions are L2O
applications to single-point [13] and multi-point [11] black-box optimization. One
L2O approach [13, 4, 11] models iterative optimizers as a kind of recurrent neural
network and trains it in a fully supervised fashion. More general RL methods
have also been used in L2O, e.g. REPS [14], PPO [56], and GPS [39]. In this
work, we apply GPS in a similar way. The main difference is that, instead of
learning a simple first-order optimization method from scratch, we apply this
method to dynamically configure a single parameter (step-size) in a state-of-the-
art derivative-free method (CMA-ES).

4 Shala et al.

3 Background on CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [24] is an evolu-
tionary algorithm optimizing a continuous black-box function f : IRn → IR by
sampling individuals from a non-stationary multivariate normal search distri-

bution N
(
m(g), σ(g)2

C(g)
)

, with mean m(g) (center), step-size σ(g) (scale) and

covariance matrix C(g) (shape).
Initially, C(0) = I (identity matrix) and m(0), σ(0) are provided by the user.

The algorithm then iteratively updates this search distribution to increase the
probability of sampling successful individuals. Each generation g, CMA-ES first

samples λ individuals x
(g+1)
1 , ..., x

(g+1)
λ and chooses the best µ points as the

parents of generation g+1. Then CMA-ES shifts the mean by a weighted average
of µ selected steps:

m(g+1) = m(g) + cm

µ∑

i=1

wi

(
x

(g+1)
i:λ −m(g)

)
. (1)

where xi:λ denotes the i-th best point in terms of the function value and cm
is a learning rate which is usually set to 1. Next, covariance matrix adaptation
is performed, which amounts to learning a second order model of the underly-
ing objective function. To control the step-size CMA-ES uses Cumulative Step
Length Adaptation (CSA) [21]:

σ(g+1) = σ(g)exp

(
cσ
dσ

(
||p(g+1)

σ ||
E||N (0, I)|| − 1

))
, (2)

where cσ < 1 is the learning rate, dσ ≈ 1 is the damping parameter, and

p
(g+1)
σ ∈ Rn is the conjugate evolution path at generation g+1 :

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeffC

(g)− 1
2
m(g+1) −m(g)

σ(g)
. (3)

Note that alternatives for CSA have been proposed, e.g. making use of a
success rule [30] or facilitate two-point step-size adaptation [20]. More generally,
further research has resulted in many variants of CMA-ES suitable for a variety
of different problems. A highly modular framework [48] exists that enables easy
choice between 4 608 different versions of CMA-ES. This framework has further
been used to demonstrate that, theoretically, switching only once during a run
between configurations can yield performance improvements [47]. Simply using
the switching rules proposed therein did not yield robust results in practice, but
could be improved upon to yield better results [55].

4 Learning Step-Size Adaptation

In this section, we will first discuss how we can model the adaptation of the step-
size of CMA-ES as a dynamic algorithm configuration problem and propose to
use guided policy search to efficiently find well-performing step-size policies.

Learning Step-Size Adaptation in CMA-ES 5

(0)

RL agent

environment (E)

reward signal (R) dynamics (T)

internal state
Φ

reset to initial condition i Є I

take action a Є A

observe external state s Є S

observe reward r Є ℝ

covariance matrix
adaptation

- full memory state of CMA-ES
- additional search trajectory statistics

step-size
adaptation

o�spring
generation

�tness
evaluation

adaptation of
the mean

At training time (o�ine)
executes Guided Policy Search
to learn policy S A

At test time (online)
executes the learned policy current objective value

choose step-size σ Є ℝ+

start CMA-ES with
- objective function f
- initial mean m
- initial step-size σ
- population size 10
- default parameters

(0)

- 40 last step-size values
- 40 last objective value changes
- current cumulative path length

general (observable)
general (hidden)
application-speci�c

Fig. 1: Interaction of the RL agent with CMA-ES.

4.1 The General Objective

The general objective is to adjust step-size σ(g+1) for generation g + 1 based on
some state information sg on how CMA-ES behaved so far. To achieve that, a
probabilistic policy π is responsible for the adjustment:

σ(g+1) ∼ π(sg) (4)

Along the lines of DAC, we further say that a policy should not only perform
well on a single function f , but generalize to many functions f ∈ F . Note that the
policy must not only depend on features of the search trajectory, but could also
be enriched by context information about the function at hand. This allows the
policy to easily distinguish between different functions and their characteristics.

Dynamic algorithm configuration allows us to minimize an arbitrary cost
function c : Π × F → R that defines how well our algorithm, here CMA-ES,
performed by using a policy π ∈ Π on a function f ∈ F . Therefore, our objective
is to find a policy π∗ that optimally adjusts σ across a set of functions4:

π∗ ∈ arg min
π∈Π

∑

f∈F
c(π, f) (5)

4.2 Defining the Components

Having formally described the specific DAC problem at hand, we need to define
all the components to apply reinforcement learning (RL) for solving it. In general,
the RL paradigm [52] allows learning a policy π mapping observations Φ(s′) ∈ S
of an internal state s′ ∈ S′ to actions A by optimizing some reward signal R

4 We assume that the cost function is well-defined such that an optimal policy exists.

6 Shala et al.

induced by transitions T : S′ ×A→ S′. So, to solve our DAC problem for step-
size adaptation in CMA-ES via RL, we need to define our problem as 〈S,A, T,R〉,
where T is implicitly given by the dynamics of CMA-ES; see Figure 1.

The Step-Size Domain and the Action Space. In principle, the step-size param-
eter of CMA-ES is a positive, continuous scalar that needs to be adjusted by π.
For this, we have two options: (i) discretizing it or (ii) directly optimizing in a
continuous domain, which will represent the action space for our RL approach.
We argue that the first option is not desirable, as a too fine grid might lead to a
large action space with many potentially irrelevant choices; whereas a too coarse
grid might not contain all relevant choices. Hence, we model A as the continuous
domain of the step size parameter.

State Representation of CMA-ES. To enable DAC for the step-size, it is crucial
that S encodes sufficient information about the CMA-ES run. Given that our
aim is to learn from, and possibly improve over, the performance of CSA for
step-size control, we encode the information CSA uses in the state. Additionally,
we include information on the optimization process by keeping a history of a
fixed number h of past step-size values (in our experiments, h = 40) and past
objective values. Specifically, our chosen state description contains:

1. the current step-size value σ(g) (see Equation 2)

2. the current cumulative path length p
(g)
σ (see Equation 2)

3. the history of changes in objective value (i.e. the differences between succes-
sive objective values from h previous iterations)

4. the step-size history from h previous iterations5

The Cost Function and the Reward. The overall objective of CMA-ES is to find
the minimizer of a function f at hand. So, we can say that the cost function
should directly reflect the function value found by CMA-ES. Because the opti-
mization budget (e.g., the number of allowed function evaluations) is not always
known beforehand, we argue that it is desired to optimize for any-time perfor-
mance. Since RL maximizes a cumulative reward over time, we can simply define
the reward function per step (i.e. generation) as the negative function value of
the current incumbent. By doing that, we optimize for any-time performance.

4.3 Using Guided Policy Search for Efficient Learning of the Policy

Prior work showed [49, 51] that value-based RL can be used for learning a DAC
policy. However, this approach is typically not very sample-efficient, making it a
very expensive approach in general. For example, Biedenkapp et al. [10] needed
more than 10 000 algorithm runs to learn a simple sigmoid function.

A key insight of our work is that RL does not need to learn a well-performing
policy from scratch but can use existing self-adaptive heuristics as a teacher.

5 When such a long history is not available yet, the missing values are filled with zeros.

Learning Step-Size Adaptation in CMA-ES 7

Here, for example, we propose to use CSA as a teacher to learn a policy that
either imitates or improves upon it. In addition to better learning stability of
the policy, we will show in our experiments that learning a policy for step-size
adaptation is comparably cheap by using less than 1 000 runs of CMA-ES.

Similar to Li and Malik [39] in learning to optimize, we propose to use guided
policy search (GPS) under unknown dynamics [37] to learn step-size policies. In
essence GPS learns arbitrary parameterized policies through supervised learning
by fitting a policy to guiding trajectories [38, 37]. From teaching trajectories, a
teacher distribution is computed such that it maximizes the reward and the
agreement with the current policy. The policy parameters are then updated in a
supervised fashion such that new sample trajectories produced by the policy do
not deviate too far from the teacher. For a detailed explanation we refer to [37].

4.4 Extending GPS-based DAC by a Stronger Teacher

For our purposes, we initialize the teacher to fit trajectories generated by CMA-
ES with CSA. This initial teacher thus closely resembles CSA. As GPS updates
the teacher over time to improve the reward, the teacher is likely to move away
from CSA over time as only student and teacher are constrained to stay close
to each other. If both teacher and student stray too far from CSA, the learned
policy might not be able to recover CSAs behaviour in cases where it is beneficial.
Thus we would like to encourage the student policy to also continually learn from
CSA, to gain a more diverse teaching experience.

Instead of restricting the student policies through hard divergence criterion
to not go too far away from CSA, we propose to add additional sample trajec-
tories from running CMA-ES with CSA and not only the teacher to train the
student policy. Thereby CSA acts as an additional fixed teacher. We extend GPS
by introducing a sampling rate to determine the fraction of sample trajectories
obtained from CSA when training the policy. Finally, in order to ensure explo-
ration during learning, the initial step-size values and values for the mean of the
initial distribution for the functions in the training set are randomly sampled
from a uniform distribution.

5 Experiments

In this section we empirically evaluate the effectiveness of our proposed approach.
We demonstrate the ability of our policies to generalize to new settings.

5.1 Setup

For guided policy search we used the implementation provided by Li and Ma-
lik [39]. We incorporated our policy6 in the python version of CMA-ES (pycma)
in version 2.7.0 [22]. We only optimized the step-size adaptation with our ap-
proach and left all other pycma parameters as specified by the default, except we

6 Code and trained policies available at https://github.com/automl/LTO-CMA

8 Shala et al.

100 200 300 400500

Num FEval

−100

0

100

200

300

O
b

je
ct

iv
e

V
al

u
e

Rastrigin

CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(a)

100 200 300 400500

Num FEval

−2000

0

2000

4000

6000

8000

10000

O
b

je
ct

iv
e

V
al

u
e

Schwefel
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(b)

Fig. 2: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our methods incumbent policy after 1, 5, 10 and 15 training iterations
on the Rastrigin function (a) and the Schwefel function (b).

used a fixed population size of 10. As functions, we used a representative set with
different characteristics as introduced by Hansen et al. in the BBOB-2009 [23].

We used 10 runs of SMAC [28, 40] to tune the initial step-size of CSA for each
of the 10 considered BBOB functions individually, giving us a strong baseline.
On the unseen functions we used an initial step-size of 0.5. In all experiments
we used the same initial step-size for both our method and the baseline.

We trained our step-size policy for 50 steps (i.e. generations) of CMA-ES.
We model the policy as a neural network consisting of two hidden layers with 50
hidden units each and ReLU activations. During training, the trajectory samples
are obtained from the teaching policy with a probability of 0.7, whereas with a
probability of 0.3 we sample trajectories from running CMA-ES with CSA. We
obtain the final policy after training for 15 iterations of GPS.

We show performance comparisons of CMA-ES with the learned policy for
step-size adaptation and CMA-ES with CSA from 25 independent runs of each
method. The tables show an estimate of how likely it is for our learned policy to
outperform CSA, based on pairwise comparisons of final objective values from
the 25 runs for each method. The online appendix7 describes this metric in detail,
including its relation to statistical significance8.

5.2 Function-Specific Policy

Comparison against our Teacher CSA We begin by exploring our method’s abil-
ity to learn step-size policies when trained on a single 10D function for which
we sampled 18 different starting points. In each training iteration of GPS, we
evaluated CMA-ES 5 times on all starting conditions. In most cases, we already
learn a well performing policy after 10 training iterations, which amounts only

7 https://ml.informatik.uni-freiburg.de/papers/20-PPSN-LTO-CMA.pdf
8 Estimates ≥ 0.64 =⇒ our learned policy significantly outperformed CSA (α = 0.05)

Learning Step-Size Adaptation in CMA-ES 9

Sampling Rate
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BentCigar 0.53 0.84 0.46 0.96 0.38 0.33 0.14 0.26 0.25 0.08
Discus 0.00 0.66 0.23 0.74 0.34 0.35 0.30 0.37 0.29 0.32
Ellipsoid 0.59 0.97 0.51 0.97 0.51 0.48 0.35 0.48 0.56 0.44
Katsuura 0.64 0.91 0.66 0.96 0.64 0.63 0.63 0.64 0.64 0.61
Rastrigin 0.81 0.94 0.83 1.00 0.97 0.87 0.79 0.85 0.79 0.80
Rosenbrock 0.67 0.28 0.43 0.89 0.61 0.17 0.12 0.51 0.57 0.22
Schaffers 0.75 0.68 0.87 0.78 0.92 0.98 0.45 0.57 0.90 0.94
Schwefel 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sphere 0.77 0.92 0.48 0.78 0.58 0.25 0.94 0.99 0.93 0.94
Weierstrass 0.35 1.00 0.54 1.00 0.32 0.52 0.58 0.52 0.49 0.42

Average 0.60 0.82 0.60 0.91 0.63 0.56 0.53 0.62 0.64 0.58

Table 1: Probability of our method to outperform the baseline when training with
different sampling rates. 1.0 indicates that we always outperform the baseline and
0.0 indicates we are always outperformed. The best sampling rate per function
are marked in bold.

to 18×5×10 = 900 runs of CMA-ES. Figure 2 depicts the training performance
of our learned step-size policy after 1, 5, 10 and 15 training iterations of GPS on
the Rastrigin and Rosenbrock functions. From Figure 2a we can see that even
though our policy starts out with samples from the default step-size adaptation
of CMA-ES, already after one iteration, the learned policy can outperform the
hand-crafted baseline. After four more training steps, our learned policy contin-
ues improving and still outperforms CSA. Finally when having trained for 15
iterations, our learned policy readily outperforms CSA, leading not only to a
much better final performance, but also to a much better anytime performance
on the Rastrigin function. We observe a similar behaviour when training on the
Schwefel function, but the learned policy does not drastically outperform CSA.

Studying the Sampling Rate We further used this setting to determine the influ-
ence of training length and sampling rate on the final performance of our policies,
see Table 1. The sampling rate is crucial for our method as it determines how
similar the learned policy’s behavior is to CSA.

The performance of the learned policy improved by introducing sample tra-
jectories from CSA compared to only sampling from the time-varying linear
Gaussian teacher. Results on some functions are more strongly affected by this
change, e.g. BentCigar, than others, such as Schwefel. The final row shows the
average performance of the sampling rate over all 10 considered training func-
tions. Further, it becomes apparent that a sampling rate of 0.3 results in the
strongest performance of our method, indicating that sampling also from our de-
fault teacher can improve performance. As a conclusion of this meta-parameter
study, we will use 0.3 for our following experiments on generalization.

10 Shala et al.

Trajectory Length
50 100 150 200 250 500 1000

BentCigar 0.89 0.00 0.00 0.00 0.00 0.05 0.04
Discus 0.90 0.95 0.76 0.40 0.00 0.00 0.00
Ellipsoid 0.94 0.92 0.90 0.86 0.61 0.00 0.00
Katsuura 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rastrigin 1.00 0.81 0.80 0.83 0.92 0.73 0.74
Rosenbrock 0.93 0.77 0.78 0.90 0.62 0.24 0.04
Schaffers 0.60 0.55 0.40 0.39 0.48 0.39 0.57
Schwefel 0.99 0.52 0.76 0.79 0.87 0.84 0.65
Sphere 0.89 0.00 0.00 0.00 0.00 0.00 0.00
Weierstrass 0.97 0.97 0.89 0.92 1.00 1.00 1.00

Average 0.91 0.65 0.63 0.61 0.55 0.43 0.40

(a) Different Trajectory Lengths

Dimensions
35 40 45 50 55 60

0.87 0.98 0.56 0.49 0.76 1.00
0.89 0.86 0.93 0.94 0.94 0.97
1.00 1.00 1.00 1.00 1.00 1.00
0.92 0.92 0.96 1.00 0.96 0.87
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.31 0.58 0.78 0.87 0.76 0.74
1.00 0.96 0.96 1.00 1.00 0.98
0.41 0.38 0.56 0.65 0.64 0.72
0.97 1.00 0.95 1.00 1.00 0.93

0.84 0.87 0.87 0.89 0.91 0.92

(b) Different # Dimensions

Table 2: Probability of our method to outperform the baseline (a) for varying
trajectory lengths, when having only trained with trajectories of length 50, and
(b) for different dimensions when training them on functions of dimension 5−30
and applying the learned policies to functions of dimensionality > 30.

Generalization to Longer Trajectory Length Finally, in this setting we explore
the capability of the agent to transfer to longer trajectories. During training we
opted to limit the training samples to be of maximal length 50, which corre-
sponds to 500 function evaluations, to keep the cost for training low. Naturally
the question thus arises if it is possible to further make use of such policies on
longer optimization trajectories. From Table 2a we can observe that, even if a
policy is trained with trajectories of at most 500 function evaluations, the poli-
cies are generally capable of generalizing to optimization trajectories that are
5 times longer while struggling to generalize to even longer trajectories.9 On
functions where the learned policies perform very well, only a small performance
decrease is noticeable over a longer trajectory. On other functions the final per-
formance lacks behind that of the handcrafted baseline over longer optimization
trajectories, whereas on Weierstrass, the opposite is the case. On average, we
can observe a decline in final performance of our learned policy, the further the
optimization trajectory length is from the one used originally for training. A
limiting factor as of yet is scaling the training to much longer trajectories. With
increased trajectory length more training iterations will be needed to learn well
performing policies.

5.3 Function-Class Specific Policy

We are generally not interested in policies that are only of use for one specific
function; a more desirable policy would be capable of handling a broader range

9 The learned policies outperform CSA on anytime performance as shown in the Ap-
pendix, but CSA is better in terms of end objective values.

Learning Step-Size Adaptation in CMA-ES 11

100 200 300 400500

Num FEval

40

60

80

100

120

O
b

je
ct

iv
e

V
al

u
e

GallaghersGaussian21hi
CSA

LTO

(a)

100 200 300 400500

Num FEval

0

200

400

600

800

1000

O
b

je
ct

iv
e

V
al

u
e

SharpRidge
CSA

LTO

(b)

Fig. 3: Optimization trajectories of CMA-ES using CSA (blue) and our learned
policy on two prior unseen test functions. The solid lines depict the mean per-
formance and the shaded area the standard deviation over 25 repetitions.

of functions. As a first step, we are interested in generalizing to similar functions
of a specific function class. A very interesting, yet challenging task is hereby
to generalize to higher dimensions. For this purpose we trained our policies on
functions of dimension 5− 30 and evaluated them on dimensions 35− 60.

From Table 2b we can see that with increasing dimensionality, the probability
that our policies outperform the handcrafted baseline actually increases. Upon
inspection of the results, we see that with increasing dimensionality, the baseline
optimization trajectories need more and more generations before reaching a good
performance. Similarly, with increase in dimensionality, optimization trajectories
guided by our policies require more generations to reach good final performances,
however they are less affected by the dimensionality than the baseline. Especially
on functions like Rosenbrock or Ellipsoid this effect seems to be very strongly
pronounced. We can observe this trend for both training and testing our policies
(see appendix for results on training).

5.4 Generalization to New Functions

Policies scaling to higher dimensions already promise great generalization capa-
bility. However, in practice, the problems, to which a solver is applied, could
be fairly heterogeneous. To look into a more realistic scenario, we trained our
agent on the 10 black-box functions we have mentioned before and assess its
generalization capability on 12 black-box functions unseen during training.

Figure 3 shows two exemplary optimization trajectories that are achievable
with our learned policies, compared to that of the default CSA. On Gallhager’s
Gaussian 21-hi we see that the optimization trajectory of CMA-ES with our
learned policy closely resembles that of the handcrafted baseline as the step-sizes
follow the same trend, see Figure 3a. On SharpRidge (Figure 3b) the learned
policy is able to find well performing regions quicker; however in the end the
baseline catches up.

12 Shala et al.

C
om

po
si
te

-

G
ri
ew

an
k-

R
os

en
br

oc
k

Lin
ea

rS
lo
pe

A
tt
ra

ct
iv
eS

ec
to

r

R
os

en
br

oc
k-

R
ot

at
ed

Lun
ac

ek

B
i-
R
as

tr
ig
in

D
iff

er
en

tP
ow

er
s

St
ep

E
lli

ps
oi
da

l

Sc
ha

ffe
rs
-

Il
lC

on
di

ti
on

ed

G
al
la
gh

er
’s
-

G
au

ss
ia
n1

01
-m

e

B
ue

ch
eR

as
tr
ig
in

Sh
ar

pR
id

ge

G
al
la
gh

er
’s
-

G
au

ss
ia
n2

1-
hi

0

0.5

1
1 1 1

0.87 0.84 0.8
0.63 0.58 0.58 0.56 0.52

0.33

p
(π
≤
C
S
A

)

Transfer to Unseen Functions

Fig. 4: Probability of our learned policies outperforming the default baseline on
prior unseen test functions when training on all 10 BBOB functions.

Figure 4 summarizes the result for all 12 test functions. On 6 out of the 12
test functions, the learned policy significantly (≥ 0.64, α = 0.05) outperformed
the baseline, while being significantly outperformed (≤ 0.36) on one.

6 Conclusion

We demonstrated that we can automatically learn policies to dynamically config-
ure the mutation step-size parameter of CMA-ES using reinforcement learning.
To the best of our knowledge, we are the first to use policy search for the dynamic
configuration of evolutionary algorithms, rather than value-based reinforcement
learning. In particular, we described how guided policy search can be used to
learn configuration policies, starting from a known handcrafted default policy.
We conducted a comprehensive empirical investigation, and observed that (i) the
learned policies are capable of outperforming the default policy on a wide range
of black-box optimization problems; (ii) using a fixed teacher can further improve
the performance; (iii) our learned policies can generalize to higher dimensions
as well as to unseen functions.

These results open the door for promising future research in which pol-
icy search is used to learn policies that jointly configure multiple parameters
(e.g. population and step-size) of CMA-ES. Another line of future research could
improve the employed policy search mechanism, e.g. by learning from a variety
of teachers at the same time. A more diverse set of teachers, might facilitate
even better generalization as the learned policies could make use of strengths
of individual teachers on varying problem domains. Finally, the development
of a benchmark platform for dynamic algorithm configuration would facilitate
apple-to-apple comparisons of different reinforcement learning techniques, driv-
ing future research.

Acknowledgements. The authors acknowledge funding by the Robert Bosch
GmbH.

Bibliography

[1] Adriaensen, S., Nowé, A.: Towards a white box approach to automated
algorithm design. In: Kambhampati, S. (ed.) Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’16). pp. 554–560
(2016)

[2] Aleti, A., Moser, I.: A systematic literature review of adaptive parameter
control methods for evolutionary algorithms. ACM Comput. Surv. 49(3),
56:1–56:35 (2016)

[3] Andersson, M., Bandaru, S., Ng, A.H.: Tuning of multiple parameter sets in
evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016. pp. 533–540 (2016)

[4] Andrychowicz, M., Denil, M., Colmenarejo, S.G., Hoffman, M.W., Pfau, D.,
Schaul, T., de Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett,
R. (eds.) Proceedings of the 30th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’16). pp. 3981–3989 (2016)

[5] Ansótegui, C., Malitsky, Y., Sellmann, M.: Maxsat by improved instance-
specific algorithm configuration. In: Brodley, C., Stone, P. (eds.) Proceed-
ings of the Twenty-eighth National Conference on Artificial Intelligence
(AAAI’14). pp. 2594–2600. AAAI Press (2014)

[6] Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.: Reactive dialectic search
portfolios for maxsat. In: S.Singh, Markovitch, S. (eds.) Proceedings of the
Conference on Artificial Intelligence (AAAI’17). AAAI Press (2017)

[7] Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm
for the automatic configuration of algorithms. In: Gent, I. (ed.) Proceed-
ings of the Fifteenth International Conference on Principles and Practice
of Constraint Programming (CP’09). Lecture Notes in Computer Science,
vol. 5732, pp. 142–157. Springer (2009)

[8] Battiti, R., Campigotto, P.: An investigation of reinforcement learning for
reactive search optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.)
Autonomous Search, pp. 131–160. Springer (2012)

[9] Battiti, R., Brunato, M., Mascia, F.: Reactive search and intelligent opti-
mization, vol. 45. Springer Science & Business Media (2008)

[10] Biedenkapp, A., Bozkurt, H.F., Eimer, T., Hutter, F., Lindauer, M.: Dy-
namic Algorithm Configuration: Foundation of a New Meta-Algorithmic
Framework. In: Lang, J., Giacomo, G.D., Dilkina, B., Milano, M. (eds.)
Proceedings of the Twenty-fourth European Conference on Artificial Intel-
ligence (ECAI’20) (Jun 2020)

[11] Cao, Y., Chen, T., Wang, Z., Shen, Y.: Learning to optimize in swarms.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019,
(NeurIPS’19). pp. 15018–15028 (2019)

14 Shala et al.

[12] Chen, F., Gao, Y., Chen, Z., Chen, S.: Scga: Controlling genetic algorithms
with sarsa (0). In: International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-
IAWTIC’06). vol. 1, pp. 1177–1183. IEEE (2005)

[13] Chen, Y., Hoffman, M., Colmenarejo, S., Denil, M., Lillicrap, T., Botvinick,
M., de Freitas, N.: Learning to learn without gradient descent by gradient
descent. In: Precup, D., Teh, Y. (eds.) Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML’17). vol. 70, pp. 748–756.
Proceedings of Machine Learning Research (2017)

[14] Daniel, C., Taylor, J., Nowozin, S.: Learning step size controllers for ro-
bust neural network training. In: Schuurmans, D., Wellman, M. (eds.)
Proceedings of the Thirtieth National Conference on Artificial Intelligence
(AAAI’16). AAAI Press (2016)

[15] Eiben, A., Horváth, M., Kowalczyk, W., Schut, M.: Reinforcement learning
for online control of evolutionary algorithms. In: Brueckner, S., Hassas, S.,
Jelasity, M., Yamins, D. (eds.) Proceedings of Engineering Self-Organising
Systems (ESOA). Lecture Notes in Computer Science, vol. 4335, pp. 151–
160. Springer (2007)

[16] Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adap-
tation of deep networks. In: Precup, D., Teh, Y. (eds.) Proceedings of the
34th International Conference on Machine Learning (ICML’17). vol. 70, pp.
1126–1135. Proceedings of Machine Learning Research (2017)

[17] Fuks, L., Awad, N., Hutter, F., Lindauer, M.: An evolution strategy with
progressive episode lengths for playing games. In: Kraus, S. (ed.) Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence (IJCAI). pp. 1234–1240. ijcai.org (2019)

[18] Gaspero, L.D., Urli, T.: Evaluation of a family of reinforcement learn-
ing cross-domain optimization heuristics. In: Hamadi, Y., Schoenauer, M.
(eds.) Proceedings of the Sixth International Conference on Learning and
Intelligent Optimization (LION’12). Lecture Notes in Computer Science,
vol. 7219, pp. 384–389. Springer (2012)

[19] Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano,
J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, pp. 75–
102. Springer (2006)

[20] Hansen, N.: CMA-ES with two-point step-size adaptation. arXiv:0805.0231
[cs.NE] (2008)

[21] Hansen, N.: The CMA evolution strategy: A tutorial. arXiv:1604.00772v1
[cs.LG] (2016)

[22] Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on
GitHub. Zenodo, DOI:10.5281/zenodo.2559634 (Feb 2019).
https://doi.org/10.5281/zenodo.2559634, https://doi.org/10.5281/zenodo.
2559634

Learning Step-Size Adaptation in CMA-ES 15

[23] Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Op-
timization Benchmarking 2009: Noiseless Functions Definitions. Research
Report RR-6829, INRIA (2009)

[24] Hansen, N., Ostermeier, A.: Convergence properties of evolution strategies
with the derandomized covariance matrix adaptation: The (µ/µI ,λ)-CMA-
ES. Proceedings of the 5th European Congress on Intelligent Techniques
and Soft Computing p. 650–654 (1997)

[25] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation 9, 159–195 (2001)

[26] Hoos, H.: Programming by optimization. Communications of the ACM
55(2), 70–80 (2012)

[27] Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration of mixed
integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) Pro-
ceedings of the Seventh International Conference on Integration of AI and
OR Techniques in Constraint Programming (CPAIOR’10). Lecture Notes
in Computer Science, vol. 6140, pp. 186–202. Springer (2010)

[28] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimiza-
tion for general algorithm configuration. In: Coello, C. (ed.) Proceedings of
the Fifth International Conference on Learning and Intelligent Optimiza-
tion (LION’11). Lecture Notes in Computer Science, vol. 6683, pp. 507–523.
Springer (2011)

[29] Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown,
K.: The configurable SAT solver challenge (CSSC). Artificial Intelligence
243, 1–25 (2017)

[30] Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-
objective optimization. Evolutionary Computation 15, 1–28 (2001)

[31] Igel, C.: Neuroevolution for reinforcement learning using evolution strate-
gies. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03.
vol. 4, pp. 2588–2595. IEEE (2003)

[32] Kadioglu, S., Sellmann, M., Wagner, M.: Learning a reactive restart strategy
to improve stochastic search. In: International Conference on Learning and
Intelligent Optimization. pp. 109–123. Springer (2017)

[33] Karafotias, G., Eiben, A., Hoogendoorn, M.: Generic parameter control with
reinforcement learning. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation. pp. 1319–1326 (2014)

[34] Karafotias, G., Hoogendoorn, M., Eiben, Á.: Parameter control in evolution-
ary algorithms: Trends and challenges. IEEE Trans. Evolutionary Compu-
tation 19(2), 167–187 (2015)

[35] Karafotias, G., Smit, S., Eiben, A.: A generic approach to parameter control.
In: European Conference on the Applications of Evolutionary Computation.
pp. 366–375. Springer (2012)

[36] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In:
Proceedings of the International Conference on Learning Representations
(ICLR’15) (2015), published online: iclr.cc

[37] Levine, S., Abbeel, P.: Learning neural network policies with guided policy
search under unknown dynamics. In: Ghahramani, Z., Welling, M., Cortes,

16 Shala et al.

C., Lawrence, N., Weinberger, K. (eds.) Proceedings of the 28th Interna-
tional Conference on Advances in Neural Information Processing Systems
(NeurIPS’14). pp. 1071–1079 (2014)

[38] Levine, S., Koltun, V.: Guided policy search. In: Dasgupta, S., McAllester,
D. (eds.) Proceedings of the 30th International Conference on Machine
Learning (ICML’13). pp. 1–9. Omnipress (2013)

[39] Li, K., Malik, J.: Learning to optimize. In: Proceedings of the International
Conference on Learning Representations (ICLR’17) (2017), published on-
line: iclr.cc

[40] Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A.,
Hutter, F.: SMAC v3: Algorithm configuration in Python. https://github.
com/automl/SMAC3 (2017)

[41] Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search.
In: Proceedings of the International Conference on Learning Representa-
tions (ICLR’19) (2019), published online: iclr.cc

[42] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Tech. rep.,
IRIDIA, Université Libre de Bruxelles, Belgium (2011), http://iridia.ulb.
ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

[43] López-Ibáñez, M., Stützle, T.: Automatic configuration of multi-objective
ACO algorithms. In: Dorigo, M., M-Birattari, Caro, G.D., Doursat, R., En-
gelbrecht, A.P., Floreano, D., Gambardella, L., Groß, R., Sahin, E., Sayama,
H., Stützle, T. (eds.) Proceedings of the Seventh International Conference
on Swarm Intelligence (ANTS’10). pp. 95–106. Lecture Notes in Computer
Science, Springer (2010)

[44] Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparame-
ter optimization through reversible learning. In: Bach, F., Blei, D. (eds.)
Proceedings of the 32nd International Conference on Machine Learning
(ICML’15). vol. 37, pp. 2113–2122. Omnipress (2015)

[45] Muller, S., Schraudolph, N., Koumoutsakos, P.: Step size adaptation in evo-
lution strategies using reinforcement learning. In: Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600).
vol. 1, pp. 151–156. IEEE (2002)

[46] Pettinger, J., Everson, R.: Controlling genetic algorithms with reinforce-
ment learning. In: Proceedings of the 4th Annual Conference on Genetic
and Evolutionary Computation. pp. 692–692 (2002)

[47] van Rijn, S., Doerr, C., Bäck, T.: Towards an adaptive CMA-ES configura-
tor. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L.,
Whitley, L.D. (eds.) Proceedings of the 15th International Conference on
Parallel Problem Solving from Nature (PPSN’18). Lecture Notes in Com-
puter Science, vol. 11101, pp. 54–65. Springer (2018)

[48] van Rijn, S., Wang, H., van Leeuwen, M., Bäck, T.: Evolving the structure
of evolution strategies. In: 2016 IEEE Symposium Series on Computational
Intelligence (SSCI). pp. 1–8. IEEE (2016)

[49] Sakurai, Y., Takada, K., Kawabe, T., Tsuruta, S.: A method to control
parameters of evolutionary algorithms by using reinforcement learning. In:

Learning Step-Size Adaptation in CMA-ES 17

Proceedings of the Sixth International Conference on Signal-Image Tech-
nology and Internet Based Systems. pp. 74–79. IEEE (2010)

[50] Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a
scalable alternative to reinforcement learning. arXiv:1703.03864 [stat.ML]
(2017)

[51] Sharma, M., Komninos, A., López-Ibáñez, M., Kazakov, D.: Deep reinforce-
ment learning based parameter control in differential evolution. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference. pp. 709–717
(2019)

[52] Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT
press (2018)

[53] Thrun, S., Pratt, L.: Learning to learn. Springer Science & Business Media
(2012)

[54] Verdooren, L.: Extended tables of critical values for wilcoxon’s test statistic.
Biometrika 50(1-2), 177–186 (1963)

[55] Vermetten, D., van Rijn, S., Bäck, T., Doerr, C.: Online selection of CMA-
ES variants. In: Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’19). pp. 951–959. ACM
(2019)

[56] Xu, Z., Dai, A.M., Kemp, J., Metz, L.: Learning an adaptive learning rate
schedule. arXiv:1909.09712 [cs.LG] (2019)

[57] Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning.
In: Proceedings of the International Conference on Learning Representa-
tions (ICLR’17) (2017), published online: iclr.cc

CHAPTER 8
Learning Heuristic Selection with Dynamic

Algorithm Configuration

The content of this chapter has been published as:

D. Speck, A. Biedenkapp, F. Hutter, R. Mattmüller, and M. Lindauer (2021). “Learning
Heuristic Selection with Dynamic Algorithm Configuration”. In: Proceedings of the 31st
International Conference on Automated Planning and Scheduling (ICAPS’21). Ed. by
H. H. Zhuo, Q. Yang, M. Do, R. Goldman, S. Biundo, and M. Katz. AAAI, pp. 597–605.

Project Idea. The idea was proposed jointly by André Biedenkapp and David Speck
following discussions about their respective Ph.D. topics. André Biedenkapp proposed
the communication protocol and reward function, whereas David Speck proposed the
used state and action spaces. André Biedenkapp proposed to use a DDQN agent, based
on the first DAC publication. André Biedenkapp further proposed to generate artificial
problem instances to better understand the chosen DDQN agent. David Speck designed the
generator for the artificial problem instances and further proposed the theoretical elements
of the paper jointly with Robert Mattmüller. Marius Lindauer advised André Biedenkapp
on choices of hyperparameters for the RL agents and proposed the analysis of the learned
policies.

Implementation and experimentation. Implementation was jointly carried out by André
Biedenkapp and David Speck. André Biedenkapp implemented the interface of the algo-
rithms in Python, allowing to use of efficient libraries for reinforcement learning. David
Speck implemented the interface in C++, directly as part of the FastDownward system. Both
David Speck and André Biedenkapp carried out experiments. André Biedenkapp performed
initial experiments which were crucial for the hyperparameter configuration of the RL
agent, leading to the final agent design. David Speck carried out the final experiments
using the agent setup provided by André Biedenkapp.

Paper writing. An initial draft of the paper was prepared by André Biedenkapp. David
Speck improved over this draft and edited it to better fit the ICAPS venue. Robert
Mattmüller, Marius Lindauer and Frank Hutter provided valuable feedback on this version
of the paper and helped prepare the final version. André Biedenkapp helped with finalizing
the paper.

Learning Heuristic Selection with Dynamic Algorithm Configuration

David Speck1,∗, André Biedenkapp1,∗, Frank Hutter1,2, Robert Mattmüller1, Marius Lindauer3

∗Contact Author, Equal contribution
1University of Freiburg, Freiburg, Germany

2Bosch Center for Artificial Intelligence, Renningen, Germany
3Leibniz University Hannover, Hannover, Germany

〈speckd, biedenka, fh, mattmuel〉@cs.uni-freiburg.de, lindauer@tnt.uni-hannover.de

Abstract

A key challenge in satisficing planning is to use multiple
heuristics within one heuristic search. An aggregation of mul-
tiple heuristic estimates, for example by taking the maximum,
has the disadvantage that bad estimates of a single heuristic
can negatively affect the whole search. Since the performance
of a heuristic varies from instance to instance, approaches
such as algorithm selection can be successfully applied. In
addition, alternating between multiple heuristics during the
search makes it possible to use all heuristics equally and im-
prove performance. However, all these approaches ignore the
internal search dynamics of a planning system, which can
help to select the most useful heuristics for the current ex-
pansion step. We show that dynamic algorithm configuration
can be used for dynamic heuristic selection which takes into
account the internal search dynamics of a planning system.
Furthermore, we prove that this approach generalizes over
existing approaches and that it can exponentially improve the
performance of the heuristic search. To learn dynamic heuris-
tic selection, we propose an approach based on reinforcement
learning and show empirically that domain-wise learned poli-
cies, which take the internal search dynamics of a planning
system into account, can exceed existing approaches.

Introduction
Heuristic forward search is one of the most popular and suc-
cessful techniques in classical planning. Although there is a
large number of heuristics, it is known that the performance,
i.e., the informativeness, of a heuristic varies from instance
to instance (Wolpert and Macready 1995). While in optimal
planning it is easy to combine multiple admissible heuris-
tic estimates using the maximum, in satisficing planning the
estimates of inadmissible heuristics are difficult to combine
in general (Röger and Helmert 2010). The reason for this
is that highly inaccurate and uninformative estimates of a
heuristic can have a negative effect on the entire search pro-
cess when aggregating all estimates. Therefore, an important
task in satisficing planning is to utilize multiple heuristics
within one heuristic search.

Röger and Helmert (2010) showed the promise of search-
ing with multiple heuristics, maintaining a set of heuristics,
each associated with a separate open list to allow switching

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

between such heuristics. This bypasses the problem of ag-
gregating different heuristic estimates, while the proposed
alternating procedure uses each heuristic to the same extent.
Another direction is the selection of the best algorithm a pri-
ori based on the characteristics of the present planning in-
stance (Cenamor, de la Rosa, and Fernández 2016; Sievers
et al. 2019). In other words, different search algorithms and
heuristics are part of a portfolio from which one is selected
to solve a particular problem instance. This automated pro-
cess is referred to as algorithm selection (Rice 1976) while
optimization of algorithm parameters is referred to as algo-
rithm configuration (Hutter et al. 2009). Both methodolo-
gies have been successfully applied to planning (Fawcett
et al. 2011, 2014; Seipp et al. 2015; Sievers et al. 2019)
and various other areas of artificial intelligence, such as ma-
chine learning (Snoek, Larochelle, and Adams 2012) or sat-
isfiability solving (Hutter et al. 2017). However, algorithm
selection and configuration ignore the non-stationarity of
which configuration performs well. In order to remedy this,
Biedenkapp et al. (2020) showed that the problem of select-
ing and adjusting configurations during the search based on
the current solver state and search dynamics can be mod-
elled as a contextual Markov decision process and addressed
by standard reinforcement learning methods.

In planning, there is little work that takes into account
the search dynamics of a planner to decide which planner
to use. Cook and Huber (2016) showed that switching be-
tween different heuristic searches (planners) based on the
search dynamics obtained during a search leads to better
performance than a static selection of a heuristic. However,
in this approach, several disjoint searches (planners) are ex-
ecuted, which do not share the search progress (Aine and
Likhachev 2016). Ma et al. (2020) showed that a portfolio-
based approach that can switch the planner at halftime, de-
pending on the performance of the previously selected one,
can improve performance over a simple algorithm selection
at the beginning. Recent works have investigated switch-
ing between different search strategies depending on the in-
ternal search dynamics of a planner (Gomoluch, Alrajeh,
and Russo 2019; Gomoluch et al. 2020). One approach that
shares the search progress is to maintain multiple heuristics
as separate open lists (Röger and Helmert 2010). Further-
more, it has been shown that boosting, i.e., giving preference
to heuristics that have recently made progress, can improve

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

597

search performance (Richter and Helmert 2009). While in
these works heuristic values are computed for each state,
Domshlak, Karpas, and Markovitch (2010) investigated the
question, whether the time spent for the computation of the
heuristic value for a certain state pays off.

Another avenue of work considers how to “directly” cre-
ate or learn new heuristic functions. One example is the work
of Ferber, Helmert, and Hoffmann (2020), which utilizes su-
pervised learning to learn a heuristic function where the in-
put is the planning (world) state itself. Thayer, Dionne, and
Ruml (2011) showed that admissible heuristics can be trans-
formed online, into inadmissible heuristics, which makes it
possible to tailor a heuristic to a specific planning instance.

In this work, we introduce and define dynamic algo-
rithm configuration (Biedenkapp et al. 2020) for planning,
by learning a policy that dynamically selects a heuristic
within a search with multiple open lists (Röger and Helmert
2010) based on the current search dynamics. We prove
that a dynamic adjustment of heuristic selection during the
search can exponentially improve the search performance of
a heuristic search compared to a static heuristic selection or a
non-adaptive policy like alternating. Furthermore, we show
that such a dynamic control policy is a strict generalization
of other already existing approaches to heuristic selection.
We also propose a set of state features describing the current
search dynamics and a reward function for training a rein-
forcement learning agent. Finally, an empirical evaluation
shows that it is possible to learn a dynamic control policy on
a per-domain basis that outperforms approaches that do not
involve search dynamics, such as ordinary heuristic search
with a single heuristic and alternating between heuristics.

Background
We first introduce classical planning, then discuss greedy
best-first search with multiple heuristics, and finally present
the concept of dynamic algorithm configuration based on
reinforcement learning. Note that the terminology and no-
tation of planning and reinforcement learning are similar, so
we use the symbol∼ for all notations directly related to rein-
forcement learning; e.g. π denotes a plan of a planning task,
while π̃ is a policy obtained by reinforcement learning.

Classical Planning
A problem instance or task in classical planning, modeled in
the SAS+ formalism (Bäckström and Nebel 1995), is a tu-
ple i = 〈V , s0,O, s?〉 consisting of four components. V is a
finite set of state variables, each associated with a finite do-
main Dv . A fact is a pair (v, d), where v ∈ V and d ∈ Dv ,
and a partial variable assignment over V is a consistent set of
facts, i.e., a set that does not contain two facts for the same
variable. If s assigns a value to each v ∈ V , s is called a state.
States and partial variable assignments are functions which
map variables to values, i.e., s(v) is the value of variable v
in state s (analogous for partial variable assignments).O is a
set of operators, where an operator is a pair o = 〈preo, eff o〉
of partial variable assignments called preconditions and ef-
fects, respectively. Each operator has cost co ∈ N0. The state
s0 is called the initial state and the partial variable assign-

ment s? specifies the goal condition, which defines all pos-
sible goal states S?. With S we refer to the set of all states
defined over V , and with |i| we refer to the size of the plan-
ning task i, i.e., the number of operators and facts.

We call an operator o ∈ O applicable in state s iff preo is
satisfied in s, i.e., s |= preo. Applying operator o in state s
results in a state s′ where s′(v) = eff o(v) for all variables
v ∈ V for which eff o is defined and s′(v) = s(v) for all
other variables. We also write s[o] for s′. The objective of
classical planning is to determine a plan, which is defined
as follows. A plan π = 〈o0, . . . , on−1〉 for planning task
i is a sequence of applicable operators which generates a
sequence of states s0, . . . , sn, where sn ∈ S? is a goal state
and si+1 = si[oi] for all i = 0, . . . , n − 1. The cost of plan
π is the sum of its operator costs.

Given a planning task, the search for a good plan is called
satisficing planning. In practice, heuristic search algorithms
such as greedy best-first search have proven to be one of the
dominant search strategies for satisficing planning.

Greedy Search with Multiple Heuristics
Greedy best-first search is a pure heuristic search which tries
to estimate the distance to a goal state by means of a heuris-
tic function. A heuristic is a function h : S 7→ N0 ∪ {∞},
which estimates the cost to reach a goal state from a state
s ∈ S . The perfect heuristic h? maps each state s to the cost
of the cheapest path from s to any goal state s? ∈ S?. The
idea of greedy best-first search with a single heuristic h is
to start with the initial state and to expand the most promis-
ing states based on h until a goal state is found (Pearl 1984).
During the search, relevant states are stored in an open list
that is sorted by the heuristic values of the contained states
in ascending order so that the state with the lowest heuristic
values, i.e., the most promising state, is at the top. More pre-
cisely, in each step a state s with minimal heuristic value is
expanded, i.e., its successors S′ = {s[o] | o ∈ O, s |= preo}
are generated and states s′ ∈ S′ not already expanded are
added to the open list according to their heuristic values
h(s′). Within an open list, for states with the same heuristic
value (h-value) the tie-breaking rule that is used is according
to the first-in-first-out principle.

In satisficing planning it is possible to combine multi-
ple heuristic values for the same state in arbitrary ways. It
has been shown, however, that the combination of several
heuristic values into one, e.g. by taking the maximum or a
(weighted) sum, does not lead to informative heuristic es-
timates (Röger and Helmert 2010). This can be explained
by the fact that if one or more heuristics provide very in-
accurate values, the whole expansion process is affected.
Helmert (2006) introduced the idea to maintain multiple
heuristics H = {h0, . . . , hn−1} within one greedy best-first
search. More precisely, it is possible to maintain a separate
open list for each heuristic h ∈ H and switch between them
at each expansion step while always expanding the most
promising state of the currently selected open list. The gen-
erated successor states are then evaluated with each heuris-
tic and added to the corresponding open lists. This makes it
possible to share the search progress (Aine and Likhachev
2016). Especially, an alternation policy, in which all heuris-

598

tics are selected one after the other in a cycle such that all
heuristics are treated and used equally, has proven to be an
efficient method (Röger and Helmert 2010). Such equal use
of heuristics can help to progress the search space towards
a goal state, even if only one heuristic is informative. How-
ever, in some cases it is possible to infer that some heuristics
are currently, i.e., in the current region of the search space,
more informative than others, which is ignored by a strategy
like alternation. More precisely, with alternation, the choice
of the heuristic depends only on the current time step and
not on the current search dynamics or planner state. In gen-
eral, it is possible to dynamically select a heuristic based on
internal information provided by the planner. This is the key
idea behind our approach described in the following.

Dynamic Algorithm Configuration
Automated algorithm configuration (AC) has proven a pow-
erful approach to leveraging the full potential of algorithms.
Standard AC views the algorithms being optimized as black
boxes, thereby ignoring an algorithm’s temporal behaviour
and ignoring that an optimal configuration might be non-
stationary (Arfaee, Zilles, and Holte 2011). Dynamic algo-
rithm configuration (DAC) is a new meta-algorithmic frame-
work that makes it possible to learn to adjust the parameters
of an algorithm given a description of the algorithm’s be-
haviour (Biedenkapp et al. 2020).

We first describe DAC on a high level. Given a parame-
terized algorithm A with its configuration space Θ̃, a set of
problem instances I the algorithm has to solve, a state de-
scription s̃it of the algorithm A solving an instance i ∈ I
at step t ∈ N0, and a reward signal r̃ assessing the re-
ward (e.g., runtime or number of state expansions) of us-
ing a control policy π̃ ∈ Π̃ to control A on an instance
i ∈ I, the goal is to find a (dynamic) control policy π̃∗ :
N0 × S̃ × I → Θ̃. This policy adaptively chooses a con-
figuration θ̃ ∈ Θ̃ given a state s̃t ∈ S̃ of A at time t ∈ N0

to optimize the reward of A across the set of instances S ,
i.e., π̃∗ ∈ arg maxπ̃∈Π̃ E[r̃(π̃, i)]. Note that the current time
step t ∈ N0 and instance i ∈ I can be encoded in the state
description S̃ of an algorithm A, which leads to a dynamic
control policy, defined as π̃dac : S̃ → Θ̃.

Figure 1 depicts the interaction between a control policy
π̃ and a planning system A schematically. At each time step
t, the planner sends the current internal state s̃it and the cor-
responding reward r̃it to the control policy π̃ based on which
the controller decides which parameter setting ht+1 ∈ Θ̃
to use. The planner progresses according to the decision to
the next internal state s̃it+1 with reward r̃it+1. This formalisa-
tion of dynamic algorithm configuration makes it possible to
recover prior meta-algorithmic frameworks as special cases
which we discuss below.

Dynamic Heuristic Selection
In this section, we will explain how dynamic algorithm con-
figuration can be used in the context of dynamic heuristic
selection and how it differs from time-adaptive or in short
adaptive algorithm configuration and algorithm selection,

instance icontrol of h ∈ Θ̃

Control Policy π̃ Planner A

adapt parameter ht+1

state s̃it

reward r̃it

II

Figure 1: Dynamic configuration of parameter h ∈ Θ̃ of
algorithm A on an instance i ∈ I, at time step t ∈ N0. Until
i is solved or a budget is exhausted, the controller adapts
parameter h, based on the internal state s̃it of A.

which have already been used in the context of search with
multiple heuristics. Helmert (2006) introduced the idea of
maintaining a set of heuristics H each associated with a
separate open list in order to allow the alternation between
such heuristics. Considering H as the configuration space
Θ̃ of a heuristic search algorithm A and each state expan-
sion as a time step t, it is possible to classify different dy-
namic heuristic selection strategies within the framework of
dynamic algorithm configuration. For example, alternation
is an time-adaptive control policy because it maps each time
step to a specific heuristic, i.e., configuration, independent
of the instance or the state of the planner. The selection of
a particular heuristic depending on the current instance be-
fore solving the instance, known as “portfolio planner”, is
an algorithm selection policy that depends only on the in-
stance and not on the current time step or the internal state of
the planner. Exceptions are policies that compare the heuris-
tic values of states, such as the expansion of the state with
the overall minimal heuristic value or according to a Pareto-
optimality analysis (Röger and Helmert 2010). Such poli-
cies depend on the current state of the planner, but ignore
the time step and the current instance being solved. This in-
dicates that all three components — instance, time step, and
state of the planner — can be important and helpful in select-
ing the heuristic for the next state expansion. The following
summarizes existing approaches to heuristic selection within
the framework of algorithm configuration.

• Algorithm Selection:
– Policy: π̃as : I → H

– Example: Portfolios (Seipp et al. 2012; Cenamor, de la
Rosa, and Fernández 2016; Sievers et al. 2019)

• Adaptive Algorithm Configuration:
– Policy: π̃aac : N0 → H

– Example: Alternation (Röger and Helmert 2010; Seipp
et al. 2015)

• Dynamic Algorithm Configuration:
– Policy: π̃dac : N0 × S̃ × I → H

– Example: Approach proposed in this paper

An Approach based on Reinforcement Learning
In this section, we describe all the parts required to dynami-
cally configure a planning system so that for each individual

599

time step, a dynamic control policy can decide which heuris-
tic to use based on a dynamic control policy. Here, a time
step is a single expansion step of the planning system.

State description. Learning dynamic configuration poli-
cies requires descriptive state features that inform the pol-
icy about the characteristics and the behavior of the plan-
ning system in the search space. Preferably, such features
are domain-independent, such that the same features can be
used for a wide variety of domains. In addition, such state
features should be cheap to compute in order to keep the
overhead as low as possible.

As consequence of both desiderata and the intended learn-
ing task we propose to use the following state features com-
puted over the entries contained in the corresponding open
list of each heuristic:
maxh: maximum h value for each heuristic h ∈ H;
minh: minimum h value for each heuristic h ∈ H;
µh: average h value for each heuristic h ∈ H;
σ2
h: variance of the h values for each heuristic h ∈ H;

#h: number of entries for each heuristic h ∈ H;
t: current time/expansion step t ∈ N0.
To measure progress, we do not directly use the values of
each state feature, but compute the difference of each state
feature between successive time steps t− 1 and t. The con-
figuration space is a finite set of n heuristics to choose from,
i.e., Θ̃ = H = {h0, . . . , hn−1}.

The described set of features is a starting point and do-
main independent, but does not contain any specific context
information yet. In general, it is possible to describe an in-
stance or domain with features that describe, for example,
the variables, operators or the causal graph (Sievers et al.
2019). If the goal is to learn robust policies that can handle
highly heterogeneous sets of instances, it is possible to add
contextual information about the planning instance at hand,
such as the problem size or the required preprocessing steps
(Fawcett et al. 2014), to the state description. However, in
this work, we limit ourselves to domain-wise dynamic con-
trol policies and show that the concept of DAC can improve
heuristic search for this setting in theory and practice.

Reward function. Similar to the state description, the
reward function we want to optimize should ideally be
domain-independent, cheap and quick to compute. Since the
goal is usually to quickly solve as many tasks as possible, a
good reward function should reflect this desire.

We use a simple reward of −1 for each expansion step
that the planning system has to perform in order to find a
solution. Using this reward function, a configuration policy
learns to select heuristics that minimize the expected num-
ber of state expansions until a solution is found. This reward
function ignores aspects such as the quality of a plan, but
its purpose is to reduce the search effort and thus improve
search performance. Clearly, it is possible to define other re-
ward functions with, e.g., dense rewards to make learning
easier. We nevertheless demonstrate that already with our

reward function and state features it is possible to learn dy-
namic control policies, which dominate algorithm selection
and adaptive control policies in theory and practice.

Dynamic Algorithm Configuration in Theory
In this section, we investigate the theoretical properties of
using DAC for heuristic search algorithms. In optimal plan-
ning, where the goal is to find a plan with minimal cost,
the performance of heuristic search can be measured by the
number of state expansions (Helmert and Röger 2008). This
is different for satisficing planning, because plans with dif-
ferent costs can be found and there are generally no “must
expand” states that need to be expanded to prove that a so-
lution is optimal. However, the number of state expansions
until any goal state is found can be used to measure the
guidance of a heuristic or heuristic selection (Richter and
Helmert 2009; Röger and Helmert 2010).

We want to answer the question of whether it can theo-
retically be beneficial to use dynamic control policies π̃dac
over algorithm selection policies π̃as or adaptive algorithm
configuration policies π̃aac. Proposition 1 proves that for
each heuristic search algorithm in combination with each
collection of heuristics there is a dynamic control policy π̃dac
which is as good as π̃as or π̃aac in terms of state expansions.

Proposition 1. Independent of the heuristic search algo-
rithm and the collection of heuristics, for each algorithm se-
lection policy π̃as and adaptive algorithm configuration pol-
icy π̃aac there is a dynamic control policy π̃dac which expands
at most as many states as π̃as and π̃aac until a plan is found
for a given planning instance.

Proof. DAC policies generalize algorithm selection and
adaptive algorithm configuration policies, thus it is always
possible to define π̃dac as π̃dac = π̃as or π̃dac = π̃aac.

With Proposition 1 it follows directly that an optimal al-
gorithm configuration policy π̃∗dac is at least as good as an
optimal algorithm selection policy π̃∗as and an optimal adap-
tive algorithm configuration policy π̃∗aac:

Corollary 2. Independent of the heuristic search algorithm
and the collection of heuristics, an optimal dynamic control
policy π̃∗dac expands at most as many states as an optimal
algorithm selection policy π̃∗as and an optimal adaptive al-
gorithm configuration policy π̃∗aac until a plan π is found for
a planning task. �

It is natural to ask to what extent the use of a dynamic
control policy instead of an algorithm selection or an adap-
tive control policy can improve the search performance of
heuristic search. We will show that for each algorithm selec-
tion policy π̃as and adaptive algorithm configuration policy
π̃aac, we can construct a family of planning tasks so that a dy-
namic control policy π̃dac will expand exponentially fewer
states until a plan is found. For this purpose, we introduce
a family of planning instances in with O(n) propositional
variables andO(n) operators. The induced transition system
of in is visualized in Figure 2. There is exactly one goal path
s0, s1, s2, which is induced by the unique plan π = 〈o1, o2〉.
Furthermore, exactly two states are directly reachable from

600

s0

h0(s0) = 5
h1(s0) = 6

s1

h0(s1) = 5
h1(s1) = 3

s2 |= s?
h0(s2) = 0
h1(s2) = 0

s3

h0(s3) = 3
h1(s3) = 4

sk 6|= s?
h0(sk) = 1
h1(sk) = 1

∀k ∈ {4, . . . , 2n−1}

o1

o3

o2

Figure 2: Visualization of the induced transition system of
the planning task family in.

the initial state, s1 and s3. While state s1 leads to the unique
goal state s2, from s3 onward exponentially many states
s4, . . . , s2n−1 in n = |in|, i.e., Ω(2n) = Ω(2|in|), can be
reached by the subsequent application of multiple actions.
Theorem 3. For each adaptive algorithm configuration pol-
icy π̃aac there exists a family of planning instances in, a col-
lection of heuristics H and a dynamic control policy π̃dac,
so that greedy best-first search with H and π̃aac expands ex-
ponentially more states in |in| than greedy best-first search
with H and π̃dac until a plan π is found.

Proof. Let π̃aac be an adaptive algorithm configuration pol-
icy. Now, we consider the family of planning tasks in (Fig-
ure 2) with |in| = O(n) and a collection of two heuris-
tics H = {h0, h1}. The heuristic estimates of h0 and h1

are shown in Figure 2 and the open lists of greedy best-
first search at each time step t are visualized in Figure 3.
In time step 0, it is irrelevant which heuristic is selected,
always leading to time step 1, where state s3 is the most
promising state according to heuristic h0, while state s1 is
the most promising state according to heuristic h1. In time
step 1, π̃aac can either select heuristic h0 or h1. We first as-
sume that π̃aac selects h0 so that state s3 is expanded, leading
to exponentially many states sk, which are all evaluated with
h0(sk) = h1(sk) = 1 and thus are all expanded before s1.
Therefore, the unique goal state s2 is found after all other
states in the state space S have been expanded.

In comparison, for π̃dac we can pick the policy that al-
ways selects the heuristic with minimum average heuris-
tic value of all states in the corresponding open list, i.e.,
arg minh∈H µh. Following π̃dac, first h0 and then h1 is se-
lected, generating the goal state s2 in time step 1. Therefore,
π̃dac only expands 2 states, while π̃aac expands 2n−2 states
until a goal state is found.

Finally, for a policy π̃aac that selects h1 at time step 1,
it is possible to swap the heuristic estimates of h0 and h1 in
the constructed collection of heuristics, resulting in the same
number of state extensions.

Theorem 4. For each algorithm selection policy π̃as there
exists a family of planning instances in, a collection of
heuristics H and a dynamic control policy π̃dac, so that
greedy best-first search with H and π̃as expands exponen-
tially more states in |in| than greedy best-first search with
H and π̃dac until a plan π is found. �

For the proof of this theorem, we refer to the longer arXiv
version of this paper (Speck et al. 2020).

〈s0, 5〉

h0

〈s0, 6〉

h1

〈s3, 3〉
〈s1, 5〉

h0

〈s1, 3〉
〈s3, 4〉

h1

〈sk, 1〉
· · ·
〈s1, 5〉

h0

〈sk, 1〉
· · ·
〈s1, 3〉

h1

〈s2,0〉
〈s3, 3〉

h0

〈s2,0〉
〈s3, 4〉

h1

π̃as, π̃aac: h0 π̃as, π̃aac: h0

π̃dac: h0 π̃dac: h1

Step: 0 Step: 1 Step: 2a Step: 2b

Figure 3: Visualization of two heuristics used to solve an
instance of the planning task family in.

In Theorems 3 and 4 we assume for simplicity that ex-
panded states are directly removed from all open lists. In
practice, open lists are usually implemented as min-heaps,
and it is costly to search and remove states immediately.
Thus, states that have already been expanded are kept in the
open lists and ignored as soon as they have reached the top.
We note that this does not affect the theoretical results.

Finally, we want to emphasize that all results presented
are theoretical and based on the assumption that it is possible
to learn good dynamic control policies. Next, we show that it
is possible in practice to learn such dynamic control policies.

Empirical Evaluation
We conduct experiments1 to measure the performance of our
reinforcement learning (RL) approach on domains of the In-
ternational Planning Competition (IPC). For each domain,
the RL policies are trained on a training set and evaluated on
a disjoint prior unseen test set of the same domain obtained
by a random split. Note that the policies we consider here are
not domain-independent, although it is generally possible to
add instance- and domain-specific information to the state
features. We leave the task of learning domain-independent
policies for future work.

Setup
All experiments are conducted with FAST DOWNWARD
(Helmert 2006) as the underlying planning system. We
use (“eager”) greedy best-first search (Richter and Helmert
2009) and min-heaps to represent the open lists (Röger and
Helmert 2010). Although there are many more sophisti-
cated search strategies and components, we choose a vanilla
search strategy to reduce the factors that might affect the
comparison of the actual research question of whether the
learned DAC policies can improve the search performance
of heuristic search. Nevertheless, our approach is in princi-
ple also capable of handling more complex search strategies
and components, such as lazy eager search with preferred
operators and simple handcrafted DAC like policies such as
boosting heuristics (Richter, Westphal, and Helmert 2011).

We implemented an extension for FAST DOWNWARD,
which makes it possible to communicate with a controller

1Resources: https://github.com/speckdavid/rl-plan

601

Algorithm CONTROL POLICY SINGLE HEURISTIC BEST AS (ORACLE)

Domain (# Inst.) RL RND ALT hff hcg hcea hadd RL ALT SINGLE h

BARMAN (100) 84.4 83.8 83.3 66.0 17.0 18.0 18.0 89.0 84.0 67.0
BLOCKSWORLD (100) 92.9 83.6 83.7 75.0 60.0 92.0 92.0 96.3 88.0 93.0
CHILDSNACK (100) 88.0 86.2 86.7 75.0 86.0 86.0 86.0 88.0 88.0 86.0
ROVERS (100) 95.2 96.0 96.0 84.0 72.0 68.0 68.0 96.0 96.0 91.0
SOKOBAN (100) 87.7 87.1 87.0 88.0 90.0 60.0 89.0 88.6 87.0 92.0
VISITALL (100) 56.9 51.0 51.5 37.0 60.0 60.0 60.0 61.4 52.0 60.0

SUM (600) 505.1 487.7 488.2 425.0 385.0 384.0 413.0 519.3 495.0 489.0

Table 1: Average coverage of different policies for the selection of a heuristic in each expansion step when evaluating the
strategies on the prior unseen test set. The first three columns are control policies, the next four are individual heuristic searches,
while the last three represent the best algorithm selection of the corresponding strategies, i.e., oracle selector for each instance.

(dynamic control policy) via TCP/IP and thus to send
relevant information (state features and reward) in each
time/expansion step and to receive the selected parameter
(heuristic). This architecture allows the planner and con-
troller to be decoupled, making it easy to replace compo-
nents. We considered four different heuristic estimators as
configuration space, i.e., Θ̃ = H = {hff, hcg, hcea, hadd}
which can be changed at each time step: (1) the FF heuristic
hff (Hoffmann and Nebel 2001), (2) the causal graph heuris-
tic hcg (Helmert 2004), (3) the context-enhanced additive
heuristic hcea (Helmert and Geffner 2008), and (4) the ad-
ditive heuristic hadd (Bonet and Geffner 2001).2

For evaluation (final planning runs) we used a maximum
of 4 GB memory and 5 minutes runtime. All experiments
were run on a compute cluster with nodes equipped with
two Intel Xeon Gold 6242 32-core CPUs, 20 MB cache and
188 GB shared RAM running Ubuntu 18.04 LTS 64 bit.

Similar to Biedenkapp et al. (2020), we use ε-greedy deep
Q-learning in the form of a double DQN (van Hasselt, Guez,
and Silver 2016) implemented in CHAINER (Tokui et al.
2019) (CHAINERRL v0.7.0) to learn the dynamic control
policies. The networks are trained using ADAM3 (Kingma
and Ba 2014) for 106 update steps on a single machine of our
cluster with two CPU cores and 20 GB RAM. We use a cut-
off of 7 500 control/expansion steps in order to avoid poli-
cies being executed arbitrarily long during training. Com-
plex instances may not be solved within this cutoff, even
with the optimal policy, and thus learning occurs on sim-
pler instances. However, the underlying assumption is that
well performing policies for smaller instances generalize to
larger instances within a domain. To determine the quality of
a learned policy, we evaluated it every 30 000 steps during
training and save the best policy we have seen so far. In total,
we performed 5 independent runs of our control policies for
each domain, for which we report the average performance.
The policies are represented by neural networks for which
we determined the hyperparameters in a white-box exper-
iment on a new artificial domain (see Speck et al. (2020))
and kept these hyperparameters fixed for all experiments.

2We also conducted additional experiments with five heuristics
instead of four, including the hlm-count heuristic (Richter, Helmert,
and Westphal 2008); please see Speck et al. (2020).

3We use CHAINER’s v0.7.0 default parameters for ADAM.

Experiments
We evaluated the performance of our RL approach on six
domains of the International Planning Competition (IPC).
These domains were chosen because there are instance gen-
erators available online4 that make it possible to create a
suitable number of instances of different sizes. Furthermore,
instances of these domains usually require a significant num-
ber of state expansions in order to find a plan. For this pur-
pose, we generated 200 instances for all domains and ran-
domly divided them into disjoint training and test sets with
the same size of 100 instances each. For each domain we
trained five dynamic control policies on the training set and
compared them with other approaches on the unseen test
set. We are mainly interested in comparing different policies
for heuristic selection, which is why, here, the planner al-
ways maintains all four open lists, even if only one heuristic
is used, and the controller, i.e., the dynamic control policy,
alone decides which heuristic is selected.

Table 1 shows the percentage of solved instances per do-
main, i.e., the average coverage, on the test set. Each domain
has a score in the range of 0-100, with larger values indicat-
ing more solved instances on average. More precisely, it is
possible to obtain a score between 0 and 1 for each planning
instance. A value of 0 means that the instance was never
solved by the approach, 0.5 means that the instance was
solved in half the runs, and 1 means that the instance was
always solved. These scores are added up to give the aver-
age coverage per domain.

The first three columns correspond to control policies. En-
try RL is the average coverage of the five trained dynamic
control policies based on reinforcement learning, each aver-
aging over 25 runs with different seeds. Entry RND denotes
the average coverage of 25 runs, where a random heuristic
is selected in each step. Entry ALT stands for the average
over all possible permutations of the execution of alterna-
tion. Note that there are 4! = 24 different ways of execut-
ing alternation with four different heuristics. The SINGLE
HEURISTIC columns show the coverage when only the cor-
responding heuristic is used. Finally, the columns for select-
ing the best algorithm selection (BEST AS) stand for the use
of an oracle selector, which selects the best configuration
of the corresponding technique for each instance. In other

4https://github.com/AI-Planning/pddl-generators

602

words, the best algorithm selection for RL is to choose the
best dynamic control policy from the five trained policies
for each instance, the best algorithm selection for ALT is to
choose the best permutation of alternation for each instance
and the best algorithm selection for SINGLE h is to choose
the best heuristic for each instance.

Coverage. The results of Table 1 show that our approach
(RL) performs best on average in terms of coverage (indi-
vidual coverage of the five policies: 505.4, 500.6, 501.6,
507.4, 510.1). ALT is slightly better than the uniform ran-
domized choice of a heuristic RND, which indicates that the
most important advantage of ALT is to use each heuristic
equally with frequent switches and not to switch between
them systematically. Furthermore, consistent with the re-
sults of Röger and Helmert (2010), single heuristics perform
worse than the use of multiple heuristics. Interestingly, in the
domain VISITALL, single heuristics have the highest cover-
age and while RND and ALT have a low coverage, RL per-
forms better. This indicates that in this domain, the dynamic
control policies of RL were able to infer that a static policy
is well performing or to exclude certain single heuristics. In
BLOCKSWORLD, RL has the highest coverage among all ap-
proaches. A possible explanation is that a dynamic policy
is the key to solving difficult instances in this domain. This
assumption is supported by the observation that the best al-
gorithm selection, i.e., the oracle selection of RL, clearly ex-
ceeds the other approaches in BLOCKSWORLD. Finally, in
ROVER, the use of multiple heuristics seems to be impor-
tant, and while RL scores better than using single heuris-
tics, the learned policy scores worse than RND and ALT. This
may be due to overfitting which we will discuss below. We
also compare our approach to the theoretically best possi-
ble algorithm selector. Considering the columns BEST AS,
we observe that oracle single heuristic selection and oracle
alternating selection do not perform better than the average
performance of our learned RL policies, which shows that 1)
heuristic search with multiple heuristics can in practice ben-
efit from dynamic algorithm configuration and 2) it is possi-
ble to learn well performing dynamic policies domain-wise.
Even under the unrealistic circumstances of an optimal algo-
rithm selector, our learned policies perform better and there-
fore outperform all possible algorithm selection policies.

If we increase the configuration space by adding another
heuristic (hlm-count) the overall coverage of the control poli-
cies increases. However, the results are still qualitatively
similar to those presented here, showing that the learned
DAC policies perform best overall (see Speck et al. (2020)).

We also want to mention the computational overhead of
our RL approach compared to ALT and SINGLE HEURIS-
TIC search approaches. While the performance of RL on the
test set still exceeds the SINGLE HEURISTIC search of FAST
DOWNWARD for all four heuristics with a single open list
(maintaining only the used heuristic), RL performs slightly
worse than the internal heuristic alternation strategy of FAST
DOWNWARD. In the future, the overhead can be reduced by
integrating the reinforcement learning part directly in FAST
DOWNWARD instead of communicating via TCP/IP.

Algorithm CONTROL POLICY SINGLE HEURISTIC

Metric RL RND ALT hff hcg hcea hadd

COVERAGE 84.2 81.3 81.4 70.8 64.2 64.0 68.8
GUIDANCE 38.5 37.4 37.5 30.8 27.6 28.6 30.4
SPEED 66.6 62.8 62.8 54.9 50.4 50.3 54.0
QUALITY 76.2 76.0 76.0 65.8 57.6 56.2 60.9

(a) Test set

Algorithm CONTROL POLICY SINGLE HEURISTIC

Metric RL RND ALT hff hcg hcea hadd

COVERAGE 87.0 83.6 83.0 71.7 64.3 65.0 68.5
GUIDANCE 39.8 38.3 38.4 31.4 26.6 28.8 30.2
SPEED 69.3 65.3 65.4 56.0 49.1 51.1 54.2
QUALITY 79.5 77.9 77.5 66.8 57.3 58.0 61.3

(b) Training set

Table 2: A comparison of different control policies and sin-
gle heuristic search measuring coverage, guidance, speed
and solution quality on the prior unseen test set (a) and the
training set (b). Higher scores are preferable for all metrics.

Guidance, speed and quality. Table 2 shows four differ-
ent metrics including the coverage from above. We addi-
tionally evaluate the guidance, speed and quality for each
approach with a rating scale (Richter and Helmert 2009;
Röger and Helmert 2010). For guidance, tasks solved within
one state expansion get one point, while unsolved tasks or
tasks solved with more than 106 state expansions get zero
points. Between these extremes the scores are interpolated
logarithmically. For speed the algorithm gets one point for
tasks solved within one second, while the algorithm gets
zero points for unsolved tasks or tasks solved in 300 sec-
onds. For quality the algorithm gets a score of c∗/c for a
solved task, where c is the cost of the reported plan and c∗
is the cost of the best plan found with any approach. Fi-
nally, the sum of each metric is divided by the number of
domains to obtain a total score between 0 and 100. Con-
sidering those metrics, control policies perform better than
single heuristic approaches. Furthermore, dynamic control
polices obtained by RL perform best according to all met-
rics. However, this analysis favors approaches which solve
more instances than others. Recall that plan quality is not
taken into account when learning a policy, which explains
the small advantage of RL in plan quality, even though more
instances have been solved by RL.

Policy analysis. We analyzed the resulting policies on the
test set considering all successful runs, i.e., runs where a
plan was found. Our first finding is that the RL policies of-
ten favor one of the heuristics over all others. In BARMAN,
CHILDSNACK, ROVERS, and VISITALL, the hff heuristic is
preferred, while in BLOCKSWORLD the hadd and in VISI-
TALL the hcea is most often chosen. Interestingly, the per-
centage of use of the preferred heuristic varies greatly by
domain. In SOKOBAN, e.g., hff is selected for 98% expan-
sion steps on average, while in BARMAN, the policies only
select this heuristic 60% of the time on average.

603

(a) Policy similarity

(b) Switching frequency

Figure 4: Similarity of the learned RL policies using t-SNE
(Hinton and Roweis 2002). Each point represents a run of a
policy on a different instance of the test set. The distances
between the points represents the similarity of the policies
heuristic usage.

This raises the question of how similar the learned poli-
cies are and whether the policies are dynamic in the sense
that they often switch between different heuristics. To visu-
alize the policies, we used t-distributed stochastic neighbor
embedding (t-SNE; Hinton and Roweis 2002), which maps
higher-dimensional data into a 2-D space for visualization
(Figure 4). As input, we used a vector of four numbers for
each instance, indicating the percentage of times a heuris-
tic was chosen, and mapped it to a space where, informally,
the more similar the policy executions are, the closer the in-
stances are to each other. Figure 4a shows the similarity of
the policy executions for each instance of the different do-
mains. It can be observed that the overall heuristic selec-
tion of the learned policies is similar domain-wise, given the
resulting clustering. Figure 4b additionally visualizes how
often a heuristic was switched, i.e., the frequency of switch-
ing the heuristic between subsequent expansion steps. In-
terestingly, in the majority of the instances, the switching
frequency is high (sequences with no h switch< 100 steps),
while in the instances corresponding, for example, to the do-
main SOKOBAN, the switching frequency is low (sequences
with no h switch > 1 000 steps). This correlates with the
fact that in this domain a single heuristic was selected with
a high percentage.

We conclude that our approach is able to learn highly dy-
namic policies, but also highly static policies, depending on
the problem instance at hand. Intuitively, this makes sense,
since there may be domains for which a static policy per-
forms best. However, DAC is a generalization of algorithm
selection which allows to learn such static policies as well.

Training performance. We compare the performance of
our RL approach on the training set (Table 2b) with the
performance of RL on the test set (Table 2a). Interestingly,
RL performs better on the training set which can be at-
tributed to a certain degree of overfitting and can explain
why in some instances the performance of RL is worse than
other approaches on the test set. This issue can be addressed
by tuning the hyperparameters, expanding the training set
or adding further state features. Overall, the improvements
DAC yields over the other methods more than outweigh any
overfitting, leading to DAC performing best on the test set.

Conclusion
We investigated the use of dynamic algorithm configuration
for planning. More specifically, we have shown that dynamic
algorithm configuration can be used for dynamic heuristic
selection that takes into account the internal search dynam-
ics of a planning system. Dynamic policies for heuristic se-
lection generalize policies of existing approaches like algo-
rithm selection and adaptive algorithm control, and they can
improve search performance exponentially. We presented
an approach based on dynamic algorithm configuration and
showed empirically that it is possible to learn policies capa-
ble of outperforming other approaches in terms of coverage.

In future work, we will investigate domain-specific state
features to learn domain-independent dynamic policies. Fur-
ther, it is possible to dynamically control several parameters
of a planner and to switch dynamically between different
search algorithms. This raises the question how the search
progress (Aine and Likhachev 2016) can be shared when
using different search strategies. In particular, if we want to
combine different search techniques, such as heuristic search
(Bonet and Geffner 2001), symbolic search (Torralba et al.
2017; Speck, Geißer, and Mattmüller 2018) and planning as
satisfiability (Kautz and Selman 1992; Rintanen 2012), it is
an open question how to share the search progress.

Acknowledgments
D. Speck was supported by the German Research Founda-
tion (DFG) as part of the project EPSDAC (MA 7790/1-
1). M. Lindauer acknowledges support by the DFG under
LI 2801/4-1. A. Biedenkapp, M. Lindauer and F. Hutter ac-
knowledge funding by the Robert Bosch GmbH.

References
Aine, S.; and Likhachev, M. 2016. Search Portfolio with
Sharing. In Proc. ICAPS 2016, 11–19.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
Heuristic Functions for Large State Spaces. AIJ 175: 2075–
2098.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.
Biedenkapp, A.; Bozkurt, H. F.; Eimer, T.; Hutter, F.; and
Lindauer, M. 2020. Dynamic Algorithm Configuration:
Foundation of a New Meta-Algorithmic Framework. In
Proc. ECAI 2020, 427–434.

604

Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ 129(1): 5–33.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2016. The
IBaCoP Planning System: Instance-Based Configured Port-
folios. JAIR 56: 657–691.
Cook, B.; and Huber, M. 2016. Dynamic heuristic planner
selection. In Proc. SMC 2016, 2329–2334.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To Max
or Not to Max: Online Learning for Speeding Up Optimal
Planning. In Proc. AAAI 2010, 1071–1076.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Automated Configuration
of Fast Downward. In IPC 2011 planner abstracts, 31–37.
Fawcett, C.; Vallati, M.; Hutter, F.; Hoffmann, J.; Hoos, H.;
and Leyton-Brown, K. 2014. Improved Features for Run-
time Prediction of Domain-Independent Planners. In Proc.
ICAPS 2014, 355–359.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of Hyper-
parameter Space. In Proc. ECAI 2020, 2346–2353.
Gomoluch, P.; Alrajeh, D.; and Russo, A. 2019. Learning
Classical Planning Strategies with Policy Gradient. In Proc.
ICAPS 2019, 637–645.
Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A.
2020. Learning Neural Search Policies for Classical Plan-
ning. In Proc. ICAPS 2020, 522–530.
Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26: 191–246.
Helmert, M.; and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Proc. ICAPS 2008, 140–
147.
Helmert, M.; and Röger, G. 2008. How Good is Almost
Perfect? In Proc. AAAI 2008, 944–949.
Hinton, G. E.; and Roweis, S. T. 2002. Stochastic Neighbor
Embedding. In Proc. NIPS 2002, 833–840.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR 14:
253–302.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle, T.
2009. ParamILS: An Automatic Algorithm Configuration
Framework. JAIR 36: 267–306.
Hutter, F.; Lindauer, M.; Balint, A.; Bayless, S.; Hoos, H. H.;
and Leyton-Brown, K. 2017. The Configurable SAT Solver
Challenge (CSSC). AIJ 243: 1–25.
Kautz, H.; and Selman, B. 1992. Planning as Satisfiability.
In Proc. ECAI 1992, 359–363.
Kingma, D. P.; and Ba, J. 2014. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980 [cs.LG].
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020.
Online Planner Selection with Graph Neural Networks and
Adaptive Scheduling. In Proc. AAAI 2020, 5077–5084.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Rice, J. R. 1976. The algorithm selection problem. Advances
in Computers 15: 65–118.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Proc. ICAPS
2009, 273–280.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proc. AAAI 2008, 975–982.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). In IPC 2011 planner ab-
stracts, 50–54.
Rintanen, J. 2012. Planning as Satisfiability: Heuristics. AIJ
193: 45–86.
Röger, G.; and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proc. ICAPS 2010, 246–249.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning Portfolios of Automatically Tuned Planners. In
Proc. ICAPS 2012, 368–372.
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Au-
tomatic Configuration of Sequential Planning Portfolios. In
Proc. AAAI 2015, 3364–3370.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep Learning for Cost-Optimal Planning:
Task-Dependent Planner Selection. In Proc. AAAI 2019,
7715–7723.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
Bayesian Optimization of Machine Learning Algorithms. In
Proc. NIPS 2012, 2960–2968.
Speck, D.; Biedenkapp, A.; Hutter, F.; Mattmüller, R.; and
Lindauer, M. 2020. Learning Heuristic Selection with Dy-
namic Algorithm Configuration. arXiv:2006.08246 [cs.AI].
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. Sym-
bolic Planning with Edge-Valued Multi-Valued Decision Di-
agrams. In Proc. ICAPS 2018, 250–258.
Thayer, J. T.; Dionne, A. J.; and Ruml, W. 2011. Learn-
ing Inadmissible Heuristics During Search. In Proc. ICAPS
2011, 250–257.
Tokui, S.; Okuta, R.; Akiba, T.; Niitani, Y.; Ogawa, T.; Saito,
S.; Suzuki, S.; Uenishi, K.; Vogel, B.; and Vincent, H. Y.
2019. Chainer: A Deep Learning Framework for Accelerat-
ing the Research Cycle. In Proc. KDD 2019, 2002–2011.

Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
AIJ 242: 52–79.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep Rein-
forcement Learning with Double Q-Learning. In Proc. AAAI
2016, 2094–2100.
Wolpert, D. H.; and Macready, W. G. 1995. No free lunch
theorems for search. Technical Report SFI-TR-95-02-010,
Santa Fe Institute.

605

Part IV

Dynamic Algorithm Configuration:
Benchmarking

CHAPTER 9
DACBench: A Benchmark Library for

Dynamic Algorithm Configuration

The content of this chapter has been published as:

T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer
(2021b). “DACBench: A Benchmark Library for Dynamic Algorithm Configuration”. In:
Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI’21.
Ed. by Z. Zhou. ijcai.org, pp. 1668–1674.

Project Idea. The idea was proposed by Marius Lindauer. Theresa Eimer, André
Biedenkapp and Marius Lindauer jointly discussed and decided which potential bench-
marks to include in the final collection.

Implementation and experimentation. Implementation was led by Theresa Eimer
with support from Maximilian Reimer. André Biedenkapp provided implementations of
benchmarks based on earlier publications and advised on the design of DACBench. Steven
Adriaensen provided the implementation of the SGD benchmark. Experiments were carried
out by Theresa Eimer with support from Maximilian Reimer.

Paper writing. An initial draft of the paper was written by André Biedenkapp and Theresa
Eimer with support by Steven Adriaensen. Marius Lindauer and Frank Hutter revised and
edited the final version of the paper. The final paper was to a large extent written by André
Biedenkapp and Theresa Eimer.

DACBench: A Benchmark Library for Dynamic Algorithm Configuration

Theresa Eimer1 , André Biedenkapp2 , Maximilian Reimer1 , Steven Adriaensen2 ,
Frank Hutter2,3 and Marius Lindauer1

1Information Processing Institute (tnt), Leibniz University Hannover, Germany
2Department of Computer Science, University of Freiburg, Germany

3Bosch Center for Artificial Intelligence, Renningen, Germany
{eimer, reimerm, lindauer}@tnt.uni-hannover.de, {biedenka, adriaens, fh}@cs.uni-freiburg.de

Abstract
Dynamic Algorithm Configuration (DAC) aims to
dynamically control a target algorithm’s hyperpa-
rameters in order to improve its performance. Sev-
eral theoretical and empirical results have demon-
strated the benefits of dynamically controlling hy-
perparameters in domains like evolutionary com-
putation, AI Planning or deep learning. Replicat-
ing these results, as well as studying new methods
for DAC, however, is difficult since existing bench-
marks are often specialized and incompatible with
the same interfaces. To facilitate benchmarking and
thus research on DAC, we propose DACBench, a
benchmark library that seeks to collect and stan-
dardize existing DAC benchmarks from different
AI domains, as well as provide a template for new
ones. For the design of DACBench, we focused on
important desiderata, such as (i) flexibility, (ii) re-
producibility, (iii) extensibility and (iv) automatic
documentation and visualization. To show the po-
tential, broad applicability and challenges of DAC,
we explore how a set of six initial benchmarks com-
pare in several dimensions of difficulty.

1 Introduction
In the last years, algorithm configuration [Ansótegui et al.,
2009; Hutter et al., 2011; López-Ibáñez et al., 2016] and in
particular automated machine learning [Shahriari et al., 2016;
Hutter et al., 2019] offered automatic methods optimizing
the settings of hyperparameters to improve the performance
of algorithms. However, practitioners of different commu-
nities have already known for a while that static hyperpa-
rameter settings do not necessarily yield optimal performance
compared to dynamic hyperparameter policies [Senior et al.,
2013]. One way of formalizing dynamic adaptations of
hyperparameters is dynamic algorithm configuration (DAC)
[Biedenkapp et al., 2020]. DAC showed its promise by out-
performing other algorithm configuration approaches, e.g.,
choosing variants of CMA-ES [Vermetten et al., 2019] or dy-
namically adapting its step-size [Shala et al., 2020], dynam-
ically switching between heuristics in AI planning [Speck et
al., 2021], or learning learning rate schedules for computer
vision [Daniel et al., 2016].

These results, however, also revealed a challenge for the
further development of DAC. Compared to static algorithm
configuration [Ansótegui et al., 2009; Hutter et al., 2011;
López-Ibáñez et al., 2016], applying DAC also requires (i) the
definition of a configuration space to search in, (ii) instances
to optimize on and (iii) a reward signal defining the quality
of hyperparameter settings. However, the optimizer and the
algorithm to be optimized have to be integrated much closer
in DAC. The current state of the algorithm and the reward
function, for example, need to be queried by the optimizer
on a regular basis and the applied hyperparameter changes
need to be communicated to the algorithm. Therefore, cre-
ating reliable, reusable and easy-to-use DAC benchmarks is
often fairly hard with no existing standard thus far.

This disparity between benchmarks in addition to the dif-
ficulty in creating new ones presents a barrier of entry to the
field. Researchers not well versed in both target domain and
DAC may not be able to reproduce experiments or understand
the way benchmarks are modelled. This makes it hard for
pure domain experts to create a DAC benchmark for their do-
main, severely limiting the number of future benchmarks we
can expect to see. A lack of standardized benchmarks, in turn,
will slow the progress of DAC going forward as there is no re-
liable way to compare methods on a diverse set of problems.

To close this gap, we propose DACBench, a suite of stan-
dardized benchmarks1. On one hand, we integrate a diverse
set of AI algorithms from different domains, such as AI plan-
ning, deep learning and evolutionary computation. On the
other hand, we ensure that all benchmarks can be used with a
unified easy-to-use interface, that allows the application of a
multitude of different DAC approaches as well as the simple
addition of new benchmarks. This paper details the concepts
and ideas of DACBench, as well as insights from the bench-
marks themselves. Specifically, our contributions are:

1. We propose DACBench, a DAC benchmark suite with a
standardized interface and tools to ensure comparability
and reproducibility of results;

2. We discuss desiderata of creating DAC benchmarks and
how we took them into account in DACBench;

3. We propose a diverse set of DAC benchmarks from dif-
ferent domains showing the breadth of DAC’s potential,

1The project repository can be found at
https://github.com/automl/DACBench

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1668

allowing future research to make strong claims with new
DAC methods;

4. We show that our DAC benchmarks cover different chal-
lenges in DAC application and research.

With this, we strive to lower the barrier of entrance into
DAC research and enable research that matters.

2 Related Work
DAC is a general way to formulate the problem of optimiz-
ing the performance of an algorithm by dynamically adapting
its hyperparameters, subsuming both algorithm configuration
(AC) [Hutter et al., 2017] and per-instance algorithm config-
uration (PIAC) [Ansótegui et al., 2016]. While AC methods
can achieve significant improvements over default configura-
tions PIAC algorithms have demonstrated that searching for a
configuration per instance can further improve performance.
In a similar way, DAC can navigate the over time changing
search landscape in addition to instance-specific variations.

Theoretically, this has been shown to be optimal for the
(1 + (λ, λ)) genetic algorithm [Doerr and Doerr, 2018], and
to enable exponential speedups compared to AC on a family
of AI Planning problems [Speck et al., 2021].

Empirically, we have seen dynamic hyperparameter sched-
ules outperform static settings in fields like Evolutionary
Computation [Shala et al., 2020], AI Planning [Speck et al.,
2021] and Deep Learning [Daniel et al., 2016]. In addition,
hyperheuristics [Ochoa et al., 2012] can also be seen as a
form of DAC. In this field, it has been shown that dynamic
heuristic selection outperforms static approaches on combi-
natorial optimization problems like Knapsack or Max-Cut
[Almutairi et al., 2016].

In the context of machine learning, dynamically adjust-
ing an algorithm’s hyperparameters can be seen as a form of
learning to learn where the goal is to learn algorithms or algo-
rithm components like loss functions [Houthooft et al., 2018],
exploration strategies [Gupta et al., 2018] or completely new
algorithms [Andrychowicz et al., 2016]. While DAC does not
attempt to replace algorithm components with learned ones,
the hyperparameter values of an algorithm are often instru-
mental in guiding its progress. In some cases they become
part of the algorithm. Dynamic step size adaption in ES us-
ing heuristics, for example, is very common, but can be re-
placed and outperformed by more specific DAC hyperparam-
eter policies [Shala et al., 2020].

In other meta-algorithmic areas, reliable and well engi-
neered benchmark libraries also facilitated research progress,
incl. ASLib [Bischl et al., 2016], ACLib [Hutter et al.,
2014], tabular NAS benchmarks (e.g. [Ying et al., 2019]) and
HPOlib [Eggensperger et al., 2013]. In particular, DACBench
is strongly inspired by HPOlib and OpenAI gym [Brockman
et al., 2016] which also provide a unified interface to bench-
marks. Although the hyflex framework [Ochoa et al., 2012]
addresses a similar meta-algorithmic problem, in DACBench,
we can model more complex problems (i.e., continuous and
mixed spaces instead of only categoricals), consider state fea-
tures of algorithms and cover more AI domains (not only
combinatorial problems).

Furthermore DACBench is designed to build upon exist-
ing benchmark libraries in target domains by integrating their
algorithm implementations. This includes well-established
benchmarks like COCO [Hansen et al., 2020] or IOHProfiler
[Doerr et al., 2018].

3 Formal Background on DAC
DAC aims at improving a target algorithm’s performance
through dynamic control of its hyperparameter settings
λ ∈ Λ. To this end, a DAC policy π queries state informa-
tion st ∈ S of the target algorithm at each time point t to set
a hyperparameter configuration: π : S → Λ. Given a starting
state s0 of the target algorithm, a maximal number of solving
steps T , a probability distribution p over a space of problem
instances i ∈ I , and a reward function ri : S × Λ → R de-
pending on the instance i at hand, the objective is to find a
policy maximizing the total return:

∫

I
p(i)

T∑

t=0

ri(st, π(st)) di (1)

Following [Biedenkapp et al., 2020], one way of modelling
this task is as a contextual MDP MI = {Mi}i∼I [Hallak et
al., 2015], consisting of |I| MDPs. Each Mi represents one
target problem instance i with Mi = (S,A, Ti, ri). This for-
mulation assumes that all Mi share a common state space S ,
describing all possible algorithm states, as well as a single ac-
tion space A choosing from all possible hyperparameter con-
figurations Λ. The transition function Ti : S × A → S , cor-
responding to algorithm behaviour, and reward function ri,
however, vary between instances.

This formulation allows to apply different configuration
approaches on the same problem setting, e.g., algorithm con-
figuration by ignoring all state information (π : ∅ → Λ),
per-instance algorithm configuration by only taking the in-
stance into account (π : I → Λ) or a full DAC agent
(π : S × I → Λ) on the contextual MDP (information about
i ∈ I is typically directly reflected in s ∈ S). In view of how
close this DAC formulation is to reinforcement learning (RL),
in the remainder of the paper we will continue to refer to hy-
perparameter settings as actions and hyperparameter sched-
ules as policies. Nevertheless, we consider DAC as a general
problem that can be solved in different ways, incl. supervised
learning, reinforcement learning or even hand-designed poli-
cies, e.g., cosine annealing for learning rate adaption in deep
learning [Loshchilov and Hutter, 2017] or CSA for CMA-
ES [Chotard et al., 2012].

4 DACBench
With DACBench, we strive for an easy-to-use, standardized
and reproducible benchmark library that allows evaluating
DAC on several, diverse benchmarks. To this end, we will
first describe which components are needed to define a DAC
benchmark, see Figure 1, and then explain how we can make
use of it to ensure our design objectives.

4.1 Components of a DAC Benchmark
Inspired by the flexibility that the modelling as a cMDP al-
lows and the success of OpenAI’s gym environments, each

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1669

DAC Optimizer

Configuration
Space Λ

Instance Space I

Policy
π : S → Λ

Target Algorithm
Ti : (st, λt) 7→ st+1

Instance i ∈ I

Reward
ri(st, λt)

solve
λt ∼ π(st)

st+1

update
π, i

Observations:
(st, rt, λt, st+1)

Figure 1: Interaction between optimizer, policy and all components of a DAC benchmark; latter in grey boxes.

DACBench benchmark is modelled along these lines, with
the following benchmark-specific design decisions.

Action Space A describes ways of modifying the current
configuration. In the simplest case, the action space directly
corresponds to the hyperparameter space, incl. all hyperpa-
rameter names and the corresponding ranges.

State Space S describes available information about the
target algorithm state. This can be enriched by context in-
formation about the instance at hand. We recommend that
it is (i) cheap-to-compute information that is (ii) available at
each step and (iii) measures the progress of the algorithm.

Target Algorithm with Transition Dynamics Ti implic-
itly defines which states st+1 are observed after hyperparam-
eter configuration λt is chosen in state st. It is important to
fix the target algorithm implementation (and all its dependen-
cies) to ensure that this is reproducible. An implicit design
decision of a benchmark here is how long an algorithm should
run before the next step description is returned.

Reward Function ri provides a scalar signal of how well
the algorithm can solve a given instance. It is an analogue to
the cost function in AC and PIAC and should be the optimiza-
tion target, e.g., prediction error, runtime or solution quality.

Instance Set I defines variants of a given problem that has
to be solved s.t. the learned policy is able to generalize to new,
but similar instances.2 To assess generalization performance,
a training and test set of instances is required. In addition,
instances can be described by instance features [Bischl et al.,
2016] which facilitates learning of per-instance policies.

This fine granular view on benchmarks allows us on one
hand to create a multitude of different benchmarks, poten-
tially with different characteristics. On the other hand, a
benchmark in DACBench is a specific instantiated combina-
tion of these components s.t. DACBench contributes to re-
producible results.

4.2 Practical Considerations & Desiderata
DACBench provides a framework to implement the design
decisions above with a focus on accessibility, reproducibility
and supporting further research on DAC.

Accessibility So far, applying a new DAC optimizer to a
target problem domain requires domain knowledge to be able
to interface with a potential algorithm. Comparing optimizers

2For simplicity, we only discuss the case of a set of training in-
stances. In general, DACBench also supports instance generators s.t.
the set of instances does not have to be fixed in advance.

across multiple benchmarks of varying characteristics often
requires re-implementing or adapting parts of the optimizers
to fit the different interfaces, hurting the consistency of the
comparison and taking a lot of time and effort.

Similarly, developing and providing new and interesting
benchmarks is challenging as, without a standardized inter-
face, there is little guidance on how to do so. Thus, domain
experts wanting to provide a DAC benchmark of a target algo-
rithm often construct their own interface, which can be time-
consuming even with a background in MDPs.

Providing a standardized interface would alleviate the is-
sues and facilitate moving DAC as a field forward. Therefore,
DACBench provides a common interface for benchmarks,
based on OpenAI’s gym API [Brockman et al., 2016], that
makes interaction with DAC optimizers as simple as possi-
ble. This interface is lightweight and intuitive to implement
for experts from different domains, encouraging collabora-
tion in the creation of new benchmarks and optimizers. It
also allows domain experts to modify existing benchmarks
with little effort and minimal knowledge of the base code to
create new and interesting variations of known benchmarks,
see Appendix C.

Reproducibility As discussed before, adapting an algo-
rithm for DAC can be challenging as there are many design
decisions involved. On one hand, to allow studies of new
DAC characteristics, we believe it is important to give re-
searchers the flexibility to adjust these components. There-
fore, we do not want to propose a framework that fixes too
many decision points as it could restrict important future re-
search. On the other hand, we believe there is a need for stan-
dardized benchmarks to facilitate comparing different meth-
ods as well as reproducing research results. For this purpose,
all design decisions of the original experiments should be re-
producible. To this end, DACBench includes a mechanism to
customize as many of these design decisions as possible, but
also to record them such that other researchers can reproduce
the experiments (for more details, see Appendix A).

Facilitating Further Research Lastly, DACBench sup-
ports researchers by providing resources needed to work on
DAC problems as well as thorough documentation of the de-
sign decisions of each benchmark. As existing benchmarks
are often not documented very well, working with them re-
quires thorough study of the code base. Instead, DACBench
provides all important details about individual benchmarks in
a concise manner through comprehensive documentation.

Furthermore, DACBench provides quality of life compo-
nents like structured logging and visualization that make
working with DACBench seamless. The logging system gives

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1670

users the option to save a variety of details like the policies
or state information for later analysis. Further, the built-in
visualization tools make evaluating experiments easy (exam-
ples include Figures 3, 3 and 5) and can directly use the data
provided by the logging system.

These considerations contribute to driving open research
on DAC forward by ensuring easy reproducibility of experi-
ments, usability for a diverse audience and sharing of experi-
ment configurations. By adopting a simple yet modular inter-
face, we improve general accessibility to the field as well as
the ability to continuously evolve DAC benchmarks.

4.3 Six Initial Diverse DAC Benchmarks
We propose six initial benchmarks for DACBench from dif-
ferent domains and with different challenges (for in-depth de-
scriptions, see Appendix B). We believe these present a ver-
satile set of problems both for testing DAC methods across
diverse benchmarks and developing new approaches.

Sigmoid & Luby [Biedenkapp et al., 2020] are time se-
ries approximation tasks with no underlying target algorithm.
These artificial benchmarks run very quickly, their optimal
policies can be computed efficiently for all possible instances
(i.e. transformations of the functions themselves) and it is
easy to generate instance sets for a wide range of difficul-
ties. Therefore, Sigmoid and Luby are ideal for DAC devel-
opers, e.g. to verify that agents can learn the optimal policy
or slowly ramp up the instance heterogeneity in order to test
its generalization capabilities.

FastDownward [Helmert, 2006] is a state-of-the-art AI
Planner, which gives rise to a more complex benchmark. The
task here is to select the search heuristic at each step on
a specific problem family with two complementary heuris-
tics. This can be considered one of the easier benchmarks
even though significant performance gains on competition
domains are possible with four commonly used heuristics
[Speck et al., 2021]. The basic instance set we provide in-
cludes optimal policy information as an upper performance
bound.

CMA-ES [Hansen et al., 2003] is an evolutionary strat-
egy, where the DAC task is to adapt the algorithm’s steps
size [Shala et al., 2020] when solving BBOB functions. How-
ever, finding a good solution in this continuous space is po-
tentially harder than the discrete heuristic selection in Fast-
Downward. While optimal policies are unknown for this
benchmark, there is a strong established dynamic baseline in
CSA [Chotard et al., 2012].

ModEA includes an example of dynamic algorithm selec-
tion for variants of CMA-ES on BBOB functions [Vermetten
et al., 2019]. In contrast to the CMA-ES benchmark, a com-
bination of 11 EA elements with two to three options each
are chosen in each step; this combination makes up the final
algorithm. This multi-dimensional, large action space makes
the problem very complex. So we expect this to be a hard
benchmark, possibly too hard for current DAC approaches to
efficiently determine an effective DAC policy.

SGD-DL adapts the learning rate of a small neural net-
work learning a simple image classification task [Daniel et
al., 2016]. The small network size allows for efficient de-
velopment and benchmarking of new DAC approaches. By

(a)

(b)

Figure 2: Ranked comparison of difficulty dimensions in
DACBench benchmarks. Lower values correspond to easier char-
acteristics.

varying the instance (dataset-seed pairs) and the network ar-
chitecture, this benchmark nevertheless opens up ample pos-
sibility to grow ever harder as DAC advances.

5 Empirical Insights Gained from DACBench
In order to study our benchmarks, we discuss dimensions of
difficulty which are relevant to the DAC setting. To provide
insights into how our benchmarks behave in these dimen-
sions, we use static policies, known dynamic baselines and
random dynamic policies to explore their unique challenges.

5.1 Setup
To show how our benchmarks behave in practice, we mainly
use the static and random policies built into DACBench and,
where possible, make use of optimal policies. All of them
were run for 10 seeds with at most 1 000 steps on each in-
stance. For benchmarks with a discrete action space, static
policies cover all the actions. The two benchmarks with con-
tinuous action spaces, CMA-ES and SGD-DL were run with
50 static actions each, distributed uniformly over the action
space. For details on the hardware used, refer to Appendix D.

5.2 Coverage of Difficulty Dimensions
Similar to Biedenkapp [2020], we identified six core chal-
lenges of learning dynamic configuration policies to charac-
terize our benchmarks. For comparison’s sake, we define a
scale for each attribute and measure these on our benchmarks.
These dimensions of difficulty are: (i) State and (ii) action
space size increase the difficulty of the problem by varying
information content, requiring the agent to learn what state
information is relevant and which regions in the action space
are useful. (iii) Policy heterogenity quantifies how successful
different policies are across all instances. (iv) Reward qual-
ity refers to the information content of the given reward sig-
nal. (v) Noise can disturb the training process through noisy

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1671

Figure 3: Left: Performance of 5 static ModEA policies with 95% confidence interval. The legend shows which components of ModEA
were used. Right: Comparison of average performance of static FastDownward policies with 95% confidence interval.

transitions or rewards. Lastly, (vi) dynamicity shows how fre-
quently the action should be changed, i.e. how complex well-
performing policies need to be. See Appendix E for details.

Figure 2 shows how the benchmarks compare with respect
to these dimensions of difficulty. While the reward quality is
not fully covered, we cover all other dimensions well, with
at least a very, moderately and not especially difficult bench-
mark in each. Additionally, all DACBench benchmarks show
a different profile. The data shows that Luby could be consid-
ered the easiest of the six, with little noise or policy hetero-
geneity and a relatively low dynamicity score, requiring only
infrequent action changes. SGD-DL’s footprint looks simi-
lar, though its continuous action space makes for a difficulty
spike in that category. While Sigmoid’s reward function ob-
scures quite a bit of information, it is not very difficult in the
other dimensions. FastDownward on the other hand leads the
dynamicity dimension by far, showing a need for more ac-
tive control. It is also fairly challenging with regard to noise
and policy heterogeneity. CMA-ES is even more difficult in
these, while also having the largest state space. A more in-
formative reward and lower dynamicity contrast it and other
benchmarks. ModEA’s difficulty, on the other hand, seems
similar except for the challenge of a continuous state space.

While this shows that our benchmark set covers all of our
dimensions of difficulty with the exception of reward qual-
ity fairly well, we will continue to explore the dimensions of
noise, policy heterogeneity and dynamicity in greater detail
in order to give a more detailed impression of how these di-
mensions are expressed.

5.3 Degree of Randomness
To show how randomness is expressed in our benchmarks, we
investigate its effects on FastDownward and ModEA.

We quantified randomness by using the standard devia-
tion of the cumulative reward between different seeds for the
same actions, each repeated 10 times. ModEA was one of
the benchmarks that had a very high relative standard devi-
ation and thus a very high noise score, see Figure 3. While
static policies from different parts of the action space vary
in performance, their confidence intervals grow much larger
the worse they perform. This is to be expected, as policies
with a high reward have found EA components that quickly
find the optimal solution of the black-box function at hand.
If the resulting EA cannot find a solution quickly, the indi-
viduals in each generation will have very different proposed
solutions, thus resulting in unstable performance. So even
though ModEA contains quite a bit of noise, the noise is het-
eroscedastic, i.e., it is not evenly distributed across the policy

space, providing an additional challenge.
FastDownward, on the other hand, also has a high rating

in the noise category, but the way its noise is distributed is
quite different, see Figure 3. W.r.t. the average performance
of both static policies, the 95% confidence interval is up to
twice as large as the performance value itself. In contrast to
ModEA, the noise is large but likely homoscedastic.

5.4 Effect of Instances
To investigate the effect instances have on our benchmarks,
we examine CMA-ES, which showed the highest policy het-
erogeneity above, and Sigmoid, for which we can compute
the optimal policy. CMA-ES and ModEA both operate on
instance sets comprised of different function classes between
which we can clearly see very different behaviour. The Schaf-
fers function (see Figure 4 left) illustrates that the hand-
designed CSA is indeed a good dynamic policy; it outper-
forms all other static and random policies.

In contrast, CSA performs much worse on the Ellipsoid
function (Figure 4 middle). Using the probability estimation
proposed by [Shala et al., 2020] based on the Wilcoxon rank
sum test, CSA’s probability of outperforming any given static
policy is 74.6% overall; also shown on a per-instance level
in the algorithm footprint [Smith-Miles et al., 2014] in Fig-
ure 4. While this shows that CSA’s dynamic control policy is
preferred on most of CMA-ES instance space, there are also
regions that require a different approach, underlining the im-
portance of instance dependent methods.

On the Sigmoid benchmark we see that performance dif-
ferences between instances persist even for the optimal policy
(see Figure 5 left). While it performs very well on some in-
stances, this is far from the case for all of them. Indeed, while
it is possible to gain the best possible reward of 10 on some
instances, there is an almost even distribution of rewards be-
tween the maximum and minimum cumulative reward.

Overall, different instances can have a significant influence
on the overall performance, both in terms of which policies
are successful on them and how well an agent can do.

5.5 Is Dynamic Better than Static?
Even though we have empirical evidence of DAC agents sur-
passing static baselines for all of our benchmarks [Daniel et
al., 2016; Vermetten et al., 2019; Biedenkapp et al., 2020;
Shala et al., 2020; Speck et al., 2021], we analyse and com-
pare the performance of dynamic and static policies on our
benchmarks. This way we can estimate the difficulty both in
finding a good dynamic policy that surpasses a simple ran-
dom one but also the difficulty of outperforming the static

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1672

Figure 4: Policy evaluation of CMA benchmark on Schaffers (left) and Ellipsoid (middle) functions (with 3 best and worst static policies).
Right: Algorithm footprint t-SNE plot of CMA-ES instances showing where CSA outperforms all static policies.

Figure 5: Left: Best possible reward for each sigmoid instance. Middle: Static and dynamic policies on Luby. The reward is 0 if the agent
guesses the correct sequence element, −1 otherwise. Right: Static (best and worst 3) and dynamic policies on SGD-DL with λ = 10−x. The
reward here is the validation loss (negative log-likelihood).

policies. Insights into the relationship between static and dy-
namic policies can highlight characteristics of a benchmark,
give upper and lower performance bounds and show the effect
size we can expect from DAC approaches in the future.

Our evaluation clearly shows that the benchmarks have a
very different sensitivity to dynamic policies. In Luby (Fig-
ure 5 middle) we can see that the most common elements of
the Luby sequence, elements one and two, outperform the dy-
namic random policy. As 50% of the Luby sequence consist
of the first element and 25% of the second, this is the expected
behaviour. Therefore it also makes sense that the optimal pol-
icy outperforms all other policies. The random policy does
not perform very well, showing that there is a lot of room to
improve over it and subsequently over the static policies.

Similarly, the random policy of SGD-DL outperforms
some of the worst static policies on average, but does very
poorly compared to them on many occasions (see Figure 5
right). Improving over the best static policies here will there-
fore be much harder for a DAC agent. This is also an exam-
ple of the fact that dynamically adapting hyperparameters can
outperform static settings, as [Daniel et al., 2016] showed for
this setting, but the region of well-performing dynamic poli-
cies seem to be much smaller than for Luby above. This is
the reason for the benchmark’s low dynamicity rating. Unlike
e.g. FastDownward, which favors frequent action changes re-
gardless of their quality, SGD-DL requires a more subtle ap-
proach with more consistency and carefully selected actions.

Therefore, we believe dynamicity will play a large role
in how DAC methods should approach benchmarks. While
choosing a new action each step for SGD-DL can of course
be learned successfully over time, it is a much harder task
than Luby. Methods keeping actions for a number of steps at
a time may have better success here [Vermetten et al., 2019].

6 Conclusion
We propose DACBench, a standardized benchmark suite for
dynamic algorithm configuration (DAC). With it, we pro-
vide a framework to configure DAC benchmarks that both
enables reproducibility and easy modifications, ensuring that
DACBench can help evolve DAC benchmarks further. For
example, we plan to extend the FastDownward benchmark
beyond single domains and include existing instance features
from e.g. Exploratory Landscape Analysis (ELA) for CMA-
ES and ModEA. Furthermore, DACBench is easily extend-
able and we will add new benchmarks, developed by us and
the community. As an incentive for researchers to tackle
some of the most important difficulties in solving DAC, we
provide challenges for several dimensions of hardness. In or-
der to assist in developing these new approaches, we also in-
clude tools for tracking important metrics and visualization,
making DACBench very easy to use without knowledge of
the target domains. Overall, we believe DACBench will make
DAC more accessible to interested researchers, make exist-
ing DAC approaches more easily comparable and provide a
direction for research into new methods. For future work, we
plan to build surrogate benchmarks, similar to [Eggensperger
et al., 2018] for AC and [Siems et al., 2020] for NAS, to en-
able DAC benchmarking with minimal computational over-
head and minimized CO2 footprint.

Acknowledgements
We thank Gresa Shala, David Speck and Rishan Senanayake
for their contributions to the CMA-ES, FastDownward and
SGD-DL benchmarks respectively. Theresa Eimer and Mar-
ius Lindauer acknowledge funding by the German Research
Foundation (DFG) under LI 2801/4-1. All authors acknowl-
edge funding by the Robert Bosch GmbH.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1673

References
[Almutairi et al., 2016] A. Almutairi, E. Özcan, A. Kheiri, and

W. Jackson. Performance of selection hyper-heuristics on the
extended hyflex domains. In Proc. of ISCIS, 2016.

[Andrychowicz et al., 2016] M. Andrychowicz, M. Denil, S. G.
Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Fre-
itas. Learning to learn by gradient descent by gradient descent.
In Proc. of NeurIPS, pages 3981–3989, 2016.

[Ansótegui et al., 2009] C. Ansótegui, M. Sellmann, and K. Tier-
ney. A gender-based genetic algorithm for the automatic config-
uration of algorithms. In Proc. of CP’09, pages 142–157, 2009.

[Ansótegui et al., 2016] C. Ansótegui, J. Gabàs, Y. Malitsky, and
M. Sellmann. Maxsat by improved instance-specific algorithm
configuration. AIJ, 235:26–39, 2016.

[Biedenkapp et al., 2020] A. Biedenkapp, H. F. Bozkurt, T. Eimer,
F. Hutter, and M. Lindauer. Dynamic Algorithm Configuration:
Foundation of a New Meta-Algorithmic Framework. In Proc. of
ECAI, pages 427–434, 2020.

[Bischl et al., 2016] B. Bischl, P. Kerschke, L. Kotthoff, M. Lin-
dauer, Y. Malitsky, A. Frechétte, H. Hoos, F. Hutter, K. Leyton-
Brown, K. Tierney, and J. Vanschoren. ASlib: A benchmark li-
brary for algorithm selection. AIJ, pages 41–58, 2016.

[Brockman et al., 2016] G. Brockman, V. Cheung, L. Pettersson,
J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAI
Gym. CoRR, abs/1606.01540, 2016.

[Chotard et al., 2012] A. Chotard, A. Auger, and N. Hansen. Cu-
mulative step-size adaptation on linear functions. In Proc. of
PPSN, 2012.

[Daniel et al., 2016] C. Daniel, J. Taylor, and S. Nowozin. Learning
step size controllers for robust neural network training. In Proc.
of AAAI, 2016.

[Doerr and Doerr, 2018] B. Doerr and C. Doerr. Optimal static and
self-adjusting parameter choices for the (1+(λ, λ)) genetic algo-
rithm. Algorithmica, 80(5):1658–1709, 2018.

[Doerr et al., 2018] C. Doerr, H. Wang, F. Ye, S. van Rijn, and
T. Bäck. Iohprofiler: A benchmarking and profiling tool for iter-
ative optimization heuristics. arXiv e-prints:1810.05281, 2018.

[Eggensperger et al., 2013] K. Eggensperger, M. Feurer, F. Hutter,
J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards an
empirical foundation for assessing Bayesian optimization of hy-
perparameters. In NeurIPS Workshop on Bayesian Optimization
in Theory and Practice (BayesOpt’13), 2013.

[Eggensperger et al., 2018] K. Eggensperger, M. Lindauer, H. H.
Hoos, F. Hutter, and K. Leyton-Brown. Efficient benchmarking
of algorithm configurators via model-based surrogates. Machine
Learning, 107(1):15–41, 2018.

[Gupta et al., 2018] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and
S. Levine. Meta-reinforcement learning of structured exploration
strategies. In Proc. of NeurIPS, pages 5307–5316, 2018.

[Hallak et al., 2015] A. Hallak, D. Di Castro, and S. Mannor. Con-
textual markov decision processes. CoRR, abs/1502.02259, 2015.

[Hansen et al., 2003] Nikolaus Hansen, Sibylle D. Müller, and Pet-
ros Koumoutsakos. Reducing the time complexity of the de-
randomized evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computing, 11(1):1–18, 2003.

[Hansen et al., 2020] N. Hansen, A. Auger, R. Ros, O. Mersmann,
T. Tušar, and D. Brockhoff. COCO: A platform for comparing
continuous optimizers in a black-box setting. Optimization Meth-
ods and Software, 2020.

[Helmert, 2006] M. Helmert. The fast downward planning system.
JAIR, 26:191–246, 2006.

[Houthooft et al., 2018] R. Houthooft, Y. Chen, P. Isola, B. Stadie,
F. Wolski, J. Ho, and Pieter Abbeel. Evolved policy gradients. In
Proc. of NeurIPS, 2018.

[Hutter et al., 2011] F. Hutter, H. Hoos, and K. Leyton-Brown. Se-
quential model-based optimization for general algorithm config-
uration. In Proc. of LION, pages 507–523, 2011.

[Hutter et al., 2014] F. Hutter, M. López-Ibánez, C. Fawcett,
M. Lindauer, H. Hoos, K. Leyton-Brown, and T. Stützle. AClib: a
benchmark library for algorithm configuration. In Proc. of LION,
pages 36–40, 2014.

[Hutter et al., 2017] F. Hutter, M. Lindauer, A. Balint, S. Bayless,
H. Hoos, and K. Leyton-Brown. The configurable SAT solver
challenge (CSSC). AIJ, 243:1–25, 2017.

[Hutter et al., 2019] F. Hutter, L. Kotthoff, and J. Vanschoren,
editors. Automated Machine Learning: Methods, Sys-
tems, Challenges. Springer, 2019. Available for free at
http://automl.org/book.

[López-Ibáñez et al., 2016] M. López-Ibáñez, J. Dubois-Lacoste,
L. Perez Caceres, M. Birattari, and T. Stützle. The irace package:
Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43–58, 2016.

[Loshchilov and Hutter, 2017] I. Loshchilov and F. Hutter. Sgdr:
Stochastic gradient descent with warm restarts. In Proc. of ICLR,
2017.

[Ochoa et al., 2012] G. Ochoa, M. Hyde, T. Curtois, J. Rodrı́guez,
J. Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes,
S. Petrovic, and E. Burke. Hyflex: A benchmark framework for
cross-domain heuristic search. In Proc. of EvoCOP, 2012.

[Senior et al., 2013] A. Senior, G. Heigold, M. Ranzato, and
K. Yang. An empirical study of learning rates in deep neural
networks for speech recognition. In Proc. of ICASSP, 2013.

[Shahriari et al., 2016] B. Shahriari, K. Swersky, Z. Wang,
R. Adams, and N. de Freitas. Taking the human out of the loop:
A review of Bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

[Shala et al., 2020] G. Shala, A. Biedenkapp, N. Awad, S. Adri-
aensen, M. Lindauer, and F. Hutter. Learning step-size adaptation
in CMA-ES. In Proc. of PPSN, pages 691–706, 2020.

[Siems et al., 2020] J. Siems, L. Zimmer, A. Zela, J. Lukasik,
M. Keuper, and F. Hutter. NAS-Bench-301 and the case for
surrogate benchmarks for neural architecture search. CoRR,
abs/2008.09777, 2020.

[Smith-Miles et al., 2014] K. Smith-Miles, D. Baatar, B. Wreford,
and R. Lewis. Towards objective measures of algorithm per-
formance across instance space. Comput. Oper. Res., 45:12–24,
2014.

[Speck et al., 2021] D. Speck, A. Biedenkapp, F. Hutter,
R. Mattmüller, and M. Lindauer. Learning heuristic se-
lection with dynamic algorithm configuration. In Proc. of
ICAPS’21, August 2021.

[Vermetten et al., 2019] D. Vermetten, S. van Rijn, T. Bäck, and
C. Doerr. Online selection of CMA-ES variants. In Proc. of
GECCO. ACM, 2019.

[Ying et al., 2019] C. Ying, A. Klein, E. Christiansen, E. Real,
K. Murphy, and F. Hutter. Nas-bench-101: Towards reproducible
neural architecture search. In Proc. of ICML, 2019.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1674

CHAPTER 10
Theory-inspired Parameter Control

Benchmarks for Dynamic Algorithm
Configuration

The content of this chapter has been published as:

A. Biedenkapp, N. Dang, M. S. Krejca, F. Hutter, and C. Doerr (2022a). “Theory-
inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration”. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’22). Ed. by
J. Fieldsend. ACM.

Project Idea. The idea to use this benchmark was proposed by Carola Doerr and Martin
Krejca. Martin Krejca proposed the algorithm to compute the optimal policies for a given
configuration space. Nguyen Dang and André Biedenkapp proposed to use a DDQN based
on previous work.

Implementation and experimentation. Martin Krejca implemented the code and per-
formed all experiments to compute the optimal policies. André Biedenkapp implemented
the DDQN agent. Nguyen Dang implemented the benchmark. Nguyen Dang and André
Biedenkapp jointly optimized the hyperparameters of the DDQN. Nguyen Dang performed
the experiments using the DDQN agent.

Paper writing. Carola Doerr wrote the first draft of the paper. Martin Krejca wrote Section
3. André Biedenkapp contributed to Section 4 and wrote Section 4.1 in full. Nguyen Dang
contributed to Section 4 and wrote Sections 4.3 and 4.4 in full. Carola Doerr and Frank
Hutter provided feedback and edited this version of the paper. Martin Krejca, Nguyen Dang
and André Biedenkapp finalized the paper.

Theory-inspired Parameter Control Benchmarks
for Dynamic Algorithm Configuration

André Biedenkapp
University of Freiburg
Freiburg, Germany

Nguyen Dang
University of St Andrews

St Andrews, United Kingdom

Martin S. Krejca
Sorbonne Université, CNRS, LIP6

Paris, France

Frank Hutter
University of Freiburg, Germany

Bosch Center for Artificial Intelligence

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT
It has long been observed that the performance of evolutionary al-
gorithms and other randomized search heuristics can benefit from a
non-static choice of the parameters that steer their optimization be-
havior. Mechanisms that identify suitable configurations on the fly
(“parameter control”) or via a dedicated training process (“dynamic
algorithm configuration”) are thus an important component of mod-
ern evolutionary computation frameworks. Several approaches to
address the dynamic parameter setting problem exist, but we barely
understand which ones to prefer for which applications. As in classi-
cal benchmarking, problem collections with a known ground truth
can offer very meaningful insights in this context. Unfortunately,
settings with well-understood control policies are very rare.

One of the few exceptions for which we know which parameter
settingsminimize the expected runtime is the LeadingOnes problem.
We extend this benchmark by analyzing optimal control policies
that can select the parameters only from a given portfolio of possible
values. This also allows us to compute optimal parameter portfolios
of a given size. We demonstrate the usefulness of our benchmarks
by analyzing the behavior of the DDQN reinforcement learning
approach for dynamic algorithm configuration.

CCS CONCEPTS
• Computing methodologies→ Randomized search.
ACM Reference Format:
André Biedenkapp, NguyenDang,Martin S. Krejca, FrankHutter, and Carola
Doerr. 2022. Theory-inspired Parameter Control Benchmarks for Dynamic
Algorithm Configuration. In Genetic and Evolutionary Computation Confer-
ence (GECCO ’22), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3512290.3528846

1 INTRODUCTION
It is well known that the performance of evolutionary algorithms
and other black-box optimization heuristics can benefit quite sig-
nificantly from a non-static choice of the (hyper-)parameters that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528846

determine their search behavior [4, 10, 18, 32, 37, 42, 47, 49]. Not
only does a dynamic choice of the parameters allow tailoring the
search behavior to the problem instance at hand, but it can also be
used to leverage complementarity between different search strate-
gies during the different stages of the optimization process, e.g., by
moving from a global to a local generation of solution candidates.

Mechanisms to identify suitable dynamic parameter values are
intensively studied since decades, see [2, 19, 38] for surveys. Most
works focus on generally applicable mechanisms to control the
parameters on-the-fly, e.g., using self-adaptation [3], success-based
parameter update strategies such as the one-fifth success rule [52],
co-variance matrix adaptation [32], or reinforcement learning [15]
(RL). However, for many practical applications of black-box opti-
mization techniqueswe also have the possibility to learn a parameter
control policy via a dedicated training process, either because we
anyway need to solve several instances of the same problem or
because we can generate instances that are similar to the ones that
we expect to see in the future application. Our hope is then to
derive structural insight into the algorithms’ behavior that can be
leveraged to choose their parameters in a more informed manner,
just as we are used to do it for classic parameter tuning [8, 34, 58].

The study of parameter control schemes with dedicated offline
training is recently enjoying growing attention in the broader AI
community, where optimization heuristics are considered an inter-
esting application of AutoML techniques [36]. Examples include
the training of a controller for the mutation strategy employed
by differential evolution optimizing the CEC2015 problem collec-
tion [57] and learning to control the mutation step-size parameter
of CMA-ES on the BBOB benchmarks [56]. The problem of training
parameter control policies for strong performance on a distribution
of instances was coined dynamic algorithm configuration (DAC)
in [6], where it is formulated as a contextual Markov Decision Pro-
cess (see Section 4.1 for details). To investigate the functioning and
the performance of different DAC approaches, a dedicated library
of benchmark problems, DACBench, was suggested in [27].

With its rich history of parameter control studies, evolutionary
computation has numerous exciting benchmark problems to offer
for DAC, e.g., all the problems where dynamic parameter settings
have been shown to outperform static ones. One such problem that
is particularly well understood is the dynamic fitness-dependent
selection of the mutation rates of greedy evolutionary algorithms
maximizing the LeadingOnes problem (see Section 2). In particular,
we know exactly how the expected runtime of these algorithms
depends on the mutation rates used during the run, and this is not

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

only in asymptotic terms, but also for concrete problem dimen-
sions 𝑛 [9, 17, 25, 60]. This feature has promoted LeadingOnes as
an important benchmark for parameter control studies, both for
empirical [21, 25] and for rigorously proven [20, 23, 46] results.

Our in-depth knowledge for LeadingOnesmakes the problem an
ideal candidate for the in-depth empirical study of the pros and cons
of DAC methods: not only does the setting offer relatively fast eval-
uation times, but we also benefit from a ground truth against which
we can compare the policies that are learned during the offline train-
ing phase. Existing DAC benchmarks that give access to ground
truth either abstract away the actual optimization process and re-
place it with a simple surrogate or they replace problem instances
with unrealistic, artificial proxies. Further, many traditional deep
RL benchmarks have deterministic environments, which makes
them less representative for the configuration of metaheuristics.
LeadingOnes can therefore fill an important gap.

Our Contributions. We demonstrate in this work how the mu-
tation control problem for LeadingOnes can be used to investigate
existing DAC approaches and their capabilities. We evaluate a com-
monly used RL approach using neural networks (dubbed DDQN)
and investigate how it scales with different problem dimensions.

Each problem dimension of LeadingOnes provides us with a
different problem instance on which we can compare the results
of the DAC process to the ground truth, i.e., the optimal strategy.1
To enrich the problem collection further, we also compute optimal
control policies for settings in which the algorithms are only al-
lowed to select their parameter values from a given portfolio K of
possible values (Table 2). These results generalize previous works of
Lissovoi et al. [46], who analyzed optimal policies for the portfolios
that are composed of the integers 𝑖 ∈ [1, 𝑘] ∩ N for 𝑘 ∈ Θ(1).

We observe for smaller settings, in terms of problem size 𝑛 and
portfolio size 𝑘 , that the employed DAC method is capable of learn-
ing optimal policies quickly (Section 4.3). However, increasing ei-
ther 𝑛 or 𝑘 can drastically increase the learning difficulty, resulting
in potentially sub-optimal policies or even no successful learning
within the given budget and hyperparameters setting (Figure 8).

Of independent interest for the runtime analysis community
are the optimal parameter portfolios (Table 1) that we compute
for a number of different combinations of problem dimension 𝑛,
and portfolio size 𝑘 . While these optimal portfolios have a large
intersection with the initial_segment portfolio investigated by
Lissovoi et al. [46], the optimal performance achieved with this
portfolio is worse than the performance achieved with the portfolio
of exponentially growing values {2𝑖 | 𝑖 ∈ [0, 𝑘 − 1] ∩ N}.

Outline. In Section 2, we introduce our benchmark, consisting
of the LeadingOnes problem as well as the (1+1) RLS algorithm. In
Section 3, we explain how to derive optimal policies for a given port-
folio. Further, we analyze these policies with respect to increasing
portfolio and dimension size. In Section 4, we analyze empirically
how well optimal policies can be learned when using the DDQN
reinforcement learning approach. Like in Section 3, we consider
different portfolios as well as increasing portfolio and dimension
sizes. Last, we conclude our work in Section 5.

1All optimality claims made here and in the remainder of the paper are always with
respect to expected runtime. This is also our primary performance measure, i.e., when
we speak of the performance of an algorithms, we refer to the expected number of
fitness evaluations made before an optimal solution is evaluated for the first time.

Algorithm 1: The (1+ 1) RLS with state space S, portfolio
K ⊆ [0..𝑛], and parameter selection policy 𝜋 : S → K ,
maximizing a function 𝑓 : {0, 1}𝑛 → R. See also Section 2.
1 𝑥 ← a sample from {0, 1}𝑛 chosen uniformly at random;
2 for 𝑡 ∈ N do
3 𝑠 ← current state of the algorithm;
4 𝑟 ← 𝜋 (𝑠);
5 𝑦 ← flip𝑟 (𝑥);
6 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦;

Code and Data. Our code and results are on GitHub [7].

2 PARAMETRIZED RLS FOR LEADINGONES
We consider the optimization of the LeadingOnes problem via vari-
ants of randomized local search, which we present in the following.
We note that we use, for all 𝑎, 𝑏 ∈ N, the notation [𝑎..𝑏] B [𝑎, 𝑏]∩N.

Parameterized Randomized Local Search. We analyze a pa-
rameterized version of the classic randomized local search (RLS)
algorithm. While RLS searches only in the direct neighborhood of
a current-best solution, its parameterized cousin, the (1 + 1) RLS
(Algorithm 1), can sample solution candidates at larger distances.

The (1 + 1) RLS maintains a single bit string (the current solu-
tion), denoted by 𝑥 in Algorithm 1, initially drawn uniformly at
random from {0, 1}𝑛 . Iteratively, the (1 + 1) RLS generates a new
sample 𝑦 (the offspring) from the current solution 𝑥 , and it replaces
𝑥 with 𝑦 if the the objective value 𝑓 (𝑦) (its fitness) is at least as
large as 𝑓 (𝑥). The offspring𝑦 is generated by the operator flip𝑟 (the
mutation), which, given a parameter 𝑟 ∈ [0..𝑛], inverts exactly 𝑟
pairwise different bits in 𝑦, chosen uniformly at random from all
possible 𝑟 -subsets of the index set [1..𝑛]. We call the parameter 𝑟
of the mutation the search radius. In each iteration, the (1 + 1) RLS
chooses the search radius to apply based on a function 𝜋 that we
call a (parameter selection) policy, given some state of the algorithm.
The policy 𝜋 only returns search radii from a certain setK ⊆ [0..𝑛],
which we call the portfolio of the algorithm. Note that the portfo-
lio K and the policy 𝜋 are part of the input of the (1 + 1) RLS.

Although information-rich states can prove useful [12], we only
have theoretical guarantees for fitness-dependent policies, which use
exclusively the fitness of the current solution. Doerr and Lengler [24]
discuss why it is hard to derive more general bounds. Thus, we
assume in this article that the policies are fitness-dependent.

Our key performance criterion is the number of iterations until
the (1 + 1) RLS finds a global optimum of its fitness function for
the first time, i.e., the smallest 𝑡 ∈ N such that 𝑥 is optimal at
the beginning of that iteration. We refer to this number as the
algorithm’s runtime, noting that it is a random variable.

LeadingOnes. The LeadingOnes problem is defined over bit
strings of length𝑛 ∈ N. It asks to maximize the number of leading 1s
of a bit string; the all-1s string is the unique global maximum.
Formally, LeadingOnes : {0, 1}𝑛 → [0..𝑛], 𝑥 ↦→ ∑

𝑖∈[𝑛]
∏

𝑗 ∈[𝑖] 𝑥 𝑗 .
LeadingOnes is a special case of maximizing the longest prefix

of agreement with a hidden target bit string 𝑧 ∈ {0, 1}𝑛 , evaluated
with respect to a hidden permutation 𝜎 that shuffles the bit posi-
tions, formally defined as LeadingOnes𝑧,𝜎 : {0, 1}𝑛 → [0..𝑛], 𝑥 ↦→

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

max{𝑖 ∈ [0..𝑛] | ∀𝑗 ∈ [𝑖] : 𝑥𝜎 (𝑗) = 𝑧𝜎 (𝑗) }. Since the (1 + 1) RLS is
unbiased in the sense of Lehre and Witt [45], its performance is
identical on each of these problem instances and we thus restrict our
attention to the classic LeadingOnes instance mentioned above.

Although LeadingOnes𝑧,𝜎 can be solved using Θ(𝑛 log log𝑛)
queries in expectation [1], this runtime cannot be achieved with
unary unbiased algorithms such as the (1 + 1) RLS. Their runtime
grows at least quadratically in the dimension [45]. The same bound
of Ω(𝑛2) also applies to all (1+1) elitist algorithms [24], of which the
(1 + 1) RLS is a representative as well. The expected runtime of the
classic RLS with constant search radius 1 is 𝑛2/2 [17, Theorem 5].

3 OPTIMAL POLICIES AND PORTFOLIOS FOR
LEADINGONES

The exact runtime distribution for LeadingOnes is well understood
for the (1+ 1) RLS [17, Section 2.3]. Its expected runtime is, besides
its initialization, entirely determined by how quickly it improves
the fitness of its current solution. More formally, the most important
values are the𝑛 different probabilities (𝑝𝑖)𝑖∈[0..𝑛−1] , where, for each
𝑖 ∈ [0..𝑛−1], the value 𝑝𝑖 denotes the probability that the (1+1) RLS
finds a strict improvement if the current solution has fitness 𝑖 .
Choosing for each 𝑖 the search radius so that 𝑝𝑖 is maximized results
in an (1 + 1) RLS instance with optimal runtime on LeadingOnes.

In more detail, for each 𝑖 ∈ [0..𝑛 − 1] and each 𝑟 ∈ [0..𝑛], let
𝑞(𝑟, 𝑖) denote the probability that the (1 + 1) RLS finds a strict
improvement if the current solution has fitness 𝑖 and flips exactly 𝑟
bits during mutation. For LeadingOnes, it holds for all 𝑖 ∈ [0..𝑛−1]
and all 𝑟 ∈ [0..𝑛] that [17, Section 2.3]

𝑞(𝑟, 𝑖) = 𝑟

𝑛
·
∏

𝑗 ∈[1..𝑟−1]
𝑛 − 𝑖 − 𝑗

𝑛 − 𝑗
. (1)

An important property of 𝑞 that allows determining optimal
policies for various portfolios of the (1 + 1) RLS is that, for all
𝑖 ∈ [0..𝑛 − 1] and 𝑟 ∈ [0..𝑛 − 1], it holds that [17, Section 2.3]

𝑞(𝑟, 𝑖) ≤ 𝑞(𝑟 + 1, 𝑖) if and only if 𝑖 ≤ (𝑛 − 𝑟)/(𝑟 + 1). (2)

In Section 3.1, we discuss what an optimal policy looks like for
the well understood case when permitting all possible search radii
from 0 to 𝑛. We refer to this setting as the full portfolio. Afterward,
we explain in Section 3.2 how to calculate optimal policies when
the portfolio does not contain all search radii, that is, when it is
restricted. Last, in Section 3.3, we compare optimal policies of differ-
ent portfolios, including the optimal one, which, given a portfolio
size and a problem dimension, minimizes the expected runtime.

Generalizations. Our analyses are easily extended to the (1 +
𝜆) RLS, the variant of the (1 + 1) RLS generating 𝜆 ∈ N≥1 offspring
in each iteration. For it, equation (1) looks slightly different, as it
includes 𝜆, but all other arguments work out in the same way.

3.1 Full Portfolio
In the setting ofK = [0..𝑛], an optimal policy 𝜋opt satisfies [17, 25]

𝜋opt : 𝑖 ↦→ ⌊𝑛/(𝑖 + 1)⌋ (3)

as a direct consequence of property (2), as it can be proven that this
policy chooses for each fitness 𝑖 the radius 𝑟 that maximizes 𝑞(𝑟, 𝑖).

Note that policy (3) is monotonically decreasing. That is, the
higher the fitness of the current individual, the fewer bits are flipped.

This entails that not all search radii are used. For example, for a
fitness of 0, it is optimal to flip all 𝑛 bits. For a fitness of 1, it is
optimal to flip exactly ⌊𝑛/2⌋ bits. Thus, 𝜋opt skips over all search
radii in the range [⌊𝑛/2⌋ + 1..𝑛− 1]. We further note that using 𝜋opt
results in an expected runtime of about 0.39𝑛2 on LeadingOnes and
that using only the search radius 1 results in an expected runtime of
0.5𝑛2 [17, Section 2.3]. Thus, the expected runtime of any portfolio
with search radius 1, using an optimal policy, falls into this range.

3.2 Restricted Portfolio Sizes
For K ⊊ [0..𝑛], the optimal policy 𝜋

(K)
opt strongly depends on the

search radii inK . Thus, in general, the policy cannot follow an easy
formula as given by 𝜋opt in policy (3) but needs to be adjusted to the
specific values available in K . Further, if 1 ∉ K , then the expected
runtime of an algorithm usingK can be infinite (in particular when
the probability of creating a solution with fitness 𝑛 − 1 is non-zero,
as such a solution can only be improved with search radius 1). Thus,
we assume in the following always that 1 ∈ K .
3.2.1 Determining an optimal policy. Let 𝑖 ∈ [0..𝑛 − 1] denote the
fitness of the current individual, and assume that 𝜋opt (𝑖) ∉ K . Due
to property (2), 𝑞 is unimodal in its first component. Thus, the best
possible search radius in K is one of the at most two values closest
to 𝜋opt (𝑖), i.e., 𝜋 (K)opt (𝑖) is either 𝑟

sup
𝑖 B max{𝑟 ∈ K | 𝑟 < 𝜋opt (𝑖)}

or 𝑟 inf𝑖 B min{𝑟 ∈ K | 𝑟 > 𝜋opt (𝑖)}. Thus, it holds that

𝜋
(K)
opt (𝑖) = argmax𝑟 ∈{𝑟 sup𝑖 ,𝑟 inf𝑖 } 𝑞(𝑟, 𝑖). (4)

Note that this implies that 𝜋 (K)opt is monotonically decreasing, as, for
all 𝑖, 𝑗 ∈ [0..𝑛 − 1], 𝑖 < 𝑗 , it holds that 𝑟 sup𝑖 ≥ 𝑟

sup
𝑗 and 𝑟 inf𝑖 ≥ 𝑟 inf𝑗 .

LetD denote the vector of the elements ofK in decreasing order.
Themonotonicity of equation (4) allows simplifying the calculations
for 𝜋 (K)opt by only determining the fitness values for which the the
probability of improvement 𝑞 for two consecutive elements in D
changes. That is, we only need to determine for all 𝑖 ∈ [1..|K | − 1]
the largest 𝑗 ∈ [0..𝑛] such that 𝑞(D𝑖 , 𝑗) ≥ 𝑞(D𝑖+1, 𝑗). We call each
of these |K | − 1 points 𝑗 a breaking point. We note that breaking
points do not need to be unique. Algorithm 2 provides a pseudo code
for how to determine the breaking points for a given portfolio K .
Note that lines 4 to 6 can be improved by applying a binary search
that returns the smallest index at which the condition from line 5
holds. This is avoided here in favor of simplicity.

Given the breaking points (𝑏𝑖)𝑖∈[1.. |K |−1] of a portfolio K and
defining 𝑏0 = −1 and 𝑏 |K | = 𝑛−1, the optimal policy 𝜋 (K)opt is easily
calculated by noting that, for all 𝑖 ∈ [0..|K |] and all 𝑗 ∈ [𝑏𝑖+1..𝑏𝑖+1],
the 𝑖-th largest value in K is the optimal search radius when the
current individual has fitness 𝑗 .

3.3 Comparing Optimal Policies
We compare different portfolios of the same size 𝑘 , and we compare
their resulting optimal policies calculated as stated at the end of
Section 3.2.1. To this end, we consider the following four portfolios.
For 𝑛 ∈ N≥2 and 𝑘 ∈ [2..𝑛], we define
• powers_of_2 to be {2𝑖 | 2𝑖 ≤ 𝑛 ∧ 𝑖 ∈ [0..𝑘 − 1]},
• initial_segment to be [1..𝑘],

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

Algorithm 2: The algorithm to compute, for a given port-
folio K with 1 ∈ K , the breaking points (𝑏𝑖)𝑖∈[1.. |K |−1] of
the optimal policy 𝜋

(K)
opt , as discussed in Section 3.2. The

function 𝑞 is defined in equation (1).
1 D ← K in descending order;
2 𝑐 ← 0;
3 for 𝑖 ∈ [1..|K | − 1] do
4 for 𝑗 ∈ [1..𝑛] do
5 if 𝑞(D𝑖 , 𝑗) < 𝑞(D𝑖+1, 𝑗) then break the loop over 𝑗 ;
6 𝑐 ← 𝑗 ;
7 𝑏𝑖 ← 𝑐;

Table 1: The optimal portfolios for various sizes 𝑘 , for prob-
lem sizes 𝑛 ∈ {50, 100}, and their expected runtimes (by 𝑛2).
For 𝑘 = 8,𝑛 = 100, computation timed out. See also Section 3.3.

Optimal portfolio/Expected runtime by 𝑛2
𝑘 𝑛 = 50 𝑛 = 100
2 1, 4 0.409832 1, 4 0.409897
3 1, 2, 6 0.39568 1, 2, 6 0.395987
4 1, 2, 4, 11 0.3911372 1, 2, 4, 11 0.391403
5 1, 2, 3, 6, 17 0.3895904 1, 2, 3, 6, 16 0.389892
6 1, 2, 3, 5, 9, 21 0.3888308 1, 2, 3, 5, 9, 23 0.389109
7 1, 2, 3, 4, 6, 12, 29 0.388452 1, 2, 3, 4, 6, 11, 27 0.3887584
8 1, 2, 3, 4, 6, 9, 19, 50 0.3882052 – –

• evenly_spread to be {𝑖 · ⌊𝑛/𝑘⌋ + 1 | 𝑖 ∈ [0..𝑘 − 1]}, and
• optimal, which we determine by a brute-force approach
over all 𝑘-subsets of 𝑛 that contain the search radius 1. The
portfolio with the lowest expected runtime among all of
these subsets is considered optimal.

Note that powers_of_2 is only defined for values 𝑘 of at most
⌊log2 𝑛⌋. For any larger value of 𝑘 , it is not defined. Last, note that
although there is only one optimal portfolio, all policies discussed
in this section are optimal with respect to their specified portfolio.

The portfolio optimal. Table 1 shows optimal portfolios for𝑛 ∈
{50, 100} and for 𝑘 ∈ [2..8]. For these cases, the portfolio consists
of the interval [1..⌈𝑘/2⌉] and of some larger values that seem to
grow exponentially. That is, optimal is a mixture of initial-
_segment and a variant of powers_of_2. Interestingly, for 𝑘 = 8,
the portfolio contains the search radius 50 = 𝑛, which is only
relevant if the current individual has a fitness of 0. Due to the
uniform initialization, we see this value with 50 %, and we transition
to a different state with probability 1 by flipping all bits, so that
the difference between the optimal expected runtime that can be
achieved with a portfolio of size 𝑘 = 8 over that for 𝑘 = 7 is
at most 0.5. Further, optimal is identical for 𝑛 ∈ {50, 100} for
𝑘 ∈ {2, 3, 4}. For larger 𝑘 , some larger search radii change slightly.
This suggests that the generals range of optimal search radii to use
is only slightly affected by the problem size.

Optimal policies. Table 2 shows optimal policies (depicted as
their relative breaking points) for different portfolio sizes 𝑘 and
problem dimensions 𝑛. For powers_of_2 and initial_segment,

Table 2: The breaking points (Algorithm 2) of different port-
folios (Section 3.3) of size 𝑘 ∈ {3, 4} for 𝑛 ∈ {50, 100}. Each
breaking point is divided by𝑛. Recall that the breaking points
refer to the portfolio sorted in descending order.

𝑘 Portfolio 𝑛 = 50 𝑛 = 100
3 optimal 0.22, 0.48 0.23, 0.49

powers_of_2 0.26, 0.48 0.28, 0.49
initial_segment 0.3, 0.48 0.32, 0.49
evenly_spread 0, 0.12 0, 0.08

4 optimal 0.1, 0.26, 0.48 0.12, 0.28, 0.49
powers_of_2 0.14, 0.26, 0.48 0.15, 0.28, 0.49
initial_segment 0.22, 0.3, 0.48 0.24, 0.32, 0.49
evenly_spread 0, 0.02, 0.16 0, 0.01, 0.1

when increasing 𝑘 , the portfolio is extended by adding larger search
radii. This is reflected in their respective (optimal) portfolio, as the
breaking points are also extended. In contrast, for evenly_spread,
a portfolio of one size is not an extension of one of a smaller size.
This is reflected in the breaking points, which are not extended
for increasing 𝑘 . For all cases of 𝑛 and 𝑘 depicted, powers_of_2
and initial_segment share at least half of their breaking points
with optimal. This follows also from the results of Table 1, which
shows that the high overlap of optimal with initial_segment
continues, whereas the onewith powers_of_2 is not that prominent
for larger 𝑘 . Since all portfolios except for evenly_spread contain
at least the search radii 1 and 2, the optimal policies also utilize the
full range of these radii, following policy (3). For evenly_spread,
mostly the search radius 1 is important.

Figure 1 investigates the case of 𝑘 = 3 for 𝑛 = 50 more closely.
We computed for all

(50
2
)
portfolios of size 3 that contain the search

radius 1 the expected runtime of an optimal policy. The figure
depicts cumulative data of these computations. Interestingly, the
curve follows an almost linear trend, except for the last 5 %, where
the increase in the expected runtime is diminishing. This suggests
that choosing portfolios uniformly at random has a fair chance of
resulting in a good expected runtime of its optimal policy.

In Figure 2, we take a closer look at the impact of the portfolio
size 𝑘 on the expected runtime. It compares the expected runtimes
of all four different portfolios when using an optimal policy. Interest-
ingly, although initial_segment shares a large part of its search
radii with optimal (Table 1), the expected runtime of powers_of_2
is better than that of initial_segment. This suggests that having
some larger search radii is more beneficial than covering only small
search radii. However, the comparably bad expected runtime of
evenly_spread shows that having more than a single small search
radius (e.g., 1 and 2) drastically improves the expected runtime.

4 ALGORITHM CONFIGURATIONWITH
REINFORCEMENT LEARNING

Parameter control with a dedicated offline training phase has long
been studied [see e.g., 10, 39, 40, 57, 63]. Recently it gained attention
in the broader AI community where dynamic algorithm configura-
tion (DAC) [6] was proposed as a generalization over algorithm con-
figuration [35] and algorithm selection [53]. In DAC, reinforcement

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

0.4 0.42 0.44 0.46 0.48

0

0.2

0.4

0.6

0.8

1

Powers of 2 (0.398219)
Initial segment (0.40422)

Evenly spread
(0.449672)

E[Topt]/n
2

re
la
ti
ve

n
o.

of
p
or
tf
ol
io
s
w
it
h
an

op
ti
m
al

p
ol
ic
y
w
it
h
ex
p
ec
te
d
ru
n
ti
m
e
≤

E
[T

o
p
t]

Figure 1: The cumulative fraction of howmany out of all port-
folios have at most the expected (relative) runtimes stated by
the 𝑥-axis, for 𝑛 = 50. All portfolios have cardinality exactly 3
and contain the search radius 1. Their expected runtime is de-
termined by applying an optimal policy. See also Section 3.3.

2 3 4 5 6 7 8 10 15 20

0.4

0.42

0.44

0.46

k

E
[T

o
p
t]
/n

2

Powers of 2
Initial segment
Evenly spread
Optimal portfolio

Figure 2: The expected runtimes for the optimal policies of
the stated portfolios for 𝑛 = 50. The runtime is divided by 𝑛2.
See also Section 3.3. Note that powers_of_2 is not defined for
𝑘 > 6. Further, we only computed optimal up to 𝑘 = 8.

learning (RL) is predominantly used to learn dynamic configuration
policies. In the DAC setting, our proposed benchmark is of particu-
lar interest as it readily allows us to investigate important questions
such as: i) Can DAC learn optimal policies? ii) How does the choice
of elements of the portfolio K influence the learning procedure?
iii) How does the size of K influence the learning procedure? iv)
How does the problem size influence the learning procedure?

We recap the most important definitions for DAC in Section 4.1.
The experimental setup of our work is summarized in Section 4.2.
Results for small portfolios |K | ∈ {3, 4, 5} and for fixed dimension
𝑛 = 50 are presented in Section 4.3 and results for broader ranges
of portfolio sizes and dimensions are discussed in Section 4.4.

4.1 The DAC Framework
The process of dynamically adapting hyperparameters is modeled
as a contextual Markov Decision Process (cMDP) [31]. An MDP
M is a tuple (S,A,T ,R) with state space S, action spaceA, tran-
sition function T : S × A × S → [0, 1], and reward function
R : S × A → R. The transition function describes the dynam-
ics of the process and gives the probability of reaching a state 𝑠 ′

when playing action 𝑎 in state 𝑠 . Similarly, the reward function de-
scribes the reward obtained by playing action 𝑎 in 𝑠 . Depending on
the system an MDP describes, the reward function can be stochas-
tic. A cMDP extends this formalism through the use of so-called
context information 𝑖 ∼ I. The context influences the behavior of
the reward and transition functions but leaves the state and action
spaces unchanged. Thus a cMDPM = {M𝑖 }𝑖∼I is a collection
of MDPs with shared state and action spaces, but with individual
transition and reward functions. In DAC, the state space describes
the internal behavior of an algorithm𝐴 (e.g., internal statistics of𝐴)
when running it on an instance 𝑖 (i.e., the context) and the action
space is given by the possible values of parameters of𝐴. In practice,
the transition and reward functions are unknown and not trivial
to approximate or learn. Still, there exist solution approaches for
MDPs that do not need direct access to these.

Reinforcement learning (RL) [61] has been demonstrated to be
able to learn dynamic configuration policies directly from data [see
e.g., 5, 6, 15, 16, 43, 44, 51, 54, 57]. In an offline learning phase, an
RL agent interacts with its environment (i.e., the algorithm that is
being configured) to learn which actions lead to the highest reward
over multiple episodes (trajectory until a goal state or a maximal
step-limit is reached). In a trial-and-error fashion, an RL agent
iteratively observes the current state 𝑠𝑡 of the environment at time
𝑡 . Based on this observation it selects an action 𝑎𝑡 which advances
the environment to the next state 𝑠𝑡+1 and produces a reward signal
𝑟𝑡+1. This information is sufficient to learn the value of each state
and how to select the next action to maximize the expected reward.

In the commonly used Q-learning approach [64] the goal is to
learn the Q-function Q : S × A → R that maps a state–action
pair to the cumulative future reward that is received after playing
an action 𝑎 in state 𝑠 . The Q-function can be learned in a typical
error correction fashion. Given a state 𝑠𝑡 and action 𝑎𝑡 , the Q-value
Q(𝑠𝑡 , 𝑎𝑡) can be updated using temporal differences (TD) as

Q(𝑠𝑡 , 𝑎𝑡) ← Q(𝑠𝑡 , 𝑎𝑡) + 𝛼
((TD-target︷ ︸︸ ︷

𝑟𝑡 + 𝛾 maxQ(𝑠𝑡+1, ·)
) − Q(𝑠𝑡 , 𝑎𝑡)︸ ︷︷ ︸

TD-delta

)
,

where 𝛼 is the learning rate and 𝛾 is the discounting factor. The
TD-target is the reward 𝑟𝑡 incurred by playing 𝑎𝑡 in 𝑠𝑡 together
with the discounted maximal future reward. The discounting factor
determines how important future rewards are when updating the
Q-function. The TD-delta then describes how correct or wrong the
prediction was and is used to update the Q-function accordingly.
The learning rate determines the strength with which the TD-delta
updates the original prediction. A reward-maximizing policy can
then be defined by only using the learned Q-function as 𝜋 (𝑠) =
argmax𝑎∈A Q(𝑠, ·). For better exploration while learning, typically
𝜖-greedy exploration is used, where 𝜖 gives the probability that an
action 𝑎𝑡 is replaced with a randomly sampled one.

Mnih et al. [48] proposed to model the Q-function as a neural
network (referred to as deep Q-network) and showed that this al-
lowed to learn Q-functions even for high-dimensional states such
as frames of video games. van Hasselt et al. [62] showed that using
a single network when selecting the maximizing action in the TD-
target and in the prediction of the value often leads to instabilities

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

due to overestimation during training. To mitigate this, they pro-
posed to use a second copy of the weights of the neural network.
One set is used to select the maximizing action and the other is used
to predict the value. The second set of weights is kept frozen for
short periods at a time and then copied over from the first set for
increased stability of predictions. This extension is dubbed double
deep Q-network (DDQN) and generally results in overall faster
learning due to less overestimation. DDQN has been used as solu-
tion approach to DAC problems in DE [57] and AI planning [59].

4.2 Experimental Setup
Following Biedenkapp et al. [6], in our experiments we use a small
DDQN with two hidden layers and 50 units each to learn the Q-
function. The action space A is the portfolio K . We define 𝑠𝑡 =
𝑓 (𝑥𝑡) and 𝑟𝑡 = 𝑓 (𝑥𝑡) − 𝑓 (𝑥𝑡−1) − 1, where 𝑥𝑡 is the solution found
by the (1 + 1) RLS at time step 𝑡 . During the training of DDQN, we
impose a cutoff time of 0.8𝑛2 steps per episode to avoid wasting
too much time sampling with bad policies. Recall that the expected
run time of the simple setting with a constant policy 𝜋 : 𝑠 ↦→ 1 is
0.5𝑛2 [17]. The episode-cutoff time for our RL training is chosen
such that policies slightly worse than this trivial constant policy
can still be explored during the learning phase. All DDQN agents
are trained with a batch size of 2048, an 𝜖-greedy value of 0.2,
and a discount factor 𝛾 of 0.9998. The batch size determines how
many samples are used to compute the gradients when updating
the neural network. A larger batch size results in a more accurate
estimation of the gradient but takes longer to compute.

It is known that hyperparameters play a crucial role in deep RL
algorithms [33]. Tuning them is expensive and not trivial and many
purpose-built methods exist depending on the target application
[50]. It is, however, not well understood how the hyperparameters
influence the learning behavior of agents, especially outside of the
domain of video game playing. We built our choice of hyperparam-
eters on prior literature using RL for dynamic tuning and adjusted
batch size and 𝛾 based on results of a small prestudy (see [7]).

4.3 Results for 𝑛 = 50
In the first set of experiments, we consider a fixed problem size
of 𝑛 = 50 as well as the three portfolio settings initial_segment,
powers_of_2, and evenly_spread from Section 3.3. For each set-
ting, three portfolio sizes 𝑘 ∈ {3, 4, 5} are considered. The aim
is to study the impact of portfolio settings and portfolio sizes on
DDQN’s learning behaviors. For each pair of portfolio settings and
sizes, a DDQN agent is trained with a budget of 1 million time steps
and a walltime limit of 24 hours on an 8-core Intel Xeon E5-4650L
computer (2.6GHz). The best policy is chosen at the end of the
training phase and is then evaluated and compared against the
optimal policy of the same portfolio K via 2000 runs (per policy).

As shown in Figure 3, the performance of the DDQN policies
is highly comparable to the optimal ones. DDQN is able to reach
the performance of the optimal policy within 100 000 time steps in
all cases. The learned policies are also quite similar to the optimal
ones, with some slight discrepancy, as illustrated in Figure 4, where
DDQN learned policies for two example settings (evenly_spread
with 𝑘 = 3, and powers_of_2 with 𝑘 = 5).

Figure 3: Performance of DDQN and optimal policies on three
portfolio settings and three portfolio sizes (𝑛 = 50).

Figure 4: Two example DDQN best learned policies vs. the
optimal policy for the same portfolio, and the optimal policy
with unrestricted portfolio.

We now have a closer look at the training progress of each RL
agent to see how different portfolio settings and portfolio sizes
impact the learning behavior of DDQN. To this end, we evaluate
the learned policy during each DDQN training at every 2000 time
steps via 50 runs and compare it with the optimal policy. Figure 5
shows two example training progress plots of evenly_spread and
initial_segment. Although DDQN frequently reaches the opti-
mal area in both settings, there is a clear distinction between them:
for evenly_spread, DDQN’s performance constantly jumps up
and down with very high variance, while for initial_segment,
the performance progress is much smoother. To quantify these
properties of the training progress, we define two metrics for each
DDQN training run: (i) hitting ratio – the frequency of evaluations
in which the expected optimal performance is reached within 0.25 %
of its standard deviation; and (ii) ruggedness – the standard devia-
tion of performance difference between every pair of consecutively
evaluated policies. As shown in Figure 6, the RL agent gets the high-
est hitting ratios with evenly_spread, followed by powers_of_2
and initial_segment. This can be explained due to the actions
for evenly_spread being very different from each other, some of
which often perform very badly in general. Such differences can
result in strong signals received by the agent during the training
for distinguishing between good and bad policies, which can then
help speed up the learning but also causes the landscapes to be less
smooth (i.e., high ruggedness) due to the large variance of perfor-
mance between different policies. Similarly, initial_segment has
the smallest difference between actions, and the RL agent has the
lowest hitting ratios but smoother learning progress.

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

Figure 5: DDQN progress on evenly_spread and initial-
_segment. At the green dots, the learned policies reach 0.25 %
standard deviation of the optimal policy’s performance.

Figure 6: Hitting ratios and ruggedness of DDQN training
progress for three portfolio settings (𝑛 = 50).

4.4 Analyzing the Impact of Portfolio Size and
Problem Dimension

Figure 6 indicates a strong relation between portfolio sizes and
the learning ability of DDQN agents: the larger 𝑘 is, the smaller
the hitting ratios. In the second set of experiments, we investigate
further the impact of portfolio sizes and problem sizes on DDQN’s
learning behaviors.We train DDQN agents on evenly_spreadwith
a wider set of portfolio sizes 𝑘 ∈ {3, 4, 5, 6, 7, 8, 10, 15, 20} and with
two problem sizes𝑛 ∈ {50, 100}. For𝑛 = 100, we expect it to bemore
difficult for the RL agent to learn due to the larger episode lengths,
thus, the training budget is increased to 1.4 million time steps. As
shown in Figure 7, DDQN hitting ratios decrease drastically as 𝑘
increases. For 𝑛 = 100 and 𝑘 ≥ 7, the hitting ratios are very close to
zero. In fact, the performance of the learned policies for 𝑛 = 100 and
𝑘 ∈ {15, 20} is no longer competitive to the optimal ones, as shown
in Figure 8. Looking into the detailed progress of each RL run, we
find that for 𝑘 = 7, the agent barely hits the optimal policies (only 2
times over 750 evaluations), and for 𝑘 = 15, it has zero hitting rate.

The results so far indicate that we reach the learning limit of
DDQNwith the given setting. To confirm this hypothesis, we repeat

Figure 7: Hitting ratios of DDQN on evenly_spread, with 𝑛 ∈
{50, 100} and 𝑘 ∈ {3, 4, 5, 6, 7, 8, 10, 15, 20}.

Figure 8: Performance of DDQN on evenly_spread setting,
with 𝑘 ∈ {3, 4, 5, 6, 7, 8, 10, 15, 20} and 𝑛 ∈ {50, 100}. DDQN runs
failing to learn are marked with a straight line.

the DDQN training two more times for each 𝑘 ≥ 7 and 𝑛 = 100.
As shown in Figure 8, for 𝑛 = 100 and all 𝑘 ≥ 10, there is at least
one of three DDQN training runs where the agent does not learn
anything, i.e., there is no progress in the entire training process.

Last, we investigate further the impact of problem dimension on
the learning limit of DDQN. We train 3 DDQN agents for each pair
of 𝑛 ∈ {150, 200} and 𝑘 ∈ {3, 4, 5}, with a budget of 1.4 million steps
and a walltime limit of 48 hours. Within the time limit, each DDQN
agent can only reach 400 000 and 250 000 time steps for 𝑛 = 150 and
𝑛 = 200, respectively, since the length of each evaluation episode
increases quadratically with 𝑛. Figure 9 shows the number of times
each agent reaches the performance of the optimal policies during
the entire training. These results indicate that 𝑛 = 200 and 𝑘 = 5 is
the final limit of our DDQN agent with the chosen hyperparameters,
as neither of the three runs can get close to the optimal policy.

5 CONCLUSION AND OUTLOOK
We suggested the optimization of the LeadingOnes problem via the
(1 + 1) RLS with fitness-dependent control policies as a benchmark

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

Figure 9: #times DDQN reaches performance of the optimal
policy on evenly_spread, with 𝑛 ∈ {150, 200} and 𝑘 ∈ {3, 4, 5}.
Linestyles indicate individual runs with different seeds.

problem in the context of dynamic algorithm configuration (DAC).
This problem setting is theoretically very well understood, to the
point that we could easily extend in this work the base case with
full parameter portfolio [1..𝑛] to settings in which the search radii
have to be chosen from a restricted portfolio K ⊊ [1..𝑛]. That is,
we can compute optimal control policies for any given combination
of problem dimension 𝑛 and parameter portfolio K . This allows us
to create numerous problem instances of different size, which can
be leveraged to gain structural insight into the behavior of DAC
techniques. Empirically, we showed that DDQN efficiently learns
optimal policies for the smaller LeadingOnes instances. We also
explored the settings at which DDQN with the chosen parameters
and budget reaches its limits, in the sense that the learned policy is
not close to optimal or even fails to learn entirely.

One way to overcome the limits of DDQN for larger problem and
portfolio sizes could be to use AutoRL [50] to optimize its hyper-
parameters, such as the batch size, discounting factor, exploration
strategy, choice of algorithm, or network architecture. Although
it is known that RL agents are very brittle with respect to their
hyperparameters, their influence on the learning algorithm is not
well understood. Our benchmark enables studying the effect of
hyperparameters in a principled manner, which potentially allows
us to make RL agents more robust and easier to use for dynamic
algorithm configuration. A favorable aspect is that the evaluation
times of the LeadingOnes benchmarks are very small, making a
systematic investigation on the learning ability of RL agents com-
putationally affordable. In fact, we can reduce the evaluation times
further if we replace the actual training process by a simulation that
draws the rewards from the well understood reward distribution.

Since we understand the distribution of the reward function
perfectly well, no matter the problem dimension, the state, nor the
played action (essentially captured by equation (1)), we believe that
it is feasible to extend recent theoretical investigations of static
algorithm configuration [30] to the more general DAC setting.

Regarding the DAC setting, we did not exploit the full power
of DAC, as we trained and tested on the same problem instances
and did not aim to derive policies that can be transferred to in-
stances that are not part of the training set, as is classically done in

algorithm configuration. Given the promising results of the DDQN
agents, a reasonable next step is to investigate the generalization
ability of this approach with respect to problem dimension or with
respect to the portfolio. Once established, the next step are then to
aim for generalizability across different problems, e.g., via a con-
figurable benchmark generator that provides a good fit between
problem representation and characteristics. TheW-model [65] could
be a reasonable playground for first steps in this direction. We note
that generalization is an understudied topic in deep RL [41], where
DAC and our proposed benchmark can help to advance the field.

Another idea we are keen on exploring is to incorporate other
state information into the policy of the (1 + 1) RLS than just the fit-
ness. For example, for LeadingOnes, Buzdalov and Buzdalova [12]
show that adding information about the number of correct bits in
the tail allows more efficient control policies. When considering a
good configuration of DDQN, this approach could also be applied
in order to derive approximately optimal policies for scenarios of
state information for which no theoretical guarantees are known.

We emphasize that we investigated the new benchmarks for DAC
only, but they are equally interesting for the parameter control set-
ting. Techniques that model parameter control as a multi-armed
bandit problem [e.g. 15, 21, 29] can be straightforwardly applied to
our benchmarks, as they typically require finite parameter portfo-
lios. We also do not see greater obstacles to adjust other strategies,
such as self-adaptive or self-adjusting parameter control mecha-
nisms [26], although the parameter encoding and update strategies
may need to be redesigned to account for the restricted portfolio.

We hope that our work initiates a fruitful exchange of bench-
marks between parameter control and dynamic algorithm configu-
ration. With the growing literature on parameter control [38] and
its theoretical analysis [19], we wish to provide other use-cases
with a known ground truth. However, settings for which we have
such detailed knowledge as for LeadingOnes are very rare. Even
for OneMax, the “drosophila of evolutionary computation” [28],
the optimal mutation rates of the (1 + 1) RLS and the (1 + 1) evo-
lutionary algorithm are known only in approximate terms [22] or
for specific problem dimensions [11, 13, 14]. We believe that an
active exchange of theoretically and automatically found policies
will benefit both sides: empirical results provide guidance or inspi-
ration for theoretical analyses, and theoretical results can be used
as benchmarks with ground truth, as demonstrated in this work.

ACKNOWLEDGMENTS
André Biedenkapp and Frank Hutter acknowledge funding by the
Robert Bosch GmbH. Nguyen Dang is a Leverhulme Early Ca-
reer Fellow. This project has received funding from the European
Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement No. 945298-ParisRegion-
FP. It is also supported by the Paris Île-de-France region, via the
DIM RFSI AlgoSelect project and is partially supported by TAI-
LOR, a project funded by EU Horizon 2020 research and innovation
programme under GA No. 952215. The authors acknowledge the
HPCaVe computing platform of Sorbonne Université for providing
computational resources to this research project. The collabora-
tion leading to this work was initiated at the 2020 Lorentz Center
workshop “Benchmarked: Optimization Meets Machine Learning”.

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

REFERENCES
[1] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr,

Kasper Green Larsen, and Kurt Mehlhorn. 2019. The query complexity
of a permutation-based variant of Mastermind. Discrete Applied Mathematics 260
(2019), 28–50. https://doi.org/10.1016/j.dam.2019.01.007

[2] Aldeida Aleti and Irene Moser. 2016. A Systematic Literature Review of Adaptive
Parameter Control Methods for Evolutionary Algorithms. Comput. Surveys 49
(2016), 56:1–56:35.

[3] Thomas Bäck. 1998. AnOverview of Parameter ControlMethods by Self-Adaption
in Evolutionary Algorithms. Fundam. Informaticae 35, 1-4 (1998), 51–66. https:
//doi.org/10.3233/FI-1998-35123404

[4] Roberto Battiti, Mauro Brunato, and Franco Mascia. 2008. Reactive search and
intelligent optimization. Vol. 45. Springer Science & Business Media.

[5] Roberto Battiti and Paolo Campigotto. 2012. An Investigation of Reinforcement
Learning for Reactive Search Optimization. In Autonomous Search, Y. Hamadi,
E. Monfroy, and F. Saubion (Eds.). Springer, 131–160.

[6] André Biedenkapp, H. Furkan Bozkurt, Theresa Eimer, Frank Hutter, and Marius
Lindauer. 2020. Dynamic Algorithm Configuration: Foundation of a New Meta-
Algorithmic Framework. In Proc. of European Conference on Artificial Intelligence
(ECAI’20) (Frontiers in Artificial Intelligence and Applications, Vol. 325). IOS Press,
427–434. https://doi.org/10.3233/FAIA200122

[7] André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola
Doerr. 2022. Code and data repository of this paper. https://github.com/ndangtt/
LeadingOnesDAC.

[8] Mauro Birattari. 2009. Tuning Metaheuristics - A Machine Learning Perspective.
Studies in Computational Intelligence, Vol. 197. Springer. https://doi.org/10.
1007/978-3-642-00483-4

[9] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed
and Adaptive Mutation Rates for the LeadingOnes Problem. In Proc. of Parallel
Problem Solving from Nature (PPSN’10) (LNCS, Vol. 6238). Springer, 1–10.

[10] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: a survey of the state
of the art. J. Oper. Res. Soc. 64, 12 (2013), 1695–1724. https://doi.org/10.1057/jors.
2013.71

[11] Nathan Buskulic and Carola Doerr. 2021. Maximizing Drift Is Not Optimal for
Solving OneMax. Evol. Comput. 29, 4 (2021), 521–541. https://doi.org/10.1162/
evco_a_00290

[12] Maxim Buzdalov and Arina Buzdalova. 2015. Can OneMax help optimizing
LeadingOnes using the EA+RL method?. In Proc. of Congress on Evolutionary Com-
putation (CEC’15). IEEE, 1762–1768. https://doi.org/10.1109/CEC.2015.7257100

[13] Maxim Buzdalov and Carola Doerr. 2020. Optimal Mutation Rates for the (1 +𝜆)
EA on OneMax. In Proc. of Parallel Problem Solving from Nature (PPSN’20) (LNCS,
Vol. 12270). Springer, 574–587. https://doi.org/10.1007/978-3-030-58115-2_40

[14] Maxim Buzdalov and Carola Doerr. 2021. Optimal static mutation strength
distributions for the (1 + 𝜆) evolutionary algorithm on OneMax. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’21). ACM, 660–668.
https://doi.org/10.1145/3449639.3459389

[15] Luís Da Costa, Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. 2008. Adap-
tive operator selection with dynamic multi-armed bandits. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO’08). ACM, 913–920.

[16] Christian Daniel, Jonathan Taylor, and Sebastian Nowozin. 2016. Learning Step
Size Controllers for Robust Neural Network Training, See [55].

[17] Benjamin Doerr. 2019. Analyzing randomized search heuristics via stochastic
domination. Theoretical Computer Science 773 (2019), 115–137. https://doi.org/
10.1016/j.tcs.2018.09.024

[18] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting
Parameter Choices for the (1+(𝜆,𝜆)) Genetic Algorithm. Algorithmica 80 (2018),
1658–1709. https://doi.org/10.1007/s00453-017-0354-9

[19] Benjamin Doerr and Carola Doerr. 2020. Theory of Parameter Control Mecha-
nisms for Discrete Black-Box Optimization: Provable Performance Gains Through
Dynamic Parameter Choices. In Theory of Evolutionary Computation: Recent De-
velopments in Discrete Optimization. Springer, 271–321.

[20] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2021. Self-Adjusting
Mutation Rates with Provably Optimal Success Rules. Algorithmica 83, 10
(2021), 3108–3147. https://doi.org/10.1007/s00453-021-00854-3 Available at
https://arxiv.org/abs/1902.02588.

[21] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. k-Bit Mutation with Self-
Adjusting k Outperforms Standard Bit Mutation. In Proc. of Parallel Problem
Solving from Nature (PPSN’16) (LNCS, Vol. 9921). Springer, 824–834. https://doi.
org/10.1007/978-3-319-45823-6_77

[22] Benjamin Doerr, Carola Doerr, and Jing Yang. 2020. Optimal parameter choices
via precise black-box analysis. Theoretical Computer Science 801 (2020), 1–34.
https://doi.org/10.1016/j.tcs.2019.06.014

[23] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker.
2018. On the runtime analysis of selection hyper-heuristics with adaptive learning
periods. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18).
ACM, 1015–1022. https://doi.org/10.1145/3205455.3205611

[24] Carola Doerr and Johannes Lengler. 2018. The (1+1) Elitist Black-Box Complexity
of LeadingOnes. Algorithmica 80, 5 (2018), 1579–1603. https://doi.org/10.1007/
s00453-017-0304-6 Also available at https://arxiv.org/abs/1604.02355.

[25] Carola Doerr and Markus Wagner. 2018. Simple on-the-fly parameter selection
mechanisms for two classical discrete black-box optimization benchmark prob-
lems. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18).
ACM, 943–950. https://doi.org/10.1145/3205455.3205560

[26] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. 1999.
Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary
Computation 3 (1999), 124–141.

[27] Theresa Eimer, André Biedenkapp, Maximilian Reimer, Steven Adriaensen, Frank
Hutter, and Marius Lindauer. 2021. DACBench: A Benchmark Library for Dy-
namic Algorithm Configuration. In Proc. of International Joint Conference on
Artificial Intelligence (IJCAI’21). ijcai.org, 1668–1674. https://doi.org/10.24963/
ijcai.2021/230

[28] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, andMichèle Sebag. 2008. Extreme
Value Based Adaptive Operator Selection. In Proc. of Parallel Problem Solving
from Nature (PPSN’08) (LNCS, Vol. 5199). Springer, 175–184.

[29] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag. 2010. Analyz-
ing bandit-based adaptive operator selection mechanisms. Annals of Mathematics
and Artificial Intelligence 60 (2010), 25–64. https://doi.org/10.1007/s10472-010-
9213-y

[30] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. 2022. On the impact of the
performance metric on efficient algorithm configuration. Artif. Intell. 303 (2022),
103629. https://doi.org/10.1016/j.artint.2021.103629

[31] Assaf Hallak, Dotan Di Castro, and Shie Mannor. 2015. Contextual Markov
Decision Processes. CoRR abs/1502.02259 (2015). http://arxiv.org/abs/1502.02259

[32] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159–195. https://doi.org/10.1162/106365601750190398

[33] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep reinforcement learning that matters. In Proceedings
of the Thirty-Second Conference on Artificial Intelligence (AAAI’18), Sheila A.
McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3207–3214.

[34] Holger H. Hoos. 2012. Automated Algorithm Configuration and Parameter
Tuning. In Autonomous Search, Youssef Hamadi, Éric Monfroy, and Frédéric
Saubion (Eds.). Springer, 37–71. https://doi.org/10.1007/978-3-642-21434-9_3

[35] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009.
ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artifi-
cial Intelligence Research 36 (2009), 267–306.

[36] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer. https://doi.org/10.
1007/978-3-030-05318-5

[37] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Population Based Training
of Neural Networks. arXiv:1711.09846 [cs.LG] (2017).

[38] Giorgos Karafotias, Mark Hoogendoorn, and A.E. Eiben. 2015. Parameter Con-
trol in Evolutionary Algorithms: Trends and Challenges. IEEE Transactions on
Evolutionary Computation 19 (2015), 167–187.

[39] Giorgos Karafotias, Selmar K. Smit, and A. E. Eiben. 2012. A Generic Approach to
Parameter Control. In Proc. of Applications of Evolutionary Computation (EvoAp-
plications’12) (LNCS, Vol. 7248). Springer, 366–375. https://doi.org/10.1007/978-3-
642-29178-4_37

[40] Eric Kee, Sarah Airey, and Walling Cyre. 2001. An Adaptive Genetic Algorithm.
In Proc. of Genetic and Evolutionary Computation Conference (GECCO’01). Morgan
Kaufmann, 391–397. https://doi.org/10.5555/2955239.2955303

[41] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. 2021. A
Survey of Generalisation in Deep Reinforcement Learning. arXiv:2111.09794
[cs.LG] (2021).

[42] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. 1983. Optimization by
Simulated Annealing. Science 220 (1983), 671–680.

[43] Michail G. Lagoudakis and Michael L. Littman. 2000. Algorithm Selection using
Reinforcement Learning. In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML’00), Pat Langley (Ed.). Morgan Kaufmann Publishers,
511–518.

[44] Michail G. Lagoudakis and Michael L. Littman. 2001. Learning to Select Branch-
ing Rules in the DPLL Procedure for Satisfiability. Electronic Notes in Discrete
Mathematics 9 (2001), 344–359.

[45] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Varia-
tion. Algorithmica 64 (2012), 623–642.

[46] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. Simple
Hyper-Heuristics Control the Neighbourhood Size of Randomised Local Search
Optimally for LeadingOnes. Evol. Comput. 28, 3 (2020), 437–461. https://doi.org/
10.1162/evco_a_00258

[47] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent
with Warm Restarts. In Proceedings of the International Conference on Learning
Representations (ICLR’17). Published online: iclr.cc.

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

[48] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[49] Jack Parker-Holder, Vu Nguyen, and Stephen J. Roberts. 2020. Provably Efficient
Online Hyperparameter Optimization with Population-Based Bandits. In Pro-
ceedings of the 33rd International Conference on Advances in Neural Information
Processing Systems (NeurIPS’20), Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Curran Associates.

[50] Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie
Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra
Faust, Frank Hutter, and Marius Lindauer. 2022. Automated Reinforcement
Learning (AutoRL): A Survey and Open Problems. CoRR abs/2201.03916 (2022).
arXiv:2201.03916 https://arxiv.org/abs/2201.03916

[51] James E. Pettinger and Richard M. Everson. 2002. Controlling Genetic Algorithms
with Reinforcement Learning. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’02), W. Langdon, E. Cantu-Paz, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and N. Jonoska (Eds.). Morgan
Kaufmann Publishers, 692.

[52] Ingo Rechenberg. 1973. Evolutionsstrategie. Friedrich Fromman Verlag (Günther
Holzboog KG), Stuttgart.

[53] John R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers 15
(1976), 65–118.

[54] Yoshitaka Sakurai, Kouhei Takada, Takashi Kawabe, and Setsuo Tsuruta. 2010. A
Method to Control Parameters of Evolutionary Algorithms by Using Reinforce-
ment Learning. In Proceedings of Sixth International Conference on Signal-Image
Technology and Internet-Based Systems (SITIS), K. Yétongnon, A. Dipanda, and
R. Chbeir (Eds.). IEEE Computer Society, 74–79.

[55] D. Schuurmans and M. Wellman (Eds.). 2016. Proceedings of the Thirtieth National
Conference on Artificial Intelligence (AAAI’16). AAAI Press.

[56] Gresa Shala, André Biedenkapp, Noor Awad, Steven Adriaensen, Marius Lindauer,
and Frank Hutter. 2020. Learning Step-Size Adaptation in CMA-ES. In Proceedings
of the Sixteenth International Conference on Parallel Problem Solving from Nature
(PPSN’20) (Lecture Notes in Computer Science). Springer, 691–706.

[57] Mudita Sharma, Alexandros Komninos, Manuel López-Ibáñez, and Dimitar Kaza-
kov. 2019. Deep Reinforcement Learning-Based Parameter Control in Differ-
ential Evolution. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’19). ACM, 709–717. https://doi.org/10.1145/3321707.3321813

[58] Selmar K. Smit and A. E. Eiben. 2009. Comparing parameter tuning methods
for evolutionary algorithms. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’09). IEEE, 399–406. https://doi.org/10.1109/CEC.2009.4982974

[59] David Speck, André Biedenkapp, Frank Hutter, Robert Mattmüller, and Marius
Lindauer. 2021. Learning Heuristic Selection with Dynamic Algorithm Configu-
ration. In Proceedings of the 31st International Conference on Automated Planning
and Scheduling (ICAPS’21), H. H. Zhuo, Q. Yang, M. Do, R. Goldman, S. Biundo,
and M. Katz (Eds.). AAAI, 597–605.

[60] Dirk Sudholt. 2013. A New Method for Lower Bounds on the Running Time
of Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 17
(2013), 418–435.

[61] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an intro-
duction. MIT Press. https://www.worldcat.org/oclc/37293240

[62] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning, See [55], 2094–2100.

[63] Diederick Vermetten, Sander van Rijn, Thomas Bäck, and Carola Doerr. 2019.
Online selection of CMA-ES variants. In Proc. of Genetic and Evolutionary Compu-
tation Conference (GECCO’19). ACM, 951–959. https://doi.org/10.1145/3321707.
3321803

[64] Christopher. J. C. H. Watkins. 1989. Learning from Delayed Rewards. Ph. D.
Dissertation. King’s College, Cambridge, United Kingdom.

[65] Thomas Weise, Yan Chen, Xinlu Li, and Zhize Wu. 2020. Selecting a diverse set
of benchmark instances from a tunable model problem for black-box discrete
optimization algorithms. Applied Soft Computing 92 (2020), 106269. https:
//doi.org/10.1016/j.asoc.2020.106269

Part V

Improving RL From the Lens of DAC

CHAPTER 11
TempoRL: Learning When to Act

The content of this chapter has been published as:

A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer (2021). “TempoRL: Learning
When to Act”. In: Proceedings of the 38th International Conference on Machine Learning
(ICML’21). Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, pp. 914–924.

Project Idea. The idea was proposed by André Biedenkapp based on the observation
that hyperparameter values do not necessarily need to be adapted at every time step.
Marius Lindauer proposed to use TempoRL not only on discrete action spaces but also on
continuous action spaces. André Biedenkapp proposed the different neural architectures
used in the deep RL settings with feedback by Marius Lindauer.

Implementation and experimentation. Implementation was led by André Biedenkapp.
Raghu Rajan aided in the implementation, debugging, and configuration of RL agents on
Atari environments. André Biedenkapp conducted the experiments with support by Raghu
Rajan for the Atari environments.

Paper writing. The first draft of the paper was written by André Biedenkapp. Marius
Lindauer provided feedback on better structuring of the paper and aided in formally
defining skip MDPs. Frank Hutter and Raghu Rajan provided feedback on this version of
the paper. The paper was finalized by André Biedenkapp.

TempoRL: Learning When to Act

André Biedenkapp 1 Raghu Rajan 1 Frank Hutter 1 2 Marius Lindauer 3

Abstract
Reinforcement learning is a powerful approach
to learn behaviour through interactions with an
environment. However, behaviours are usually
learned in a purely reactive fashion, where an
appropriate action is selected based on an obser-
vation. In this form, it is challenging to learn
when it is necessary to execute new decisions.
This makes learning inefficient, especially in en-
vironments that need various degrees of fine and
coarse control. To address this, we propose a
proactive setting in which the agent not only se-
lects an action in a state but also for how long to
commit to that action. Our TempoRL approach
introduces skip connections between states and
learns a skip-policy for repeating the same action
along these skips. We demonstrate the effective-
ness of TempoRL on a variety of traditional and
deep RL environments, showing that our approach
is capable of learning successful policies up to an
order of magnitude faster than vanilla Q-learning.

1. Introduction
Although reinforcement learning (RL) has celebrated many
successes in the recent years (see e.g., Mnih et al., 2015;
Lillicrap et al., 2016; Baker et al., 2020), in its classical
form it is limited to learning policies in a mostly reactive
fashion, i.e., observe a state and react to that state with
an action. Guided by the reward signal, policies that are
learned in such a way can decide which action is expected
to yield maximal long-term rewards. However, these poli-
cies generally do not learn when a new decision has to be
made. A more proactive way of learning, in which agents
proactively commit to playing an action for multiple steps
could further improve RL by (i) potentially providing bet-
ter exploration compared to common one-step exploration;
(ii) faster learning as proactive policies provide a form of

1Department of Computer Science, University of Freiburg,
Germany 2BCAI, Renningen, Germany 3Information Processing
Institute (tnt), Leibniz University Hannover, Germany. Correspon-
dence to: André Biedenkapp <biedenka@cs.uni-freiburg.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

temporal abstraction by requiring fewer decisions; (iii) ex-
plainability as learned agents can indicate when they expect
new decisions are required.

Temporal abstractions are a common way to simplify learn-
ing of policies with potentially long action sequences. Typ-
ically, the temporal abstraction is learned on the highest
level of a hierarchy and the required behaviour on a lower
level (see e.g. Sutton et al., 1999; Eysenbach et al., 2019).
For example, on the highest level a goal policy learns which
states are necessarily visited and on the lower level the be-
haviour to reach goals is learned. Spacing goals far apart
still requires to learn complex behaviour policies whereas a
narrow goal spacing requires to learn complex goal policies.
Another form of temporal abstraction is to use actions that
work at different time-scales (Precup et al., 1998). Take
for example an agent that is tasked with moving an ob-
ject. On the highest level the agent would follow a policy
with abstract actions, such as pick-up object, move object,
put-down object, whereas on the lower level actions could
directly control actuators to perform the abstract actions.

Such hierarchical approaches are still reactive, but instead
of reacting to an observation on only one level, reactions are
learned on multiple levels. Though these approaches might
allow us to learn which states are necessarily traversed in
the environment, they do not enable us to learn when a new
decision has to be made on the behaviour level.

In this work, we propose an alternative approach: a proactive
view on learning policies that allows us to jointly learn a
behaviour and how long to carry out that behaviour. To
this end, we re-examine the relationship between agent and
environment, and the dependency on time. This allows us
to introduce skip connections for an environment. These
skip connections do not change the optimal policy or state-
action-values but allow us to propagate information much
faster. We demonstrate the effectiveness of our method,
which we dub TEMPORL with tabular and deep function
approximation on a variety of environments with discrete
and continuous action spaces. Our contributions are:

1. We propose a proactive alternative to classical RL.

2. We introduce skip-connections for MDPs by playing
an action for several consecutive states, which leads to
faster propagation of information about future rewards.

TempoRL: Learning When to Act

3. We propose a mechanism based on a hierarchy for
learning when to make new decisions through the use
of skip-connections.

4. On classical and deep RL benchmarks, we show that
TEMPORL outperforms plain DQN, DAR and FiGAR
both in terms of learning speed and sometimes even by
converging to better policies.

2. Related Work
A common framework for temporal abstraction in RL is the
options framework (Precup et al., 1998; Sutton et al., 1999;
Stolle & Precup, 2002; Bacon et al., 2017; Harutyunyan
et al., 2018; Mankowitz et al., 2018; Khetarpal & Precup,
2019). Options are triples 〈I, π, β〉 where I is the set of
admissible states that defines in which states the option can
be played; π is the policy the option follows when it is
played; and β is a random variable that determines when an
option is terminated. In contrast to our work, options require
a lot of prior knowledge about the environment to determine
the set of admissible states, as well as the option policies
themselves. However, Chaganty et al. (2012) proposed to
learn options based on observed connectedness of states.
Similarly, SoRB (Eysenbach et al., 2019) uses data from
the replay buffer to build a connectedness graph, which
allows to query sub-goals on long trajectories. Further work
on discovering options paid attention to the termination
criterion, learning persistent options (Harb et al., 2018) and
meaningful termination criteria (Vezhnevets et al., 2016;
Harutyunyan et al., 2019).

Similarly, in AI planning macro actions provide temporal
abstractions. However, macro actions are not always appli-
cable as some actions can be locked. Chrpa & Vallati (2019)
propose to learn when macro actions become available again,
allowing them to identify non-trivial activities. For various
problem domains of AI planning, varieties of useful macro
actions are known and selecting which macro actions to
consider is not trivial. Vallati et al. (2019) propose a macro
action selection mechanism that selects which macro actions
should be considered for new problems. Further, Nasiriany
et al. (2019) show that goal-conditioned policies learned
with RL can be incorporated into planning. With complex
state observations goal states are difficult to define.

An important element in DQN’s success in tackling various
Atari games (Mnih et al., 2015) is due to the use of frame
skipping (Bellemare et al., 2013). Thereby the agent skips
over a few states, always playing the same action, before
making a new decision. Without the use of frame skip-
ping, the change between successive observations is small
and would have required more observations to learn the
same policy. Tuning the skip-size can additionally improve
performance (Braylan et al., 2015; Khan et al., 2019). A
similar line of research focuses on learning persistent poli-

cies which always act after a static, fixed time-step for one-
dimensional (Metelli et al., 2020) and multi-dimensional
actions (Lee et al., 2020). However, static skip-sizes might
not be ideal. Dabney et al. (2020) demonstrated that tem-
porally extended ε-greedy schedules improve exploration
and thereby performance in sparse-reward environments
while performing close to vanilla ε-greedy exploration on
dense-reward environments.

Different techniques have been proposed to handle contin-
uous time environments (Doya, 2000; Tiganj et al., 2017).
Recently, Huang et al. (2019) proposed to use Markov Jump
Processes (MJPs). MJPs are designed to study optimal con-
trol in MDPs where observations have an associated cost.
The goal then is to balance the costs of observations and
actions to act in an optimal manner with respect to total cost.
Their analysis demonstrated that frequent observations are
necessary in regions where an optimal action might change
rapidly, while in areas of infrequent change, fewer obser-
vations are sufficient. In contrast to ours, this formalism
strictly prohibits observations of the skipped transitions to
save observation costs and thus losing a lot of information,
which otherwise could be used to learn how to act while
simultaneously learning when new decisions are required.

Schoknecht & Riedmiller (2002; 2003) demonstrated that
learning with multi-step actions can significantly speed up
RL. Relatedly, Lakshminarayanan et al. (2017) proposed
DAR, a Q-network with multiple output heads per action
to handle different repetition lengths, drastically increasing
the action space but improving learning. In contrast to that,
Sharma et al. (2017) proposed FiGAR, a framework that
jointly learns an action policy and a second repetition policy
that decides how often to repeat an action. Crucially, its
repetition policy is not conditioned on the chosen action
resulting in independent repetition and behaviour actions.
The polices are learned together through a joint loss. Thus,
counter to our work, the repetition policy only learns which
repetition length works well on average for all actions. Fur-
ther, FiGAR requires modification to the training method of
a base agent to accommodate the repetition policy. When
evaluating our method in the context of DQN, we compare
against DAR and in the context of DDPG against FiGAR
as they were originally developed and evaluated on these
agent types. The appendix, code and experiment results are
available at github.com/automl/TempoRL.

3. TempoRL
We begin this section by introducing skip connections into
MDPs, propagating information about expected future re-
wards faster. We then introduce a novel learning mechanism
that makes use of a hierarchy to learn a policy that is capable
of not only learning which action to take, but also when a
new action has to be chosen.

TempoRL: Learning When to Act

s0 s1 s2 s3

Figure 1. Example transitions with skip of length three (drawn with
· · ·). At the same time we can also observe shorter skips of length
two (- - -) and normal steps, i.e. skips of length one (−).

3.1. Temporal Abstraction through Skip MDPs

It is possible to make use of contextual information in MDPs
(Hallak et al., 2015; Modi et al., 2018; Biedenkapp et al.,
2020). To this end, we contextualize an existing MDPM
to allow for skip connections as MC := {Mc}c∈C with
Mc := 〈S,A,Pc,Rc〉. Akin to options, a skip-connection
c is a triple 〈s, a, j〉, where s is the starting state for a skip
transition (and not a set of states as in the options frame-
work); a is the action that is executed when skipping through
the MDP; and j is the skip-length, where a ∈ A, s ∈ S and
j ∈ J = {1, . . . , J}. This context to the MDP induces dif-
ferent MDPs with shared state and action spaces (S , A), but
different transitions Pc and reward functionsRc to account
for the introduced skips.

In practice however, the transition and reward functions are
unknown and do not allow to easily insert skips. Neverthe-
less, as we make use of action repetition, we can simulate a
skip connection. A skip connects two states s and s′ iff state
s′ is reachable from state s by repeating action a j-times.
This gives us the following skip transition function:

Pc(s, a, s′) =
{ ∏j−1

k=0 Pasksk+1
if reachable

0 otherwise
(1)

with sk and sk+1 the states traversed by playing action a for
the kth time, and with s0 = s and sj = s′. This change in
the transition function is reflected accordingly in the reward:

Rc(s, a, s′) =
{ ∑j−1

k=0 γ
kRasksk+1

if reachable
0 otherwise.

(2)

Thus, for skips of length 1 we recover the original transition
function P〈s,a,1〉(s, a, s′) = Pass′ as well as the original re-
ward functionR〈s,a,1〉(s, a, s′) = Rass′ . The goal with skip-
MDPs is to find an optimal skip policy πJ : S × A 7→ J ,
i.e., a policy that takes a state and a behaviour action as
input and maps to a skip value that maximally reduces the
total required number of decisions to reach the optimal re-
ward. Thus, similar to skip-connections in neural networks,
skip MDPs allow us to propagate information about future
rewards much more quickly and enables us to determine
when it becomes beneficial to switch actions.

3.2. Learning When to Make Decisions

In order to learn using skip connections we need a new
mechanism that selects which skip connection to use. In

order to facilitate this, we propose using a hierarchy in which
a behaviour policy determines the action a to be played
given the current state s, and a skip policy determines how
long to commit to this behaviour.

To learn the behaviour, we can make use of classical Q-
learning, where theQ-function gives a mapping of expected
future rewards when playing action a in state st at time t
and continuing to follow the behaviour policy π thereafter.

Qπ(s, a) := E [rt + γQπ(st+1, at+1)|s = st, a] (3)

To learn to skip, we first have to define a skip-action space
that determines all possible lengths of skip-connections, e.g.,
j ∈ {1, 2, . . . , J}. To learn the value of a skip we can make
use of n-step Q-learning with the condition that, at each
step of the j steps, the action stays the same.

QπJ (s, j|a) :=

E

[
j−1∑

k=0

γkrt+k + γjQπ(st+j , at+j)|s = st, a, j

]
(4)

We call this a flat hierarchy since the behaviour and the skip
policy have to always make decisions at the same time-step;
however, the behaviour policy has to be queried before the
skip policy. Once we have determined both the action a and
the skip-length j we want to perform, we execute this action
for j steps. We can then use standard temporal difference up-
dates to update the behaviour and skip Q-functions with all
one-step observations and the overarching skip-observation.
Note that the skip Q-function can also be conditioned on
continuous actions if the behaviour policy can handle con-
tinuous action-spaces.

One interesting observation regarding this learning scheme
is that, when playing skip action j, we are able to also
observe all smaller skip transitions for all intermediate steps.
Figure 1 gives a visual representation. Specifically, we can
directly see that, when executing a skip of length j, we can
observe and learn from j·(j+1)

2 skip-transitions in total. As
we observe all intermediate steps, we can use this trajectory
of transitions to build a local connectedness graph (similar to
Figure 1) from which we can look up all skip-connections.
This allows us to efficiently learn the values of multiple
skips, i.e. the action value at different time-resolutions. For
pseudo-code and more details we refer to Appendix B.

3.3. Learning When to Make Decisions in Deep RL

When using deep function approximation for TEMPORL we
have to carefully consider how we parameterize the skip
policy. Commonly, in deep RL we do not only deal with
featurized states but also with image-based ones. Depending
on the state modality we can consider different architectures:

Concatenation The simplest parametrization of our skip-
policy assumes that the state of the environment we are

TempoRL: Learning When to Act

s0,t

s1,t

...

sN,t

at
In

pu
tl

ay
er

D
ow

ns
tr

ea
m

A
rc

hi
te

ct
ur

e

jt

(a) Concat

s0,t

s1,t

...

sN,t

at

Fe
at

ur
e

L
ea

rn
in

g

C
on

te
xt

L
ay

er

D
ow

ns
tr

ea
m

A
rc

hi
te

ct
ur

e

jt

(b) Context

Figure 2. Schematic representations of considered architectures for
learning when to make decisions, where at is the action coming
from a separate behaviour policy.

learning from is featurized, i.e., a state is a vector of indi-
vidual informative features. In this setting, the skip-policy
network can take any architecture deemed appropriate for
the environment, where the input is a concatenation of the
original state st and the chosen behaviour action at, i.e.,
s′t = (st, at), see Figure 2a. This allows the skip-policy
network to directly learn features that take into account the
chosen behaviour action. However, note that this concatena-
tion assumes that the state is already featurized.

Contextualization In deep RL, we often have to learn to
act directly from images. In this case, concatenation is not
trivially possible. Instead we propose to use the behaviour
action as context information further down-stream in the net-
work. Feature learning via convolutions can then progress
as normal and the learned high-level features can be con-
catenated with the action at and be used to learn the final
skip-value, see Figure 2b.

Shared Weights Concatenation and contextualization learn
individual policy networks for the behaviour and skip poli-
cies and do not share information between the two. To
achieve this we can instead share parts of the networks,
e.g., the part of learning higher-level features from im-
ages (see Figure 3). This allows us to learn the two
policy networks with potentially fewer weights than two

s0,t

s1,t

...

sN−1,t

sN,t

Sh
ar

ed
Fe

at
ur

e
R

ep
re

se
nt

at
io

n

Sk
ip

O
ut

pu
t

A
ct

io
n

O
ut

pu
t

jt

at

Figure 3. Architecture with
shared feature representation
for joint learning of when to
make a decision and what
action to take.

completely independently
learned networks. In the for-
ward and backward passes,
only the shared feature rep-
resentation with the corre-
sponding output layers are
active. Similar to the con-
textualization, the output
layers for the skip-values re-
quire the selected action, i.e.
the argmax of the action out-
puts, as additional input.

4. Experiments
We evaluated TEMPORL with tabular as well as deep Q-
functions. We first give results for the tabular case. All code,
the appendix and experiment data including trained policies
are available at github.com/automl/TempoRL. For
details on the used hardware see Appendix C.

4.1. Tabular TempoRL

In this subsection, we describe experiments for a tabular Q-
learning implementation that we evaluated on various grid-
worlds with sparse rewards (see Figure 4). We first evaluate
our approach on the cliff environment (see Figure 4a) before
evaluating the influence of the exploration schedule on both
vanilla and TEMPORL Q-learning, which we refer to as Q
and t-Q, respectively.

GS

(a) Cliff
GS

(b) Bridge

G

S

(c) ZigZag

Figure 4. 6× 10 Grid Worlds. Agents have to reach a fixed goal
state from a fixed start state. Dots represent decision steps of
vanilla and TEMPORL Q-learning policies.

Gridworlds All considered environments (see Figure 4) are
discrete, deterministic, have sparse rewards and have size
6× 10. Falling off a cliff results in a negative reward (−1)
and reaching a goal state results in a positive reward (+1).
For a more detailed description of the gridworld environ-
ments we refer to Appendix D.

For this experiment, we limit our TEMPORL agent to a max-
imum skip length of J = 7; thus, a learned optimal policy
requires 4 decision points instead of 3. For evaluations using
larger skips we refer to Appendix E. Note that increasing
the skip-length improves TEMPORL up to some point, at
which it has too many irrelevant skip-actions at its disposal
which slightly decreases the performance. We compare the
learning speed, in terms of training policies, of our approach
to a vanilla Q-learning agent. Both methods are trained for
10 000 episodes using the same ε-greedy strategy, where ε
is linearly decayed from 1.0 to 0.0 over all episodes.

Figure 5a depicts the evaluation performance of both meth-
ods. TEMPORL is 13.6× faster than its vanilla counterpart
to reach a reward of 0.5, and 12.4× faster to reach a reward
of 1.0 (i.e., always reach the goal). Figure 5b shows the
number of required steps in the environment, as well as the
number of decision steps. TEMPORL is capable of find-
ing a policy that reaches the goal much faster than vanilla
Q-learning while requiring far fewer decision steps. Further-
more, TEMPORL recovers the optimal policy quicker than
vanilla Q-learning. Lastly we can observe that after having
trained for ≈ 6 000 episodes, TEMPORL starts to increase
the number of decision points. This can be attributed to skip
values of an action having converged to the same value and
our implementation selecting a random skip as tie-breaker.

Table 1 summarizes the results on all environments in terms
of normalized area under the reward curve and number of
decisions for three different ε-greedy schedules. A reward
AUC value closer to 1.0 indicates that the agent was capable

TempoRL: Learning When to Act

(a) Cliff – Reward per Episode (b) Cliff – Steps per Episode (c) Temporal Exploration
Figure 5. Evaluation performance of tabular Q-learning agents over 100 random seeds. (a) & (b): The agents were trained with a
linearly-decaying ε-greedy policy on the cliff environment. (a) Achieved reward. (b) Length of executed policy (· · ·) and number of
decisions (—) made by the policies. (c) Comparison to temporally extended ε-greedy exploration (te-ε-greedyQ in plot) on a 23× 23
Gridworld (Dabney et al., 2020). t-Q is our proposed TEMPORL agent. The lines/shaded area represent the mean/standard deviation.

Table 1. Normalized AUC for reward and average number of deci-
sion steps. Both agents are trained with the same ε schedule.

(a) linearly decaying ε-schedule

Cliff Bridge ZigZag

Q t-Q Q t-Q Q t-Q
RewardAUC 0.92 0.99 0.75 0.97 0.57 0.92

Decisions 27.9 5.2 49.5 5.0 83.6 7.9

(b) logarithmically decaying ε-schedule

RewardAUC 0.96 0.99 0.94 0.98 0.90 0.96

Decisions 21.7 4.9 21.4 5.3 35.6 6.9

(c) constant ε = 0.1

RewardAUC 0.99 0.99 0.98 0.99 0.95 0.99

Decisions 17.1 5.1 14.7 5.2 27.6 7.1

of learning to reach the goal quickly. A lower number of
decisions is better as fewer decisions were required to reach
the goal, making a policy easier to learn. In view of both
metrics, TEMPORL readily outperforms the vanilla agent,
learning much faster and requiring far fewer decisions.

Sensitivity to Exploration As the used exploration mech-
anism can have a dramatic impact on agent performance
we evaluated the agents for three commonly used ε-greedy
exploration schedules. In the cases of linearly and loga-
rithmically decaying schedules, we decay ε over all 10 000
training episodes, starting from 1.0 and decaying it to 0 or
10−5, respectively. In the constant case, we set ε = 0.1.

As shown in Table 1, maybe not surprisingly, too much
(linear) and too little (log) exploration are both detrimental
to the agent’s performance. However, TEMPORL performs
quite robustly even using suboptimal exploration strategies.
TEMPORL outperforms its vanilla counterpart in all cases,
showing the effectiveness of our proposed method.

Guiding Exploration To demonstrate TEMPORL not only
benefits through better exploration but also learning when to
act, we use the 23×23 Gridworld and agent hyperparameters
as introduced by Dabney et al. (2020).

An agent starts in the top center and has to find a goal further
down and to the left only getting a reward for reaching the
goal within 1000 steps. Temporally-extended exploration
(te-ε-greedy Q-learning; Dabney et al., 2020) is able to
cover a space much better than 1-step exploration. However,
it falls short in guiding the agent back to high reward areas.
TEMPORL enables an agent to quickly find a successful
policy that reach a goal while exploring around such a policy.
Figure 5c shows TEMPORL reliably reaches the goal after
≈ 30 episodes. An agent using temporally-extended epsilon
greedy exploration does not reliably reach the goal in this
time-frame and on average requires twice as many steps.

4.2. Deep TempoRL

In this section, we describe experiments for agents us-
ing deep function approximation implemented with Py-
Torch (Paszke et al., 2019) in version 1.4.0. We begin with
experiments on featurized environments before evaluating
on environments with image states. We evaluate TEMPORL
for DQN with different architectures for the skipQ-function.
We compare against dynamic action repetition (DAR; Lak-
shminarayanan et al., 2017) for the DQN experiments and
against Fine grained action repetition (FiGAR Sharma et al.,
2017) for experiments with DDPG.1

4.2.1. ADVERSARIAL ENVIRONMENT – DDPG

Setup We chose to first evaluate on OpenAI gyms (Brock-
man et al., 2016) Pendulum-v0 as it is an adversarial setting
where high action repetition is nearly guaranteed to over-
shoot the balancing point. Thus, agents using action repeti-
tion that make mistakes during training will have to spend
additional time learning when it is necessary to be reactive;
a challenge vanilla agents are not faced with. We trained all
DDPG agents (Lillicrap et al., 2016) for a total of 3× 104

training steps and evaluated the agents every 250 training
steps. The first 103 steps follow a uniform random policy to
generate the initial experience. We used Adam (Kingma &
Ba, 2015) with PyTorchs default settings.

1Neither DAR, nor FiGAR are publicly available and thus
we used our own reimplementation available at github.com/
automl/TempoRL.

TempoRL: Learning When to Act

Table 2. Average normalized reward AUC for DDPG agents on Pendulum-v0. t-DDPG and FiGAR are evaluated over different maximal
skip-lengths for 15 seeds. Corresponding learning curves are given in Appendix F

t-DDPG FiGAR

DDPG 2 4 6 8 10 14 20 2 4 6 8 10 14 20

0 .92 0.89 0.89 0 .90 0.89 0.89 0.89 0.88 0 .76 0.57 0 .39 0.31 0.28 0.25 0.24

Agents All actor and critic networks of all DDPG agents
consist of two hidden layers with 400 and 300 hidden units
respectively. Following (Sharma et al., 2017), FiGAR in-
troduces a second actor network that shares the input layer
with the original actor network. The output layer is a soft-
max layer with J outputs, representing the probability of
repeating the action for j ∈ {1, . . . , J} time-steps. Both
actor outputs are jointly input to the critic and gradients
are directly propagated from the critic through both actors.
TEMPORL DDPG (which we refer to as t-DDPG in the fol-
lowing) uses the concatenation architecture which takes the
state with the action output of the DDPG actor as input and
makes use of the critic’s Q-function when learning the skip
Q-function. We evaluate t-DDPG and FiGAR on a grid of
maximal skip lengths of {2, 4, 6, . . . , 20}. See Appendix F
for implementation details and all used hyperparameters.

Pendulum Table 2 confirms that agents using action repe-
tition indeed are slower in learning successful policies, as
reflected by the normalized reward AUC. As FiGAR does
not directly inform the skip policy about the chosen repeti-
tion value or vica versa, the agent tends to struggle quite a
lot in this environment already with only two possible skip-
values and is not capable of handling larger maximal skip
values. In contrast to that, t-DDPG only slightly lags behind
vanilla DDPG and readily adapts to larger skip lengths, by
quickly learning to ignore irrelevant skip-values. Further,
due to making use of n-step learning, t-DDPG starts out very
conservative as large skip values appear to lead to larger
negative rewards in the beginning. With more experience
however, t-DDPG learns when switching between actions
becomes advantageous, thereby approximately halving the
required decisions (see Appendix F).

4.2.2. FEATURZIED ENVIRONMENTS – DQN

Setup We trained all agents for a total of 106 training steps
using a constant ε-greedy exploration schedule with ε set
to 0.1. We evaluated all agents every 200 training steps.
We used the Adam with a learning rate of 10−3 and default
parameters as given in PyTorch v1.4.0. For increased learn-
ing stability, we implemented all agents using double deep
Q networks (van Hasselt et al., 2016). All agents used a
replay buffer with size 106 and a discount factor γ of 0.99.
The TEMPORL agents used an additional replay buffer of
size 106 to store observed skip-transitions. We used the
MountainCar-v0 and LunarLander-v2 environments. See

Appendix G for a detailed description of the environments.

Agents The basic DQN architecture consists of 3 layers,
each with 50 hidden units and ReLu activation functions.
The DAR baseline used the same architecture as the DQN
agent but duplicated the output heads twice, each of which
is associated with specific repetition values allowing for fine
and coarse control. We evaluated possible coarse control
values on the grid {2, 4, 6, 8, 10}, keeping the fine-control
value fixed to 1 to allow for actions at every-time step.

For TEMPORL agents not using weight sharing we used the
same DQN architecture for both Q-functions. The concate-
nation architecture used an additional input unit whereas the
context architecture added the behaviour action as context at
the third layer after using 10 additional hidden units to pro-
cess the behaviour action. An agent using a weight-sharing
architecture shared the first two layers of the DQN archi-
tecture and used the third layer of the DQN architecture to
compute the behaviour Q-values. The skip-output used 10
hidden units to process the behaviour action and processed
this output together with the hidden state of the 2nd layer in
a 3rd layer with 60 hidden units. We refer to a DQN using
TEMPORL as t-DQN in the following.

Influence of the Skip-Architecture We begin by evaluat-
ing the influence of architecture choice on our t-DQN on
both environments, before giving a more in-depth analysis
on the learning behaviour in the individual environments.
To this end, we report the normalized reward AUC for all
three proposed architectures and different maximal skip-
lengths, see Table 3. Both the concat and context archi-
tectures behave similarly on both environments, which is
to be expected as they differ very little in setup. Both ar-
chitectures have an increase in AUC before reaching the
best maximal skip-length for the respective environment.
The shared architecture, mostly conceptualized for image-
based environments, however shows more drastic reactions
to choice of J , leading to the best result in the first and to
the worst result in the other environment.

MountainCar Tables 3a & 4a depict the performance of
the agents for different maximal skip lengths and Figure 6a
shows the learning curves of the best TEMPORL architecture
as well as the best found DAR agent. On MountainCar
the DQN baseline struggles in learning a successful policy,
resulting in a small AUC of 0.50 compared to the best result
of t-DQN of 0.64. Furthermore, a well tuned DAR baseline,

TempoRL: Learning When to Act

Table 3. Average normalized reward AUC for different TEMPORL architectures and maximal skip-lengths over 50 seeds. All agents are
trained with the same ε schedule. Bold faced values give the overall best AUC and cursive values the best per architecture.

(a) MountainCar-v0

Max Skip 2 4 6 8 10

concat 0.469 0.523 0.602 0.626 0 .630

context 0.429 0.540 0.601 0.608 0 .620

shared 0.440 0.464 0.592 0.561 0 .644

(b) LunarLander-v2

Max Skip 2 4 6 8 10

concat 0.855 0 .878 0.868 0.862 0.830

context 0.858 0 .876 0.871 0.859 0.837

shared 0 .851 0.837 0.803 0.769 0.696

Figure 6. Evaluation performance of deepQ-learning agents on MountainCar-v0 and LunarLander-v2. Solid lines give the mean and the
shaded area the standard deviation over 50 random seeds. The sub- and superscripts of DAR give the best found fine and coarse repetition
values respectively. t-DQN is our proposed method using the best architecture as reported in Table 3. (top) Achieved rewards. (bottom)
Length of executed policy (· · ·) and number of decisions (—) made by the policies.

Table 4. Average normalized reward AUC for maximal skip-length
of 10 for MountainCar-v0 and 4 for LunarLander-v2 over 50 seeds.
All agents are trained with the same ε schedule. We show varying
max
min repetitions for DAR and the best t-DQN architecture (see
Table 3). Bold faced values give the overall best AUC and cursive
values the best per method which are plotted in Figure 6.

(a) MountainCar-v0

DAR

DQN t-DQN 2
1

4
1

6
1

8
1

10
1

0 .50 0 .64 0.43 0.45 0 .60 0.56 0.56

(b) LunarLander-v2

0 .83 0 .88 0.84 0 .85 0.81 0.72 0.60

carefully trading off fine control and coarse control results
in an AUC of 0.593. Figure 6a shows that DAR learns to
trade off both coarse and fine-control. However, as DAR
does not know that two output heads correspond to the same
action, with different repetition values, DARs reward begins
to drop in the end as it learns to overly rely on coarse control.
During the whole training procedure the best t-DQN agent
and the best DAR agent result in policies that require far
fewer decisions, with t-DQN requiring only ≈ 50 decisions
per episode reducing the number of decisions by a factor of
≈ 3 compared to vanilla DQN.

LunarLander For such a dense reward there is only a small
improvement for t-DQN and a properly tuned DAR agent.

Again the t-DQN agent performs best, achieving a slightly
higher AUC of 0.88 than the best tuned DAR agent (0.85),
see Tables 3b & 4b. Further, Figure 6b shows that, in this
setting, t-DQN agents quickly learn to be very reactive,
acting nearly at every time-step. Again, DAR can not learn
that some output heads apply the same behaviour action for
multiple time-steps, preferring coarse over fine control.

4.2.3. ATARI ENVIRONMENTS

Setup We trained all agents for a total of 2.5× 106 training
steps (i.e. only 10 million frames) using a linearly ε-greedy
exploration schedule over the first 200 000 time-steps with a
final fixed ε set to 0.01. We evaluated all agents every 10 000
training steps and evaluated for 3 episodes. For increased
learning stability we implemented all agents using double
deep Q networks. For DQN we used the architecture of
Mnih et al. (2015) which also serves as basis for our shared
t-DQN and the DAR architecture. As maximal skip-value
we chose 10. A detailed list of hyperparameters is given in
Appendix H. Following (Bellemare et al., 2013), we used a
frame-skip of 4 to allow for a fair comparison to the base
DQN. We used OpenAI Gym’s We trained all agents on the
games BEAMRIDER, FREEWAY, MSPACMAN, PONG and
QBERT.

Learning When to Act in Atari Figure 7 depicts the learn-
ing curves as well as the number of steps and decisions. The
training behaviour from our TEMPORL agents falls into one
of three categories on all evaluated Atari games.

TempoRL: Learning When to Act

Figure 7. Evaluation performance on Atari environments. Solid lines give the mean and the shaded area the standard deviation over 15
random seeds. (top) Achieved rewards. (bottom) Length of executed policy (· · ·) and number of decisions (—) made by the policies. To
make trends more visible, we smooth over a window of width 7.

(i) Our learned t-DQN exhibits a slight improvement in
learning speed, on MSPACMAN and PONG2 before being
caught up by DQN, with both methods converging to the
same final reward (see Figures 7a & H1a). Nevertheless,
TEMPORL learns to make use of different degrees of fine
and coarse control to achieve the same performance. For
example, a trained proactive TEMPORL policy requires
roughly 33% fewer decisions. DAR on the other hand,
learns to overly rely on the coarse control, leading to far
fewer decisions but also worse final performance.

(ii) On QBERT the learning performance of our t-DQN lags
behind that of vanilla DQN over the first 106 steps. Fig-
ure 7b (bottom) shows that in the first ≈ 0.5 × 106 steps,
TEMPORL first has to learn which skip values are appropri-
ate for Qbert. In the next ≈ 0.5 × 106 steps, our t-DQN
begins to catch up in reward, while using its learned fine and
coarse control, before starting to overtake its vanilla coun-
terpart. As it was not immediately clear if this trend would
continue after 2.5 × 106 training steps, we continued the
experiment for twice as many steps. TEMPORL continues to
outperform its vanilla counterpart, having learned to trade
off different levels of coarse and fine control. The effect of
over-reliance of DAR on the coarse control is further am-
plified on QBERT resulting in far worse policies than either
vanilla DQN and TEMPORL.

(iii) In games such as FREEWAY and BEAMRIDER (Figures
7c & H1b), we see an immediate benefit to jointly learning
when and how to act through TEMPORL. For these games,
our t-DQNs begin to learn faster and achieve a better final
reward than vanilla DQNs. An extreme example for this is
FREEWAY, where the agents have to control a chicken to
cross a busy multi-lane highway as often as possible within
a fixed number of frames. To this end one action has to
be played predominantly, whereas the other two possible
actions are only needed to sometimes avoid an oncoming
car. The vanilla DQN learns to nearly constantly play the
predominant action, but does not learn proper avoidance
strategies, leading to a reward of ≈ 25 (i.e successfully
crossing the road 25 times). t-DQN on the other hand not

2Results for PONG and BEAMRIDER are given in Appendix H.

(a) MountainCar (b) QBert

Figure 8. Example States in which TEMPORL makes new deci-
sions. The agents are trained with a maximal skip-length of 10.
(a) Example states in which TEMPORL learned when to make new
decisions in MountainCar, starting slightly to the right of the valley.
(b) Example states of Qbert. To make it easier to see where QBert
is in the images we highlight him as a red square and indicate the
taken trajectory with a blue arrow.

only learns faster to repeatedly play the predominant action,
but also learns proper avoidance strategies by learning to
anticipate when a new decision has to be made, resulting in
an average reward close to the best possible reward of 34.
Here, DAR profits from the use of a coarse control, learning
faster than vanilla DQN. However, similarly to vanilla DQN,
DAR learns a policy that can only achieve a reward of 25,
not learning to properly avoid cars.

5. Analysis of TempoRL Policies
To analyze TEMPORL policies and the decisions when to
act we selected trained agents and evaluated their policies
on the environments they were trained on. Videos for all the
behaviours we describe here are part of the supplementary3.
In the tabular case we plot the key-states for an agent (see
Figure 4) that can skip at most 7 steps ahead. On the Cliff
environment TEMPORL learns to make a decision in the
starting state, once it has cleared the cliff, once before reach-
ing the other side (since it can not skip more than 7 states)
and once to go down into the goal. Similar observations
can be made for all grid-worlds. This shows that in this
setting our TEMPORL agents are capable of skipping over
unimportant states and learned when they are required to
perform novel actions.

3Available at github.com/automl/TempoRL

TempoRL: Learning When to Act

Key-states in which TEMPORL decides to take new actions
in the featurized MountainCar environment are shown in
Figure 8a. Starting slightly to the right of the valley, the
agent learns to gain momentum by making use of skips,
repeating the left action4. As soon as TEMPORL considers
the run-up to be sufficient to clear the hill on the right, it
switches the action direction. From this point on TEMPORL
sticks with this action and always selects the largest avail-
able skip-length (i.e. 10). Still, TEMPORL has to make
many intermediate decisions, as the agent is limited by the
maximal skip-length.

Finally, we evaluated TEMPORL’s skipping behaviour on
Qbert. An example of key states in which TEMPORL de-
cides to make new decisions are given in Figure 8b. Our
TEMPORL agent learns to use large skip-values to reach
the bottom of the left column, lighting up all platforms in
between. After that the agent makes use of large skips to
light up the second diagonal of platforms. Having lit up
a large portion of the platform, TEMPORL starts to make
fewer uses of skips. This behaviour is best observed in the
video provided in the supplementary. Also, note that we
included all trained networks in our supplementary such that
readers can load the networks to study their behaviour.

This analysis confirms that TEMPORL is capable of not
only reacting to states but also learning to anticipate when
a switch to a different action becomes necessary. Thus,
besides the benefit of improved training speed through better
guided exploration, TEMPORL improves the interpretability
of learned policies.

6. Conclusion
We introduced skip-connections into the existing MDP for-
mulation to propagate information about future rewards
much faster by repeating the same action several times.
Based on skip-MDPs, we presented a learning mechanism
that makes use of existing and well understood learning
methods. We demonstrated that our new method, TEMPORL
is capable of learning not only how to act in a state, but also
when a new action has to be taken, without the need for
prior knowledge. We empirically evaluated our method
using tabular and deep function approximation and empir-
ically evaluated the learning behaviour in an adversarial
setting. We demonstrated that the improved learning speed
not only comes from the ability of repeating actions but that
the ability to learn which repetitions are helpful provided
the basis of learning when to act. For both tabular and deep
RL we demonstrated the high effectiveness of our approach
and showed that even in environments requiring mostly fine-

4Note, in the particular example given in Figure 8a the agent
first performs the left action twice, each for one time-step before
it recognizes that it is gaining momentum and it can make use of
large skips.

control our approach performs well. Further, we evaluated
the influence of exploration strategies, architectural choices
and maximum skip-values of our method and showed it to
be robust.

As pointed out by Huang et al. (2019), observations might
be costly. In such cases, we could make use of TEMPORL to
learn how to behave and when new actions need to be taken;
when using the learned policies, we could use the learned
skip behaviour to only observe after having executed the
longest skips possible. All in all, we believe that TEMPORL
opens up new avenues for RL methods to be more sample
efficient and to learn complex behaviours. As future work,
we plan to study distributional TEMPORL as well as how
to employ different exploration policies when learning the
skip policies and behaviour policies.

Acknowledgements
The authors acknowledge support by the state of Baden-
Württemberg through bwHPC, André Biedenkapp, Raghu
Rajan and Frank Hutter by the German Research Foundation
(DFG) through grant no INST 39/963-1 FUGG as well as
funding by the Robert Bosch GmbH, and Marius Lindauer
by the DFG through LI 2801/4-1. The authors would like to
thank Will Dabney for providing valuable initial feedback as
well as Fabio Ferreira and Steven Adriaensen for feedback
on the first draft of the paper.

References
Bacon, P., Harb, J., and Precup, D. The option-critic ar-

chitecture. In S.Singh and Markovitch, S. (eds.), Pro-
ceedings of the Conference on Artificial Intelligence
(AAAI’17). AAAI Press, 2017.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell,
G., McGrew, B., and Mordatch, I. Emergent tool use
from multi-agent autocurricula. In Proceedings of the
International Conference on Learning Representations
(ICLR’20), 2020. Published online: iclr.cc.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation platform
for general agents. J. Artif. Intell. Res., 47:253–279, 2013.

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., and
Lindauer, M. Dynamic Algorithm Configuration: Foun-
dation of a New Meta-Algorithmic Framework. In Lang,
J., Giacomo, G. D., Dilkina, B., and Milano, M. (eds.),
Proceedings of the Twenty-fourth European Conference
on Artificial Intelligence (ECAI’20), pp. 427–434, June
2020.

Braylan, A., Hollenbeck, M., Meyerson, E., and Miikku-
lainen, R. Frame skip is a powerful parameter for learn-

TempoRL: Learning When to Act

ing to play atari. In Proceedings of the Workshops at
Twenty-ninth National Conference on Artificial Intelli-
gence (AAAI’15), 2015.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
arXiv:1606.01540 [cs.LG], 2016.

Chaganty, A., Gaur, P., and Ravindran, B. Learning in a
small world. In van der Hoek, W., Padgham, L., Conitzer,
V., and Winikoff, M. (eds.), International Conference on
Autonomous Agents and Multiagent Systems (AAMAS)
2012, pp. 391–397. IFAAMAS, 2012.

Chrpa, L. and Vallati, M. Improving domain-independent
planning via critical section macro-operators. In Henten-
ryck, P. V. and Zhou, Z. (eds.), Proceedings of the Confer-
ence on Artificial Intelligence (AAAI’19), pp. 7546–7553.
AAAI Press, 2019.

Dabney, W., Ostrovski, G., and Barreto, A. Temporally-
extended ε-greedy exploration. arXiv:2006.01782
[cs.LG], 2020.

Doya, K. Reinforcement learning in continuous time and
space. Neural Computation, 12(1):219–245, 2000.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Search on
the replay buffer: Bridging planning and reinforcement
learning. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Proceed-
ings of the 32nd International Conference on Advances
in Neural Information Processing Systems (NeurIPS’19),
pp. 15220–15231, 2019.

Hallak, A., Castro, D. D., and Mannor, S. Contextual
markov decision processes. arXiv:1502.02259 [stat.ML],
2015.

Harb, J., Bacon, P., Klissarov, M., and Precup, D. When
waiting is not an option: Learning options with a delib-
eration cost. In McIlraith, S. and Weinberger, K. (eds.),
Proceedings of the Conference on Artificial Intelligence
(AAAI’18), pp. 3165–3172. AAAI Press, 2018.

Harutyunyan, A., Vrancx, P., Bacon, P., Precup, D., and
Nowé, A. Learning with options that terminate off-policy.
In McIlraith, S. and Weinberger, K. (eds.), Proceedings
of the Conference on Artificial Intelligence (AAAI’18), pp.
3173–3182. AAAI Press, 2018.

Harutyunyan, A., Dabney, W., Borsa, D., Heess, N., Munos,
R., and Precup, D. The termination critic. In Chaudhuri,
K. and Sugiyama, M. (eds.), Proceedings of the 22nd
International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 89 of Proceedings of Ma-
chine Learning Research, pp. 2231–2240. PMLR, 2019.

Huang, Y., Kavitha, V., and Zhu, Q. Continuous-time
markov decision processes with controlled observations.
In Proceedings of the 57th Annual Allerton Conference
on Communication, Control, and Computing, pp. 32–39.
IEEE, 2019.

Khan, A., Feng, J., Liu, S., and Asghar, M. Z. Optimal
skipping rates: training agents with fine-grained control
using deep reinforcement learning. Journal of Robotics,
2019, 2019.

Khetarpal, K. and Precup, D. Learning options with inter-
est functions. In Hentenryck, P. V. and Zhou, Z. (eds.),
Proceedings of the Conference on Artificial Intelligence
(AAAI’19), pp. 9955–9956. AAAI Press, 2019.

Kingma, D. and Ba, J. Adam: A method for stochastic opti-
mization. In Proceedings of the International Conference
on Learning Representations (ICLR’15), 2015. Published
online: iclr.cc.

Lakshminarayanan, A. S., Sharma, S., and Ravindran, B.
Dynamic action repetition for deep reinforcement learn-
ing. In S.Singh and Markovitch, S. (eds.), Proceedings of
the Conference on Artificial Intelligence (AAAI’17), pp.
2133–2139. AAAI Press, 2017.

Lee, J., Lee, B., and Kim, K. Reinforcement learning for
control with multiple frequencies. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), Proceedings of the 33rd International Conference
on Advances in Neural Information Processing Systems
(NeurIPS’20), volume 33, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In Proceedings of the
International Conference on Learning Representations
(ICLR’16), 2016. Published online: iclr.cc.

Mankowitz, D. J., Mann, T. A., Bacon, P., Precup, D., and
Mannor, S. Learning robust options. In McIlraith, S. and
Weinberger, K. (eds.), Proceedings of the Conference on
Artificial Intelligence (AAAI’18), pp. 6409–6416. AAAI
Press, 2018.

Metelli, A., Mazzolini, F., Bisi, L., Sabbioni, L., and
Restelli, M. Control frequency adaptation via action per-
sistence in batch reinforcement learning. In III, H. D. and
Singh, A. (eds.), Proceedings of the 37th International
Conference on Machine Learning (ICML’20). Proceed-
ings of Machine Learning Research, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A.,
Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control

TempoRL: Learning When to Act

through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Modi, A., Jiang, N., Singh, S. P., and Tewari, A. Markov
decision processes with continuous side information. In
Algorithmic Learning Theory (ALT’18), volume 83 of
Proceedings of Machine Learning Research, pp. 597–618.
PMLR, 2018.

Moore, A. W. Efficient memory-based learning for robot
control. PhD thesis, Trinity Hall, University of Cam-
bridge, Cambridge, 1990.

Nasiriany, S., Pong, V., Lin, S., and Levine, S. Planning with
goal-conditioned policies. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R.
(eds.), Proceedings of the 32nd International Conference
on Advances in Neural Information Processing Systems
(NeurIPS’19), pp. 14814–14825. 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Proceedings of the 32nd Inter-
national Conference on Advances in Neural Information
Processing Systems (NeurIPS’19), pp. 8024–8035, 2019.

Precup, D., Sutton, R. S., and Singh, S. P. Theoretical
results on reinforcement learning with temporally abstract
options. In Proceedings of the 10th European Conference
on Machine Learning (ECML)’98, pp. 382–393, 1998.

Schoknecht, R. and Riedmiller, M. A. Speeding-up re-
inforcement learning with multi-step actions. In Dor-
ronsoro, J. R. (ed.), Proceedings of the International
Conference on Artificial Neural Networks (ICANN’02),
volume 2415 of Lecture Notes in Computer Science, pp.
813–818. Springer, 2002.

Schoknecht, R. and Riedmiller, M. A. Reinforcement learn-
ing on explicitly specified time scales. Neural Computing
and Applications, 12(2):61–80, 2003.

Sharma, S., Lakshminarayanan, A. S., and Ravindran, B.
Learning to repeat: Fine grained action repetition for
deep reinforcement learning. In Proceedings of the
International Conference on Learning Representations
(ICLR’17), 2017. Published online: iclr.cc.

Stolle, M. and Precup, D. Learning options in reinforcement
learning. In Proceedings of the 5th International Sympo-
sium on Abstraction, Reformulation and Approximation
SARA’02, volume 2371 of Lecture Notes in Computer
Science, pp. 212–223. Springer, 2002.

Sutton, R. S., Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Tiganj, Z., Shankar, K. H., and Howard, M. W. Scale
invariant value computation for reinforcement learning
in continuous time. In Proceedings of the AAAI Spring
Symposia’17, 2017.

Vallati, M., Chrpa, L., and Serina, I. MEvo: a framework for
effective macro sets evolution. Journal of Experimental
& Theoretical Artificial Intelligence, 0(0):1–19, 2019.

van Hasselt, H. Double q-learning. In Lafferty, J., Williams,
C., Shawe-Taylor, J., Zemel, R., and Culotta, A. (eds.),
Proceedings of the 23rd International Conference on
Advances in Neural Information Processing Systems
(NeurIPS’10), pp. 2613–2621, 2010.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Schuurmans,
D. and Wellman, M. (eds.), Proceedings of the Thirtieth
National Conference on Artificial Intelligence (AAAI’16),
pp. 2094–2100. AAAI Press, 2016.

Vezhnevets, A., Mnih, V., Osindero, S., Graves, A., Vinyals,
O., and Agapiou, J. Strategic attentive writer for learning
macro-actions. In Lee, D., Sugiyama, M., von Luxburg,
U., Guyon, I., and Garnett, R. (eds.), Proceedings of the
29th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’16), pp. 3486–
3494, 2016.

CHAPTER 12
Self-Paced Context Evaluation for Contextual

Reinforcement Learning

The content of this chapter has been published as:

T. Eimer, A. Biedenkapp, F. Hutter, and M. Lindauer (2021a). “Self-Paced Context
Evaluation for Contextual Reinforcement Learning”. In: Proceedings of the 38th
International Conference on Machine Learning (ICML’21). Ed. by M. Meila and T. Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 2948–2958.

Project Idea. The idea of using curriculum learning was proposed by Marius Lindauer
and refined by Theresa Eimer to self-paced learning. André Biedenkapp proposed to use the
value estimates of value-based RL agents to control the self-paced element. The concrete
self-paced mechanism, based on value estimates was devised by Theresa Eimer with advice
by Marius Lindauer. André Biedenkapp proposed the motivating example of cart-pole with
varying pole lengths.

Implementation and experimentation. Implementation and experimentation were led
by Theresa Eimer. André Biedenkapp aided in debugging and evaluated baselines on a
subset of the considered environments.

Paper writing. An initial draft of the paper was written by Theresa Eimer. André
Biedenkapp revised and edited the initial draft. Frank Hutter and Marius Lindauer revised
the final paper version. The paper was to a large extent written by Theresa Eimer and
André Biedenkapp.

Self-Paced Context Evaluation for Contextual Reinforcement Learning

Theresa Eimer 1 André Biedenkapp 2 Frank Hutter 2 3 Marius Lindauer 1

Abstract
Reinforcement learning (RL) has made a lot of
advances for solving a single problem in a given
environment; but learning policies that generalize
to unseen variations of a problem remains chal-
lenging. To improve sample efficiency for learn-
ing on such instances of a problem domain, we
present Self-Paced Context Evaluation (SPACE).
Based on self-paced learning, SPACE automati-
cally generates instance curricula online with lit-
tle computational overhead. To this end, SPACE
leverages information contained in state values
during training to accelerate and improve training
performance as well as generalization capabilities
to new instances from the same problem domain.
Nevertheless, SPACE is independent of the prob-
lem domain at hand and can be applied on top of
any RL agent with state-value function approxi-
mation. We demonstrate SPACE’s ability to speed
up learning of different value-based RL agents on
two environments, showing better generalization
capabilities and up to 10× faster learning com-
pared to naive approaches such as round robin or
SPDRL, as the closest state-of-the-art approach.

1. Introduction
Although Reinforcement Learning (RL) has performed im-
pressively in settings like continuous control (Lillicrap et al.,
2016), robotics (OpenAI et al., 2019) and game playing (Sil-
ver et al., 2016; Vinyals et al., 2019), their applicability is
often very limited. RL training on a given task takes a lot of
training samples, but the skills acquired do not necessarily
transfer to similar tasks as they do for humans. An agent
that is able to generalize across variations of a task, however,
can be applied more flexibly and has a lower chance of suc-
ceeding when presented with unseen inputs. Therefore im-

1Information Processing Institute (tnt), Leibniz University
Hannover, Germany 2Department of Computer Science, Univer-
sity of Freiburg, Germany 3Bosch Center for Artificial Intelli-
gence, Renningen, Germany. Correspondence to: Theresa Eimer
<eimer@tnt.uni-hannover.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1: Example instances of the contextual PointMass
environment. The agent’s yellow starting point, the green
goal and floor friction (indicated by shading) are part of the
context and vary between instances.

proving generalization means improving sample efficiency
and robustness to unknown situations. We view these as
important qualities for real-world RL applications.

Curriculum learning (Bengio et al., 2009) aims to bridge
the gap between agent and human transfer capabilities by
training an agent the same way a human would learn: trans-
ferring experience from easy to hard variations of the same
task. It has been shown that generating such instances with
increasing difficulty to form a training curriculum can im-
prove training as well generalization performance (Dendor-
fer et al., 2020; Matiisen et al., 2017; Zhang et al., 2020).
As information about instance difficulty is often not read-
ily available, many approaches utilize the agent’s progress
markers, such as evaluation performance, confidence in its
policy or its value function to minimize the need for domain
knowledge (Wang et al., 2019; Klink et al., 2020). Because
the progression is dictated by the agent’s learning progress,
this is called Self-Paced Learning (Kumar et al., 2010).

Instances in a curriculum can vary from the core task in
different aspects, such as varying goals or movement speeds
(see Fig. 1). While only selecting different goals states as
instances is common for curriculum learning methods (Den-
dorfer et al., 2020; Zhang et al., 2020), changing transition
dynamics are important considerations regarding the robust-
ness of a policy. A dynamic change in robotics could for
example be caused by a broken joint that the agent now has
to adapt to. To allow these changes in the transition dynam-
ics, in addition to goal changes in the instances, we consider
contextual RL instead.

Our contributions are as follows:

1. We propose SPACE, a new self-paced learning algo-
rithm, to automatically generate instance curricula in a

SPaCE

general contextual RL setting, without any knowledge
about instance difficulty being required and with access
to only a limited set of instances (see Section 4).

2. We show the convergence behavior of SPACE to be at
least as good as round robin (see Section 4.2).

3. We demonstrate that SPACE is capable of outperform-
ing a round robin baseline (Speck et al., 2020) as well
as similar self-paced methods (see Section 5).

2. Related Work
There are different approaches to increase generalization
capability in RL. Their goals and scopes differ substantially,
however. MAML (Finn et al., 2017) and related meta-RL
methods pre-train an agent such that specializing on one of
the training tasks is then very efficient. These take different
approaches of aggregating and propagating the gradients in
training and are complementary approaches to SPACE.

Domain randomization (DR; Tobin et al., 2017) on the other
hand varies the task space. In essence, DR creates new
instances of tasks in order to force the agent to adapt to alter-
ations in its observations and policy. Other examples such as
POET (Wang et al., 2019) and ADR (OpenAI et al., 2019)
sample instances at random but order them by leveraging
knowledge about the environment. Without prior knowl-
edge of the target distribution, however, making appropriate
changes is hard, resulting in either too little variation to fa-
cilitate generalization or deviating so much that the problem
becomes too hard to learn. Other approaches utilize human
expert knowledge to facilitate generalization performance,
such as human-in-the-loop RL (Thomaz & Breazeal, 2006)
or imitation learning (Hussein et al., 2017).

Curriculum learning (Bengio et al., 2009) uses expert knowl-
edge to generate an ordering of training instances in such
a way that knowledge can be transferred from hard to easy
instances. There are different approaches for automatically
generating such instance curricula, including learning how
to generate training instances (Dendorfer et al., 2020; Such
et al., 2020) similar to a teacher (Matiisen et al., 2017;
Turchetta et al., 2020) or leveraging self-play as a form of
curriculum generation (Sukhbaatar et al., 2018; da Silva
et al., 2019). In most of these cases, some knowledge of
the instance space is required in order to either define a
measure of instance difficulty or how to generate new in-
stances. While instance generation requires only little prior
knowledge, a separate agent will need to learn to gener-
ate instances of appropriate difficulty, which increases the
training overhead significantly.

Value Disagreement based Sampling (VDS; Zhang et al.,
2020) on the other hand builds curricula for goal-directed
RL. VDS uses the disagreement between different agents

trained on the same instances to measure which training
instance should be trained on next. Like its building block
HER (Andrychowicz et al., 2017), VDS is only compatible
with goal-directed off-policy RL.

One approach to order the training instances is explicitly
using an agent’s performance as an ordering criterion in-
stead, called Self-Paced Learning. This can be done using
the agent’s value function as a substitute for actual episode
evaluations. SPDRL (Klink et al., 2020) uses this idea to
generate new instances uniquely suited to the agent’s cur-
rent training progress in order to progress towards specific
hard instances. While this eliminates the need for a teacher,
researchers instead need to know a priori which instances
are considered the hard target instances and where the agent
should start training in relation to them.

3. Contextual Reinforcement Learning
Before we describe SPACE, we discuss how we can extend
the typical RL formulation to allow for the notion of in-
stances. RL problems are generally modeled as Markov De-
cision Processes (MDPs), i.e., a 4-tupleM := (S,A, T,R)
consisting of a state space S, a set of actions A, a tran-
sition function T : S × A → S and a reward function
R : S × A → R. This abstraction however, only allows
to model a specific instantiation of a problem and does not
allow to deviate from a single fixed instance.

An instance i ∈ I in a set of instances I could, e.g., deter-
mine a different goal position in a maze problem or different
gravity conditions (i.e., moon instead of earth) for a naviga-
tion task. Information about the instance at hand is called
its context ci. This context can either directly encode infor-
mation about the instance, e.g., the true goal coordinates, or
the kind of robot that should be controlled.

In order to make use of context in our problem description,
we consider contextual MDPs (cMDP; Hallak et al., 2015;
Modi et al., 2018; Biedenkapp et al., 2020). A contextual
MDPMI is a collection of MDPsMI := {Mi}i∈I with
Mi := (S,A, Ti, Ri). As the underlying problem stays the
same, we assume the possible state and action spaces are
consistent across all instances; however, the transition and
reward functions are unique to each instance.1

An optimal policy π∗ for such a cMDP optimizes the ex-
pected return over all instances I with discount factor γ:

π∗ ∈ arg max
π∈Π

1

|I|
∑

i∈I

T∑

t

γtRi(st, π(st)) (1)

As the reward depends on the given instance i, an agent
solving a cMDP can leverage the context ci along with

1In goal-directed RL, instances can also only vary the reward
function and keep dynamics constant.

SPaCE

the current state st ∈ S in order to differentiate between
instances.

4. Self-Paced Context Evaluation
In order to generate a curriculum without any prior knowl-
edge of the target domain, our Self-Paced Context Eval-
uation (SPACE) takes advantage of the information con-
tained in an agent’s state value predictions. By modelling
V π(st, ci), the agent learns to predict the expected reward
from state st on instance i when following the current pol-
icy π. Therefore, we propose V π(s0, ci) as an estimate of
the total expected reward given a starting state s0.2

Definition 1. The performance improvement capacity (PIC)
of an instance is the difference in value estimation between
point t and t− 1, that is:

dt(i) = V πt (s0, ci)− V πt−1(s0, ci). (2)

The intuition is, if the instance evaluation changes by a large
amount, the agent has learned a lot about this instance in
the last iteration and can potentially learn even more on it.
Instances that are too easy or too hard will yield relatively
small or no improvements. SPACE prefers instances on
which it expects to make most learning progress. As most
state-of-the-art RL algorithms use a value-based critic, each
instance’s PIC is easily computed during training.

Algorithm 1 summarizes the idea of SPACE. After some
initialization in Lines 1-3, SPACE performs an update step
for the current policy π and the value function V π based on
roll-outs on the current instance set Icurr. In principle, any
RL algorithm with a value-function estimate can be used,
such as Q-learning or policy search based on an actor-critic.
In Lines 6-7, SPACE updates the average instance evalua-
tion and the difference to the last iteration; note that this only
considers the current set of instances Icurr. In Lines 8-9,
SPACE first checks whether the value function V πt changed
∆V πt by a factor η < 1.0 compared to the value function be-
fore the update. If the update led to an insignificant change
of the value function, SPACE assumes that the learning suf-
ficiently converged and we can add κ new instances to Icurr.
Starting in Line 10, SPACE determines which instances in
I should be included in Icurr. For each instance, SPACE
first computes how much the value function changed, dt(i).
The instances with the highest PIC regarding V π are chosen
as Icurr (Lines 12-13), assuming that it is easy to make
progress on these instances right now. Note, we evaluate the
influence of the η and κ hyperparameters on the learning
behaviour of SPACE in our experiments.

2For simplicity’s sake, we assume that an environment has a
single starting state s0 and we do not integrate over all possible
starting states.

Algorithm 1: SPACE curriculum generation
Data: policy π, value function V , Instance set I,

threshold η, step size κ, #iterations T
1 S, t := 0
2 V0 := 0
3 Icurr := {i} with i randomly sampled from I
4 for t = 1...T do
5 π, V πt := update(π, V πt−1, Icurr)
6 V πt := 1

|Icurr|
∑
i∈Icurr |V πt (s0, ci)|

7 if V πt ∈ [(1− η)V πt−1, (1 + η)V πt−1] then
// Increase set size

8 S := S + κ

// Choose next instance set
9 forall i ∈ I do

10 dt(i) := V πt (s0, ci)− V πt−1(s0, ci)

11 Icurr := S instances with highest dt(i)
12 t := t+ 1

Figure 2: CartPole instances: short (s), medium (m) and
long (l) balancing pole.

4.1. Exemplary Application of SPACE

As a motivating example, we consider the CartPole envi-
ronment (Brockman et al., 2016) with three different pole
lengths, see Figure 2. We use a small DQN (hyperparam-
eters given in Appendix B) for this example with the pole
length being given as an additional state feature. Although
CartPole is generally considered as easy to solve, using
poles of different length causes the DQN using a round
robin curriculum to be unable to improve over time (see
Figure 3). SPACE on the other hand is able to generate
curricula that allow the DQN to learn how the cart has to be
moved for the different poles and thus improve considerably
to a mean performance of around 150 per episode compared
to round robin’s 25.

In Figure 4 we can see the main difference between the
two methods. While the round robin agent trains on all
three different variations one episode each, SPACE only
chooses to train on the cart with the long pole twice before
episode 40. Instead, the focus is on a single instance at a
time, using either the short or medium pole and changing
not every episode but trains on an instance for at least three
consecutive episodes. This shows that the value function
can provide guidance as to instance similarity, as we would
expect that the short and medium sticks behave in a similar
way, as well as difficulty, the long pole being the hardest to

SPaCE

Figure 3: Performance (± std.) comparison of SPACE and
default instance ordering on CartPole over 5 seeds each.

Figure 4: One exemplary run of SPACE (top) and round
robin (bottom) curricula on CartPole.

control of the three. While the changes in the value function
may not provide a completely stable curriculum, training on
one instance for a flexible amount of episodes instead of one
episode already has a big impact on overall performance.
Furthermore, comparing the curriculum to the performance
curve, focusing on only one instance at a time already leads
to the agent performing considerably better on all of them.
This validates the idea that there are underlying dynamics
common to all three pole lengths which are important to
learn and then refine according to the instance dynamics.

4.2. Convergence of SPACE

To discuss under which conditions SPACE will converge,
we consider two cases.
Theorem 1. Given a set of instances I that are sufficiently
distinguishable by their context ci as well as an instance
of SPACE with η > 0, κ ≥ 1 and an agent with value
function Vt. If the value function estimation V πt converges
in the limit to some value function V on each instance
(∀i ∈ I.∀s ∈ S : limt→∞ V πt (s, ci) = V (s, ci)) and glob-
ally (limt→∞ V πt (s) = V (s)), SPACE will eventually in-
clude all instances in the curriculum.

Proof. Since for all i ∈ I:

lim
t→∞

V πt (s0, ci) = V (s0, ci) (3)

and therefore it follows that:

lim
t→∞

∆V πt−1 = ||V πt (s0, ci)| − |V πt (s0, ci)|| → 0 (4)

Thus SPACE is guaranteed to include at least one other
instance i′ in the new curriculum Icurr at some point t.
Now we assume that we are given any I ′ ⊆ I with size
n < |I|. As ∀i ∈ I.∀s ∈ S : limt→∞ V πt (s, ci) = V (s, ci)
and Equation 3, convergence of V πt on the subset I ′ follows:

∀i ∈ I ′ : lim
t→∞

V π(s0, ci) = V (s0, ci) (5)

Therefore, as in the single instance case:

lim
t→∞

∆V πt → 0 (6)

and a new instance is added.

As the curriculum is guaranteed to be extended for any in-
stance set of size n = 1 and n ≤ |I|, SPACE will eventually
construct a curriculum using the whole instance set.

Corollary 1. If SPACE covers all instances at some time
point, it will be only slower than round robin by a constant
factor in the worst case.

Proof. Assume κ = 1 and that the learning agent requires
O(K) steps to converge on a single instance.

If the agent is not able to transfer any of its gained knowl-
edge between any of the tasks, SPACE will require to train
an agent O(k) steps before growing the curriculum, where
k ≤ K, depending on η. SPACE will thus requireO(|I| ·k)
steps to include all |I| instances in the curriculum. At this
point, SPACE behaves as a round robin schedule does, i.e.,
iterating over each instance while training the agent. There-
fore, even if the construction of a meaningful curriculum
should have failed, SPACE can recover by falling back to a
round robin scheme after O(|I| · k) steps.

Corollary 2. If the value function estimation converges to
the true value function V ∗, SPACE will also converge to the
optimal policy.

Assume the worst case in which the value function estimate
does not converge, but either oscillates or even diverges.
This could happen if SPACE jumps between two disjoint
instance sets I1 and I2 and the progress on I1 is lost by
switching to I2 and vice versa.3 Whenever we detect that
learning is not progressing further and convergence is not
achieved (i.e., ∆V πt 6= 0 and Icurr 6= I), SPACE could
simply increase η. As this hyperparameter controls how
strict the convergence criterion is, increasing the value will
allow for new instances to be added to the training set even
though the original convergence criterion has not been met.
The least value to which η should be set to guarantee an

3Note: Though theoretically possible, we have never observed
this problem in practice.

SPaCE

increase of instances is ∆V πt +ε
V πt−1

for any ε > 0 to eventually
train on all instances.
Theorem 2. If the value function estimate is not guaranteed
to converge (e.g., in deep reinforcement learning), SPACE
can still recover a round robin scheme by increasing the
threshold η if needed.

Proof. If at any point t, ∆V πt 6= 0 and Icurr 6= I , we apply
the method described above and set η =

∆V πt +ε
V πt−1

. Then
the condition to increase the instance set size is ∆V πt <

η · V πt−1 → ∆V πt <
∆V πt +ε
V πt−1

· V πt−1 → ∆V πt < ∆V πt + ε.
Thus the instance set size is guaranteed to be increased.
As this is true for any point in training, SPACE can still
consider all instances at some point t∗ and thus perform as
well as round robin from t∗ onward.

5. Experiments
In this section we empirically evaluate SPACE on two dif-
ferent environments. The code for all experiments is avail-
able at https://github.com/automl/SPaCE. We first describe
the experimental setup before comparing SPACE against a
round robin (RR) training scheme and SPDRL (Klink et al.,
2020) as a state-of-the-art self-paced RL baseline. Finally
we evaluate the influence of SPACE’s own hyperparameters
and limitations.

5.1. Setup

We evaluated SPACE in settings that readily allow for con-
text information to encode different instances, namely the
Ant locomotion environment (Coumans & Bai, 2020), the
gym-maze environment (Chan, 2019) and the BallCatching
and contextual PointMass environments as used by Klink
et al. (2020).

The task in Ant is to control a four legged ant robot towards
a goal on a flat 2D surface as quick as possible. The context
is given by the x- and y-coordinates of the goal. Goals that
are close to the starting position are easier to reach and thus
we expect them to be easier to learn and their policies to
transfer to more difficult instances. Additionally, the context
indicates if no or up to one of the four legs of the ant robot
is immobilized, similar to (Seo et al., 2020). We uniformly
sampled 200 instances which we split in equal sized, disjoint
training and test sets (see Appendix A). The context of the
maze environment (Chan, 2019), in which the task is to
find the goal state, is given as the flattened 5x5 layout of
the current instance. 100 training and test instances each
were sampled using the given maze generator. The agent’s
goal in BallCatching is to direct a robot to catch a ball. The
ball’s distance from the robot as well as it goal position are
given as context information. Training and test sets were
each 100 instances large and uniformly sampled between

our context bounds. In the PointMass environment (see
Figure 1), an agent maneuvers a point mass through a goal
in a two-dimensional space. The goal position, the width
as well as the friction coefficient of the ground are given as
context. We sampled 100 instances for training and testing,
each for two different distributions. The first distribution is
chosen to cover the space of possible instances, whereas the
second distribution follows that of Klink et al. (2020) and
focuses on an area around a particularly difficult instance
(see Appendix A).

To be consistent and fair with respect to prior work, we
trained a PPO agent (Schulman et al., 2017) for Ant and
a TRPO agent for PointMass (Schulman et al., 2015) and
base our curriculum generation on their value-based actors.
For easier readability, all plots are smoothed over 10 steps.
In order to monitor generalization progress over time, we
evaluated the agent on all instances in the training and test
set after each complete run through the training set. As
the results on training and test sets were very similar, we
only report the test performance. In all experiments we
evaluated our agents over 10 random seeds. For hardware
specifications and hyperparameters, please see Appendix B.

5.2. Baselines

In our experiments, we use three different baselines to com-
pare SPACE’s performance to.

Round Robin (RR) To be sure SPACE outperforms in-
stances without an intentional ordering, we compare against
round robin as a common default instance ordering. This
means that the training instances are ordered in an arbitrary
way and we simply iterate over them, playing one episode
per instance. As the instance sets we use are generated ran-
domly, this ordering is chosen at random as well.

SPDRL SPDRL (Klink et al., 2020) is a state-of-the-art
self-paced learning method for contextual RL. This is no-
table as most curriculum learning methods are explicitly
designed for goal-directed RL, which makes them unsuit-
able in our setting. Counter to SPACE and RR, SPDRL
makes use of an instance distribution to continually sample
new instances of a specific difficulty level. SPDRL uses
this ability to generate new instances to focus on particu-
larly difficult instances, while largely ignoring the remain-
ing instance space. To this end, SPDRL requires additional
domain knowledge, besides the context information, to de-
termine which instances SPDRL should focus on. Therefore
we provide SPDRL with the distribution of our training and
test set to focus the learning on its center.

cSPACE With SPACE we opted for taking an agent’s
knowledge about the expected reward, i.e. value function,
into account to determine the similarity and difficulty of

SPaCE

Figure 5: Mean reward (± standard deviation) per episode over 10 runs on Ant (left) and BallCatching (right).

instances. However, as instances can be represented by their
context, their similarity could also be quantified directly
through their similarity in the context space. This form of
similarity quantification is common in fields making use
of techniques such as algorithm selection (Rice, 1976) and
meta-learning (Brazdil et al., 2008). Such curricula order
instances according to their context similarities. A success-
ful application of this approach can be seen in Reverse
Curriculum Generation for Reinforcement Learning (Flo-
rensa et al., 2017) where robot arm starting positions were
ordered into a curriculum according to their similarity. In
other words, instead of using an agent’s performance evalua-
tions as a basis for the curriculum generation, instances with
contexts that are closest to the current curriculum context
are added. SPACE’s instance ordering criterion can easily
be changed to compare context space distance instead of
evaluations, yielding a variation we call context SPACE
(cSPACE). More precisely, we replaced d as our instance
selection criterion (see Algorithm 1 Line 10) with the Eu-
clidean distance to the current instance set Icurr. In such
cases, cSPACE can suffer from the same problems as un-
supervised learning. A priori it is not clear how to scale
and weight the different context features without having any
signal how the features will affect the difficulty of instances
and how good the resulting curriculum will be. In contrast
to SPACE, we deem this a potential challenge in applying
cSPACE. For this reason, we recommend SPACE as the
default approach whenever state evaluations are available.

5.3. Does the Instance Order Matter?

We first compare SPACE to a baseline round robin (RR)
agent on the Ant and BallCatching environments, to deter-
mine if SPACE can find a curriculum that outperforms a
random ordering. In Figure 5, both agents reach the same
final performance in each environment, but the agent trained
via SPACE learns considerably faster. It only requires 103

steps to reach a reward of around 11 in Ant whereas RR
requires roughly 10× as many steps to train an agent to
reach the same reward. The results for BallCatching are
similar, with SPACE again being faster to reach the final

Figure 6: Mean reward per episode on a test set of uniformly
sampled instances for PointMass.

performance a factor of at least 10. We further compare both
methods on the PointMass environment when training on
an instance set that was uniformly sampled from the space
of possible instances (see Figure 6).

Here, the agent trained with SPACE is only roughly twice
as fast, but it substantially outperforms round robin in terms
of final performance. As the RR baseline does not care
about the order in which instances are presented to the
agent, we conclude that a more structured learning approach
is needed. From SPACE’s performance we can conclude
that a curriculum, learned in a self-paced fashion can help
improve both training performance and generalization. The
experiments in the following sections further confirm this
finding.

5.4. Comparing SPACE and SPDRL

We further compared SPACE to SPDRL (Klink et al., 2020)
on the PointMass environment in order to demonstrate the
difference between SPACE and an other self-paced learning
method. We used the same implementation and hyperpa-
rameters as in (Klink et al., 2020) for SPDRL. The test
performance of the agents can be seen in Figure 6.

As SPDRL was developed to train an agent to solve spe-
cific hard instances in the PointMass environment, it clearly
falls short when it comes to covering the whole instance

SPaCE

Figure 7: SPACE and RR of a set of mazes over 10 runs (±
standard deviation)

space. The agent trained via SPDRL learns much slower and
achieves a worse final performance than an agent trained via
RR. Perhaps unsurprisingly, this shows that targeting learn-
ing on hard instances does not imply the same agent can
achieve good generalization performance on all instances.

5.5. How Well does SPACE Handle Complex Contexts?

While our benchmarks above are common meta-RL problem
settings with different complexities, their contexts are given
in a rather simple form, i.e., a short context vector directly
describes the goal and environment dynamics. The agent
can therefore make a direct connection between the changes
between instances and the different context descriptions.
This may not always be the case with context possibly being
given within the observation, e.g., as part of an image.

In order to confirm that such a context description still en-
ables SPACE to select the appropriate next instance, we use
a set of 100 5x5 mazes (Chan, 2019) for our agent to gen-
eralize over. The observation is the agent’s current position
while the context is given by the flattened maze layout.

This context is much more complex than the previously used
ones by having a structure that has been flattened and its
components do not directly correlate to an increase in diffi-
culty. Furthermore, many of the components of the context
may not change from instance to instance even though the
layout, and therefore the required policy, will.

Figure 7 shows that while the context information for this
task is much more complex than previously seen, SPACE
still outperforms the round robin agent in a similar way
than it does to for Ant and BallCatching. The round robin
agent needs several hundred episodes to solve all mazes
while SPACE is able to generalize from just 10 episodes.
While the context complexity increases in this case, the
value function is still able to differentiate between them
enough to allow a distinction between different instances.
Therefore we expect that the representation of the context is
not a major concern for the performance of SPACE.

Figure 8: Mean reward on contextual PointMass with addi-
tional cSPACE results.

5.6. Can SPACE Be Applied Without a Value
Function?

The PointMass environment has three different context fea-
tures for which we can easily use the context space distance
to construct a curriculum. SPACE and cSPACE perform
similarly on PointMass (Figure 8) in terms of learning speed
and overall performance, both reaching the same perfor-
mance at the same speed, with SPACE learning faster on
average between 104 and 105. This makes both SPACE
variations a better choice than round robin.

Both cSPACE and SPACE are also consistent in the curric-
ula they find. We measured this by comparing the frequency
with which each instance was used in the training set com-
pared to the weighted frequency which gives higher rank
to instances chosen at earlier iterations (1 for the instance
chosen first down to 1

|I| for the instance chosen last). For
cSPACE, both the frequency and weighted frequency stayed
the same while for SPACE only the four least used instances
differed in order between the two.

We also compared the mean instance distance between cur-
riculum iterations to see which method allows for smoother
transitions between tasks. Smooth transitions correlate to a
handcrafted curriculum where instances are close together
in the context space, making the curriculum easier to learn
from a human perspective. SPACE moves the instance
set around 4.7% each curriculum iteration while cSPACE
moves by around 5.6%. The maximum induced change is
10.1% for SPACE and 13.3% for cSPACE approach.

As we can see from these comparisons, using the informa-
tion contained in an agent’s value function to construct a cur-
riculum is very similar to using the context space distance. It
needs to be said, however, that in PointMass the context re-
flects the environment dynamics in a very direct way, being
made up of the x- and y-positions of the goal to reach and
the friction coefficient. Therefore we would expect cSPACE
to perform very well on such environments. The fact that
the default SPACE setting performs similarly indicates that
the value function contains the information necessary to

SPaCE

Table 1: Mean reward ± standard deviation for different
hyperparameter values on PointMass after 106 steps.

η

κ 5% 10% 20% 40%

1 5.1± 0.7 4.8± 1.2 4.7± 1.2 5.2± 0.7
4 5.5± 0.5 5.2± 0.7 4.3± 1.2 4.4± 1.0
16 4.6± 1.1 3.7± 1.1 5.1± 1.2 4.8± 1.0
32 4.5± 1.1 4.6± 1.1 4.7± 1.3 5.0± 1.2

order instances into a curriculum of similar quality. As not
all environments may have such simple changes between
instances, we expect that cSPACE has limitations on those
kinds of environments while we can expect the value-based
SPACE variation to continue constructing high quality cur-
ricula even in that case.

5.7. How Robust is SPACE wrt its Hyperparameters?

SPACE comes with two hyperparameters, the performance
threshold for curriculum interactions η and the instance in-
crement κ. These hyperparameters interact with each other
to make SPACE comparatively stable across different hy-
perparameter values (as seen in Figure 1).

By varying η for a given value of κ, we alter the degree of
stability the agent’s value estimates have to reach between
training episodes. Depending on the problem at hand, the
value estimates may never be perfectly stable, therefore
a very low value for η may prevent the training set from
expanding. On the other hand, a very large value will move
SPACE closer to round robin. Thus we view η as the more
important hyperparameter of the two.

Our study shows very little performance differences for dif-
ferent values of κ and η. In part, this is because PointMass
instances are not too difficult in the mean, therefore adding
many at once does not heavily disturb learning. Larger per-
formance thresholds η are not an issue for this reason. A
value of 5% for η seems quite low, but as the instances are
relatively easy, the agent can still converge enough very
quickly. Different values for κ show similar results here. We
expect this hyperparameter to be more important in very
diverse settings with large gaps between instances. We can
see the effect if we multiply the size of our training set in-
stead of adding instances (see Figure 9). In this case, there
is a visible slowdown, supporting that κ has a big influence
on training performance.

From these results, we believe that it is reasonable to rec-
ommend keeping κ = 1 for most applications. It can yield
more fine-grained curricula which will be important on di-
verse instance sets and will likely only impact training on
very large instance sets. For η, using a low value such as 5%

Figure 9: Mean reward per episode on a test set with fast
rising instance set size (i.e. varying κ) and fixed η = 10%.

Figure 10: Total undiscounted reward of VDS and its RR
baseline on AntGoal.

should ensure that the agent will not be overwhelmed with
new instances if it takes more than one curriculum iteration
to learn from the current training set.

5.8. Can Goal-Directed RL Achieve Similar Results?

Goal-directed RL and contextual RL are closely related
flavours of RL. The main difference between the two is
that in goal-directed RL, the context is restricted to only
contain information about a desired goal-location. Thereby
the context indicates a (final) state in which the agent should
reach. Policies learning with goals as context information
thus can learn the value of executing an action in a certain
state for reaching the desired goal. Crucially however, in
this setting transition dynamics are assumed to never change
for different contexts.

Contextual RL subsumes goal-directed RL by also allow-
ing the environment dynamics for the same goal to vary.
Both environments we evaluate on exemplify this. In con-
textual PointMass, we specify both a goal and the friction
coefficient to describe an instance. Even if the goal is kept
the same, however, the friction is a deciding factor in the
amount of force that is necessary to reach the goal correctly.
So while the force direction is the same for instances with
the same goal, the required amount of force depends on the
friction and therefore the agent needs both information to
learn to generalize across different instances.

SPaCE

On AntGoal, we can see how this looks in practice. VDS
(Zhang et al., 2020) is a recent state-of-the-art method
for goal-directed curriculum construction based on HER
(Andrychowicz et al., 2017). As a result, it can take only
the ant’s goal into consideration when selecting the next
instance and crucially misses that in different instances the
ant has different defects in some of its joints. As a result,
the method conflates all instances with the same goals and
fails to actually learn how to act on any of them.

We used the implementation and baseline of Zhang et al.
(2020) to demonstrate that while goal-directed curriculum
generation approaches seem similar to SPaCE, our prob-
lem setting is out of scope for them (see Figure 10). Their
RR baseline has a different learning curve as ours as the
algorithm used is different, but it clearly is able to improve
over time. As VDS uses goals to describe the necessary
behaviour, it cannot do the same. Therefore, curriculum
learning methods for contextual RL and goal-directed RL
have different scopes and cannot be compared fairly in the
contextual RL setting.

6. Limitations
Even though SPACE performed very well on the bench-
marks used in this paper, there are several limitations of
SPACE to be considered. The first one is that the problem
and the instance set both need to support curriculum learn-
ing to some degree. For the problem itself this means that
the policy to solve it is influenced by context to a large de-
gree, but that there is an underlying structure that can be
exploited using a curriculum. The instance set then needs
to be large enough to actually give SPACE the opportunity
to do so. In settings with too little or very large amounts of
instances, SPACE becomes less efficient (see Appendix D).

Furthermore, if the instance set is very homogeneous, simi-
lar to the specific instance SPDRL uses on PointMass (see
Appendix C), using different instances for training might not
make a difference. Conversely, if the instance set is hetero-
geneous, preliminary experiments showed that SPACE re-
quires a larger amount of instances to speed up the learning.
Thus not every problem is suited for curriculum learning.

Lastly, SPACE is constructed to work for discrete instance
spaces only, where the instance ordering is essential for
learning efficiency. We stress the fact that SPACE is de-
signed for use cases with only a few instance examples. In
settings with instance generators or a lot of domain knowl-
edge available, it is likely better to exploit them which
SPACE is not designed for.

7. Conclusion
Self-Paced Context Evaluation (SPACE) provides an adap-
tive curriculum learning method for problem settings con-
strained to a fixed set of training instances. Thereby we
facilitate generalization in practical applications of RL. We
demonstrated that the order of instances on which agents
learn their behaviour policies indeed is important and can
produce a better learning efficiency. In addition, SPACE
outperformed a simple round robin baseline as well as more
specialized curriculum learning methods requiring access to
unlimited instance generators to perform well. Finally we
evaluated the influence of SPACE’s own hyperparameters
and showed that they are robust on the chosen environments.

Future research could address how to derive performance
expectations for practical applications of RL with a limited
amount of instances with respect to the amount of informa-
tion available. Furthermore, we might be able to use value
estimation to further improve training efficiency for exam-
ple by clustering instances of similar difficulty and limiting
the amount of training on very easy ones to a minimum.
Another important factor for contextual RL in general is
catastrophic forgetting (see Appendix F), which is not yet
sufficiently understood, especially in the continuous context
spaces we applied SPACE to.

8. Acknowledgements
Theresa Eimer and Marius Lindauer acknowledge fund-
ing by the German Research Foundation (DFG) under LI
2801/4-1. All authors acknowledge funding by the Robert
Bosch GmbH.

References
Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. Hindsight experience replay. In Guyon,
I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Proceedings of
the 31st International Conference on Advances in Neural
Information Processing Systems (NeurIPS’17), pp. 5048–
5058, 2017.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. Cur-
riculum learning. In Bottou, L. and Littman, M. (eds.),
Proceedings of the 26th International Conference on Ma-
chine Learning (ICML’09), pp. 41–48. Omnipress, 2009.

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., and
Lindauer, M. Dynamic Algorithm Configuration: Foun-
dation of a New Meta-Algorithmic Framework. In Lang,
J., Giacomo, G. D., Dilkina, B., and Milano, M. (eds.),
Proceedings of the Twenty-fourth European Conference

SPaCE

on Artificial Intelligence (ECAI’20), pp. 427–434, June
2020.

Brazdil, P., Giraud-Carrier, C., Soares, C., and Vilalta, R.
Metalearning: Applications to Data Mining. Springer
Publishing Company, Incorporated, 1 edition, 2008.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chan, M. gym-maze. https://github.com/
MattChanTK/gym-maze, 2019.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2020.

da Silva, F. L., Costa, A. H. R., and Stone, P. Building
self-play curricula online by playing with expert agents
in adversarial games. In 8th Brazilian Conference on
Intelligent Systems, BRACIS ’19, pp. 479–484, 2019.

Dendorfer, P., Osep, A., and Leal-Taixé, L. Goal-GAN:
Multimodal trajectory prediction based on goal position
estimation. In Proceedings of the 15th Asian Conference
on Computer Vision (ACCV’20), 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML ’17), volume 70, pp. 1126–1135, 2017.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse curriculum generation for reinforce-
ment learning. In Proceedings of the 1st Conference
on Robot Learning (CoRL’17), volume 78, pp. 482–495,
2017.

Hallak, A., Castro, D. D., and Mannor, S. Contextual
markov decision processes. arXiv:1502.02259 [stat.ML],
2015.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Comput. Surv., 50(2):21:1–21:35, 2017.

Klink, P., D’Eramo, C., Peters, J., and Pajarinen, J. Self-
paced deep reinforcement learning. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Proceedings of the 33rd Conference on Neural Informa-
tion Processing Systems (NeurIPS’20), 2020.

Kumar, M. P., Packer, B., and Koller, D. Self-paced learn-
ing for latent variable models. In Lafferty, J., Williams,
C., Shawe-Taylor, J., Zemel, R., and Culotta, A. (eds.),
Proceedings of the 24th International Conference on
Advances in Neural Information Processing Systems
(NeurIPS’10), pp. 1189–1197, 2010.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In Proceedings of the
International Conference on Learning Representations
(ICLR’16), 2016. Published online: iclr.cc.

Matiisen, T., Oliver, A., Cohen, T., and Schulman,
J. Teacher-student curriculum learning. CoRR,
abs/1707.00183, 2017.

Modi, A., Jiang, N., Singh, S. P., and Tewari, A. Markov
decision processes with continuous side information. In
Algorithmic Learning Theory (ALT’18), volume 83, pp.
597–618, 2018.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot hand.
arXiv:1910.07113 [cs.LG], 2019.

Rice, J. The algorithm selection problem. Advances in
Computers, 15:65–118, 1976.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. In Bach, F.
and Blei, D. (eds.), Proceedings of the 32nd International
Conference on Machine Learning (ICML’15), volume 37,
pp. 1889–1897. Omnipress, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347 [cs.LG], 2017.

Seo, Y., Lee, K., Gilaberte, I. C., Kurutach, T., Shin, J., and
Abbeel, P. Trajectory-wise multiple choice learning for
dynamics generalization in reinforcement learning. In
Proceedings of the 33rd Conference on Neural Informa-
tion Processing Systems (NeurIPS’20), 2020.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L.,
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneer-
shelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mas-
tering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., and
Lindauer, M. Learning heuristic selection with dynamic
algorithm configuration. In Workshop on Bridging the
Gap Between AI Planning and Reinforcement Learning
(PRL@ICAPS’20), October 2020.

Such, F. P., Rawal, A., Lehman, J., Stanley, K. O., and
Clune, J. Generative teaching networks: Accelerating

SPaCE

neural architecture search by learning to generate syn-
thetic training data. In III, H. D. and Singh, A. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning (ICML’20), volume 98. Proceedings of
Machine Learning Research, 2020.

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam,
A., and Fergus, R. Intrinsic motivation and automatic cur-
ricula via asymmetric self-play. In 6th International Con-
ference on Learning Representations (ICLR ’18), 2018.

Thomaz, A. L. and Breazeal, C. Reinforcement learning
with human teachers: Evidence of feedback and guidance
with implications for learning performance. In Proceed-
ings of the Twenty-first National Conference on Artificial
Intelligence (AAAI’06), pp. 1000–1006, 2006.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and
Abbeel, P. Domain randomization for transferring deep
neural networks from simulation to the real world. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’17), pp. 23–30, 2017.

Turchetta, M., Kolobov, A., Shah, S., Krause, A., and Agar-
wal, A. Safe reinforcement learning via curriculum in-
duction. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems 2020, (NeurIPS’20), 2020.

Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka,
I., Huang, A., Sifre, L., Cai, T., Agapiou, J., Jaderberg,
M., Vezhnevets, A., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T., Gülçehre,
Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft II using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. POET:
open-ended coevolution of environments and their opti-
mized solutions. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO’19, 2019.

Zhang, Y., Abbeel, P., and Pinto, L. Automatic curricu-
lum learning through value disagreement. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.
(eds.), Proceedings of the 33rd Conference on Neural
Information Processing Systems (NeurIPS’20), 2020.

CHAPTER 13
CARL: A Benchmark for Contextual and

Adaptive Reinforcement Learning

The content of this chapter has been presented at a workshop as:

C. Benjamins, T. Eimer, F. Schubert, A. Biedenkapp, B. Rosenhan, F. Hutter, and M. Lin-
dauer (2021). “CARL: A Benchmark for Contextual and Adaptive Reinforcement Learn-
ing”. In: Workshop on Ecological Theory of Reinforcement Learning (EcoRL@NeurIPS’21).

Project Idea. The benchmark collection was proposed by Marius Lindauer. André
Biedenkapp proposed to use physical properties as considered context features. Theresa
Eimer and Carolin Benjamins jointly designed the context spaces for all considered en-
vironments. Theresa Eimer and Carolin Benjamins proposed most benchmarks. André
Biedenkapp proposed the vehicle racing benchmark. Frederik Schubert proposed the
ToadGAN benchmark.

Implementation and experimentation. Carolin Benjamins and Theresa Eimer jointly
carried out implementation, dividing the work equally. André Biedenkapp implemented the
vehicle racing benchmark. Frederik Schubert provided the ToadGAN benchmark. Carolin
Benjamins and Theresa Eimer carried out experiments with support from Frederik Schubert
for the ToadGAN benchmark.

Paper writing. Carolin Benjamins and Theresa Eimer wrote the initial draft. André
Biedenkapp revised and edited the draft with support from Marius Lindauer. Frank Hutter
and Bodo Rosenhahn provided feedback for the final revision. André Biedenkapp added
the discussion of problems and challenges for learning general reinforcement learning
agents with feedback from all authors. The paper was finalized by Carolin Benjamins and
André Biedenkapp.

CARL: A Benchmark for
Contextual and Adaptive Reinforcement Learning

Carolin Benjamins∗1, Theresa Eimer∗1, Frederik Schubert1, André Biedenkapp2,
Bodo Rosenhahn1, Frank Hutter2 3 and Marius Lindauer1

1Leibniz University Hanover 2University of Freiburg 3Bosch Center for Artificial Intelligence
{benjamins,eimer}@tnt.uni-hannover.de

Abstract

While Reinforcement Learning has made great strides towards solving ever more
complicated tasks, many algorithms are still brittle to even slight changes in their
environment. This is a limiting factor for real-world applications of RL. Although
the research community continuously aims at improving both robustness and gen-
eralization of RL algorithms, unfortunately it still lacks an open-source set of
well-defined benchmark problems based on a consistent theoretical framework,
which allows comparing different approaches in a fair, reliable and reproducible
way. To fill this gap, we propose CARL, a collection of well-known RL environ-
ments extended to contextual RL problems to study generalization. We show the
urgent need of such benchmarks by demonstrating that even simple toy environ-
ments become challenging for commonly used approaches if different contextual
instances of this task have to be considered. Furthermore, CARL allows us to
provide first evidence that disentangling representation learning of the states from
the policy learning with the context facilitates better generalization. By providing
variations of diverse benchmarks from classic control, physical simulations, games
and a real-world application of RNA design, CARL will allow the community to
derive many more such insights on a solid empirical foundation.

1 Introduction

Reinforcement Learning (RL) has driven progress in areas like game playing [53, 4], robot manipu-
lation [27], traffic control [2], chemistry [65] and logistics [28]. At the same time, RL has shown
little to no success in real-world deployment in important areas such as healthcare or autonomous
driving. This is largely explained by the fact that modern RL agents are often not primarily designed
for generalization, making them brittle when faced with even slight variations in their environment
[61, 30, 33]. Since we cannot assume that RL agents will be able to observe all kinds of states and
transitions for varying instances of tasks, these agents need to become more adaptable and robust.

To address this limitation, there is increased interest in Meta-RL approaches, aiming to improve
learning across different tasks [15, 51, 12, 58, 32, 24, 38, 13]. The focus mostly lies on increasing
the sample efficiency of agents, few-shot transfer of policies to new tasks or on solving harder tasks.
Similarly, Robust-RL addresses generalization to smaller variations in the environment by ensuring
a stable performance under task modelling errors or noisy observations [37, 40, 63]. While these
directions are important in making RL more broadly and robustly applicable, with CARL we aim for
providing the foundations of more general RL agents. Optimally, these agents should be capable of
zero-shot transfer to prior unseen environments and changes in transition dynamics while interacting
with an environment [62, 19, 60, 1, 55].

∗Equal Contribution, Contact Author

Preprint. Under review.

ar
X

iv
:2

11
0.

02
10

2v
2

 [
cs

.L
G

]
 1

1
O

ct
 2

02
1

(a) Example of a configurable CARL environment (b) ProcGen Maze instance

Figure 1: (a) CARL makes the context defining the behavior of the environment visible and con-
figurable. This way we can train for generalization over different instances (contexts) of the same
environment. Here, we show all context features for Brax’ Fetch [17] and sketch possible instantia-
tions by setting the context features to different values. Fetch is embedded in the CARL environment
controlling the instances. (b) A sampled ProcGen Maze instance.

Unfortunately, there is a lack of established benchmarks for studying the notion of generalization. In
fact, we often observed that researchers employed hand-crafted modifications to commonly accepted
tasks to enable benchmarking of Meta-RL. For example, multiple different modifications to the well
known CartPole task, in which an agent needs to learn to balance a pole on top of a movable cart,
have been used in different publications to show generalization abilities of agents [52, 23, 13]. In
particular, different pole lengths are used to study whether a general agent can balance poles that
it has not seen during training. However, the pole lengths or distributions over pole lengths vary
in different publications, hindering comparisons and reproducibility. With CARL we provide such
distributions to facilitate better comparability and reproducibility for further research.

Our goal is to address all these issues by proposing CARL, a benchmark library allowing to reliably
and reproducibly study general RL agents. To this end, CARL has well defined distributions
and bounds over the space of environments to generalize to and poses a low barrier of entry in
terms of compute. To build on a sound theoretical foundation, we make use of the contextual
Reinforcement Learning paradigm (cRL) [20] and build contextual extensions to environments from
the literature including OpenAIs Gym [7] and the Brax physics engine [17]. The notion of context
in the environment enables us to define a variety of tasks and distributions of tasks which an agent
can encounter during training. Changes in tasks can be as simple as defining different goal states,
more complex by changing the transition dynamics (as the changes in pole length for the CartPole
environment mentioned above) or a combination thereof, leading to varying levels of difficulty. Most
importantly and wherever possible, we base the notion of context on real-world physical properties,
such as gravity, friction or mass of an object, see Figure 1a for an example of a contextually extended
environment. Those properties are intuitive to understand and individually adjustable.

The proposed benchmark enables research on generalization capabilities of RL agents in cases where
agents are explicitly or implicitly exposed to the context at hand but also in cases where the context is
hidden and potentially has to be learned. In particular, we demonstrate the usefulness of our proposed
CARL benchmark library by evaluating and discussing:

1. The influence of varying context and the importance of contexts in deep RL by increasing
learning efficiency via available knowledge of task variations,

2. The generalization capability of trained agents to in-distribution environments,

3. The generalization capability of trained agents to out-of-distribution environments, and

4. The big next challenges for general RL which can be studied in principled way with CARL.

2 CARL’s Theoretical Foundation: Contextual RL (cRL)

A basic MDP is a 4-tupleM := (S,A, T ,R) consisting of a state space S, an action space A, a
transition function T : S×A → S and a reward functionR : S×A → R. This abstraction, however,
views reward and transition function as fixed, constraining the environment to a single instantiation

2

without room for variations we would potentially see in real-world applications. In the following we
will refer to such a particular instantiation of an environment as an instance.

CARL’s theoretical foundation is build upon contextual RL. It extends the MDP formulation of
RL problems to allow for the notion of several instances. For example, an instance i ∼ I sampled
from a distribution of instances I could determine a different goal position in a maze problem (e.g.,
Figure 1b) or different gravity conditions (e.g., moon vs. earth) for an airborne navigation task. We
refer to the information defining the instance at hand as the instance’s context ci. We note that ci is
sometimes known to the agent (e.g., a broken leg), sometimes measured with noise (e.g., friction of
floor), or maybe even completely unobservable (e.g., mass of an external object). With CARL we
provide a variety of such contexts that can influence an agent’s learning and generalization capabilities.
We further provide bounds and distributions of these contexts to facilitate better reproducibility and
comparability for future research.

In order to incorporate context into the MDP definition, we use contextual MDPs (cMDPs) [20, 36, 5].
A contextual MDPMI is a collection of MDPsMI := {Mi}i∼I withMi := (S,A, Ti,Ri). This
formulation assumes a common state and action space as the underlying task stays the same; however,
in eachMi an agent will potentially only be able to reach only a subset of states Si ⊆ S. Transition
and reward functions may vary between instances.

There are several different tasks of interest concerning cMDPs, all of which define an optimal
policy π∗ for a given cMDP in different ways. An example would be the focus on generalization
performance where π∗ maximizes the expected return across a test set ITest drawn from the same
distribution as the training set ITrain with discount factor γ [5]:

π∗ ∈ arg max
π∈Π

1

|ITest|
∑

i∈ITest

T∑

t

γtRi(st, π(st)), (1)

where T corresponds to the maximal episode length. In policy transfer, the focus is on the performance
across a set of transfer instances specifically, which is often relatively small but rather heterogeneous.
Here, the test instance set ITest can largely differ from ITrain, but the optimal policy would still
maximize the mean reward across it just as above. On the other hand, only the final performance
on a single, very hard instance iH might be important and all other instances are only used to work
towards that goal. That could be the case in, e.g., curriculum learning. In that case, we use the
available training set ITrain to find a π∗ such that:

π∗ ∈ arg max
π∈Π

∫

ITrain

P (i)
T∑

t

γtRi(st, π(st))di, (2)

where the probability P (i) of considering an instance i is skewed towards iH over time.

cRL in CARL subsumes several other related formulations. For example, Goal-based RL [16] uses
the same idea of conditioning the reward function of each task on its specific goal, but is more limited
in scope as the environment dynamics stay static throughout. Block MDPs [11], on the other hand,
focus on state representations for generalization. The task here is to learn a representation of the
observable space of a family of environments that enables generalization across that family. Just as
in cRL, reward functions and transition dynamics both may vary with the family, but the focus is
shifted away from learning a policy towards learning a meaningful representation. While the original
block MDP did not include specifics about how reward and transition functions differ within the
environment family, contextual block MDPs provide the context as additional information [62]. As
we have direct access to the context information on all CARL benchmarks, the base case provides
context as in a cMDP. However, users are free to switch to a hidden context version that requires a
representation learning as in a block MDP.

3 Related Work

Benchmarks for generalization exist in different sub-fields of RL, each with its own focus. MDP
Playground [43] and bsuite [39] both contain small scale benchmarks intended to test specific qualities
in RL algorithms (e.g., resistance to noise), both for the purpose of development and comparison
between different algorithms. In contrast, the focus of CARL is less on assessing RL algorithms

3

Table 1: Comparison of the CARL Benchmark collection to related Benchmarks. Benchmarks are
rated as true (4), somewhat true (l) or false (8) in each category.

Benchmark Open Source Explicit Context Cheap Training2 Diverse Tasks Varying T &R
MDPP [43] l l 4 4 4
bsuite [39] 4 8 4 4 8
ALE [31] 4 8 l l 8
ProcGen [10] 4 8 8 4 8
Alchemy [57] 4 l 8 l 4
Meta-world [61] 8 4 8 l l
MTEnv [54] 8 4 8 l l
Safety Gym [45] 8 8 8 l 4
TMA [47] 4 l 8 l 4
MiniGrid [8] 4 8 4 4 l
NetHack [26] 4 l 8 4 8
MiniHack [49] 4 l 4 4 4

CARL (ours) 4 4 4 4 4

against each other on fixed MDPs but in terms of their generalization capabilities to variations of
MDPs. Benchmarks such as in MDP Playground and bsuite provide valuable feedback for researchers
in development before they tackle more complex and opaque problems like the ones we provide.

In game simulations, the Arcade Learning Environment (ALE) has made an effort to include some
challenges geared towards policy transfer and generalization in their “flavours” [31]. However, the
bigger challenge in this field is ProcGen [10]. It contains several arcade-style games with procedurally
generated level structures. In a similar way, Alchemy [57] also provides a procedurally generated
benchmark. Even though it only contains a single task, this task is very complex compared to the
games in ProcGen on their own. Both are challenging benchmarks that require generalization from
state observations only. We believe that this approach is less valuable in many applications other than
in games, because most often additional information is available. Additionally, while it is possible to
specify levels with certain attributes in Alchemy, these procedurally generated benchmarks provide a
far less fine-grained control over their context than the diverse set of benchmarks in CARL where
users can directly specify their instances and control the similarity of their sampled contexts. CARL’s
flexibility allows for a better characterization of agents’ generalization capabilities as well as the
possibility of adding custom curricula for each environment.

Multi-task learning requires some amount of generalization, although here the focus is on accelerating
the acquisition of skills on completely new tasks. For example, Meta-world [61] focuses on skill
transfer in a few-shot setting, providing standardized test sets of different sizes. Its tasks are based on
MuJoCo, however, which requires a paid license for large scale experiments, is comparatively much
more expensive to run than the Brax physics simulator (used as part of CARL) and thus limits the
accessibility of the benchmark. Meta-world is also integrated in MTEnv [54]. MTEnv provides a
strong benchmark for multi-task learning as well as representation learning. CARL can accommodate
multi-task learning as well, but the focus is on the multitude of context options available in each of
our environments and therefore generalization across different transition dynamics.

There also exist more, related benchmarks in specialized subfields of RL. Safety Gym [45] is targeted
towards developing and testing algorithms for risk-sensitive domains. Also, TeachMyAgent [47] is a
benchmark for teacher-student based curriculum learning. Both are well suited to the needs of their
communities, but also narrow in their scope. While CARL currently does not provide explicit contexts
for either safety or curriculum learning, it could be extended to cover both domains and will be
especially relevant for any curriculum learning algorithms not using the teacher-student framework.

Overall, CARL is the only benchmark library that is completely open-source, allows for fine-grained
control of context on a diverse set of benchmarks and thus allows to study the next generation of
general RL agents in a reliable and reproducible way. We summarize this comparison in Table 1.

2“Cheap Training” here refers the total runtime of one agent. This takes into account both to the computational
cost of the environment itself as well as the number of training steps necessary to expect results.

4

4 The Role of Context in Deep RL and CARL

One important distinction that needs to be made in contextual RL concerns the ease of identifiability
of context information. Here we broadly distinguish between explicit contexts, i.e. directly available
information provided by the environment, and implicit contexts, i.e. abstract information hidden in
the available state. While explicit contexts can directly be used by agents to infer the underlying
transition dynamics, implicit contexts potentially need to be disentangled from the provided state. In
particular, we argue that deep RL research commonly already makes use of the notion of contexts.
This context however is only present in an implicit form in the state, thereby entangling representation
learning capabilities with generalization capabilities of a policy.

For example in the ProcGen maze environment (see Figure 1b), an agent can observe the whole maze
and is tasked with guiding a mouse from the bottom left corner to the cheese. The maze structure,
texture of the walkable tiles and the location of the goal (i.e. cheese) are randomly generated for each
new instance. Note that the wall texture never changes and that observations are only available as
images. Thus, a capable RL agent could learn to directly extract the location of the mouse and cheese
as well as classify which tiles are (not) walkable. This extracted information then allows the agent
to perform contextual RL. In particular, Eimer et al. [13] showed that providing an agent with the
coordinates of the agent and goal states as well as a flattened vector representation of a maze allows
agents to make use of this context information to transfer behaviours between similar mazes.

A similar argument can be made for more complex environments where a “level” might not be fully
observable. For example, in the game Super Mario Bros., see Figure 2d, Mario needs to reach the
goal on the right side of the screen while avoiding enemies. If an agent is made aware of the enemy
types appearing in the level, through the use of context, this information can be used downstream in
the policy net to learn appropriate offensive or defensive behaviour. Another direct context feature
could be an indicator which special ability an agent can use, potentially leading to different behaviour
when Mario picked up a power-up.

We argue that benchmarks using procedural content generation are more suitable for evaluating the
representation learning capabilities of agents rather than their ability to generalize. In fact, the authors
of ProcGen [10] used it to determine that the IMPALA-CNN [14] architecture is more capable than
the Nature-CNN [34] architecture for their considered setup. Here, we propose benchmarks that
provide a ground truth for the changes in underlying transition dynamics to study generalization
while also containing more complex environments that can be used to study representation learning.
Disentangling these two important tasks will enable researchers to target each more efficiently and
ultimately facilitates the development of new RL algorithms targeted towards generalization. We use
CARL to demonstrate that an agent making use of context information during training can learn to
solve instances quicker and generalizes better than those that have to infer this information themselves
(see Section 6.2). This gives additional evidence that disentangling learning of such contextual
features from learning the behaviour policy can improve the generalization capabilities of RL agents
(see Appendix D.1 for further discussion).

5 The CARL Benchmarks

In order to gain insight on how the context and its augmentation influences the agent’s learning and
behavior, we provide several benchmarks in CARL. As first benchmarks we include and contextually
extend classic control and box2d environments from OpenAI Gym [7], Google Brax’ walkers [17], a
RNA folding environment [48] as well as Super Mario levels [3, 50]. See Figure 2 for an overview
of included environments. Although each environment has different tasks, goals and mechanics,
the behavior of the dynamics and the rewards is influenced by physical properties. A more detailed
description of the environments is given in Appendix A. In the following we will discuss the properties
of the CARL Benchmarks which are summarized in Figure 3.

State Space Most of our benchmarks have vector based state spaces that can either be extended
to include the context information or not. The notable exceptions here are CARLVehicleRacing
and CARLToadGAN, which exclusively use pixel-based observations. The size of the vector based
spaces range from only two state variables in the CARLMountainCar environments to 299 for the
CARLHumanoid environment.

5

(a) Classic Con-
trol [7]

(b) 2D Physics
Simulation [7]

(c) Brax 3D Physics Simula-
tion [17]

(d) Super Mario [3, 50]
& RNADesign [48]

Figure 2: CARL Environments; listed from top to bottom. (a) OpenAI Gym’s [7] Acrobot and
Pendulum, CartPole, MountainCar. (b) OpenAI Gym’s [7] BipedalWalker, LunarLander, CarRacing.
(c) Brax [17] Ant and HalfCheetah, Fetch and Humanoid, Grasp and UR5E. (d) Super Mario [3, 50]
and RNADesign [48].

Figure 3: Characteristics of each environment of the environment families showing the action space
size, state space size (log-scale), number of context features (ncf), the number of context features
directly shaping the reward (ncf,reward) and the ones changing the dynamics (ncf,dynamics). All
axes are scaled to the global extrema and the state space size is additionally on a logarithmic scale.

Action Space We provide both discrete and continuous environments, with six requiring discrete
actions and the other ten continuous ones. The actions range from a single dimension to 19.

Quality of Reward We cover different kinds of reward signals with our benchmarks, ranging
from relatively sparse step penalty style rewards where the agent only receives a reward of −1
each step to complex composite reward functions in e.g. the Brax-based environments. The latter
version is also quite informative, providing updates on factors like movement economy and progress
towards the goal whereas the former does not let the agents distinguish between transitions without
looking at the whole episode. Further examples for sparse rewards are the CARLCartPoleEnv and
CARLVehicleRacingEnv.

Context Spaces While the full details of all possible context configurations can be seen in Ap-
pendix G, for brevity here we only discuss the differences between context spaces and the configu-
ration possibilities they provide. Depending on the environment the context features have different
influence on the dynamics and the reward. Of all 131 registered context features, 98 % influence
the dynamics. This means that if a context feature is changed the transition from one state into the
other is changed as well. Only 5 % of the context features shape the reward. Most context features
(87 %) are continuous, the rest is categorical or discrete. With the explicit availability of context
features CARL lends it self to study the robustness of agents by adding noise on top of the specific
context features. Further, the provided bounds and sampling distributions of the context spaces that
are provided as part of CARL enable better comparability and reproducibility for future research
efforts in the realm of general RL agents.

6

Summary Comparing our benchmarks along these attributes, we see a wide spread in most of them
(Figure 3). For the first iteration of CARL, we focused on fairly cheap-to-run problems to lower
the barrier of entry as much as possible. Nevertheless, as CARL will further grow over time, the
diversity of benchmarks will further increase and we will also include harder benchmarks. Already
now, CARL provides a benchmarking collection that tasks agents with generalizing in addition to
solving the tasks most common in modern RL while providing a platform for reproducible research.

6 Experiments

Having discussed CARL’s theoretical foundation as well as its initial set of benchmarks, we now
study several first research questions regarding the effects of context. Our experiments are designed
to demonstrate that we can use CARL to gain meaningful insights into the Meta-RL setting even on
simple environments. Details about the hyperparameter settings and used hardware for all experiments
are listed in Appendix B. In each of them, we train and evaluate on 5 different random seeds and a set
of 100 sampled contexts. All experiments can be reproduced using the scripts we provide with the
benchmark library at https://www.github.com/automl/CARL.

(a) Q1: Different context distributions (b) Q2: Visible vs. hidden context for σrel = 0.5

Figure 4: Training performance of a DDPG agent on CARLPendulumEnv with (a) different context
distributions (Q1) and (b) the effect of visible context (Q2). σ is the standard deviation for sampling
the context. The context feature dt refers to the observation interval length, g to gravity, l to the pole
length, m to the pole mass and max_speed to the maximal speed of CARLPendulumEnv.

6.1 Q1: How do Context Features Influence an Agent’s Training Performance?

In order to gain an intuition on how context features influence an agent’s training performance, we
evaluate a DDPG [29] agent on the well known Pendulum task from OpenAI gym [7]. Through
CARL, we can vary the context features gravity (g), integration time step (dt), pendulum mass (m)
and length (l) as well as the maximal speed (see Figure 4). In Equation A.1 in the appendix, we show
the dynamic system of Pendulum.

To understand how context features influence an agent’s performance, for each considered context
feature we sample a set of 100 instances {ik}k=1,...,100 for each task within the ranges provided by
the environment specification while keeping the others context features fixed to their default. Each
context feature c of an instance is sampled from a normal distribution, centered around its default value
such that c ∼ N (cdef, σrel · cdef) where cdef is the default value defined in the original environment
and σrel is the relative standard deviation. Here we evaluate three relative standard deviations
σrel ∈ {0.1, 0.25, 0.5} to show the impact of varying similarities of the instance distribution.

Further, we treat the context as hidden, only implicitly noticeable to the agent through the observation
of the state features. While small changes in the context barely have an impact on the training
performance of the agent, large variations of a single context feature can make the learning task
challenging (see Figure 4a). This gives evidence that even simple, cheap-to-run environments can
provide an agent with challenging learning tasks, depending on the level of generalization required.
Note, this style of training with implicit contexts is currently the default setting for training on
vision-based environments such as ProcGen (see Section 4). We refer to a the appendix Section C
for a first impression on the influence of context on a vision-based environment, CARLMarioEnv,
showing similar insights as for Pendulum.

7

6.2 Q2: Are Explicit Context Features Necessary to Learn General Agents?

To answer this question we first use the same agent and environment setup, i.e. DDPG with the
same hyperparameters on Pendulum and the widest context distribution (σrel = 0.5). Our results (see
Figure 4b) suggest that explicitly making agents aware to the change in transition dynamics generally
results in a better performance when a generalization over strong deviations in context features is
required. This is clearly observable by comparing results for context features that have a higher
impact on the final performance, such as gravity (g), pole length (l) and pole mass (m). For a fairly
low impact context feature integration time step (dt), making the context visible results in a lower
standard deviation and a slightly higher final reward. Still, varying dt led to minor loss of reward
compared to original Pendulum task (black curve in Figure 4a). For the max_speed context, both
training variants struggle to achieve as high a reward. In the early training stages, the agent trained
with access to the context achieved a lower reward than its counterpart. However, in the latter half it
could catch up and slightly improve over the context-oblivious agent.

Figure 5: Training performance on CARLMarioEnv where
the inertia of Mario is varied .

One context feature that heavily in-
fluences the dynamics in CARLMar-
ioEnv environment is the inertia of
Mario. In Figure 5, we see that
a higher variation of the inertia im-
proves the performance of the PPO
agent and leads to faster training. This
effect can be explained by the influ-
ence of Mario’s inertia on the explo-
ration of the agent (i.e. a lower inertia
makes it easier for the agent to move).

An interesting question for future
work is how different context features
change the learning behavior of agents
and to which degree generalization is
impacted by it.

6.3 Q3: To What Extent Can We Transfer a Learned Policy to a New Context?

To gain insights to what extend the agent is able to transfer a learned policy to a new context we
create the “Landing in Space” scenario based on the well known LunarLander environment. To this
end, a DQN [35] agent is trained on a rather narrow context distribution. For testing, we then place
this agent in a new context which might not have been observed during training.

Landing in Space In this task, the agent is challenged to land a spacecraft on seen as well as unseen
planets. We model the different planets by only adjusting the gravities by a well-defined normal
distribution and train the LunarLander to land on smaller planets. The train distribution is centered
on Mars (µ = 3.7 m/s2) and the standard deviation (σ = 1.45 m/s2) is chosen such that Mars and
Moon are considered as in-distribution whilst Pluto, Earth, Neptune and Jupiter are considered as
unseen and out-of-distribution, see Figure 6a. Here we deem planets as in-distribution if their gravity
is within the 95 %-interval of the training distribution. For training, we sample 100 gravities from
this distribution. We use 5 random seeds for training and testing and collect 100 episodes on each
planet for both cases where the context is hidden and where the context feature gravity is visible to
the agent. Note that although for each test episode on a planet the gravity is fixed and the same, the
LunarLander environment generates different initial starting conditions and landscapes to land on.
For this reason the lander might still fail to safely land and crash in some cases. To capture crashes
and to distinguish them from successful but suboptimal landings, we increase the game over penalty
from −100 to −10000 during testing.

In Distribution Generalization As to be expected, the test performances for landing on Mars
and Moon are most similar to the Mars-centered training distribution. Agents trained with access
to the gravity feature receive higher rewards and less crashes on in-distribution planets than their
context-oblivious counterparts, as shown at the bottom of Figure 6b .

8

(a) Train distribution and test instances (planets) (b) Reward achieved on different instances

Figure 6: “Landing in Space” scenario: (a) Mars-centered gravity train distribution with in- and
out-of-distribution test instances (planets). (b) Resulting rewards for landing on different planets.

Out of Distribution Generalization A more interesting and understudied question in RL is the ex-
tend to which agents are capable of generalizing to out-of-distribution tasks. With CARLs possibility
to define particular distributions over context features, we can study this question in detail. The agent
fails least often on Pluto since (a) it has a gravity still close to the training distribution and (b) has a
low gravity. The lower the gravity, the longer the timeframe to land is which creates easier landing
scenarios. We can further note that fewer runs on Pluto lead to as high rewards as on in-distribution
planets Moon and Mars. This is likely due to agents wasting fuel by anticipating a harder landing,
thus burning more fuel to counteract. Interestingly, even for more difficult out-of-distribution planets
such as Earth and Neptune we can observe positive landing results for both agents trained with and
those without access to the context. However, test performance deteriorates due to more frequent
crashing on more high-gravity planets. While we have seen some capability of trained agents to
transfer even to out-of-distribution environments, we do not expect vanilla agents to generalize to
highly different environments.

7 Further Open Challenges Enabled by CARL

Although these experiments only give a first impression on how CARL can be used to gain novel
insights into RL agents, we see many more possibilities for future research involving CARL. We
discuss six open challenges and how CARL could be used to tackle these. (I) As CARL provides
ground truths for all considered context features it is suitable to study novel agents that separate
representation learning from policy learning. (II) CARL will be useful in studying RL agents for
uncertain dynamics, by easily perturbing context features. (III) It is particularly suitable for training
and evaluation of continual RL methods by continuously adapting context distributions over time.
(IV) The ground truth on contexts can also be used to study explainability and interpretability methods
of deep RL. (V) With the complexity of modern RL methods, they have become very sensitive to
their hyperparameters. CARL’ flexibility and focus on generalization enables research into AutoRL
methods that optimize agents for generality. (VI) Finally, it is an open question for safe RL whether
context information could contribute to decide whether policies are applicable to unseen instances of
an environment. Please find a detailed discussion in Appendix D.

8 Limitations and Societal and Ethical Implications

Although in principle some environments of CARL allow to study the impact of context on vision-
based agents, our analysis focuses on featurized environments. Thus, we did not study different
ways of directly exposing context information to vision-based agents which would require novel
architectures to handle this context. We see such experiments and design of novel agents as future
work that can follow from using CARL.

Our experimentation limits itself to static contexts and does not consider learning with dynamic
contexts or continual learning. We leave this for future studies since generalization to fixed contexts
already poses a major challenge. Lastly, we limited our experiments on varying individual context
features. Off-the-shelf agents are not yet designed to be adaptive to contexts. Varying individual

9

features already posed a challenge to learn with for the considered agents. With progress in the field
we hope that agents will become more flexible and can handle ever more changes in environments.

We foresee no new direct societal and ethical implications other than the known concerns regarding
autonomous agents and RL (e.g., in a military context). However, by trying to lower the barrier of
entry for Meta-RL research we hope to i) reduce the required compute for future research, ii) facilitate
novel designs of RL agents and iii) reach a more diverse research community.

9 Conclusion

We introduced CARL, a highly flexible benchmark library for enabling studies on generalizable
RL via task variations and context features. By employing contextual RL, CARL extends common
RL environments by making the context configurable and potentially visible. Besides providing
a ready-to-use benchmark library and discussing the role of context in general RL, we ran first
experiments to analyse its aspects. Our main insights are that (i) the more the context is varied, the
more difficult learning becomes and (ii) making the agent context-aware can facilitate training and
increase generalization. In addition, CARL is suitable to study generalization in detail by being able
to carefully set instance and context distributions. We provide empirical evidence that current agents
can generalize well on in-distribution test instances but fail to do so on out-of-distribution settings. In
conclusion, we believe that CARL will be a valuable benchmark to advance on open challenges like
generalizing RL, representation and continual learning, safe RL and AutoRL.

Acknowledgements

Carolin Benjamins, Theresa Eimer and Marius Lindauer acknowledge funding by the German
Research Foundation under LI 2801/4-1. André Biedenkapp and Frank Hutter acknowledge funding
by the Robert Bosch GmbH.

References
[1] Abdolshah, M., Le, H., George, T. K., Gupta, S., Rana, S., and Venkatesh, S. (2021). A new

representation of successor features for transfer across dissimilar environments. In Meila, M.
and Zhang, T., editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 1–9. PMLR.

[2] Arel, I., Liu, C., Urbanik, T., and Kohls, A. (2010). Reinforcement learning-based multi-agent
system for network traffic signal control. IET Intelligent Transport Systems, 4(2):128–135.

[3] Awiszus, M., Schubert, F., and Rosenhahn, B. (2020). TOAD-GAN: Coherent style level
generation from a single example. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16.

[4] Badia, A., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z., and Blundell,
C. (2020). Agent57: Outperforming the atari human benchmark. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 507–517. PMLR.

[5] Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., and Lindauer, M. (2020). Dynamic
Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework. In Lang, J.,
Giacomo, G. D., Dilkina, B., and Milano, M., editors, Proceedings of the Twenty-fourth European
Conference on Artificial Intelligence (ECAI’20), pages 427–434.

[6] Biedenkapp, A., Marben, J., Lindauer, M., and Hutter, F. (2018). CAVE: Configuration assess-
ment, visualization and evaluation. In Proceedings of the International Conference on Learning
and Intelligent Optimization (LION), Lecture Notes in Computer Science. Springer.

[7] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym. CoRR, abs/1606.01540.

[8] Chevalier-Boisvert, M., Willems, L., and Pal, S. (2018). Minimalistic gridworld environment for
openai gym. https://github.com/maximecb/gym-minigrid.

10

[9] Co-Reyes, J. D., Miao, Y., Peng, D., Real, E., Le, Q. V., Levine, S., Lee, H., and Faust, A. (2021).
Evolving reinforcement learning algorithms. In Proceedings of the International Conference on
Learning Representations (ICLR’21). OpenReview.net. Published online: iclr.cc.

[10] Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. (2019). Leveraging procedural generation to
benchmark reinforcement learning. arXiv preprint arXiv:1912.01588.

[11] Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudík, M., and Langford, J. (2019).
Provably efficient RL with rich observations via latent state decoding. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 1665–1674.
PMLR.

[12] Duan, Y., Schulman, J., Chen, X., Bartlett, P., Sutskever, I., and Abbeel, P. (2016). Rl$ˆ2$: Fast
reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779.

[13] Eimer, T., Biedenkapp, A., Hutter, F., and Lindauer, M. (2021). Self-paced context evaluation
for contextual reinforcement learning. In Meila, M. and Zhang, T., editors, Proceedings of the
38th International Conference on Machine Learning (ICML’21), volume 139 of Proceedings of
Machine Learning Research, pages 2948–2958. PMLR.

[14] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V.,
Harley, T., Dunning, I., Legg, S., and Kavukcuoglu, K. (2018). IMPALA: scalable distributed
deep-rl with importance weighted actor-learner architectures. In Dy, J. and Krause, A., editors,
Proceedings of the 35th International Conference on Machine Learning (ICML’18), volume 80,
pages 1406–1415. PMLR.

[15] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation
of deep networks. In Precup, D. and Teh, Y., editors, Proceedings of the 34th International
Conference on Machine Learning (ICML’17), volume 70, pages 1126–1135. Proceedings of
Machine Learning Research.

[16] Florensa, C., Held, D., Geng, X., and Abbeel, P. (2018). Automatic goal generation for
reinforcement learning agents. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, volume 80 of Proceedings of Machine Learning Research, pages 1514–
1523. PMLR.

[17] Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., and Bachem, O. (2021). Brax -
A differentiable physics engine for large scale rigid body simulation. CoRR, abs/2106.13281.

[18] Fu, H., Tang, H., Hao, J., Chen, C., Feng, X., Li, D., and Liu, W. (2021a). Towards effective
context for meta-reinforcement learning: an approach based on contrastive learning. In Proceedings
of the Conference on Artificial Intelligence (AAAI’21), pages 7457–7465. AAAI Press.

[19] Fu, X., Yang, G., Agrawal, P., and Jaakkola, T. (2021b). Learning task informed abstractions.
In Meila, M. and Zhang, T., editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 3480–3491. PMLR.

[20] Hallak, A., Castro, D. D., and Mannor, S. (2015). Contextual markov decision processes.
arXiv:1502.02259 [stat.ML].

[21] J. Parker-Holder, V., Nguyen, S. J., and Roberts (2020). Provably efficient online hyperparameter
optimization with population-based bandits. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H., editors, Proceedings of the 33rd International Conference on Advances in Neural
Information Processing Systems (NeurIPS’20), volume 33, pages 17200–17211.

[22] Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W., Donahue, J., Razavi, A., Vinyals, O.,
Green, T., Dunning, I., Simonyan, K., Fernando, C., and Kavukcuoglu, K. (2017). Population
based training of neural networks. arXiv:1711.09846 [cs.LG].

[23] Kaddour, J., Saemundsson, S., and Deisenroth, M. (2020). Probabilistic active meta-learning. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in Neural
Information Processing Systems, volume 33, pages 20813–20822. Curran Associates, Inc.

11

[24] Klink, P., D’Eramo, C., Peters, J., and Pajarinen, J. (2020). Self-paced deep reinforcement
learning. In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[25] Kostas, J., Chandak, Y., Jordan, S. M., Theocharous, G., and Thomas, P. (2021). High confidence
generalization for reinforcement learning. In Meila, M. and Zhang, T., editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 5764–5773. PMLR.

[26] Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici, M., Grefenstette, E., and Rock-
täschel, T. (2020). The nethack learning environment. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020.

[27] Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. (2020). Learning quadrupedal
locomotion over challenging terrain. Science in Robotics, 5.

[28] Li, X., Zhang, J., Bian, J., Tong, Y., and Liu, T. (2019). A cooperative multi-agent reinforcement
learning framework for resource balancing in complex logistics network. In Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS, pages
980–988. International Foundation for Autonomous Agents and Multiagent Systems.

[29] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra,
D. (2016). Continuous control with deep reinforcement learning. In Bengio, Y. and LeCun, Y.,
editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings.

[30] Lu, M., Shahn, Z., Sow, D., Doshi-Velez, F., and Lehman, L. H. (2020). Is deep reinforcement
learning ready for practical applications in healthcare? A sensitivity analysis of duel-ddqn for
hemodynamic management in sepsis patients. In AMIA 2020, American Medical Informatics
Association Annual Symposium, Virtual Event, USA, November 14-18, 2020. AMIA.

[31] Machado, M., Bellemare, M., Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M. (2018).
Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. J. Artif. Intell. Res., 61:523–562.

[32] Matiisen, T., Oliver, A., Cohen, T., and Schulman, J. (2020). Teacher-student curriculum
learning. IEEE Trans. Neural Networks Learn. Syst., 31(9):3732–3740.

[33] Meng, T. and Khushi, M. (2019). Reinforcement learning in financial markets. Data, 4(3):110.

[34] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015a). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

[35] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015b). Human-level control
through deep reinforcement learning. Nat., 518(7540):529–533.

[36] Modi, A., Jiang, N., Singh, S. P., and Tewari, A. (2018). Markov decision processes with
continuous side information. In Algorithmic Learning Theory (ALT’18), volume 83, pages 597–
618.

[37] Morimoto, J. and Doya, K. (2000). Robust reinforcement learning. In Leen, T. K., Dietterich,
T. G., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, Papers from
Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, pages 1061–1067. MIT
Press.

[38] Nguyen, S., Duminy, N., Manoury, A., Duhaut, D., and Buche, C. (2021). Robots learn
increasingly complex tasks with intrinsic motivation and automatic curriculum learning. Künstliche
Intell., 35(1):81–90.

12

[39] Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McKinney, K.,
Lattimore, T., Szepesvári, C., Singh, S., Roy, B. V., Sutton, R. S., Silver, D., and van Hasselt, H.
(2020). Behaviour suite for reinforcement learning. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[40] Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. (2017). Robust adversarial reinforcement
learning. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 2817–2826. PMLR.

[41] Raffin, A. (2020). Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo.

[42] Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., and Dormann, N. (2019). Stable
baselines3. https://github.com/DLR-RM/stable-baselines3.

[43] Rajan, R., Diaz, J. L. B., Guttikonda, S., Ferreira, F., Biedenkapp, A., and Hutter, F. (2019).
MDP Playground: Controlling dimensions of hardness in reinforcement learning. CoRR,
abs/1909.07750.

[44] Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. (2019). Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In Chaudhuri, K. and Salakhutdinov,
R., editors, Proceedings of the 36th International Conference on Machine Learning (ICML’19),
volume 97, pages 5331–5340. PMLR.

[45] Ray, A., Achiam, J., and Amodei, D. (2019). Benchmarking Safe Exploration in Deep Rein-
forcement Learning.

[46] Rice, J. (1976). The algorithm selection problem. Advances in Computers, 15:65–118.

[47] Romac, C., Portelas, R., Hofmann, K., and Oudeyer, P. (2021). Teachmyagent: a benchmark for
automatic curriculum learning in deep RL. In Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, volume 139 of Proceedings of Machine Learning Research,
pages 9052–9063. PMLR.

[48] Runge, F., Stoll, D., Falkner, S., and Hutter, F. (2019). Learning to Design RNA. In Proceedings
of the International Conference on Learning Representations (ICLR’19). Published online:
iclr.cc.

[49] Samvelyan, M., Kirk, R., Kurin, V., Parker-Holder, J., Jiang, M., Hambro, E., Petroni, F., Kuttler,
H., Grefenstette, E., and Rocktäschel, T. (2021). Minihack the planet: A sandbox for open-ended
reinforcement learning research.

[50] Schubert, F., Awiszus, M., and Rosenhahn, B. (2021). Toad-gan: a flexible framework for
few-shot level generation in token-based games. IEEE Transactions on Games, pages 1–1.

[51] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-dimensional
continuous control using generalized advantage estimation. In Bengio, Y. and LeCun, Y., editors,
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings.

[52] Seo, Y., Lee, K., Clavera, I., Kurutach, T., Shin, J., and Abbeel, P. (2020). Trajectory-wise
multiple choice learning for dynamics generalization in reinforcement learning. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in Neural Information
Processing Systems, volume 33, pages 12968–12979. Curran Associates, Inc.

[53] Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016).
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

[54] Sodhani, S., Denoyer, L., Kamienny, P., and Delalleau, O. (2021a). Mtenv - environment
interface for mulit-task reinforcement learning. Github.

13

[55] Sodhani, S., Zhang, A., and Pineau, J. (2021b). Multi-task reinforcement learning with context-
based representations. In Meila, M. and Zhang, T., editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 9767–9779. PMLR.

[56] van Rijn, J. and Hutter, F. (2018). Hyperparameter importance across datasets. In Guo, Y. and
F.Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 2367–2376. ACM Press.

[57] Wang, J., King, M., Porcel, N., Kurth-Nelson, Z., Zhu, T., Deck, C., Choy, P., Cassin, M.,
Reynolds, M., Song, H., Buttimore, G., Reichert, D., Rabinowitz, N., Matthey, L., Hassabis,
D., Lerchner, A., and Botvinick, M. (2021). Alchemy: A structured task distribution for meta-
reinforcement learning. CoRR, abs/2102.02926.

[58] Wang, J., Kurth-Nelson, Z., Soyer, H., Leibo, J., Tirumala, D., Munos, R., Blundell, C.,
Kumaran, D., and Botvinick, M. (2017). Learning to reinforcement learn. In Gunzelmann, G.,
Howes, A., Tenbrink, T., and Davelaar, E., editors, Proceedings of the 39th Annual Meeting of the
Cognitive Science Society. cognitivesciencesociety.org.

[59] Xu, L., Hoos, H., and Leyton-Brown, K. (2010). Hydra: Automatically configuring algorithms
for portfolio-based selection. In Fox, M. and Poole, D., editors, Proceedings of the Twenty-fourth
National Conference on Artificial Intelligence (AAAI’10), pages 210–216. AAAI Press.

[60] Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. (2021). Reinforcement learning with prototypi-
cal representations. In Meila, M. and Zhang, T., editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 11920–11931. PMLR.

[61] Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. (2019). Meta-world:
A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning (CoRL).

[62] Zhang, A., Sodhani, S., Khetarpal, K., and Pineau, J. (2021a). Learning robust state abstractions
for hidden-parameter block mdps. In 9th International Conference on Learning Representations,
ICLR 2021. OpenReview.net.

[63] Zhang, H., Chen, H., Boning, D., and Hsieh, C. (2021b). Robust reinforcement learning on
state observations with learned optimal adversary. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[64] Zhou, W., Pinto, L., and Gupta, A. (2019). Environment probing interaction policies. In
Proceedings of the International Conference on Learning Representations (ICLR’19). Published
online: iclr.cc.

[65] Zhou, Z., Li, X., and Zare, R. (2017). Optimizing chemical reactions with deep reinforcement
learning. ACS central science, 3(12):1337–1344.

14

Part VI

Conclusion

CHAPTER 14
Summary and Discussion

In part I we provided a general motivation for the dissertation and defined the research
goals. To answer the question “Can we learn general dynamic configuration policies using
reinforcement learning?” we identified four key challenges each with its own research
questions. We addressed these challenges and questions in the four core parts of this
dissertation:

Part II: Dynamic Algorithm Configuration: The Problem

Part III: Dynamic Algorithm Configuration: Case Studies

Part IV: Dynamic Algorithm Configuration: Benchmarking

Part V: Improving RL From the Lens of DAC

We address the first key challenge in Part II by providing the first formal problem
definition of dynamic algorithm configuration. Of particular importance for this disser-
tation is Chapter 5. This chapter builds the cornerstone of this dissertation. Besides the
formal problem definition, this chapter proposes a way of modeling dynamic algorithm
configuration as a contextual Markov decision process and identifies reinforcement learning
as the go-to solution approach. This way of modeling the problem is used throughout
the dissertation and all solution approaches we explored build on reinforcement learning.
Further, we provide the first benchmarks for studying dynamic configuration in a principled
manner and provide the first steps towards a standardized interface for dynamic algorithm
configuration (DAC) benchmarks. It is worth noting that the published version of this
chapter has had a high impact on the community and has already resulted in and inspired
multiple follow-up publications. Chapter 6 extends the preceding chapter by discussing
further methods for DAC besides reinforcement learning. Further, Chapter 6 provides a
discussion of current limitations of dynamic algorithm configuration and the so far explored
solution approaches.

In Part III we go beyond the largely theoretical considerations of the previous part
and evaluate dynamic algorithm configuration in representative case studies. This part of
the dissertation is largely concerned with addressing the second key challenge of using
DAC for real applications. Thus, with this part, we not only tackle research questions but
also engineering ones. Chapter 7 introduces dynamic algorithm configuration for step-size
adaptation in an evolutionary algorithm. We define and discuss all parts that are necessary
to model this as a DAC problem and discuss how we can use RL to learn configuration
policies. Already in this early work, we propose how to improve the considered RL method
to better suit our needs for DAC. The work provides a large-scale empirical analysis and we
show that the learned policies are capable of outperforming a commonly used, hand-crafted
baseline policy. Further, we show the generalization capabilities of our learned policies

182 CHAPTER 14. SUMMARY AND DISCUSSION

that are possible through the use of context information. Chapter 8 provides a second
in-depth case-study. In this study, we discuss how to use DAC for AI planning. Similar to the
preceding chapter we define and discuss all relevant components that are necessary to be
able to model this as a DAC problem and use RL to solve it. An important distinction here
is that additional consideration needed to be made to enable interfacing of two algorithms
that are written in different languages. Having defined all components we prove that DAC
subsumes prior meta-algorithmic frameworks. Our large empirical evaluation confirms
the theoretical insights and demonstrates that DAC is a powerful tool in this setting by
outperforming even the theoretical best (static) algorithm selector, something no prior
framework was capable of achieving.

Part IV focuses on addressing the third key challenge in the form of reproducibility.
While the previous parts have demonstrated that we can learn very capable and general
configuration policies, reproducibility is a key factor in ensuring meaningful progress in
the field. Chapter 9 builds on the previous chapters and consolidates all benchmarks we
introduced previously into a large collection of benchmarks which we dub DACBench.
Further, it provides the first standardized interface of these benchmarks to lower the
barrier of entry for new researchers. Besides the benchmarks from our previous works,
we identify interesting benchmarks from prior works. All in all, DACBench provides a
diverse set of DAC benchmarks starting with cheap-to-run toy benchmarks up to more
complex problem settings, such as configuration of multiple parameters of an evolutionary
algorithm. However, in its first version, DACBench did not provide any ground truth on the
considered benchmarks. Chapter 10 rectifies this by introducing novel benchmarks into
DACBench for which it is possible to provide ground truth performances and thus compute
the true optimal policies. This benchmark thus is ideal to study the behavior of potential
DAC solution approaches. We show this by exemplary evaluating the current limitations of
a DDQN, our most used solution method. This study shows that, while DDQN is capable of
learning the optimal policies, with the considered hyperparameter settings, DDQN starts to
struggle with larger problem sizes and potential parameter configuration values.

The last core part of the dissertation, Part V considers RL from the lens of DAC to
address the last key challenge of generalization in RL. Chapter 11, inspired by insights
from previous chapters, proposes to dynamically configure temporal exploration of deep
reinforcement learning agents. Such agents are capable of learning temporal connections
and thereby when it is necessary to make new decisions. This is key to making DAC solution
approaches more sample efficient as often actions need to be repeated for multiple time
steps. We demonstrate that TempoRL agents are capable of learning quicker and sometimes
even reach better final performance than standard RL counterparts. Chapter 12 provides
the first approach to improve RL algorithms when learning across multiple environments.
To this end, we propose to use a self-paced learning approach where the agent can decide
over time which problem instances it wants to train on. Our evaluation shows that this
approach allows not only faster training but also results in better generalization of the
learned policies. As DAC by design considers multiple problem instances, this work could
facilitate more sample-efficient DAC solution approaches. Finally, in Chapter 13 we provide
an in-depth discussion of contextual reinforcement learning. Throughout the dissertation,
we have used context information to enable RL agents to train across multiple environments
and to be able to generalize to unseen environments. Still, in our work so far we have used
standard reinforcement learning methods. This is mostly due to RL research having, so far,
not focused on learning general agents but rather focused on single environment settings.
To facilitate research on generalization in RL this last chapter proposes a novel benchmark
specifically designed for contextual reinforcement learning. While this benchmark is
related to DACBench, it provides more fine-grained control over the problem instances. In
DACBench, the differences across problem instances are not easily controllable and the
available context features often only provide imperfect information about the problem

183

instances. In our novel benchmark CARL, context features directly characterize how the
problem instances differ from each other and provide perfect information. We believe that
any advancements that will be made on the CARL benchmark will feed back into DAC
research by providing novel ways of considering context features in RL and by extension
DAC.

CHAPTER 15
Lessons Learned for a new Research Field

Our work on dynamic configuration paved the way for a new research field. Along the way,
we learned many important lessons that often arose due to new problems that we did not
expect from the get-go. Here we will summarize these important lessons to inform future
research on DAC but also on other fields in AI.

Stepping Out of the Comfort Zone When setting out on tackling new problems it is
important to not only look at the happenings in one’s own community. Often, different
communities face the same or related challenges. In our specific case, as discussed in
Chapters 3 and 6, dynamic configuration problems arise in many communities. All these
communities proposed some forms of tackling these problems. While most of these works
focus on manual efforts on dynamic configuration they provide vital information which
can be used for automating such processes.

In the simplest case, prior works can inform us which parameters need to be treated
dynamically and concrete examples provide information that can help in setting up learning
environments for DAC policies. As a consequence, DACBench does not only contain
benchmarks of our creation but also ones that have been considered by prior work. Besides
increasing the diversity of available benchmarks in DACBench, this provides us with
interesting benchmarks for which we did not control all design decisions. This also allowed
us to confirm if our proposed standardized interface was compatible with research that
was not of our creation.

All in all, stepping out of one’s comfort zone and looking beyond the edge of one’s
community is highly beneficial. It might uncover problems and challenges that might have
not yet had to be faced by one’s own community. Thus, taking these challenges into account
allows us to essentially plan ahead.

The Importance of Engineering for Reproducibility and Benchmarking It comes as no
surprise that standardized benchmarks are beneficial to the research community. However,
when starting our research on DAC there were no standardized benchmarks or interfaces
to consider for evaluation.

In the beginning, our progress was slowed down by having to face new engineering
challenges. For example, it is easy to propose to dynamically configure some parameter in
AI planning. Setting out to do so however provided the challenge of interfacing two systems
that are designed in different programming languages. This problem was even worsened
by the fact that most algorithms are designed to run uninterrupted. So as a first step it
was important to identify a “point of entry” for our interface. Partly as an engineering
challenge, partly as a research question, we needed to address which information needs
to be exchanged via this entry point and how to send around this information. The first
few tries required weeks of setting up such an interface and making sure that it is robust

186 CHAPTER 15. LESSONS LEARNED FOR A NEW RESEARCH FIELD

enough without throwing any unexpected errors. The final interface proved to be easy to
understand and is workable with new algorithms. For example, in a, as of yet, unpublished
work setting up the interface to an algorithm in a language we did not interface with prior
only required an afternoon of work instead of multiple weeks.

By now, having designed toy benchmarks and interfaces for the considered case studies,
the interface proves to be robust and easy to use for a variety of algorithms. Further, all this
work is consolidated in the first standardized collection of benchmarks. This enables us to
focus future research efforts on evaluating novel solution approaches, rather than having
to spend much effort on designing new interfaces. Further, DACBench also makes it very
easy to reproduce research results. This is especially important for solution approaches
based on reinforcement learning. RL research often does not facilitate easy reproducibility
(Henderson et al., 2018) which hinders progress in the field. As RL is a crucial component
in our research on DAC, it is thus even more important to ensure the reproducibility of our
work. Overall, this also lowers the barrier of entry for new researchers interested in DAC
problems and solution approaches.

The Benefit of Working on Real World Applications DAC provides an important play-
ground for future RL research as it confronts RL researchers with real-world problems.
Current standard problem settings in RL only consider learning policies for single problem
instances which have straightforward properties. Typically, RL solution approaches are
nearly always evaluated on (video) game-playing problem instances. While RL has shown
incredible successes on such problems, research has often progressed without taking proper-
ties into account that one might face in the real world. This is most obviously demonstrated
as learned game-playing policies are nearly always evaluated in the same setting as they
were trained in. Such policies thus can not be expected to generalize well even if they
might produce good results on a single problem instance. However, the reported successes
of RL inspire many potential users to try out RL for their problem domain. Such users are
often left with the impression that RL “does not work” as the problem setting they want
to consider barely resembles the typical problem considered in RL. Counter to this often
repeated claim, throughout this dissertation we have demonstrated that deep RL methods
are capable of learning general policies on real-world problems with comparatively little
required compute (if compared to the millions of required training steps when learning
to play video games). Still, this did not work out of the box and we first needed to build
expert knowledge to set up the learning agents properly.

Further, our work on DAC has enabled us to discover shortcomings of RL methods and
how to address them (Part V is wholly dedicated to this cause). We proposed a method
to move from a fairly reactive way of doing reinforcement learning to a more proactive
way and further proposed a way of self-paced learning for contextual RL. All in all, with
the focus on generalization for DAC, we paved the way for research on contextual RL
and generalization in RL. In the future, we believe DAC could thus be an interesting
benchmark and application area for AutoRL systems and novel algorithms with a focus on
generalization.

CHAPTER 16
Future Work

With this dissertation, we have laid the foundation for dynamic algorithm configuration, in
particular by means of reinforcement learning. We consider this the beginning of a novel
research field that provides ample new research directions to embark upon. Following the
work we presented in the preceding parts, we identified the following areas as especially
promising research directions for potential future work.

Warmstarting and Learning From Handcrafted Policies The DQN methods we consid-
ered in the preceding chapters always needed to learn a value function and policy from
scratch. This often creates a significant overhead whereas a warmstarted DQN or one that
can learn from existing policies could explore meaningful policies much quicker. Most
approaches that we are aware of that consider incorporating prior knowledge into RL
agents require some form of imitation learning or behavior cloning.

One of our earliest works on DAC (see Chapter 7) has considered how to warmstart the
search for well-performing policies. To this end, we employed the guided policy search
method (GPS). While this approach was capable of learning well-performing policies and
provided good anytime performance by first learning to imitate a hand-crafted policy,
GPS is not a method that can be used out of the box. GPS originates from the robotics
community where policy search has to adhere to safety constraints to avoid breaking a
robot’s limbs during learning. Thus, it has design elements that make it cumbersome to
use and could potentially lead to numerical instabilities while training.

Further, vanilla GPS only allowed for an initial imitation learning phase from a single
teacher and afterward completely disregards the teacher policy. We rectified that with our
extension to GPS that continuously queries the hand-crafted policy. Still, this version only
allows to warmstart and continuously learn from a single teacher policy. This requires prior
knowledge about which single policy to use as a potential teacher. In several domains there
exist many potential policies that could serve this purpose and come with complementary
strengths and weaknesses. Thus, to make the best use of GPS (and of our extension), one
would first need to do some form of algorithm selection to decide which policy to use for
the imitation learning phase(s). This is a problem for all methods that rely on some form
of imitation learning or behavior cloning.

Thus, future work in this direction would ideally be agnostic to the reinforcement
learning method (unlike warmstarting in GPS), able to learn from multiple teachers and
automatically determine which teachers to learn from out of a potential faculty.

Better Methods for Contextual Reinforcement Learning Throughout this dissertation,
we have demonstrated that using context information allows us to learn RL agents that are
capable of generalizing to different environments. Still, approaches to cRL so far have been
rather limited and nearly always only considered a few context features which provide

188 CHAPTER 16. FUTURE WORK

perfect information about the problem instance (i.e., environment) at hand. For example
in our work on SPACE (see Chapter 12) we considered the pole length of a CartPole
environment or a flattened representation of a maze. Both types of context let us perfectly
distinguish between problem instances and we only needed a small set of context features
to do so. As a consequence, in most considered settings it is a perfectly valid approach to
concatenate context features to state features when learning policies. However, in more
practical settings, such as DAC, we often do not have perfect information available and
we might require many more noisy features to be able to adequately distinguish between
instances. We strongly believe that, in such cases, simply concatenating context and state
features complicates the learning problem.

To mitigate this problem, another line of future work should concern itself with design-
ing novel cRL algorithms that have dedicated ways of dealing with context features. We
have already begun the first steps in that direction. In the pure contextual RL setting, we
recently evaluated a method for learning a gating mechanism that modulates a selected
action based on the available context and made use of our CARL benchmark (see Chap-
ter 13) to study the influence of context on the learning setting (Benjamins et al., 2022).
In the more noisy DAC setting, following up on our work on DAC for AI planning (see
Chapter 8), we proposed ways of incorporating 305 imperfect context features that describe
possible AI planning problem instances (Biedenkapp et al., 2022b). Our results indicate
that decoupling learning with context features from learning with state features results in
more robust policies. Still, more work in this direction is needed to design dedicated cRL
algorithms that are capable of learning from any type of context feature.

DAC for AutoRL While we have demonstrated that modern RL methods, in particular
DQN variants, are capable of learning meaningful DAC policies, training them is far from
trivial. Due to the brittleness of RL algorithms (Henderson et al., 2018), whenever some
failure mode occurs, there are multiple potential causes. Debugging these failures is far
from trivial and often even more complicated due to unforeseen interaction effects of some
hyperparameters. With expert domain knowledge and extensive manual labor, it is possible
to fix such issues, however relying only on experts to manually fix such issues severely
limits DAC research if it is to be done via RL. This manual labor could be offloaded to
AutoRL (Parker-Holder et al., 2022) methods. However, current approaches to AutoRL
require far more compute resources than many research labs have at their disposal.

To mitigate this problem, DAC methods could be designed that can learn to configure
the RL algorithm during training. In Chapter 11 we have presented work along these lines.
In essence, TempoRL learns how to configure the exploration component over a longer time
frame while the underlying RL algorithm is learning the normal behavior policy. Still, in our
work, we have not evaluated if TempoRL policies are transferable to novel environments
or even algorithms from the same family (such as transfer from DDQN to DQN). While
TempoRL presents an important first step in using DAC to configure RL algorithms on
the fly, more work has to be done to make DAC an integral component of RL algorithms.
It has been demonstrated that dynamic adaptation of the learning rate and discounting
factor result in simpler learning problems such that the overall learning speed is increased
(François-Lavet et al., 2015). Thus, we believe that DAC is perfectly suited for learning
policies for these parameters.

Another possibility with DAC for AutoRL is to learn general configuration policies on
a large set of benchmarks. Such pre-trained policies could then be transferred to novel
training settings and adapted to the context at hand. Further, similar to current trends in
large language models (see, e.g., Brown et al., 2020), pre-trained policies might be suitable
for fine-tuning on novel tasks that they have not been exposed to before. This pre-training
and fine-tuning paradigm has the advantage that fine-tuning is often computationally

189

cheaper and thus feasible for smaller research institutions.
All in all, work on AutoRL will feed back into DAC and enable many more users to

solve DAC problems by RL without the need for extensive expert knowledge. If AutoRL is
achieved by DAC itself, the benefit might be even larger as insights from DAC for AutoRL
might inform more research on DAC in general as well as result in more usable RL methods
for DAC.

A Solver Designed for DAC Previous meta-algorithmic research has found widespread
success, in part to its usability. Tools such as SMAC (Hutter et al., 2011; Lindauer et al.,
2022), GGA (Ansótegui et al., 2009) or iRace (López-Ibáñez et al., 2011) and similar
AutoML tools, such as auto-sklearn (Feurer et al., 2019) make it relatively easy for non-
experts to use the tool for their desired target application. The use of current DAC methods
is still fairly involved. In part, this is due to the brittleness of RL, as explained in the
previous paragraph, but also due to the non-existence of ready-to-use libraries of cRL
algorithms. In all our research we have mostly relied on our own implementations of RL
algorithms such that we could easily modify them to work as needed. While we have
open-sourced all of our code, we have yet to build a single DAC solver based on all insights
from our previous research. The existence of such a tool would make it easier to evaluate
novel methods and to better identify strengths and weaknesses of existing methods. This
line of work would go hand-in-hand with our work on DACBench (see Chapter 9) which
provided a standardized interface for DAC problems and a purpose-built DAC solver could
be used to provide novel baselines on DACBench.

With all these potential future works we believe there are exciting works to come in the
near and far future of DAC. We are excited to see how the field will mature and to continue
contributing and pushing the horizons of DAC.

Appendices

APPENDIX A
Appendix for Dynamic Algorithm

Configuration: Foundation of a New
Meta-Algorithmic Framework

Dynamic Algorithm Configuration:
Foundation of a New Meta-Algorithmic Framework

— Supplementary —
André Biedenkapp1 and H. Furkan Bozkurt1 and Theresa Eimer3 and

Frank Hutter1,2 and Marius Lindauer3

A Appendix

A.1 Importance of Temporal Information for Luby

For a sequence like Luby, an agent can benefit from additional infor-
mation about the sequence, such as the length of the sequence. For
example, imagine an agent has to learn the Luby sequence for length
T = 16. Before time-step 8 the action value 3 would never have to
be be played. For a real algorithm to be controlled, such a temporal
feature could be encoded by the iteration number directly or some
other measure of progress. The state an agent can observe therefore
consists of such a time feature and a small history over the five last
selected actions.

A.2 Luby Instance Sampling Strategies

Depending on the sampling strategy, the instances can be cho-
sen to be more homogeneous or more heterogeneous. To gener-
ate homogeneous instances, we sample a small temporal error i ∼
N (0, 0.15)−0.5≤i≤.5 from a two-sided truncated normal distribu-
tion. This temporal error is added every step to t. After m steps
t + |∑m

j=0 i| > t and therefore an element in the Luby sequence
will be skipped (i > 0) or repeated (i < 0). Formally

luby(t, i) =





lt ifmod(t,m) 6= 0
lt−1 if i < 0
lt+1 otherwise

(6)

where lt is the t-th value of the Luby sequence (Equation 7 in the
main paper). The resulting instances will overlap at most time-steps,
giving a very homogeneous distribution of instances.

To generate heterogeneous instances, we sample different start-
ing points i ∼ N (L, 0.25)0≤i≤T−L of the Luby sequence from a
two-sided truncated normal distribution. Every instance is therefore
a subsequence of the original Luby sequence. Formally

luby(t, i) = lt+i (7)

where lt is the t-th value of the Luby sequence (Equation 7 in the
main paper) These different starting points cause most instances to
have little overlap with other sequences.

1 University of Freiburg, Germany,
email: {biedenka, bozkurf, fh}@cs.uni-freiburg.de

2 Bosch Center for Artificial Intelligence, Germany
3 University of Hannover, Germany, email: lastname@tnt.uni-hannover.de

reward action 0 reward action 1

0 2 4 6 8 10
0

.5

1

t

R

(a)

0 2 4 6 8 10
t

(b)

Figure 1: Example rewards for Benchmark Sigmoid with T = 10,
N = 1 and a0,t ∈ {0, 1} on two instances, where p(a) = 5, s(a) = 1
on (a) and p(b) = 3, s(b) = −20 on (b). The solid/dashed line depicts
the reward for action 1/0 at time-step t. On (a) it is preferable to select
action 1 for the first halve of the sequence whereas on (b) it is better
to start with action 0.

A.3 Sigmoid Example Policies
Figure 1 depicts how different scaling factors and inflection points
can be used to construct different problem instances that require dif-
ferent optimal policies. In Figure 1a, the optimal policy is to play
action 1 for the first 4 to 5 time-steps before switching over to action
0. In Figure 1b, the scaling factor is inverted, requiring to first play
action 0 and then action 1. As the inflection point is shifted to the left
the optimal policy selects this action for first 2 to 3 time-steps before
playing action 1 the remaining steps.

A.4 Context-Oblivious Agents
Adriaensen and Nowé (2016) proposed two additional context-
oblivious agents, (i) PURS, which selects a previously not selected
action uniformly at random; otherwise, actions are selected in pro-
portion to the expected number of remaining steps; (ii) GR, which
selects an action greedily based on the expected future reward. In the
following we discuss why we did not consider PURS and GR.

PURS PURS leverages information about the expected trajectory
length, but it does not include the observed reward signal in the de-
cision making process. For tasks where every execution path has the
same length (e.g. LubyL=T and Sigmoid), PURS would fail to pro-
duce a policy other than a uniform random one. Further, when using
PURS, we need to have some prior knowledge if shorter or longer
trajectories should be preferred. For example on benchmarks like
LubyL<T , PURS is only able to find a meaningful policy if we know
that longer sequences produce better rewards. Thus, we do not con-
sider PURS further.

GR GR is comparable to an ε-greedy agent with constant ε = 0.
This makes GR very prone to getting stuck in local optima which can
happen in our experiments quite often.

A.5 Details on Experimental Setup
DQN Details We used a double DQN in chainerRL (0.7.0), i.e.,

where the target network is updated every 10 episodes and the explo-
ration fraction ε of the DQN is linearly decreased from 1.0 to 0.1.
We used a fully connected Q-function with a training batch size of
32. In each training iteration only one episode is observed. We chose
a network size of 1 layer with 50 hidden units as we only deal with
very small state-vectors with at most 8 state features.

Hardware All experiments were run on a compute cluster with
nodes equipped with two Intel Xeon E5-2630v4 and 128GB memory
running CentOS 7.

A.6 Further Experimental Results
Effect of Short Effective Sequence Length Further experiments

for the effect of short effective sequences are given in Tables 1 and
2b, with corresponding reward curves given in Figures 3 and 4 re-
spectively. Table 1 corresponds to Table 1 in the main paper and ad-
ditionally present the standard error for all presented agents. Table 2b
shows similar results with a much higher noise level. In this setting
however ε-greedy does not achieve the best AUC for short-effective
sequences with L = 32. From Figure 4 we can observe that, al-
though PS-SMAC results in a better AUC, it alreay converged to a
suboptimal sequence, whereas the ε-greedy agent is still improving
its reward and resulting in a slightly higher final reward.

Stochasticity of Reward Signal Further results for the effect of
the stochasticity of the environment are given in Table 3a and 3b with
the corresponding plots in Figures 5a and 5b respectively. Table 3
corresponds to Table 2 in the main paper and additionally gives the
standard errors of all discussed methods. Figures 5a and 5b show
that, no matter the noise level, the ε-greedy agent always outperforms
both PS-SMAC and URS not only in final reward but also in any-
time reward.

Effect of Self-Paced Learning In Figure 2 the trainings perfor-
mance of SPL on only the selected instances is given. The curve cor-
responds to Equation (5) of the main paper. The agent starts training
on an instance which gives it better initial performance. The agent
continues its training on instances which resemble the first initial in-
stance which gave it good performance. After around 5×103 training
episodes, the agent also includes instances which require opposite
policies into its training procedure. It quickly recovers from this shift
in instances before it approaches the optimal possible reward.

Figure 2: Training performance on instances selected by SPL for 1D-
Sigmoid with binary actions and T = 11.

8 16 32

ε-greedy 0.86± 0.04 0.72± 0.05 0.47± 0.04
PS-SMAC 0.62± 0.10 0.39± 0.01 0.39± 0.01
URS 0.17± 0.02 0.17± 0.02 0.17± 0.03

(a) Homogeneous

8 16 32

ε-greedy 0.89± 0.03 0.75± 0.05 0.47± 0.03
PS-SMAC 0.56± 0.09 0.37± 0.01 0.37± 0.01
URS 0.17± 0.02 0.17± 0.02 0.17± 0.02

(b) Heterogeneous

Table 1: Results for the discussed agents on Luby with fuzzy rewards
for L ∈ {8, 16, 32} with T = 64 on two instance distributions and
a noise factor such that roughly 15% of the actions returned a false
positive reward. Results for homogeneous instances are shown in (a)
and for heterogeneous instances in (b). The values represent the nor-
malized area under the learning curve for 105 training episodes.

8 16 32

ε-greedy 0.76± 0.06 0.56± 0.10 0.35± 0.05
PS-SMAC 0.66± 0.10 0.38± 0.01 0.38± 0.01
URS 0.17± 0.04 0.17± 0.04 0.17± 0.03

(a) Homogeneous

8 16 32

ε-greedy 0.80± 0.05 0.59± 0.07 0.35± 0.05
PS-SMAC 0.55± 0.10 0.37± 0.01 0.38± 0.01
URS 0.16± 0.03 0.16± 0.05 0.16± 0.04

(b) Heterogeneous

Table 2: Results for the discussed agents on Luby with fuzzy rewards
for L ∈ {8, 16, 32} with T = 64 on two instance distributions and
a noise factor such that roughly 25% of the actions returned a false
positive reward. Results for homogeneous instances are shown in (a)
and for heterogeneous instances in (b). The values represent the nor-
malized area under the learning curve for 105 training episodes. The
corresponding plots are contained in the supplementary material.

p(rt > 0)
0.01 0.08 0.15 0.20 0.25

ε-greedy 0.96± 0.01 0.92± 0.03 0.86± 0.04 0.81± 0.04 0.76± 0.05
PS-SMAC 0.71± 0.09 0.63± 0.10 0.62± 0.10 0.62± 0.11 0.55± 0.10
URS 0.21± 0.01 0.18± 0.02 0.17± 0.02 0.17± 0.02 0.16± 0.02

(a) Homogeneous

ε-greedy 0.97± 0.01 0.94± 0.02 0.89± 0.03 0.84± 0.04 0.80± 0.05
PS-SMAC 0.60± 0.10 0.63± 0.11 0.56± 0.09 0.61± 0.10 0.52± 0.10
URS 0.21± 0.02 0.19± 0.02 0.17± 0.02 0.17± 0.03 0.16± 0.03

(b) Heterogeneous

Table 3: Sensitivity analysis of the presented agents for varying degrees of noise on Luby. The short effective sequence was set to 8 with a
maximal length of 64. The values represent the normalized area under the learning curve for 105 training episodes. The corresponding plots
are contained in the supplementary material.

Figure 3: Comparison of ε-greedy, URS and PS-SMAC on Luby for varying short effective sequences. (Left) Results on the homogeneous
version of Luby. (Right) Results on the heterogeneous version of Luby. Gaussian noise was added to the reward such that roughly 15% of the
reward signals gave a false positive signal.

Figure 4: Comparison of ε-greedy, URS and PS-SMAC on Luby for varying short effective sequences. (Left) Results on the homogeneous
version of Luby. (Right) Results on the heterogeneous version of Luby. Gaussian noise was added to the reward such that roughly 25% of the
reward signals gave a false positive signal.

(a) (b)

Figure 5: Sensitivity analysis on Luby (left homogeneous, right heterogeneous) for varying degrees of noise levels.

APPENDIX B
Appendix for Automated Dynamic Algorithm

Configuration

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Appendix A. Problem-Theoretical Perspective on DAC

In this Appendix, we present a theoretical motivation of why DAC (Definition 3) is a
problem worth studying. In doing so, we provide grounding for many of the higher-level
discussions in the main text. Since this kind of analysis is hardly standard, we start by
introducing some fundamental concepts (Section A.1), then discuss the main results (Sec-
tion A.2), and end with the formal justification (Section A.3).

A.1 Fundamental Concepts

A.1.1 Computational Problems

In this work, we formalized dynamic algorithm configuration (DAC) and related computa-
tional problems as follows:

Definition 4: Computational Problem

In a computational problem (X ,R), given any input x ∈ X, we are to compute an
output y satisfying (x, y) ∈ R.

Conceptually, each (x, y) ∈ R represents a problem instance x and a solution y thereof.
Note that instances may have more than one admissible solution, or even none at all. We
will also use R(x) = {y|(x, y) ∈ R} to denote the solution set for x. All problem definitions
in this paper are structured syntactically as “Given x find a y ∈ R(x)”.

Digression on Problem Classes: Problems of this form are also known as “search
problems”. To avoid confusion, problem classes group problems (e.g., DAC), not problem
instances (e.g., DAC scenarios), i.e., when viewing DAC as a search problem (as in Defini-
tion 3), X would correspond to the set of all possible DAC scenarios and R(x) the set of
optimal policies for some DAC scenario x. The choice to restrict ourselves to search prob-
lems was a trade-off between (i) theoretical convenience / simplicity and (ii) expressiveness,
i.e., alternative formulations exist that better model many of the problems we consider:

Optimization: Can express that not every solution is equally good. For instance, in
this work we use (i) “find x satisfying x ∈ arg maxx f(x)” rather than (ii) “find x
maximizing f(x)”. Note that this difference, while subtle, is important for problem
theory: For instance, if arg maxx f(x) = ∅, in (i) we should return that no solution
exists, while in (ii) we should return an as good as possible solution.

Distributional: Can express that all inputs are not equally likely, by modelling inputs as
a distribution D rather than a set X . Note that while we do not use distributional
problems on the meta-level, we do use them as target problems.

However, for these problem classes, standard definitions for theoretical concepts such as
reducibility do not exist and any satisfactory definition would significantly complicate the
reduction proofs in this appendix.

46

Automated Dynamic Algorithm Configuration

A.1.2 Reducibility

Problem formalization enables formal reasoning about the relationship between problems.
In this appendix, we focus on a specific kind of relationship: Reducibility, as defined by
Papadimitriou (1994, p. 506):

Definition 5: Many-one Reducibility (m-reducibility)

Let (X,R) and (X ′, R′) be two computational problems, withR : X×Y andR′ : X ′ × Y ′.
We say that (X,R) is many-one reducible to (X ′, R′), or also m-reducible, which we
denote (X,R) ≤m (X ′, R′), if and only if computable functions

formulate: X → X ′

interpret: X × Y ′ → Y

exist such that ∀ x ∈ X holds:

1. (formulate(x), y′) ∈ R′ =⇒ (x, interpret(x, y′)) ∈ R

2. R′(formulate(x)) = ∅ =⇒ R(x) = ∅

Conceptually, (1) all solutions of the reformulated problem instance can be interpreted as
a solution to the original problem instance, and (2) if the reformulated problem instance
does not have any solutions, the original problem instance should neither.

When a problem R is m-reducible to another R′, R can be solved by reduction to R′, i.e.,
given an algorithm a′ for R′, a(x) = interpret(x, a′(formulate(x))) is an algorithm for R.
It is worth noting that the existence of a many-one reduction does not necessarily render R
irrelevant: Solving R by reduction to R′ may inherently increase computational complexity
since (i) the reduction itself (i.e., formulate, interpret) may be costly (ii) the reduction
may abstract relevant info, making the reduced problem harder to solve. The practical
relevance of a reduction is further limited by the performance of known algorithms for R′.

Note that sometimes, even though one problem is not generally reducible to another, a
special case is. We define this notion as

Definition 6: Conditional Reducibility

Let (X,R) and (X ′, R′) be two computational problems, withR : X × Y andR′ : X ′ × Y ′.
We say that (X,R) is conditionally many-one reducible to (X ′, R′) under precondi-
tions c, which we denote (X,R) ≤cm (X ′, R′), if and only if ({x ∈ X | c(x)}, R) ≤m (X ′, R′),
where c is a Boolean function on X.

The practical relevance of a conditional reduction additionally depends on how commonly
its preconditions are satisfied. It is worth noting that many-one reducibility is transitive,
while conditional reducibility is not. However, the following holds:

(X,R) ≤cm (X ′, R′) ∧ (X ′, R′) ≤m (X ′′, R′′) =⇒ (X,R) ≤cm (X ′′, R′′)

47

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Figure 9: An overview of the reducibility relations between DAC and problems previously
studied in the meta-algorithmics, reinforcement learning, and optimization communities;
that we prove to exist in Section A.3. Note that arrows implied by the transitive/reflexive
property of m-reducibility are not shown. Conditional reducibility indicates that a problem
is only reducible to another, under specific conditions (i.e., not generally).

48

Automated Dynamic Algorithm Configuration

A.2 Reducibility Results

Figure 9 shows an overview of the reducibility relationships between DAC and all the other
computational problems we discussed in the main text.

Reducibility to DAC: We observe that all problems in meta-algorithmics, discussed in
Section 2.2.2, can be shown to be generally reducible to DAC. This suggests that research
towards solving DAC in general, will indirectly find applications in solving many of these
problems. Note that the conditional reduction from algorithm design corresponds to the
“DAC powered PbO”, discussed in Section 2.2.1, despite being conditional (i.e., not general),
presents a highly practical approach to automating algorithm design.

Reducibility from DAC: We observe that DAC is generally reducible to “algorithm
design” (as in Definition 7). However, this reduction is not practical since no general
solvers for this problem are known. DAC is also generally reducible to “noisy black box
optimization”. While this reduction is more practical (see Section 4.2), a lot of information is
lost in the process. Beyond these two problems, DAC is conditionally reducible. While many
of these conditional reductions give rise to practical solution approaches (see Section 4), they
are nonetheless limited both in terms of generality and the information they can exploit.

Conclusion: While a general DAC solver would allow us to solve many well-known com-
putational problems, no such solver exists to date, and is therefore a research direction
worth exploring. Note that various existing solvers can solve special cases of DAC, sug-
gesting that another line of research would be to identify further special cases that can be
solved more efficiently.

A.3 Reducibility Proofs

In this subsection, we formalize the reducibility relationships between DAC (Definition 3)
and all problems discussed in the main text. Here, we first formally define each problem
and then show reducibility by describing one possible reduction, i.e., defining formulate

and interpret functions. Finally, we present a formal argument (proof sketch) for the
correctness of each reduction.14

A.3.1 Algorithm Configuration

All discussed algorithm configuration variants were already defined in the main text:

• classical / per-distribution algorithm configuration (AC, Definition 1)

• per-instance algorithm configuration (PIAC, Definition 2)

• dynamic algorithm configuration (DAC, Definition 3)

In what follows, we formalize their relation.

14. For brevity, we generally proof (1) in Definition 5, but not corner case (2).

49

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

AC ≤m PIAC:

formulate(〈A,Θ,D, c〉) = 〈A,Θ,D,Ψ, c′〉 with

• Ψ = {ψθ |ψθ(i) = θ,∀θ ∈ Θ}
• c′(ψθ, i) = c(θ, i)

interpret(〈A,Θ,D, c〉, ψθ∗) = θ∗

Proof Sketch: θ∗ ∈ arg minθ∈Θ Ei∼D [c(θ, i)]
By contradiction, assume θ∗ /∈ arg minθ∈Θ Ei∼D [c(θ, i)]. This implies that there
exists θ′ : Ei∼D [c(θ′, i)] < Ei∼D [c(θ∗, i)]. Since θ′ ∈ Θ and c(θ, i) = c′(ψθ, i), there
must exist ψθ′ ∈ Ψ having Ei∼D [c′(ψθ′ , i)] < Ei∼D [c′(ψθ∗ , i)], contradicting ψθ∗ ∈
arg minψ∈Ψ Ei∼D [c′(ψ, i)]. �

PIAC ≤m DAC:

formulate(〈A,Θ,D,Ψ, c〉) = 〈A′,Θ,D,Π, c′〉 with

• A′. step(s, i,θ) = A(i,θ) and A′. init(i) = υ and A′. is final(s, i) ⇐⇒ s 6= υ
(for some υ not being an output of A, i.e., we perform exactly one step)

• Π = {πψ|πψ(s, i) = ψ(i), ∀ψ ∈ Ψ}
• c′(πψ, i) = c(ψ, i)

interpret(〈A,Θ,D,Ψ, c〉, πψ∗) = ψ∗

Proof Sketch: ψ∗ ∈ arg minψ∈Ψ Ei∼D [c(ψ, i)].
By contradiction, assume ψ∗ /∈ arg minψ∈Ψ Ei∼D [c(ψ, i)]. This implies that there
exists ψ′ : Ei∼D [c(ψ′, i)] < Ei∼D [c(ψ∗, i)]. Since ψ′ ∈ Ψ, and c(ψ, i) = c′(πψ, i),
there must exist a πψ′ ∈ Π having Ei∼D [c′(πψ′ , i)] < Ei∼D [c′(πψ∗ , i)], contradicting
πψ∗ ∈ arg minπ∈Π Ei∼D [c′(π, i)]. �

DAC ≤cm AC:

Preconditions: We assume to be given a parametric representation Λ of the policy space,
i.e., Π = {πλ |λ ∈ Λ}.

formulate(〈A,Θ,D,Π, c〉) = 〈A′,Λ,D, c′〉 with

• A′(i,λ) = A(i, πλ).

• c′(λ, i) = c(πλ, i)

interpret(〈A,Θ,D,Π, c〉,λ∗) = πλ∗

Proof Sketch: πλ∗ ∈ arg minπλ∈Π Ei∼D [c(πλ, i)]

λ∗ ∈ arg min
λ∈Λ

Ei∼D [c′(λ, i)] =⇒

λ∗ ∈ arg min
λ∈Λ

Ei∼D [c(πλ, i)] =⇒

πλ∗ ∈ arg min
πλ∈Π

Ei∼D [c(πλ, i)]

�

50

Automated Dynamic Algorithm Configuration

A.3.2 Algorithm Design

We formalize algorithm design as in previous work (Adriaensen, 2018):

Definition 7: Algorithm Design

Let AU be the space of all algorithms.a Given a preference relation over �b over AU ,
find a a∗ ∈ AU : a∗ ⊀ a,∀a ∈ AU .

a. AU is a universal set containing “any procedure that solves some problem”. Further formalization
of this notion is hindered by the lack of a generally accepted, formal definition of “an algorithm”.

b. � is assumed to be a preorder, i.e., a binary relation that is reflexive and transitive.

algorithm design ≤cm DAC:

Preconditions: We assume we are given init, step, is final, and a set of Π sub-routines
such that algorithms aπ ∈ AΠ ⊂ AU that can be decompose in 〈init, step, is final, π〉
as in Algorithm 1 are at least as preferable as any other: ∀aπ ∈ AΠ : a � aπ, ∀a ∈ AU \AΠ.

formulate(〈�, init, step, is final,Π〉) = 〈A,Θ,D,Π, c〉 with

• A. step = step and A. init = init and A. is final = is final

• Any choice of D and c such that aπ′ ≺ aπ =⇒ Ei∼D [c(π, i)] < Ei∼D [c(π′, i)].
This can always be achieved, as a c that is solely a function of π can impose an
arbitrary total order on Π and therefore also one consistent with �.

interpret(〈�, init, step, is final,Π〉, π∗) = aπ∗

Proof Sketch: aπ∗ ⊀ a,∀a ∈ AU
By contradiction, assume there exists a′ ∈ AU : a′ � aπ∗ . Given our pre-condition, we
have a′ = aπ′ ∈ AΠ. From our choice of c follows that Ei∼D [c(π′, i)] < Ei∼D [c(π∗, i)],
contradicting π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]. �

DAC ≤m algorithm design:

formulate(〈A,Θ,D,Π, c〉) =�
satisfying

1. ∀π ∈ Π : a ≺ π,∀a ∈ AU \Π and

2. ∀π, π′ ∈ Π : Ei∼D [c(π, i)] < Ei∼D [c(π′, i)] =⇒ π′ ≺ π.

interpret(〈A,Θ,D,Π, c〉, a∗) = a∗

Proof Sketch: a∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]
By contradiction, assume a∗ /∈ arg minπ∈Π Ei∼D [c(π, i)]. First, note that a∗ ∈ AU \Π
and (1) would contradict a∗ ∈ AU : a∗ ⊀ a,∀a ∈ AU . This implies there exists
π′ ∈ Π : Ei∼D [c(π′, i)] < Ei∼D [c(a∗, i)], implying a∗ ≺ π′ by (2) and contradicting
a∗ ∈ AU : a∗ ⊀ a,∀a ∈ AU . �

51

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

A.3.3 Algorithm Selection

For algorithm selection, we adopt the classical definition by Rice (1976):15

Definition 8: Algorithm Selection

Given 〈A, I, c〉:

– A finite set A of target algorithms

– A target problem space I

– A cost metric c : A× I → R assessing the cost of solving i ∈ I using a ∈ A.a

Find a selection mapping S∗ : I → A satisfying S∗(i) ∈ arg mina∈A c(a, i), ∀i ∈ I.

a. The original definition uses a performance metric p (to be maximized).

The reducability algorithm selection to DAC follows by transitive property from its redu-
cability to PIAC.

algorithm selection ≤m PIAC:

formulate(〈A, I, c〉) = 〈A′,Θ,D,Ψ, c′〉 with

• A′(i, k) = ak(i)

• Θ = {k | ak ∈ A} (single categorical parameter)

• D = U(I)

• Ψ : I → Θ (unconstrained)

• c′(ψ, i) = c(ψ(i), i)

interpret(〈A, I, c〉, ψ∗) = S∗ with S∗(i) = aψ∗(i)

Proof Sketch: S∗(i) ∈ arg mina∈A c(a, i),∀i ∈ I
By contradiction, assume ∃j ∈ I : S∗(j) /∈ arg mina∈A c(a, j). This implies there
exists S′ : S′(j) ∈ arg mina∈A c(a, j) ∧ S′(i′) = S(i′), ∀i′ ∈ I \ {j}. Since Ψ is uncon-
strained every selection mapping S has its corresponding ψ ∈ Ψ : S(i) = aψ(i) and
therefore ∃ψ′ ∈ Ψ : c(ψ′(j), j) < c(ψ∗(j), j) ∧ c(ψ′(i′), i′) = c(ψ∗(i), i′), ∀i′ ∈ I \ {j}.
From c′(ψ, i) = c(ψ(i), i) and D(j) > 0 follows that Ei∼D [c′(ψ′, i)] < Ei∼D [c′(ψ∗, i)],
contradicting ψ∗ ∈ arg minψ∈Ψ Ei∼D [c′(ψ, i)]. �

A.3.4 Algorithm Scheduling

We define a variant of algorithm scheduling that considers allocating a fixed time budget
to a finite set of target algorithms in an instance-aware and dynamic fashion:

15. Rice (1976) defines many different more general variants of the problem. However, we will restrict
ourselves to a canonical variant, i.e., selecting the best algorithm, per-instance, from finite alternatives,
without constraints on the selection mappings.

52

Automated Dynamic Algorithm Configuration

Definition 9: Algorithm Scheduling

Given 〈A,B, I,∆, c〉:

– A finite set A of step-wise executable target algorithms such that the execution
of the kth algorithm ak ∈ A can be decomposed as a consecutive application of a
sub-routine ak. tstep such that the state of algorithm ak when solving a problem
instance i, after t time steps, is given by sk,i,t = ak. tstep(sk,i,t−1) with sk,i,0 = i.

– A finite budget B of time steps to be allocated to algorithms in A.

– A target problem space I

– A space of dynamic scheduling policies δ ∈ ∆ with δ : S |A|×I×N→ A choosing
which algorithm ak ∈ A to resume executing in the next time step, as a function
of the total time T ∈ N elapsed thus far, the instance i ∈ I being solved and the
vector of states sm,i,tm of each algorithm am ∈ A.

– A cost metric c : A× I ×N→ R assessing the cost of solving i ∈ I using a ∈ A
for t ∈ N time steps.

Find a dynamic scheduling policy δ∗ ∈ arg minδ∈∆

∑
i∈I(minak∈A c(ak, i, t

B,δ,i
k)) where

tT,δ,ik is the total time allocated to ak by δ after T scheduling steps on instance i, and
is given by

tT,δ,ik =





0 T = 0

tT−1,δ,i
k T > 0 ∧ ak 6= δ(sT−1,δ,i, i, T − 1)

tT−1,δ,i
k + 1 T > 0 ∧ ak = δ(sT−1,δ,i, i, T − 1)

with

sT,δ,ik =





i T = 0

sT−1,δ,i
k T > 0 ∧ ak 6= δ(sT−1,δ,i, i, T − 1)

ak. tstep(sT−1,δ,i
k) T > 0 ∧ ak = δ(sT−1,δ,i, i, T − 1)

algorithm scheduling ≤m DAC:

formulate(〈A,B, I,∆, c〉) = 〈A,Θ,D,Π, c′〉 with

• A. step((s, i, T), i, θ) = (s′, i, T + 1) with s′k =

{
sk θ 6= k

ak. tstep(sk) θ = k

A. init(i) = (s, i, 0) with sk = i
A. is final((s, i, T), i)⇔ T = B.

• Θ = {k | ak ∈ A}
• D = U(I)

• Π = {πδ | δ ∈ ∆} with πδ((s, i, T), i) = k ⇔ δ(s, i, T) = ak

• c′(πδ, i) = minak∈A c(ak, i, t
B,δ,i
k)

interpret(〈A,B, I,∆, c〉, πδ∗) = δ∗

53

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Proof Sketch: δ∗ ∈ arg minδ∈∆

∑
i∈I(minak∈A c(ak, i, t

B,δ,i
k))

πδ∗ ∈ arg min
πδ∈Π

Ei∼D [c′(πδ, i)] =⇒

δ∗ ∈ arg min
δ∈∆

Ei∼D [min
ak∈A

c(ak, i, t
B,δ,i
k)] =⇒

δ∗ ∈ arg min
δ∈∆

1

|I|
∑

i∈I
[min
ak∈A

c(ak, i, t
B,δ,i
k)] =⇒

δ∗ ∈ arg min
δ∈∆

∑

i∈I
(min
ak∈A

c(ak, i, t
B,δ,i
k))

�

A.3.5 Reinforcement Learning

In Section 4.1, we discussed the relation between DAC and the

Definition 10: Markov Decision Problem (MDP)

Given 〈S,A, T,R〉:

– A state space S.

– An action space A

– A transition function T : S ×A→ S

– A reward function R : S ×A→ R

Find a policy π : S → A satisfying π∗(s) ∈ arg maxa∈AR(s, a) + V ∗(T (s, a)) with V ∗

being the optimal value-state function, i.e., V ∗(s) = maxa∈AR(s, a) + V ∗(T (s, a)).

Note that we will restrict ourselves to episodic MDPs, where we have absorbing states
SH = {s |T (s, a) = s, ∀a ∈ A} having R(s, a) = 0, ∀s ∈ SH that are reached within an
arbitrarily large, but finite horizon H and therefore V ∗(s) = maxπ

∑H−1
t=0 R(sπ,t, π(sπ,t))

where sπ,t = T (sπ,t−1, π(sπ,t−1)) is the tth state encountered when following π starting in
sπ,0 = s.

54

Automated Dynamic Algorithm Configuration

Since standard RL methods are not instance-aware, Biedenkapp et al. (2020) proposed
to model DAC as a

Definition 11: Contextual Markov Decision Problem (cMDP, Hallak et al.,
2015)

Given 〈C, S,A,M〉:

– A context space C

– A shared state space S

– A shared action space A

– A function M mapping any c ∈ C to an MDP M(c) = 〈S,A, Tc, Rc〉 with

– a context-dependent transition function Tc : S ×A→ S

– a context-dependent reward function Rc : S ×A→ R

Find a policy π : S × C → A satisfying π∗(s, c) ∈ arg maxa∈A Rc(s, a) + V ∗c (Tc(s, a))
with V ∗c (s) = maxa∈ARc(s, a) + V ∗c (Tc(s, a)).

Please remark that we assume the context to be observable and our objective to be
finding an optimal context-dependent policy. We will also assume MDPM(i) to be episodic.
As a consequence, this formulation is m-equivalent to that of an ordinary episodic MDP.
The cMDP formulation is nonetheless interesting in that it can capture various aspects of
DAC abstracted in the MDP reduction: DAC ≤m MDP ≤m cMDP.

DAC ≤cm cMDP:

Preconditions:

1. The cost function c is step-wise decomposable, i.e., we are given functions 〈cinit, cstep〉,
such that

c(π, i) = cinit(i) +
T−1∑

t=0

cstep(st, i, π(st, i))

where

s0 = init(i) ∧ st = step(st−1, i, π(st−1, i)) ∧ is final(st, i)⇔ t = T

2. The policy space is unconstrained, i.e., Π = {π |π(s, i) ∈ Θ, ∀ s ∈ S ∧ i ∈ I}

formulate(〈A,Θ,D,Π, c〉) = 〈C, S,A,M〉 with

• C = I the domain of D.

• S = S the set of algorithm states.

• A = Θ

• M(i) = 〈S,A, Ti, Ri〉 with

55

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

– Ti(s,θ) =

{
s is final(s, i)

step(s, i,θ) ¬ is final(s, i)

– Ri(s,θ) =

{
0 is final(s, i)

cstep(s, i,θ) ¬ is final(s, i)

interpret(〈A,Θ,D,Π, c〉, π∗) = π∗

Proof Sketch: π∗ ∈ arg maxπ Ei∼D c(π, i)
We first note that since S = S ∧ A = Θ ∧ C = I and given precondition (2), it
follows that both problems have the exact same policy space Π. It remains to show
that optimality in the resulting cMDP implies optimality in the original DAC:

π∗(s, i) ∈ arg max
θ∈Θ

Ri(s,θ) + V ∗i (Ti(s,θ)) (∀s ∈ S, ∀i ∈ I) =⇒

π∗(init(i), i) ∈ arg max
θ∈Θ

Ri(init(i),θ) + V ∗i (Ti(init(i),θ)) (∀i ∈ I) =⇒

π∗ ∈ arg max
π

Ei∼D Ri(init(i), π(init(i), i)) + V ∗i (Ti(init(i), π(init(i), i)))

Since each M(i) is episodic, this objective can be rewritten as:

π∗ ∈ arg max
π

Ei∼D
H−1∑

t=0

Ri(sπ,t,i, π(sπ,t,i)) where sπ,t,i =

{
init(i) t = 0

Ti(sπ,t−1,i, π(sπ,t−1,i)) t > 0

π∗ ∈ arg max
π

Ei∼D
T−1∑

t=0

cstep(sπ,t,i, i, π(sπ,t,i)) where sπ,t,i =

{
init(i) t = 0

step(sπ,t−1,i, i, π(sπ,t−1,i)) t > 0

π∗ ∈ arg max
π

Ei∼D c(π, i)

�

It is worth noting that the optimality of π∗ does not depend on D, init, or cinit.

Conditional reducability to an ordinary MDP follows from the transitive property and

cMDP ≤m MDP:

formulate(〈C, S,A,M〉) = 〈S′, A, T,R〉 with

• S′ = S × C
• T ((s, c), a) = Tc(s, a)

• R((s, c), a) = Rc(s, a)

where M(c) = 〈S,A, Tc, Rc〉.

interpret(〈C, S,A,M〉, π∗) = π′∗ with π′∗(s, c) = π∗((s, c))

56

Automated Dynamic Algorithm Configuration

Proof Sketch: π′∗(s, c) ∈ arg maxa∈ARc(s, a) + V ∗c (s)

π∗((s, c)) ∈ arg max
a∈A

R((s, c), a) + V ∗(T ((s, c), a)) =⇒

π′∗(s, c) ∈ arg max
a∈A

Rc(s, a) + V ∗(Tc(s, a))

It remains to show that V ∗((s, c)) = V ∗c (s). We can proof this by induction on
the maximum number of steps Hs,c before reaching an absorbing state following any
policy starting from state s in context c. The base case Hs,c = 0 follows from
T ((s, c), a) = (s, c) ⇐⇒ Tc(s, a) = s. Now, for the recursive case, assuming this
holds for Hs,c ≤ n− 1, it also holds for Hs,c = n

V ∗((s, c)) = max
a∈A

R((s, c), a) + V ∗(T ((s, c), a))

= max
a∈A

Rc(s, a) + V ∗(Tc(s, a))

= max
a∈A

Rc(s, a) + V ∗c (Tc(s, a)) = V ∗c (s)

since HTc(s,a),c ≤ n− 1. �

and both are m-equivalent since

MDP ≤m cMDP:

formulate(〈S,A, T,R〉) = 〈C, S,A,M〉 with

• C = {0}
• T0(s, a) = T (s, a)

• R0(s, a) = R(s, a)

where M(0) = 〈S,A, T0, R0〉.

interpret(〈S,A, T,R〉, π∗) = π′∗ with π′∗(s) = π∗(s, 0)

Proof Sketch: π′∗(s) ∈ arg maxa∈A R(s, a) + V ∗(s)

π∗(s, 0) ∈ arg max
a∈A

R0(s, a) + V ∗0 (T0(s, a)) =⇒

π′∗(s) ∈ arg max
a∈A

R(s, a) + V ∗0 (T (s, a))

57

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

It remains to show that V ∗(s) = V ∗0 (s). We can proof this by induction on the
maximum number of steps Hs before reaching an absorbing state following any policy
starting from state s. The base case Hs = 0 follows from T (s, a) = s⇔ T0(s, a) = s.
Now the recursive case, assuming this holds for Hs ≤ n− 1, it also holds for Hs = n

V ∗(s) = max
a∈A

R(s, a) + V ∗(T (s, a))

= max
a∈A

R0(s, a) + V ∗(T0(s, a))

= max
a∈A

R0(s, a) + V ∗0 (T0(s, a)) = V ∗0 (s)

since HT0(s,a) ≤ n− 1. �

A.3.6 Optimization

In Section 4.2, we discussed the relation between DAC and

Definition 12: Noisy Black Box Optimization

Given 〈X, e〉:

– A search space X

– A noisy evaluation sub-routine e

Find a x∗ ∈ arg minx∈X E[e(x)].

DAC ≤m noisy black box optimization:

formulate(〈A,Θ,D,Π, c〉) = 〈Π, e〉 where e(π) = c(π, i) with i ∼ D.

interpret(〈A,Θ,D,Π, c〉), π∗) = π∗

Proof Sketch: π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]
We have π∗ ∈ arg minπ∈Π E[e(π)], since π∗ is a solution for noisy black box optimiza-
tion problem. Since e(π) = c(π, i) and i ∼ D, this is equivalent to π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)].
�

Also in Section 4.2, we discussed the possibility of solving DAC using

Definition 13: Stochastic Gradient-Based Optimization

Given 〈X, e, e′〉:

– X and e as in Definition 12.

– A stochastic differentiation sub-routine e′ satisfying E[e′(x)] = E[∂e(x)
∂x].

Find a x∗ ∈ arg minx∈X E[e(x)].

58

Automated Dynamic Algorithm Configuration

DAC ≤cm stochastic gradient-based optimization:

Preconditions:

1. We assume to be given a parametric representation Λ of the policy space, i.e.,
Π = {πλ |λ ∈ Λ}.

2. We assume c(πλ, i) to be piece-wise differentiable w.r.t. λ and a sub-routine for

calculating ∂c(πλ,i)
∂λ to be given.

formulate(〈A,Θ,D,Π, c〉) = 〈Λ, e, e′〉 with

• e(λ) = c(πλ, i) with i ∼ D.

• e′(λ) = ∂c(πλ,i)
∂λ with i ∼ D.

interpret(〈A,Θ,D,Π, c〉,λ∗) = πλ∗

Proof Sketch: πλ∗ ∈ arg minπλ∈Π Ei∼D [c(πλ, i)]
We have λ∗ ∈ arg minλ∈Λ E[e(λ)], since λ∗ is a solution for black box optimization
problem. Since e(λ) = c(πλ, i) and i ∼ D, this is equivalent to λ∗ ∈ arg minλ∈Λ Ei∼D [c(πλ, i)].
Substituting every λ by its corresponding policy πλ, we get πλ∗ ∈ arg minπλ∈Π Ei∼D [c(πλ, i)]
�

At first sight, precondition (2) may seem very strong. In what follows, we show a sufficient
condition that is arguably not so strong.

Sufficient Conditions: Next to the precondition (1), we assume

3. to be given a parametric representation of the state space.

4. the cost function c to be step-wise decomposable in 〈cinit, cstep〉 such that

c(πλ, i) = cinit(i) +
T−1∑

t=0

cstep(st, i, πλ(st, i))

where

s0 = init(i) ∧ st = step(st−1, i, πλ(st−1, i)) ∧ is final(st, i)⇔ t = T

5. to be given sub-routines for calculating the following partial derivatives: ∂πλ(s,i)
∂λ ,

∂ cstep(s,i,θ)
∂θ ,

∂ cstep(s,i,θ)
∂s , ∂ step(s,i,θ)

∂θ , and ∂ step(s,i,θ)
∂s .

Proof Sketch: Under these conditions precondition 2 also holds.
The piece-wise derivative of c w.r.t. λ can be calculated as follows

∂c(πλ, i)

∂λ
=
∂
(

cinit(i) +
∑T−1

t=0 cstep(st, i, πλ(st, i))
)

∂λ

=
∂ cinit(i)

∂λ
+
T−1∑

t=0

∂ cstep(st, i, πλ(st, i))

∂λ

=
T−1∑

t=0

∂ cstep(st, i, πλ(st, i))

∂λ

59

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

where

∂ cstep(st, i, πλ(st, i))

∂λ
=
∂ cstep(st, i, πλ(st, i))

∂πλ(st, i)
· ∂πλ(st, i)

∂λ

+
∂st
∂λ
·
(
∂ cstep(st, i, πλ(st, i))

∂st
+
∂ cstep(st, i, πλ(st, i))

∂πλ(st, i)
· ∂πλ(st, i)

∂st

)

with

∂st
∂λ

=
∂ step(st−1, i, πλ(st−1, i))

πλ(st−1, i)
· ∂πλ(st−1, i)

∂λ

+
∂st−1

∂λ
·
(
∂ step(st−1, i, πλ(st−1, i))

∂st−1
+
∂ step(st−1, i, πλ(st−1, i))

∂πλ(st−1, i)
· ∂πλ(st−1, i)

∂st−1

)

if t > 0 and ∂s0
∂λ = 0

Note that we can reuse the quantities calculated in the previous step, resulting in
a procedure known as forward-mode differentiation. While we will not derive the
formulas here, ∂c(πλ,i)

∂λ can also be calculated using reverse-mode differentiation, a
procedure also known as backpropagation in the context of neural networks. �

60

APPENDIX C
Appendix for Learning Step-Size Adaptation

in CMA-ES

Supplementary Material for:
Learning Step-Size Adaptation in CMA-ES

Gresa Shala1, André Biedenkapp1, Noor Awad1, Steven Adriaensen1,
Marius Lindauer2, and Frank Hutter1,3

1 University of Freiburg, Germany
2 Leibniz University Hannover, Germany
3 Bosch Center for Artificial Intelligence

A Available Software and Trained Policies

To enable other researchers to use our code, as well as trained models both are
publicly available at https://github.com/automl/LTO-CMA. All scripts used
to generate and plot our results, as well as the logged data are provided in
the repository. Further, we provide examples of how to use our trained policy
networks with the python version of CMA-ES (pycma) in version 2.7.0.

B Influence of Different Reward Scales

A drawback of prior methods of dynamic algorithm configuration through model-
free RL is the need to learn the value function to find a well performing policy.
With such value-based approaches learning across environments with very dif-
ferent reward scales is more challenging than with guided policy search, since
the value function and therefore the policy can quickly be dominated by an envi-
ronment with a large reward scale. Guided policy search on the other hand does
not learn a value function to determine a well performing policy. GPS rather
makes use of the reward signal to determine in which direction a better final
reward can be achieved. On each condition it optimizes trajectory controllers
individually with respect to reward and then learns policies that are similar to
those teaching trajectories. Thus the learning policy is not influenced by differ-
ent reward scales and simply learns to imitate teachers that were optimized for
each function individually.

C Experimental Setup

We evaluated our approach on a compute cluster with nodes equipped with two
Intel Xeon Gold 6242 32-core CPUs, 20 MB cache and and 188GB (shared) RAM
running Ubuntu 18.04 LTS 64 bit.

Function Specific Policy For each of the 10 BBOB functions, we trained the poli-
cies on a set of 18 conditions consisting of the same function, but with different
initialization values for the mean and step-size of CMA-ES.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 19

Function Class Specific Policy For each of the 10 BBOB functions, we trained
the policies on a set of 48 conditions consisting of the same function, but with
different dimensionality(5D, 10D, 15D, 20D, 25D, 30D), initialization values for
the mean and step-size of CMA-ES.

General Policy for BBOB We trained the policy on a set of 80 conditions con-
sisting of 8 conditions for each function with the same dimensionality (10D), but
with different initialization values for the mean and step-size of CMA-ES.

Used Metric We evaluated each method for n runs. To compare the resulting
performance of using our learned policy to that of the handcrafted baseline,
we compared the final performance of each of the 25 runs of our method to
that of the handcrafted baseline. We count how often our method outperforms
the baseline over all comparisons which gives us a probability of our policy π
outperforming the baseline CSA as

p(π < CSA) =

∑n
i

∑n
j 1πi<CSAj

n2
(1)

where 1πi<CSAj
is the indicator function showing if our policy resulted in a lower

final objective value than the baseline when comparing runs i and j.

Statistical Significance: The performance metric used (see Equation 1) can easily
be interpreted statistically as there exists a correspondence between p(π < CSA)
and the ’sum of ranks’ statistic (W) used in the Wilcoxon rank-sum test, i.e.

p(π < CSA) = Wmax−W
Wmax−Wmin

with Wmax = n(3n+1)
2 and Wmin = n(n+1)

2 . As such,
we can use critical values of the test statistic W [54] to derive critical values for
p(π < CSA), allowing us to draw conclusions about the significance of our results
simply by comparing the value of this metric to a fixed threshold. Table C1 gives
these thresholds for different common confidence levels α with n = 25.

p-value < α = 0.1 0.05 0.025 0.01 0.005 0.001

W < 570 552 536 517 505 480
p(π < CSA) ≥ 0.61 0.64 0.67 0.70 0.72 0.76

Table C1: Critical values in terms of W (“sum of ranks” statistic) and p(π <
CSA) (“probability of outperforming” metric) for a single-sided Wilcoxon’s
rank-sum test with null-hypothesis: “CMA-ES with CSA performs at least as
good as with our learned controller π” at different confidence levels α and n = 25.

20 Shala et al.

Sampling Rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BentCigar 0.00 0.00 0.19 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Discus 0.00 0.00 0.00 1.00 0.47 0.06 0.00 0.00 0.00 0.00
Ellipsoid 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
Katsuura 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rastrigin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rosenbrock 1.00 0.60 1.00 1.00 1.00 0.00 0.19 1.00 1.00 0.00
Schaffers 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Schwefel 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Sphere 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
Weierstrass 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

Average 0.40 0.46 0.42 1.00 0.35 0.41 0.42 0.60 0.40 0.40

Table D1: Probability of our approach outperforming CSA, in terms of AUC,
for different dimensions on 10 BBOB functions with different sampling rates.

D Additional Analysis using Area Under the Curve

Here we show results of anytime performance comparisons between our approach
and CSA. The reported results in the tables are computed using the same metric
as described in Section C but we compare the AUC values instead of the final
performance values. Table numbers here correspond to table numbers in the
main paper. Table D1 shows the influence of different sampling rates on the
performance, in terms of AUC, of our approach. This table confirms that also in
terms of anytime performance a low sampling rate of 0.3 seems to perform best
whereas smaller or larger sampling rates are detrimental.

Transfer to Longer Trajectories Table D2 shows the performance of our method
when transferring to higher dimensions as well as to longer optimization tra-
jectories. When transferring to longer optimization trajectories, our policy was
trained for 500 function evaluations, i.e. 50 generations. We can see from Ta-
ble D2a that our method is capable of outperforming the baseline CSA in terms
of anytime performance. When we compare it to Table D2a of the main paper
however we can see that the final performance gets worse, the further the op-
timization trajectory length is from the training setting. Plots in the following
sections of this appendix show that, especially in the early stages of optimiza-
tion, our learned policy very much outperforms the baseline. This early lead
in optimization performance gives our method a much better AUC than the
baseline.

Transfer to Higher Dimensions Table D2b shows the ability to transfer to higher
dimensions, having trained the agent on functions of lower dimensions (i.e. 5D
- 30D). We can see that up to 55D our learned policies AUC seems to be stay
nearly the same. However for 60D the anytime performance becomes worse.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 21

Trajectory Length
50 100 150 200 250 500 1000

BentCigar 0.00 1.00 0.00 1.00 1.00 0.00 0.00
Discus 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ellipsoid 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Katsuura 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rastrigin 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rosenbrock 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Schaffers 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Schwefel 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sphere 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Weierstrass 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.90 1.00 0.90 1.00 1.00 0.90 0.90

(a) Different Trajectory Lengths

Dimensions
35 40 45 50 55 60

0.00 0.00 0.00 0.00 0.28 0.00
1.00 0.00 1.00 1.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 1.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 1.00 1.00 1.00

0.70 0.70 0.60 0.70 0.83 0.50

(b) Different # Dimensions

Table D2: Probability of our method to outperform the baseline (a) for varying
trajectory lengths, when having only trained with trajectories of length 50, and
(b) for different dimensions when training them on functions of dimension 5−30
and applying the learned policies to functions of dimensionality > 30.

This stands in contrast to our analysis in the main paper, using only the final
performance, where with increasing dimensionality we could observe better final
values.

22 Shala et al.

E Performance Comparison across Training Iterations

In this section we provide additional plots for Section 5.2 of the main paper. We
visually compare the performance of our proposed method to the baseline at dif-
ferent iterations of the training process. Figures 1a to 1j depict the performance
of our method after 1, 5, 10 and 15 training iterations as well as the baseline
performance when training only on the respective functions.

100 200 300 400500

Num FEval

0.0

0.5

1.0

1.5

2.0

O
b

je
ct

iv
e

V
al

u
e

×108 BentCigar
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(a)

100 200 300 400500

Num FEval

0

20000

40000

O
b

je
ct

iv
e

V
al

u
e

Discus
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(b)

100 200 300 400500

Num FEval

0

2000000

4000000

6000000

O
b

je
ct

iv
e

V
al

u
e

Ellipsoid
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(c)

100 200 300 400500

Num FEval

214

216

218

220

O
b

je
ct

iv
e

V
al

u
e

Katsuura
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(d)

100 200 300 400500

Num FEval

−100

0

100

200

300

O
b

je
ct

iv
e

V
al

u
e

Rastrigin

CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(e)

100 200 300 400500

Num FEval

0

10000

20000

30000

40000

O
b

je
ct

iv
e

V
al

u
e

Rosenbrock
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(f)

Fig. 1: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our methods incumbent policy after 1, 5, 10 and 15 training iterations
of GPS on 10 BBOB functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 23

100 200 300 400500

Num FEval

−38

−36

−34

−32

−30

−28

O
b

je
ct

iv
e

V
al

u
e

Schaffers
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(g)

100 200 300 400500

Num FEval

−2000

0

2000

4000

6000

8000

10000

O
b

je
ct

iv
e

V
al

u
e

Schwefel
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(h)

100 200 300 400500

Num FEval

−90

−80

−70

−60

−50

O
b

je
ct

iv
e

V
al

u
e

Sphere
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(i)

100 200 300 400500

Num FEval

−260

−250

−240

−230

−220

−210

−200

O
b

je
ct

iv
e

V
al

u
e

Weierstrass
CSA

LTO Itr 1

LTO Itr 5

LTO Itr 10

LTO Itr 15

(j)

Fig. 1: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our methods incumbent policy after 1, 5, 10 and 15 training iterations
of GPS on 10 BBOB functions.

24 Shala et al.

F Sampling Rate

In this section we provide additional plots for Section 5.2 / Table 1 of the main
paper. We visually compare the performance of our proposed method using a
sampling rate of 0.3, vanilla GPS (i.e. sampling rate of 0) and the baseline (i.e.
sampling rate of 1.0). Figure 2 shows the different optimization trajectories of
CMA using the different step-size policies. Figure 3 depicts the corresponding
step-size policies.

100 200 300 400500

Num FEval

0.0

0.5

1.0

1.5

2.0

O
b

je
ct

iv
e

V
al

u
e

×108 BentCigar
CSA

LTO Sampling 0

LTO Sampling 0.3

(a)

100 200 300 400500

Num FEval

0

20000

40000

O
b

je
ct

iv
e

V
al

u
e

Discus
CSA

LTO Sampling 0

LTO Sampling 0.3

(b)

100 200 300 400500

Num FEval

0

2000000

4000000

6000000

O
b

je
ct

iv
e

V
al

u
e

Ellipsoid
CSA

LTO Sampling 0

LTO Sampling 0.3

(c)

100 200 300 400500

Num FEval

214

216

218

220

O
b

je
ct

iv
e

V
al

u
e

Katsuura
CSA

LTO Sampling 0

LTO Sampling 0.3

(d)

100 200 300 400500

Num FEval

0

100

200

300

O
b

je
ct

iv
e

V
al

u
e

Rastrigin

CSA

LTO Sampling 0

LTO Sampling 0.3

(e)

100 200 300 400500

Num FEval

0

10000

20000

30000

40000

O
b

je
ct

iv
e

V
al

u
e

Rosenbrock
CSA

LTO Sampling 0

LTO Sampling 0.3

(f)

Fig. 2: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our method with a sampling rate of 0 and 0.3 on 10 BBOB functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 25

100 200 300 400500

Num FEval

−38

−36

−34

−32

−30

−28

O
b

je
ct

iv
e

V
al

u
e

Schaffers
CSA

LTO Sampling 0

LTO Sampling 0.3

(g)

100 200 300 400500

Num FEval

−2000

0

2000

4000

6000

8000

10000

O
b

je
ct

iv
e

V
al

u
e

Schwefel
CSA

LTO Sampling 0

LTO Sampling 0.3

(h)

100 200 300 400500

Num FEval

−90

−80

−70

−60

−50

O
b

je
ct

iv
e

V
al

u
e

Sphere
CSA

LTO Sampling 0

LTO Sampling 0.3

(i)

100 200 300 400500

Num FEval

−260

−250

−240

−230

−220

−210

−200
O

b
je

ct
iv

e
V

al
u

e
Weierstrass

CSA

LTO Sampling 0

LTO Sampling 0.3

(j)

Fig. 2: Performance comparison of CMA-ES default step-size adaptation (CSA)
to that of our method with a sampling rate of 0 and 0.3 on 10 BBOB functions.

10 100 200 300 400 500

Num FEval

0.5

1.0

1.5

S
te

p
S

iz
e

BentCigar
CSA

LTO Sampling 0

LTO Sampling 0.3

(a)

10 100 200 300 400 500

Num FEval

0.1

0.2

0.3

0.4

0.5

S
te

p
S

iz
e

Discus

CSA

LTO Sampling 0

LTO Sampling 0.3

(b)

Fig. 3: Step-size adaptation comparison of CSA to that of our learned policies
with a sampling rate of 0 and 0.3 on 10 BBOB functions.

26 Shala et al.

10 100 200 300 400 500

Num FEval

0.5

1.0

1.5

S
te

p
S

iz
e

Ellipsoid
CSA

LTO Sampling 0

LTO Sampling 0.3

(c)

10 100 200 300 400 500

Num FEval

0.25

0.50

0.75

1.00

1.25

S
te

p
S

iz
e

Katsuura
CSA

LTO Sampling 0

LTO Sampling 0.3

(d)

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

Rastrigin
CSA

LTO Sampling 0

LTO Sampling 0.3

(e)

10 100 200 300 400 500

Num FEval

0.00

0.25

0.50

0.75

1.00

1.25

1.50
S

te
p

S
iz

e

Rosenbrock
CSA

LTO Sampling 0

LTO Sampling 0.3

(f)

10 100 200 300 400 500

Num FEval

0.1

0.2

0.3

0.4

0.5

0.6

S
te

p
S

iz
e

Schaffers
CSA

LTO Sampling 0

LTO Sampling 0.3

(g)

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

Schwefel
CSA

LTO Sampling 0

LTO Sampling 0.3

(h)

10 100 200 300 400 500

Num FEval

0.0

0.5

1.0

1.5

S
te

p
S

iz
e

Sphere
CSA

LTO Sampling 0

LTO Sampling 0.3

(i)

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

Weierstrass
CSA

LTO Sampling 0

LTO Sampling 0.3

(j)

Fig. 3: Step-size adaptation comparison of CSA to that of our learned policies
with a sampling rate of 0 and 0.3 on 10 BBOB functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 27

G Transfer to Unseen Test Functions

In this section we provide additional plots for Section 5.4 of the main paper.
In the following plots we show the resulting optimization trajectory (left) when
using the baseline and learned policy (right) on the corresponding function. We
can see that, especially in the beginning, our learned policy learns to use smaller
step-size values than CSA.

100 200 300 400500

Num FEval

−50000

−25000

0

25000

50000

75000

O
b

je
ct

iv
e

V
al

u
e

AttractiveSector
CSA

LTO

(a) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

AttractiveSector
CSA

LTO

(b) Step-Size Policy

100 200 300 400500

Num FEval

100

200

300

400

500

O
b

je
ct

iv
e

V
al

u
e

BuecheRastrigin
CSA

LTO

(c) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

1.2

S
te

p
S

iz
e

BuecheRastrigin
CSA

LTO

(d) Step-Size Policy

100 200 300 400500

Num FEval

43

44

45

46

47

48

O
b

je
ct

iv
e

V
al

u
e

CompositeGriewankRosenbrock
CSA

LTO

(e) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.3

0.4

0.5

S
te

p
S

iz
e

CompositeGriewankRosenbrock
CSA

LTO

(f) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

28 Shala et al.

100 200 300 400500

Num FEval

320

340

360

380

O
b

je
ct

iv
e

V
al

u
e

GallaghersGaussian101me
CSA

LTO

(g) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

S
te

p
S

iz
e

GallaghersGaussian101me
CSA

LTO

(h) Step-Size Policy

100 200 300 400500

Num FEval

−60

−55

−50

−45

−40

−35

O
b

je
ct

iv
e

V
al

u
e

DifferentPowers
CSA

LTO

(i) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

S
te

p
S

iz
e

DifferentPowers
CSA

LTO

(j) Step-Size Policy

100 200 300 400500

Num FEval

0

50

100

150

200

250

O
b

je
ct

iv
e

V
al

u
e

LinearSlope
CSA

LTO

(k) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0

2

4

6

8

10

S
te

p
S

iz
e

LinearSlope
CSA

LTO

(l) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

Supplementary Material for: Learning Step-Size Adaptation in CMA-ES 29

100 200 300 400500

Num FEval

−1000

−500

0

500

1000

O
b

je
ct

iv
e

V
al

u
e

RosenbrockRotated
CSA

LTO

(m) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
te

p
S

iz
e

RosenbrockRotated
CSA

LTO

(n) Step-Size Policy

100 200 300 400500

Num FEval

−30

−20

−10

0

O
b

je
ct

iv
e

V
al

u
e

SchaffersIllConditioned
CSA

LTO

(o) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

SchaffersIllConditioned
CSA

LTO

(p) Step-Size Policy

100 200 300 400500

Num FEval

−400

−200

0

200

400

600

800

O
b

je
ct

iv
e

V
al

u
e

StepEllipsoidal
CSA

LTO

(q) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

1.0

S
te

p
S

iz
e

StepEllipsoidal
CSA

LTO

(r) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

30 Shala et al.

100 200 300 400500

Num FEval

100

120

140

160

180

O
b

je
ct

iv
e

V
al

u
e

LunacekBiRastrigin
CSA

LTO

(s) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.3

0.4

0.5

S
te

p
S

iz
e

LunacekBiRastrigin
CSA

LTO

(t) Step-Size Policy

100 200 300 400500

Num FEval

0

200

400

600

800

1000

O
b

je
ct

iv
e

V
al

u
e

SharpRidge
CSA

LTO

(u) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.2

0.4

0.6

0.8

S
te

p
S

iz
e

SharpRidge
CSA

LTO

(v) Step-Size Policy

100 200 300 400500

Num FEval

40

60

80

100

120

O
b

je
ct

iv
e

V
al

u
e

GallaghersGaussian21hi
CSA

LTO

(w) Optimization Trajectory

10 100 200 300 400 500

Num FEval

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
te

p
S

iz
e

GallaghersGaussian21hi
CSA

LTO

(x) Step-Size Policy

Fig. 4: Optimization trajectories/Step-Size policies of CMA-ES using CSA (blue)
and our learned policy (magenta) on 12 unseen test functions.

APPENDIX D
Appendix for Learning Heuristic Selection

with Dynamic Algorithm Configuration

A Theoretical Results
Theorem 4. For each algorithm selection policy π̃as there
exists a family of planning instances in, a collection of
heuristics H and a dynamic control policy π̃dac, so that
greedy best-first search with H and π̃as expands exponen-
tially more states in |in| than greedy best-first search with
H and π̃dac until a plan π is found.

Proof. Let π̃as be an algorithm selection policy. We consider
the family of planning tasks i′n, which is similar to the family
of planning tasks in (Figure 2 in the main paper), with one
modification: the goal state s2 is not directly reachable from
s1, but via an additional state s′. In other words, we insert the
state s′ between s1 and s2. Furthermore, we again consider a
collection of two heuristics H = {h0, h1} with the heuristic
estimates shown in Figure 2 (main paper) and h0(s′) = 2
and h1(s′) = 10. The idea is that both heuristics alone lead
to the expansion of exponentially many states, whereas a dy-
namic switch of the heuristic only leads to constantly many
expansions.

Policy π̃as selects exactly one heuristic, h0 or h1, for each
planning task. If h0 is selected, with the same argument used
in the proof of Theorem 3 (main paper), exponentially many
states in |i′n| are expanded. If h1 is selected, in time step 2,
states s3 and s′ are contained in both open lists. According
to h1, state s3 is more promising than s′, which leads again
to an expansion of exponentially many states in |i′n|.

In comparison, for π̃dac we pick again the policy that al-
ways selects the heuristic with minimum average heuris-
tic value of all states in the corresponding open list, i.e.
arg minh∈H µh. Policy π̃dac selects first h0, followed by h1

and again h0, resulting in the generation of the goal state
after three state extensions.

B White-Box Experiments
We conducted preliminary experiments on a newly created
ARTIFICIAL domain with two artificial heuristics. This do-
main is designed so that in each step, only one of two heuris-
tics is informative. In other words, similar to the constructed
example in the proof of Theorem 4, at each time step, only
one heuristic leads to the expansion of a state which is on the
shortest path to a goal state. In order to obtain a good con-
trol policy that leads to few state expansions, it is necessary
to derive a dynamic control policy from the state features.
We generated 30 training instances on which we performed
a small grid search over the following parameters #layers
∈ {2, 5}, hidden units ∈ {50, 75, 150, 200} and epsilon de-
cay ∈

{
2.5× 105, 5× 105

}
. We determined that a 2-layer

network with 75 hidden units and a linear decay for ε over
5× 105 steps from 1 to 0.1 worked best 5.

Interestingly, it was possible to learn policies with a per-
formance close to the optimal policy, see Figure B1. Both
individual heuristics perform poorly (even when using an
oracle selector). Randomly deciding which heuristic to play

5Note that the hyperparameters for experiments on the IPC do-
mains have not been further tuned.

10
4

10
5

10
6

#train steps

10
1

10
2

Ex
pa

nd
ed

 N
od

es

Incumbent Performance on Training Set

RL
optimal

0
1

Best AS
RND

ALT

Figure B1: Performance of the best learned policy during
training (RL), compared to the the performance of the in-
dividual heuristics (0 & 1), the oracle selector (BEST AS),
an alternating schedule (ALT), a random policy (RND) and
the optimal policy. Dashed lines indicate the performance of
our baselines, the solid line the mean performance and the
shaded area the standard deviation of our approach.

performs nearly as good as the alternating strategy that al-
ternates between the heuristics at each step. In the begin-
ning the learned policy needs some time to figure out in
which states a heuristic might be preferable. However, it
quickly learns to choose the correct heuristic, outperforming
all other methods and nearly recovering the optimal policy.

C Domain Dependence
We limit ourselves to learning domain-dependent policies as
it was uncertain if learned policies would be able to transfer
from training with a cutoff to the test set with potentially
much longer trajectories. In particular, we used a conserva-
tive cutoff of 7500 node expansions for training. When eval-
uating our fully trained policies, we did not use this node
expansion cutoff, but ran FAST DOWNWARD for 300 sec-
onds (allowing for potentially many more than 7500 node
expansions). To gain insights into how many of the training
and testing problems could be solved by our learned poli-
cies without use of the conservative cutoff we evaluated all
our learned policies with the cutoff of 300 seconds. On the
training set roughly 31% of all training instances that can be
solved within 300 seconds by our policies require more than
7500 node expansions. On the test set it increases slightly
to 33% of the solved instances require more than 7500 ex-
pansions. It is worth noting that on the test sets for BARMAN
and VISITALL this percentage is even 49% and 66% respec-
tively. As this generalization to unseen instances with poten-
tially much longer trajectories was a first significant hurdle
to overcome we limited ourselves to domain-dependent poli-
cies. In future work we will remove this limitation.

D Additional Experiments
We conducted additional experiments with 5 heuristics in-
stead of 4, also including the hlm-count heuristic. Overall, the
results are similar to those presented in the paper, showing
that the learned DAC policy performs best overall. Note that
our computer cluster has been updated to Ubuntu 20.04 LTS
64 bit in the meantime. Therefore, we ran all the configura-
tions again, including the static ones, which led to slightly

Algorithm CONTROL POLICY SINGLE HEURISTIC BEST AS (ORACLE)

Domain (# Inst.) RL RND ALT hff hcg hcea hadd hlm-count RL ALT SINGLE h

BARMAN (100) 85.6 84.2 84.1 64.0 16.0 18.0 18.0 77.0 91.2 85.0 85.0
BLOCKSWORLD (100) 95.0 89.8 90.8 75.0 60.0 92.0 92.0 75.0 99.0 93.0 97.0
CHILDSNACK (100) 84.4 82.0 83.4 75.0 86.0 86.0 86.0 68.0 89.0 85.0 86.0
ROVERS (100) 100.0 100.0 100.0 83.0 72.0 67.0 67.0 100.0 100.0 100.0 100.0
SOKOBAN (100) 87.0 87.1 87.0 88.0 90.0 60.0 88.0 85.0 87.0 87.0 92.0
VISITALL (100) 100.0 100.0 100.0 38.0 60.0 59.0 60.0 100.00 100.0 100.0 100.0
SUM (600) 552.0 543.1 545.3 423.0 384.0 382.0 411.0 505.0 566.2 550.0 560.0

Table D3: Average coverage of different policies for the selection of a heuristic in each expansion step when evaluating the
strategies on the prior unseen test set. The first three columns are control policies, the next five are individual heuristic searches,
while the last three represent the best algorithm selection of the corresponding strategies, i.e., oracle selector for each instance.

different results here than in the main experiments.

E Additional Analysis
Tables E5 and E4 shows the average heuristic of a run. Ev-
ery section of the table refers to one quarter of a full policy
trajectory in which a heuristic is selected at every step. We
can observe that the learned policies tend to favor one of the
heuristics over all others. For example in BARMAN, on av-
erage the learned policies select the hff heuristic more than
50% of a successful run, whereas it selects hcg roughly for
one third of a successful run. Further, we can observe that in
most domains the learned policies tend to focus on two out
of the four available heuristics. Only in CHILDSNACK and
SOKOBAN do we observe that a single heuristic is chosen
throughout the entire run.

By splitting up the observed trajectories in quarters and
analyzing these quarters individually, we can see that the
learned heuristics tend to slightly increase the usage of the
dominant heuristic over time. In BLOCKSWORLD for exam-
ple, in the first quarter hadd is selected roughly 56% on aver-
age and increases to 60% in the second quarter, before lev-
eling out at 61% in the third and fourth quarters. Only on
ROVERS we observe an inverse of this trend where hff is se-
lected 71% in the first quarter before dropping to 68% and
67% in the third and fourth quarter respectively. Sometimes
this increase in usage of the more dominant heuristic is re-
flected with an appropriate reduction in usage of the second
dominant heuristic, (see e.g. BARMAN). In other cases how-
ever, both dominant heuristics increase in usage while re-
ducing the usage of the mostly unused heuristics (see e.g.
BLOCKSWORLD).

Table E6 shows the average switching frequency observed
on the test data of the individual IPC domains. For this
analysis, we recorded the length of heuristic usage before
switching to another heuristic. For ease of analysis, we dif-
ferentiate between the four different frequency classes:
• Immediate⇒ switched heuristics already after one step;
• High⇒ switched after 2 to 100 steps;
• Medium⇒ switched after 101 to 1000 steps;
• Low⇒ switched after more than 1000 steps.
Here we report the average, maximal and minimal switching
frequencies observed on the solved instances of the individ-

ual domains. This allows us to gain insights into how often
switching was necessary. On BARMAN we can for example
observe that on average, 28% of the performed steps in this
domain were immediate switches between heuristics. Fur-
ther, we can also see that on every problem instance, some
of the performed steps were immediate switches between
heuristics (see column “Min” under “Immediate”). This is
reflected accordingly in the maximum values of any of the
frequency classes as none is ever higher than 60%. For all
other domains however, we can see that a successful did
commit to longer trajectories for at least one test problem
instance.

For some domains, such as SOKOBAN or CHILDSNACK
we can see that at least one instance in the domain was
solved by a policy, by consistently playing only one of the
possible heuristics. This is consistent with the reported cov-
erage and heuristic usage values in Tables 1 of the main pa-
per, as well Table E5 of this section. Lastly, we can observe
that the lowest frequency class is observed least frequently.
This indicates that the our agents did mostly commit to such
long repeated actions if they learned that a problem instance
is solved best by not switching.

hff hcg hcea hadd

Domain (# Solved Inst.) Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min

BARMAN (84.4) 0.60 0.87 0.21 0.38 0.77 0.13 0.02 0.05 0.00 0.00 0.01 0.00
BLOCKSWORLD (92.9) 0.02 0.10 0.00 0.00 0.02 0.00 0.38 0.50 0.00 0.60 1.00 0.47
CHILDSNACK (88.) 0.95 1.00 0.62 0.02 0.20 0.00 0.01 0.04 0.00 0.02 0.16 0.00
ROVERS (95.2) 0.68 0.92 0.56 0.05 0.15 0.00 0.18 0.26 0.04 0.09 0.13 0.04
SOKOBAN (87.7) 0.98 1.00 0.80 0.00 0.20 0.00 0.02 0.03 0.00 0.00 0.02 0.00
VISITALL (56.9) 0.02 0.20 0.00 0.18 0.33 0.00 0.43 1.00 0.04 0.37 0.60 0.00

Table E4: Overall heuristic selection by RL per expansion step, averaged over solved instances. We highlight in bold the most
frequently selected heuristic for expansion per domain on average.

Q1 Q2 Q3 Q4

Domain (# Solved Inst.) hff hcg hcea hadd hff hcg hcea hadd hff hcg hcea hadd hff hcg hcea hadd

BARMAN (84.4) 0.56 0.41 0.03 0.00 0.61 0.37 0.02 0.00 0.62 0.36 0.02 0.00 0.62 0.36 0.02 0.00
BLOCKSWORLD (92.9) 0.07 0.01 0.36 0.56 0.01 0.00 0.38 0.60 0.01 0.00 0.39 0.61 0.00 0.00 0.39 0.61
CHILDSNACK (88.) 0.91 0.03 0.02 0.04 0.95 0.02 0.00 0.03 0.97 0.01 0.00 0.02 0.97 0.01 0.01 0.01
ROVERS (95.2) 0.71 0.03 0.16 0.10 0.68 0.05 0.18 0.09 0.67 0.05 0.19 0.09 0.68 0.05 0.18 0.09
SOKOBAN (87.7) 0.97 0.00 0.02 0.01 0.98 0.00 0.01 0.01 0.98 0.00 0.01 0.01 0.99 0.00 0.01 0.00
VISITALL (56.9) 0.05 0.18 0.43 0.34 0.01 0.19 0.42 0.38 0.01 0.18 0.43 0.37 0.02 0.18 0.44 0.36

Table E5: Average heuristic usage over all solved test problem instances split into quarters of the learned policies. Bold-faced
entries are the most frequently used heuristic per quarter.

Immediate High Freq. Medium Freq. Low Freq.

Domain (# Solved Inst.) Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min

BARMAN (84.4) 0.28 0.51 0.11 0.57 0.76 0.26 0.10 0.23 0.09 0.05 0.49 0.00
BLOCKSWORLD (92.9) 0.14 0.56 0.00 0.40 0.95 0.04 0.28 0.67 0.00 0.18 0.85 0.00
CHILDSNACK (88.) 0.08 0.31 0.00 0.33 0.95 0.00 0.41 0.99 0.00 0.18 0.99 0.00
ROVERS (95.2) 0.28 0.54 0.00 0.60 0.86 0.01 0.06 0.55 0.00 0.06 0.98 0.00
SOKOBAN (87.7) 0.04 0.24 0.00 0.50 0.98 0.01 0.33 0.98 0.00 0.13 0.80 0.00
VISITALL (56.9) 0.07 0.30 0.01 0.24 0.85 0.03 0.28 0.66 0.00 0.41 0.89 0.00

Table E6: Switching frequency of the learned policies on the test dataset. Bold-faced entries give the, on average, most used
switching frequency per domain.

APPENDIX E
Appendix for DACBench: A Benchmark

Library for Dynamic Algorithm Configuration

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hut-
ter. Nas-bench-101: Towards reproducible neural architecture
search. In Proc. of ICML, pages 7105–7114, 2019.

A Structure & Implementation
Section 4.2 of the main paper discussed necessary design de-
cisions of a DAC benchmark. Here we describe in greater
detail how we chose to implement these ideas in practice.
Structure A crucial first decision that shaped the project
is the structure of DACBench. It is designed to enable re-
searchers to modify benchmarks more easily than currently
possible, but also to replicate diverse experiment settings
quickly. To accomplish this, we initialize the benchmark
environments with an experiment configuration that can be
stored and shared easily. Researchers can then load this con-
figuration and reproduce the experiment (see also Section C).
The benchmark configuration focuses on the specification op-
tions for mentioned in Section 4.1 of the main paper.
Algorithm Implementation We provide or specify the im-
plementation as well the definition of what constitutes a step
in this implementation in order to keep execution consistent.
As researchers may not focus on dynamically optimizing all
hyperparameters in parallel, the hyperparameters of the tar-
get algorithm that are not currently controlled can be modi-
fied prior and are kept fixed throughout a run. This can also
include utility parameters concerning the DAC interface, par-
allelization or using different execution modes of the target
algorithm.
Action Space Here the user can specify the search space for
the hyperparameters being controlled. It is important that a
step of the target-algorithm knows how to parse the parameter
values. Otherwise, the order of parameters might get mixed
and can lead to faulty behaviour.
State & Reward Researchers can use the default methods
for computing state or reward, but they can also provide cus-
tom ones that better fit their needs. DACBench can record
and reconstruct experiments with custom functions as long as
their implementation is shared with the experiment descrip-
tion.
Instance Sets Lastly, we provide instance sets for train-
ing and testing, either directly from published versions of
the benchmarks or sampled from distributions that are as
similar as possible. The training and tests sets are drawn
from the same distribution and contain 100 instances each.
We believe using fixed instance sets will make comparisons
between methods more consistent overall. Nevertheless, of
course different instance sets as well instances sampled on
the fly can be used to better explore how DAC methods be-
have in more general cases or specific regions of the instance
space. While we strive to record experiment specifications as
succinct as possible, the instances themselves will have to be
shared by the researchers working with them. Additionally
users can modify the experimental setup including the seed,
utilities for logging results and other relevant information like
additional functionality like added noise. These are often im-
portant for reproducibility and should be shared with other
researchers along with the benchmark specification itself.

Interface The interface we use for conducting these exper-
iments is heavily based on the OpenAI gym Brockman et al.
[2016] interface for its simplicity. Users only need to initial-
ize the environment and the call two methods, reset and step,
to interact with it. Furthermore, it provides an easy way to
specify action and state spaces. As this the most commonly
used RL interface, it will be very easy for RL experts to work
on DAC, making the field as a whole more approachable. To
ensure proper initialization using the configuration, environ-
ments in DACBench are created by benchmark classes, each
holding a default configuration that can be expanded upon
and saved. Additionally, we provide an evaluation method
for the whole benchmark suite, to make comparisons to base-
lines and other methods simple and consistent. We provide
data of standard baselines like random policies to standardize
these comparisons further. As a lot of the benchmark spec-
ification is done through the configuration, smaller changes
like the use of a different state function can be done by do-
main experts without modifying the environment code. We
believe this will benefit the field in the long run as experts
can improve benchmarks with little effort and without work-
ing through all of the existing code base. This will lead to
better benchmarks and thriving community around DAC.

Additional functionality We provide functionality to add
randomness to the benchmarks in the form of sampled in-
stances from custom distributions as well as noise on the re-
ward signal. We do not include these in the default bench-
marks to keep execution consistent but they provide impor-
tant insight in algorithm behaviour nonetheless. Moreover,
we include smaller benchmark suites that provide both re-
search direction and progress measure in a very efficient for-
mat. Lastly, DACBench also includes a flexible logging sys-
tem that allows the user to track performance data as well
as action trajectories, state features and execution times, all
sorted by environment step and instance used. To make anal-
ysis quick and convenient, we include methods for reloading
data as well as visualization tools.

B The Benchmarks in detail
Sigmoid The Sigmoid benchmark [Biedenkapp et al.,
2020] is parameterized by the number of functions to approx-
imate in parallel in the number of actions in each of these
dimensions (by default two dimensions with 10 and 5 actions
respectively). An instance provides shift and slope for the
sigmoid function in each of these dimensions such that the
function value is:

sigmoid(t) =
1

1 + e−slope∗(t−shift)

The reward in each dimension is then the distance from the
chosen action to the function value. The rewards from each
dimension are then multiplied to form the step reward. The
state is made up of the current step, previous state (including
all slopes and shifts for the current instance), action played,
reward and next state.

Luby This benchmark has the agent approximate the Luby
sequence of a given length. (Following Biedenkapp et al.

[2020] the length is pre-set to 64, resulting in 6 distinct ac-
tions). In the default setting, this is challenging enough, but
instances for Luby can be used to modify the start value of
the sequence or add an accumulating error signal. The re-
ward is 0 if the correct action is played, −1 otherwise. The
observations returned consist of the current timestep, previ-
ous state (including a history of actions for the last 5 steps),
action played, reward, next state, next goal and time cutoff.

FastDownward In FastDownward, the agent selects a
search heuristic for the next planning interval. The default ac-
tion space consist of two heuristics, although we also provide
a more complete version with four heuristics [Speck et al.,
2020]. The two heuristic version is an easier variation with
artificial instances that provides an easier optimization varia-
tion and it has been shown that an RL agent is capable of re-
covering the optimal policy on these [Speck et al., 2020]. The
reward is −1 per step, measuring the total number of steps.
The agent observes average, minimum and maximum values
as well as variance and open list entries for each heuristic.
We provide several target domains as instance sets with the
default being an artificially generated one.

CMA-ES Following Shala et al. [2020], an agent’s task
here is to adjust the step size for CMA-ES. Therefore the ac-
tions space covers possible step sizes between 0 and 10. The
reward is the best individual’s objective value, with the ob-
servations consisting of the current step size, cumulative path
length and population size as well as past objective values,
change in past objective values and past step sizes (for the
last 40 steps each). The instance set consists of 10 different
function classes of the BBOB benchmark.

ModEA Instead of controlling a single hyperparameter, in
ModEA the algorithm structure consisting of 11 different
components is adjusted [Vermetten et al., 2019]. There are
two choices for each of the first nine of these and three for
the other two. That results in 4, 608 possible actions in total.
The reward is, as in CMA-ES, the best individual’s fitness.
The state contains the generation size, current step size, re-
maining budget, function ID and instance ID. As the large
action space makes this benchmark hard, we used the same
instance set as for CMA-ES with only 10 different function
classes.

SGD-DL Here the agent controls a small neural network’s
learning rate Daniel et al. [2016]. Instances consist of a
dataset, seed and network. In the default setting, we con-
sider a single dataset (MNIST), 100 seeds each for training
and test, affecting weight initialization and the mini-batch or-
dering, and a single fully-connected feedforward network ar-
chitecture having two hidden layers with 16 units each. Per-
mitted actions lie between 0 and 10 with the learning rate
of the optimizer (Adam) being set to 10−action. The obser-
vations includes discounted average and uncertainty each of
the predictive change variance and loss variance, the current
learning rate, the training and validation loss.

C Modifiers of Benchmarks
DACBench not only allows to use existing benchmarks, but
also enables easy modification through the use of Benchmark

Figure C1: Modification possibilities.

Configurations themselves (see Figure C1).
Modifications to the search space definition include

changes to the state and action spaces. Such changes can
immediately increase or lower the difficulty of learning suc-
cessful policies, e.g. through inclusion/exclusion of irrele-
vant action choices or use of additional (un-)informative state
features. Changing the algorithm settings include changes
to hyperparameters that are not dynamically changed or dif-
ferent resource allocation. Further benchmark customization
could allow control of multiple parameters (if not already en-
abled) or use of different problem instances. All included
benchmarks come with default configurations that allow for
reproduction of experiments from published versions of the
benchmarks.

D Experiment Hardware
All experiments with were conducted on a slurm CPU clus-
ter (see Table D1). The upper memory limit for these ex-
periments was 800MB per run, although not all benchmarks
require this much. As the DACBench runner was used for
all experiments, the provided Slurm scripts can reproduce the
results. Additionally, we provide them with the code.

Machine no. CPU model cores RAM
1 Xeon E5-2670 16 188 GB
2 Xeon E5-2680 v3 24 251

3-6 Xeon E5-2690 v2 20 125 GB
7-10 Xeon Gold 5120 28 187

Table D1: CPU cluster used for experiments.

E On Quantifying the Challenge Dimensions
We quantify all of our dimensions of difficulty for better com-
parability. This section details our criteria.
State & Action Spaces First, state and action space size are
deciding factors in MDPs. If state or action spaces are larger,
learning will take longer and the probability of finding a local
optimum instead of the best solution could increase for many
methods. Therefore a small set of possible states and actions
makes a benchmark easier to solve regardless of how complex
the underlying function is. To make comparison between the
other aspects as well as discrete and continuous action easy,
we divide the spaces into three categories. Category one con-
tains small discrete action spaces, we define this as below

100 actions. Large discrete spaces with up to 1000 actions
fall into category two. For state spaces, this means spaces of
up to 100 dimensions. Larger spaces fall into category three.
Continuous action spaces and action spaces with more than
1000 possible actions fall into the same category. This is of
course only a very rough categorization, but it should provide
an overview of how our benchmarks differ.

Reward Function In building DAC benchmarks, deciding
on a reward signal is as important as it can be difficult. A good
reward signal would attribute every action a reward propor-
tional to its quality. This is hard to accomplish and sometimes
we have to default to a very sparse reward signal, requiring
the agent to learn to interpret the reward. A more informative
reward, what we call better reward quality, is therefore a de-
sirable quality from a learning perspective. For this category,
we define a scale from 1 and 5: 5 means no meaningful re-
ward at all, 4 is a combined reward only at the end with no
information (reward of 0 in each step) during the run. A score
of 3 is similar, a meaningful signal only at the end but with
step rewards that indicate if taking steps is desired or not (e.g.
now giving +1 or −1 per step). A reward of quality 2 pro-
vides the accumulated quality of the policy so far at each step,
but not how the last action contributed specifically. Lastly, if
the reward indicates directly how good of a choice the last ac-
tion specifically was, it would be of quality level 1. Just like
the action and state space size, we can judge this benchmark
feature without any empirical evaluations.

Noise As DAC means working with algorithms that may
not have exact same execution times and patterns across dif-
ferent runs and hardware setups, a DAC agent should be able
to learn and perform in noisy settings. Therefore we consider
reward noise, which makes finding the target policy harder,
an important challenge in DAC. To measure it, we need to
run the benchmarks. We chose random policies and compute
the standard deviation normalized by the mean between 10
evaluations of the baseline policies per seed and average over
10 seeds.

Policy heterogeneity Policy heterogeneity is another com-
ponent of benchmark difficulty. If policies across benchmark
instances stay relatively similar, they should be easier and
faster to learn, as all instances provide the same or at least
a similar signal for optimizing the policy. As we do not have
access to the optimal policy for our benchmarks, we use the
results of our static policy evaluation as an estimation of how
well a single policy can cover the instance space. We com-
pare the average standard deviation normalized by the mean
static policies show across all instances.

Dynamicity Lastly, we examine how dynamic our bench-
marks are, that is how many action changes we expect in
a policy. If a benchmark is not very dynamic, policies that
only update the hyperparameter value once or twice might be
best while highly dynamic benchmarks require almost con-
stant changes. Again we lack the optimal policies to get a
definite answer to this question, but we approximate it using
static and random policies. For each benchmark, we cover the
given search space with a number of static policies and run
random policies with repeating actions. Actions are repeated

for a total of 1, 10, 100 or 1000 steps. As before, we evalu-
ate each repeat number for 10 seeds with 10 runs each. The
benchmarks are scored depending on the performance ranks
of these random policies. If the policy with only 1 repetition
performs best on average on an instance per seed, its score is
increased by 3. 10 repetitions yield 2 points, 100 1 point and
no points if the policy with 1000 repeats performs best. We
then scale this score to (0, 1), as we do with all others, for
simplicity’s sake.

F Additional experimental results
For space reasons, we did not include all comparisons of
static and dynamic policies in the main paper. As it is still
interesting to see how dynamic baselines and random policies
compare to the best and worst static policies, we include the
missing benchmarks here. Within these, we can easily iden-
tify two groups: on the Sigmoid and FastDownward bench-
marks, dynamic policies obviously perform well. FastDown-
ward in particular seems to favor heavily dynamic policies,
as our previous analysis has shown already. For ModEA and
CMA-ES, the picture is not quite so clear, with the random
policy and even CSA for CMA-ES peforming somewhere in
between the best and worst static policies. As we have seen
results on these problem settings that suggest good dynamic
policies perform far better, however, we can simply assume
CMA-ES and ModEA to be harder benchmarks to beat static
policies on. As they both have large action spaces as well as
high policy heterogeneity and noise rating in addition to this
fact, they present the upper end of difficulty in DACBench.

Figure F1: Static and dynamic policies on Sigmoid including top &
bottom 3 static policies. The reward measures how close the chosen
discrete value is to the actual funvtion value.

Figure F2: Static and dynamic policies on FastDownward. The re-
ward is −1 per step until the run is finished.

Figure F3: Static and dynamic policies on CMA-ES, including top
& bottom 3 policies and CSA. The reward is the fitness of the best
indivudual in the population.

Figure F4: Static and dynamic policies on ModEA, including top &
bottom 3 policies. The reward, as in CMA-ES, is the current best
individual.

APPENDIX F
Appendix for TempoRL: Learning When to

Act

TempoRL: Learning When to Act

A. Detailed Baseline Description
Dynamic Action Repetition (DAR; Lakshminarayanan et al., 2017) is a framework for

s0,t

s1,t

...

sN−1,t

sN,t

Sh
ar

ed
Fe

at
ur

e
R

ep
re

se
nt

at
io

n

A
ct

io
n

O
ut

pu
t

A
ct

io
n

O
ut

pu
t

at,r1

at,r2

Figure A1. Schematic DAR Ar-
chitecture with duplicate out-
put heads to learn at two time-
scales r1 and r2.

discrete-action space deep RL algorithms. For a discrete-action space A =
{
a1, . . . , a|A|

}

DAR duplicates this space such that an agent can choose from 2 × |A| actions. Further,
DAR introduces two hyperparameters r1 and r2, each of which are associated with one half
of the new action space. These hyperparameters determine the number of time-steps an
action will be played for, with both actions ak and a2k (1 ≤ k ≤ |A|) performing the same
behaviour but ak is repeated for r1 time-steps and a2k for r2 time-steps. When training an
agent, there are no modifications to the training procedure, other than an agent now having
to select from a larger action space. Figure A1 schematically depicts a DAR DQN agents Q-network architecture.

This gives an agent two levels of control to decide on how long to apply an action. A drawback of this framework is that
the output heads are independent from each other and are not aware that certain action outputs have the same influence on
the environment for min(r1, r2) time-steps. Further, both r1 and r2 have to be defined beforehand, requiring good prior
knowledge about the potential levels of fine and coarse control in an environment.

Fine Grained Action Repetition (FiGAR; Sharma et al., 2017) is a framework for both discrete and continuous action
spaces. Instead of learning a single policy that has to learn both which action to play and how long to follow it (as in
DAR), FiGAR decouples the behaviour and repetition learning by using two separate policies πa : S → A and πr : S →
{1, 2, . . . ,max repetition}. When training an agent, based on a state s, πa decides which action to play and simultaneously
πr decides how long to repeat a selected action starting from s. At the time of selecting their respective actions, neither πa
nor πr are aware of the other policies decision. Thus, the action and the respective repetition value are selected independently
from each other.

To couple the learning of both policies Sharma et al. (2017) use a joint loss to update the network weights and further suggest
to use weight-sharing of the input-layers of the two policy networks. Although this aligns the policies when performing
a training step, at decision time the policies remain uninformed about each others behaviour. Counter to DAR, FiGAR
allows for much more fine-grained control over the action repetition. However, FiGAR requires more modification of a base
algorithm to allow for learning of control at different time-steps. With TEMPORL we propose a method that allows for the
same fine-grained level of control while requiring no modifications to the base agent architecture.

TempoRL: Learning When to Act

Algorithm 1 TEMPORL Q-learning

1: Input: environment env with states S and actions A, skip-Actions J ,
behaviour and skip Q-functions Q(·, ·), Q(·, ·|·), training episodes E

2: Initialize Q(s, a),Q(s, j|a)∀s ∈ S, a ∈ A, j ∈ J
3: for episode∈ {1, . . . , E} do
4: s← env.reset()
5: repeat
6: a← π(s) # e.g. ε -greedy argmaxa′∈AQ(s, a′)
7: j ← πj(s, a) # e.g. ε -greedy argmaxj′∈J Q(s, j′|a)
8: trajectory← [s] # Tracks the skip trajectory
9: repeat

10: r, s′ ← env.step(a)
11: append s′ to trajectory # Records the state transitions
12: Q(s, a)← td update(Q(s, a), r, s′) # See Equation 5
13: s← s′

14: until all skips 1, . . . , j performed or episode ends
15: G ← build connectedness graph(trajectory) # Build a local connectedness graph from

the observed trajectory
16: for all connections c ∈ G do
17: get sstart, send, j′, r′ from c
18: Q(sstart, j′|a)← td update skip(Q(sstart, j′|a), r′, send) # See Equation 6
19: end for
20: until episode finished
21: end for

B. Implementation Details
Algorithm 1 details how to train a TEMPORL Q-learning agent. All elements that are new to TEMPORL are shown in
black whereas vanilla Q-learning code is greyed out. The functions td update (Line 12) and td update skip (Line 18) are
formally stated in Equations 5 and 6 respectively and give the temporal difference updates required during learning.

Q(st, at) = Q(st, at) + α





rt + γmaxQ(st+1, ·)︸ ︷︷ ︸

TD-Target


−Q(st, at)

︸ ︷︷ ︸
TD-Delta




(5)

Q(st, jt|at) = Q(st, jt|at) + α







j−1∑

k=0

γkrt+k + γj maxQ(st+j , ·)
︸ ︷︷ ︸

TD-Target



−Q(st, jt|at)

︸ ︷︷ ︸
TD-Delta




(6)

Where α is the learning rate and γ the discount factor. Note that the TD-Target in Equation 6 (as well as the skipQ-function in
Equation 4) is using the behaviourQ-function and not the skipQ-function. Thus, the skipQ-function estimates the expected
future rewards, assuming that the current skip will be the only skip in the MDP. This allows us to avoid overestimating
Q-values through multiple skips and focuses on learning of the value of the executed skip similar to double Q-learning (van
Hasselt, 2010). Further, learning of the skip-values does not interfere with learning of the behaviour Q-function.

The function build connectedness graph (Line 15) builds takes an observed trajectory and builds connectedness graph of
states that are reachable by repeatedly playing the same action (see Figure 1 in the main paper). Each connection contains
information about start and end states, the length of the skip and the discounted reward for that skip.

TempoRL: Learning When to Act

C. Used Compute Resources
Tabular & Deep RL Experiments on Featurized Environments For the tabular as well as the deep experiments on
featurized environments, we evaluated all agents on a compute cluster with nodes equipped with two Intel Xeon Gold 6242
32-core CPUs, 20 MB cache and and 188GB (shared) RAM running Ubuntu 18.04 LTS 64 bit. In all cases, the agents were
allocated one CPU. The tabular agents required at most 20 minutes to complete training, whereas the deep agents required at
most 15 hours.

Deep RL Experiments on Atari Environments These experiments were run on a compute cluster with nodes equipped
with two Intel Xeon E5-2630v4 and 128GB memory running CentOS 7. For training, the agents were allocated 10 CPUs
and required at most 48 hours to complete training.

D. Gridworld Details
All considered environments (see Figure D1) are discrete, deterministic, have sparse rewards and have size 6× 10. Falling
off a cliff results in a negative reward (−1) and reaching a goal state results in a positive reward (+1). Both cliff and goal
states terminate an episode. All other states result in no reward. An agent can only execute the actions up, down, left,
right with diagonal moves not possible. If the agent does not reach a goal/cliff in 100 steps, an episode terminates without a
reward.

For the Cliff environment, a shortest path through the environment requires 16 steps. However, to reach the goal, decisions
about unique actions are only required at 3 time points. The first is in the starting state and determines that action up should
be repeated 3-times, the next is repeating action right 10-times and the final one is repeating action down 3-times. Thereby,
an optimal proactive policy that is capable of joint decision of action and skip length requires ∼ 80% fewer decisions than
an optimal reactive policy that has to make decisions in each state. As the Bridge environment is very similar, but has a
smaller cliff area below, an optimal proactive policy also requires roughly ∼ 80% fewer decisions.

On the more complex ZigZag environment, an optimal policy requires 20 steps in total to reach the goal. In this environment
however, an agent has to switch direction more often. Leading to a total of 5 required decisions. Thus in this environment an
optimal proactive policy requires roughly 75% fewer decisions.

GS

(a) Cliff

GS

(b) Bridge

G

S

(c) ZigZag

Figure D1. Copy of Figure 4 form the main paper. 6× 10 Grid Worlds. Agents have to reach a fixed goal state from a fixed start state.
Large/small dots represent decision steps of vanilla and TEMPORL Q-learning policies.

TempoRL: Learning When to Act

Table E1. Normalized AUC for reward and average number of decision steps for varying maximal skip-lengths J . All agents are trained
with the same ε schedule. R denotes normalized area under the reward curve and D the average number of decision steps. Values are
results of running 10 random seeds. Columns 1 and 7 are equivalent to columns 5 & 6 in Table 1.

(a) linear decaying ε-schedule

Q t-Q
J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R 0.57 0.63 0.76 0.87 0.93 0.93 0.92 0.91 0.90 0.91 0.88 0.87 0.86 0.87 0.85 0.84
D 83.6 36.5 20.6 13.2 10.1 8.3 7.7 7.8 7.5 7.4 7.6 7.4 7.6 7.6 7.8 7.4

(b) logarithmic decaying ε-schedule

R 0.90 0.91 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95
D 35.6 21.7 14.9 11.6 9.5 8.6 6.4 6.3 6.5 5.9 6.1 6.2 7.0 6.8 7.0 6.0

(c) constant ε = 0.1

R 0.95 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
D 27.6 15.8 12.0 9.1 8.2 7.8 6.8 6.9 6.7 7.1 6.6 7.2 6.2 6.5 7.0 6.9

E. Influence of the Maximum Skip-Length
The maximum skip length J is a crucial hyperparameter of TEMPORL. A too large value might lead to many irrelevant
choices which the agent has to learn to ignore; whereas a too small value might not reduce the complexity of the environment
sufficiently enough, leading to barely an improvement over the vanilla counterpart. To evaluate the influence of the
hyperparameter on our method we trained various TEMPORL agents with varying maximal skip-lengths, starting from 2 up
to 16. Larger skips than 10 will never be beneficial for the agent as the agent is guaranteed to run into a wall for some steps.
Depending on where in the environment the agent is located, smaller skip-values might allow it to quickly traverse through
the environment.

Table E1 shows the influence of J on the ZigZag environment (see Figure 4c). In this environment, the largest skip value
that is possible without running into a wall is 6. Thus, small skip values up to 5 quickly improve the performance over
the vanilla counterpart, not only in terms of anytime performance but also in terms of required decisions. In the case of a
suboptimal exploration policy, in the form of linearly decaying ε-greedy schedule (see Table E1a), larger skip-values quickly
lead to a decrease in anytime performance, as the agent has to learn to never choose many non-improving skip actions.

For a more suiting exploration policy, too large skip-actions do not as quickly degrade the anytime performance of our
TEMPORL agents. In the case of a logarithmically decaying ε schedule (Table E1b), we can see that skip sizes larger or
equal than 12 start to negatively influence the anytime performance, whereas with a constant ε schedule only a skip-size of
16, nearly 3 times as large as the largest sensible choice, has a negative effect.

Similar observations can be made for deep TEMPORL on both Pedulum, MountainCar and LunarLander, see Tables 2 - 4
in the main paper. We can see that choosing larger maximal skip-values is beneficial, up to a point, at which many
irrelevant, and potentially useless choices are in the action space. For these, TEMPORL first has to learn on which part of the
skip-action-space to focus before really learning when new decisions need to be taken.

It is worth noting that, in the tabular case, all evaluated skip-sizes J result in better anytime-performance and a lower number
of required decision points compared to vanilla Q-learning, for all considered exploration strategies. In future work, we will
study how to allow TEMPORL to select large skip-actions without needing to learn to distinguish between many irrelevant
choices. One possible way of doing this could be by putting the skip-size on a log scale. For example using log2 could
result in only 10 actions where a TEMPORL agent could skip up to 1024 steps ahead but would still be able to exert fine
control with the smaller actions.

TempoRL: Learning When to Act

Figure F1. Learning curves of different DDPG agents on Pendulum-v0. J indicates the maximal skip-length used when training t-DDPG
and FiGAR. Solid lines give the mean and the shaded area the standard deviation over 15 seeds. Top-row images show the reward achieved
and bottom-row images the required steps and decisions per evaluation rollout.

TempoRL: Learning When to Act

F. DDPG Implementation Details and Additional Results
As base implementation for DDPG, we used publicly available code5 and used the default hyperparameters, except we
replaced the number of maximal training steps and initial random steps as described in the main paper. When implementing
FiGAR, we followed the description by Sharma et al. (2017). Thus, the repetition policy uses a constant epsilon-greedy
exploration. Likewise, we use a constant epsilon-greedy exploration to learn our t-DDPG.

For our t-DDPG implementation we could use the same algorithm as described in Algorithm 1. Only the greyed out parts of
normalQ-learning have to replaced by DDPG training specific elements. For example, for DDPG, the exploration policy for
the actor is given by adding exploration noise rather than following an epsilon-greedy policy. Further, we again can make
use of the base agents Q-function as shown in Equation 6.

Figure F1 depicts the learning curve for all DDPG agents with increasing maximal skip-value. As described in the main
paper, both FiGAR and t-DDPG slightly lag behind vanilla DDPG when only allowing for skips of length 2. However,
with increasing max-skip value FiGAR quickly begins to struggle and in the end even converges to worse policies, always
preferring large skip-values. Our t-DDPG using TEMPORL performs much more stable and is hardly affected by increasing
the maximal skip length. Further, t-DDPG over time learns when it is necessary to switch to new actions, roughly halving
the required decisions.

G. Featurized Environments Description
MountainCar is a challenging exploration task and requires an agent to control an under powered car to drive up a steep
hill on one side (Moore, 1990). To reach the goal, an agent has to build up momentum. The agent always receives a reward
of −1 until it has crossed the goal position and a reward of 0 afterwards. The observation consists of the car position and
velocity and the agent can either accelerate to the left or right or do nothing. To build up momentum an agent potentially
has to repeat the same action multiple times. Thus, we evaluate both t-DQN and DAR on the grid {2, 4, 6, 8, 10} for the
maximal (while keeping the minimal skip value fixed to 1) skip-value over 50 random seeds (see Tables 3a & 4a).

LunarLander The task for an agent is to land a space-ship on a lunar surface. To this end, the agent can choose to fire
the main engine, steer left or right or do nothing. Firing of the engines incurs a small cost of −0.3, whereas crashing or
successfully landing results in a large cost or reward of −100 and 100 respectively. We expect that an environment with
such a dense reward, where actions directly influence the achieved reward does not benefit from leveraging skips.

5https://github.com/sfujim/TD3

TempoRL: Learning When to Act

(a) Pong (b) BeamRider

Figure H1. Evaluation performance on Atari environments. Solid lines give the mean and the shaded area the standard deviation over 15
random seeds. (top) Achieved rewards. (bottom) Length of executed policy (· · ·) and number of decisions (—) made by the policies.

H. Atari
Table H1. Hyperparameters used for the Atari
Experiments

Hyperparameter Value

Batch Size 32
γ 0.99
Gradient Clip 40.0
Target update frequency 500
Learning starts 10 000
Initial ε 1.0
Final ε 0.01
ε time-steps 200 000
Train frequency 4
Loss Function Huber Loss
Optimizer Adam
Learning rate 10−4
β1 0.9
β2 0.999
Replay-Buffer Size 5× 104

Skip Replay-Buffer Size 5× 104

J 10

Architectures DQN: As architecture for DQN we used that of Mnih et al.
(2015) and used this as basis for our shared architecture. This architecture
has three layers of convolutions to handle the 84×84 input images. The first
convolution layer has 84 input channels, 32 output channels, a kernel size
of 8 and a stride of 4. The second has 32 input channels, 64 output channels,
a kernel size of 4 and a stride of 2. The second has 64 input channels, 64
output channels, a kernel size of 3 and a stride of 1. This is followed by two
hidden layers with 512 units each.

TEMPORL: The shared architecture used by our TEMPORL agent uses the
same architecture as just described but has an additional output stream for
the skip-outputs. The skip output stream combines a hidden layer with
10 units together with the output of the last convolutional layer. It then
processes these features again in two fully connected hidden layers with 512
units each.

DAR: Similarly, the DAR agent builds on the DQN architecture of Mnih
et al. (2015). However, the final output layer is duplicated and the duplicate
outputs act at a different time-resolution. To give DAR the same coarse
control as would be possible with our TEMPORL agent we fix the fine and
coarse control levels to 1 and 10 respectively.

Additional Results on PONG: Our learned t-DQN exhibits a slight improvement in learning speed, PONG before being
caught up by DQN (similar to the results on MsPacman in the main paper, see Figure 7a), with both methods converging to
the same final reward. Nevertheless, TEMPORL learns to make use of different degrees of fine and coarse control to achieve
the same performance, requiring roughly 1 000 fewer decisions.

The DAR agent really struggles to learn a meaningful policy on this game, never learning to properly avoid getting scored
on or scoring itself. A likely reason for the poor performance is the choice of hyperparameters. Potentially choosing smaller
skip-value for the coarse control could allow to learn better behaviour with DAR.

Additional Results on BEAMRIDER: Figure H1b shows an immediate benefit to jointly learning when and how to act
through TEMPORL. Our t-DQN begins to learn faster and achieve a better final reward than vanilla DQN.

Interestingly, the DAR agent, starting out with choosing to mostly apply fine control starts to learn much faster than vanilla
DQN and our TEMPORL agent, nearly reaching the final performance of vanilla DQN already ≈ 900 000 time-steps earlier.
However, the performance starts to drop when DAR starts to increase usage of the coarse control. Once the DAR agents
have learned this over-reliance on the coarse control, they do not recover, resulting in the worst final performance.

APPENDIX G
Appendix for Self-Paced Context Evaluation

for Contextual Reinforcement Learning

Self-Paced Context Evaluation for Contextual Reinforcement Learning

Theresa Eimer 1 André Biedenkapp 2 Frank Hutter 2 3 Marius Lindauer 1

A. Instance Sampling
AntGoal We uniformly sampled 100 different goals at a
distance of at most 750 in both x- and y-direction for both
training and test set respectively.

BallCatching The distance and goal coordinates were
sampled uniformly for both training and test set. The dis-
tance ranged between 0.125 ·π and 0.5 ·π, the x-coordinate
between 0.6 and 1.1 and the y-coordinate between 0.75 and
4.0. Each instance set contains 100 instances.

PointMass For PointMass, we sampled two different in-
stance sets. First, we used the context bounds of [-4, 4]
for the goal position, [0.5, 8] for the goal width and [0, 4]
for friction to uniformly sample instances. The goal was
to cover the instance space as well as possible. Our sec-
ond instance set was sampled using the target distribution
of SPDRL, which are normal distributions for each context
component with means 2.5, 0.5 and 0 respectively as well
as standard deviations of 0.004, 0.00375, and 0.002.

B. Experiment Hardware &
Hyperparameters

Hardware All experiments with SPACE and the base-
line round robin agent were conducted on a slurm CPU
cluster (see Table 1). The upper memory limit for these ex-
periments was 1GB per run. The SPDRL experiments were
replicated on a slurm GPU cluster consisting of 6 nodes
with eight RTX 2080 Ti each. Here maximum memory was
10GB. Slurm scripts for the experiments on PointMass and
Ant are provided in the supplementary material. Gridworld
experiments are every small and can therefore be found in
a jupyter notebook.

Machine no. CPU model cores RAM
1 Xeon E5-2670 16 188 GB
2 Xeon E5-2680 v3 24 251

3-6 Xeon E5-2690 v2 20 125 GB
7-10 Xeon Gold 5120 28 187

Table 1: CPU cluster used for training

CartPole We used a DQN implementation in the top-10
on the environment leaderboard to ensure fair performance
for round robin and SPACE agents (Chauhan, 2019). We

did not change any hyperparameters from that implemen-
tation and used κ = 1 and η = 2.5% for all experiments.

Other benchmarks For both experiments we used stable
baselines version 2.9.0 (Hill et al., 2018) with TRPO for
PointMass and PPO2 for all other benchmarks. The poli-
cies are encoded by an MLP in both cases, with two layers
of 64 units for PPO. For PointMass, we used the default
from the SDPRL paper with 21 layers of 64 units each. The
discount factor was 0.95. The PPO2 specfic hyperparame-
ters included no gradient clipping, a GAE hyperparameter
λ value of 0.99 and an entropy coefficient of 0. For TRPO
we used again used the same hyperparameters as SPDRL
with a GAE hyperparameter λ of 0.99, a maximum KL-
Divergence of 0.004 and value function step size of around
0.24. Any hyperparameters not mentioned were left at the
stable baselines’ default values. The random seeds were
used to seed the environments with the corresponding seed-
ing method.

C. Additional Comparison to SPDRL

Figure 1: Mean reward per episode on a test set of hard
instances with small goals and low friction.

In contrast to SPACE, SPDRL is designed to solve hard in-
stances. To this end, it samples harder and harder instances
over time. Therefore, we additionally study how SPACE,
round robin (RR) and SPDRL compare on hard instances
sampled from the SPDRL target distribution, see Figure 1.
Instances in this distribution typically have small goal sizes
and low friction, both of which contribute significantly to
an increased difficulty.

As in the original paper, SPDRL was allowed to sample as
many instances as needed from the distribution, whereas
SPACE and RR still only got access to a finite set of 100
instances. In this setting, agents trained either via SPACE

SPaCE

or RR exhibit a similar learning behaviour as on the space
covering instance set. For the first ∼ 200 000 steps both
agents outperform the agent trained via SPDRL; RR any-
way focuses on the whole target distribution from the be-
ginnig and SPACE is more free in the way it can select
instances with fast training progress. During this time, SP-
DRL trains the agents on some easy instances, while gradu-
ally adapting the instance distribution to focus on ever more
difficult tasks. Note that the level of difficulty is not de-
termined solely by the agent being trained via SPDRL, as
done in SPACE, but is determined by an expert beforehand.

Once the agent trained via SPDRL is capable of homing in
on the difficult instances it outperforms the other agents,
as it can exploit its domain knowledge to sample ever
more similarly difficult instances, while SPACE and RR
are stuck with the limited number of example instances and
still try to cover the entire instance space. To achieve this
feat, SPDRL requires substantial expert knowledge about
which instances to focus on. In essence, the agent trained
via SPDRL in the end is only capable of solving a few hard
instances with very little variation and will fail to perform
well on instances that are not narrowly aligned with the as-
sumed instance distribution.

To be able to know which instances SPDRL should focus
on, additional time and effort have to be spent to identify
how to quantify difficulty for SPDRL. This effort is not re-
flected in Figure 1 and would move the curve of SPDRL
even further to the right.

D. Does the Training Set Size Matter?
To answer this question, we used SPACE to train agents
with varying instance set sizes. Figure 2 shows the test per-
formance for differently sized instance sets. Intuitively, one
might think that performance should improve with more
instances as they cover the instance space better. Indeed,
the results for training sets with only 25 and 50 instances
are visibly worse than for larger sets. On the remaining in-
stance sets, the agent show very similar performance, how-
ever. Note that the performance seems to increase from an
instance set size of 100 to 200, but slightly drops again af-
terwards. There are multiple factors potentially contribut-
ing to this effect.

The first is that the agent cannot incorporate any more in-
formation from the additional instances, maybe due to lim-
ited network capacity or due to the fact that smaller instance
sets already cover the space adequately. Furthermore, as we
only extend the instance set by one instance at a time, there
are more learning steps between curriculum iterations the
larger the instance set is, thereby slowing the process down.
Especially an agent trained on 1 600 instances will suffer
from this.

Figure 2: Mean reward per episode on test set for different
sized instance sets.

Lastly, SPACE improves upon the RR baseline by order-
ing training instances and thus smoothing the progression
through the instance space. Larger instance sets offer an
inherently smoother representation of the instance distribu-
tion, therefore diminishing the effect of SPACE. In real-
world application settings, we will rarely have access to
such large numbers of instances and therefore, it is unlikely
that such diminishing performance effects can be observed.
This shows that the strength of our method comes to full
effect when learning on a sparse representation of our in-
stance space.

E. Comparison of SPACE Curricula
To give some insight into which curricula SPACE found
on our benchmark environments, we compare how they
behave across random seeds and how they compare to
cSPACE curricula. We use Kendall’s tau to determine how
similar the order in which the instances are added to the
training set is.

On PointMass, SPACE finds a curriculum that stay very
consistent across all random seeds, showing a correlation
of at least 98.9% each to the mean curriculum. The same
is true for the cSPACE variation, where the correlation is
above 93.8% per seed. Interestingly, these curricula are un-
correlated with a correlation of −0.04. In both we cannot
make out a human readable progression in a single con-
text feature (see Figure 3), their curricula do not corre-
spond to any manual instance ordering. As both perform
well nonetheless, we can see that learning can be improved
by multiple different curricula on this environment.

SPACE and cSPACE produce almost equally unrelated
curricula on AntGoal (correlation of 0.07), but while the
curriculum stays as consistent across seeds for cSPACE,
the same cannot be said for SPACE. Here the correlation to
the average curriculum ranges from 14.1% to 52.4%. The
correlations between the seed curricula fall into the same
range, confirming that the SPACE agent trains on a very
different curriculum for each seed. CartPole shows a simi-
lar behaviour, the curriculum varying quite a bit between

SPaCE

Figure 3: Context feature progression during training for
SPACE curriculum (top) and cSPACE curriculum (bot-
tom).

seeds. Therefore we can conclude that SPACE does not
find a singular curriculum, but depends on the initialization
of environment and model. This is in contrast to cSPACE
which stays relatively static due to the context features be-
ing constant.

These comparisons suggest that we neither SPACE nor
cSPACE finds an optimal curriculum for PointMass,
AntGoal or CartPole. It seems, however, that we do not
need an optimal curriculum for training at all, as even the
10 very different curricula SPACE finds on AntGoal per-
form vastly superior to the round robin default. Curriculum
Learning should thus focus on reliably and quickly find-
ing good curricula in addition to finding qualitatively better
ones.

F. The Influence of Catastrophic Forgetting
When training across multiple instances, forgetting al-
ready learnt policies on a subset of instances is a concern
(Beaulieu et al., 2020). We analyze how often SPACE and
RR agents forget policy components in our PointMass ex-
periments by observing performance development during
training. We selected PointMass for this analysis as here
policies that are diverse both in how they react to different
goal settings and different friction levels are required. That
means the policy has to completely change between the ex-

tremes of the context which is not required of our other
benchmarks where underlying mechanics, e.g. walking for
the Ant, stay very similar.

During the training on PointMass, we observed 8 out of
100 instances for which the performance decays after an
initial improvement. We would expect the performance to
stay at least constant if no forgetting takes place, so the
agent likely forgets parts of the policy for these instances in
favor of improving on others. The effect is about the same
size for round robin agents where we can observe the same
for 6 out of 100 instances.

Another reason for attributing this performance decay to
forgetting is that on a purely goal-based PointMass varia-
tion, the number of instances on which we can observe this
effect is slightly smaller (only 4 instances), though not sig-
nificantly so. All performance decay happens after learn-
ing has stagnated on all instances, however. In this easier,
purely goal-based setting we could therefore stop training
early and would avoid performance decay entirely. This
points towards the added complexity of the setting being
harder to capture for our agents.

While the effects on both SPACE and RR agents are not
very large in our experiments, catastrophic forgetting is
therefore certainly important in the field of contextual RL.
Future work could on integrate SPACE with existing ef-
forts to reduce this effect like ANML (Beaulieu et al.,
2020). A specific aspect of this research that would need
to be extended is preventing forgetting in continuous con-
text spaces in addition to the existing successes in discrete
ones.

References
Beaulieu, S., Frati, L., Miconi, T., Lehman, J., Stanley,

K. O., Clune, J., and Cheney, N. Learning to continu-
ally learn. In ECAI 2020 - 24th European Conference on
Artificial Intelligence, 2020.

Chauhan, K. Cartpole DQN.
https://github.com/kapilnchauhan77/CartPole DQN,
2019.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kan-
ervisto, A., Traore, R., Dhariwal, P., Hesse, C.,
Klimov, O., Nichol, A., Plappert, M., Radford, A.,
Schulman, J., Sidor, S., and Wu, Y. Stable baselines.
https://github.com/hill-a/stable-baselines,
2018.

APPENDIX H
Appendix for CARL: A Benchmark for

Contextual and Adaptive Reinforcement
Learning

A Benchmark Categories

To encourage generalization in RL, we chose a wide variety of common task characteristics as well
as well-known environments as the basis of CARL.

The physical simulation environments (Brax, box2d and classic control) defining a dynamic body
in a static world have similar context features like gravity, geometry of the moving body, position
and velocity, mass, friction and joint stiffness. For brevity, we only detail the context features of
CARLFetch and list all other environments’ context features in Section G of the appendix.

CARLFetch embeds Brax’ Fetch [17] as a cMDP, see Figure 1a. The goal of Fetch is to move the
agent to the target area. The context features joint stiffness, gravity, friction, (joint) angular damping,
actuator strength, torso mass as well as target radius and distance define the context. The defaults
of the context features are copied from the original environment. Furthermore, appropriate bounds
must be set for the specific application. We set the bounds such that the environment’s purpose is not
violated, e.g., restricting the gravity towards the ground greater than 0 (otherwise the agent would fly
up and it would be impossible to act).

Besides physical simulation environments, CARL provides two more specific, challenging envi-
ronments. The first is the CARLMarioEnv environment built on top of the TOAD-GAN level
generator [3, 50]. It provides a procedurally generated game playing environment (similarly to
the ones discussed in Section 4) that allows customization of the generation process. This envi-
ronment is therefore especially interesting for exploring representation learning for the purpose of
learning to better generalize. Secondly, we move closer to real-world application by including the
CARLRNADesignEnvironment [48]. The task here is to design RNA sequences given structural
constraints. As two different datasets of structures and their instances are used in this benchmark, it
is ideally suited for testing policy transfer between RNA structures.

A.1 Pendulum’s Dynamic Equations

Because we use gym’s Pendulum [7] for our experiments Q1 and Q2 (see section 6), we provide the
dynamic equations to show the simplicity of the system. The state consists of the angular position θ
and velocity of the pendulum θ̇. The discrete equation defining the behavior of the environment is
defined as follows:

θ̇k+1 = θ̇k + (−3g

2l
sin(θk + π) +

3

m · l2uk) ·∆t

θk+1 = θk + θ̇k+1 ·∆t .
Here, k is the index of the iteration/step, g the gravity, l the length of the pendulum, u the control
input and ∆t the timestep.

B Hardware and Hyperparameters

Hardware All experiments on all benchmarks were conducted on a slurm CPU cluster if not stated
otherwise (see Table 2). The experiments for CARLMarioEnv were replicated on a slurm GPU cluster
consisting of 6 nodes with eight RTX 2080 Ti each.

Table 2: CPU cluster used for training
Machine no. CPU model cores RAM

1 Xeon E5-2670 16 188 GB
2 Xeon E5-2680 v3 24 251

3-6 Xeon E5-2690 v2 20 125 GB
7-10 Xeon Gold 5120 28 187

Hyperparameters and Training Details We used agents from stable baselines 3 [42] (version
1.1.0) for all of our experiments. For the DQN (used in CARLLunarLanderEnv, Section 6.3) and the
PPO agent (used in CARLMarioEnv in Section C) we employ the hyperparameters from the stable
baselines zoo [41], see Table 3. For the DDPG agent (used for CARLPendulumEnv in Section 6.1

15

and 6.2) we use the defaults with a MLP policy. We train each agent for 106 steps. Every 5000
steps we evaluate one episode on each train instance and report the mean reward across instances.
All experiments can be reproduced using the scripts we provide with the benchmark library at
https://www.github.com/automl/CARL.

Table 3: Hyperparameters from stable baselines zoo [41] for the agents used. Blank fields mean
default values from stable baselines agent.

Hyperparameter DQN PPO

n_envs 1 8
policy MlpPolicy CnnPolicy
n_steps 128
n_epochs 4
learning_rate 6.3e-4 lin_2.5e-4
batch_size 128 256
n_epochs 4
buffer_size 50000
learning_starts 0
gamma 0.99
target_update_interval 250
train_freq 4
gradient_steps -1
exploration_fraction 0.12
exploration_final_eps 0.1
clip_range lin_0.1
policy_kwargs net_arch=[256, 256]
vf_coef 0.5
ent_coef 0.01

C Additional Experimental Results

To further illustrate the influence of varying context, we show experimental results for a PPO agent
trained on the CARLMarioEnv. Again, the agent is trained for 5 different random seeds and with
100 training instances. In CARLMarioEnv different instances (Mario levels) are created by using
TOAD-GAN [50]. By varying the noise input vector for TOAD-GAN we can generate different levels
and the greater the noise, the greater the differences to the original level. Because CARLMarioEnv
is pixel-based the context is implicitly coded in the state and we hide the context. As we can see
in Figure 7 a diverse training distribution (σrel = 0.2) increases the performance and facilitates
generalization. On the other hand if the noise becomes too large (σrel = 0.5) the performance
decreases again. A reason might be that the levels for this noise level are very diverse and thus the
current setup, with only implicit context, might not be suitable.

Figure 7: Training performance on CARLMarioEnv where only noise on the input generative vector
is changed.

16

D Open Challenges Enabled by CARL

We used CARL to demonstrate the usefulness of a benchmark that can provide the ground truth
of available context information. Based on that, we showed that making such information about
the environment explicitly available to the agent enables faster training and transfer of agents (see
Section 6). While this already provides valuable insights to the community that increasingly cares
about learning agents capable of generalization (see Sections 1 & 3) CARL enables to study further
open challenges for general RL.

D.1 Challenge I: Representation Learning

Our experiments using CARL demonstrated that an agent that is given access to context information
is capable of learning better than an agent that has to learn behaviours given an implicit context via
state observations. This provides evidence that disentangling the representation learning aspect from
the policy learning task reduces complexity. As CARL provides a ground truth for representations of
environment properties we envision future work on principled studies of novel RL algorithms that, by
design, disentangle representation learning and policy learning (see, e.g., [44, 18, 62] as first works
along this line of research). The ground truth given by the context would allow to measure the quality
of learned representations and allows us to relate this to true physical properties of an environment.

Another use-case of CARL we envision under the umbrella of representation learning follows the
work of environment probing policies [64]. There, exploratory policies are learned that allow to
identify which environment type an agent encounters. This is complementary to the prior approaches
as representations are not jointly learned with the behaviour policies as in the previously discussed
approaches but rather in a separate offline phase. Based on CARL, huge amounts of meta-data could
be collected that will enable the community to make use of classical meta-algorithmic approaches
such as algorithm selection [46] for selecting previously learned policies or learning approaches.

D.2 Challenge II: Uncertainty of RL Agents

With the access to context information CARL enables to study the influence of noise on RL agents in
a novel way. While prior environments enabled studies of the behaviour of agents when they could
not be certain about their true state in a particular environment, CARL further allows to study agents
behaviours in scenarios with uncertainty on their current contextual environment, e.g., because of
noise on the context features. In practical deployment of RL, this is reasonable concern since context
feature have to be measured somehow by potentially noisy censors. As this setting affects the overall
transition dynamics, CARL provides a unique test-bed in which the influence of uncertainty can be
studied and how RL agents can deal with such.

D.3 Challenge III: Continual Learning

With the flexibility and easy modifiability of CARLs provided contexts, CARL is suitable for studying
continual reinforcement learning agents. In this setting, the distributions provided by CARL could be
modified, e.g., gradually shifted, during the training procedure. For example, CARL could be used to
evaluate the behaviour of an agent in the Brax environments where one or more joints become stiffer
over time. A learning agent would need to be able to handle this and adapt its gait accordingly. In
particular, one could at some point “repair” the agent and reset the joints to their original stiffness.
This would then allow to evaluate whether the agent has “unlearned” the original gait. In the same
way, CARL allows also to study how agents would react to spontaneous, drastic changes, e.g., broken
legs or changes of the environment such as changes of weather conditions.

D.4 Challenge IV: Interpretable and Explainable Deep RL

Trust is a crucial factor, for which interpretability or explainability often is mandatory. With the
provided ground truth through the explicit use of context features, CARL could be the base for
studying interpretability and explainability of (deep) RL. By enabling AutoRL studies and different
representation learning approaches, CARL will contribute to better interpret the training procedures.

CARL further allows to study explainability on the level of learned policies. We propose to study
the sensitivity of particular policies to different types of context. Thus, the value and variability of a

17

context might serve as a proxy to explain the resulting learned behavior. Such insights might then be
used to predict how policies might look like or act (e.g., in terms of frequency of action usage) in
novel environments, solely based on the provided context features.

D.5 Challenge V: AutoRL

AutoRL (e.g., [22, 48, 21, 9]) addresses the optimization of the RL learning process. To this end,
hyperparameters, architectures or both of agents are adapted either on the fly [22] or once at the
beginning of a run [48]. However, as AutoRL typically requires large compute resources for this
procedure, optimization is most often done only on a per-environment basis. It is reasonable to
assume that such hyperparameters might not transfer well to unseen environments, as the learning
procedures were not optimized to be robust or to facilitate generalization, but only to improve the
reward on a particular instance.

As CARL provides easy-to-use contextual extensions of a diverse set of RL problems, it could be
used to drive research in this open challenge of AutoRL. First of all, it enables a large scale-study
to understand how static and dynamic configuration approaches complement each other and when
one approach is to be preferred over another. Such a study will most likely also lead to novel
default hyperparameter configurations that are more robust and tailored to fast learning and good
generalization. In addition, it will open up the possibility to study whether it is reasonable to use a
single hyperparameter configurations or whether a mix of configurations for different instances is
required [59]. Furthermore, with the flexibility of defining a broad variety of instance distributions
for a large set of provided context features, experiments with CARL would allow researchers to
study which hyperparameters play a crucial role in learning general agents similar to studies done for
supervised machine learning [56] or AI algorithms [6].

D.6 Challenge VI: High Confidence Generalization

The explicit context of the CARL benchmark enables tackling another challenge in the field of safe
RL. High Confidence Generalization algorithms (HCGAs) [25] provide safety guarantees for the
generalization of agents in testing environments. Given a worst-case performance bound, the agent
can be tasked to decide whether a policy is applicable in an out-of-distribution context or not. This
setting is especially important for the deployment of RL algorithms in the real world where policy
failures can be costly and the context of an environment is often prone to change. CARL has the
potential to facilitate the development of HCGAs that base their confidence estimates on the context
of an environment.

E Future Maintenance

As our benchmark draws from several different RL environments as dependencies, we realize that it
will need regular maintenance and updating. Furthermore, we would like to include more benchmarks
and options that are closer to real-world applications. In part, we of course hope that the community
will embrace CARL and work with us to extend it in order to match the needs of researchers working
in cRL. We acknowledge, however, that relying on community driven progress only is infeasible.
Therefore we commit to updating the current benchmark version including its dependencies at least
twice a year or whenever critical updates in dependencies are released. As we plan to continue
using GitHub for hosting, versioning as well as providing continued access to previous versions is
feasible. We also aim to fix any issues that are brought to our attention in a reasonable timeframe.
In case community-driven benchmarks are added, we will ensure the continued functionality of the
benchmark as a whole (as far as our resources will allow). As we are researching solution methods in
the field of cRL ourselves, we expect to contribute further benchmarks of our own as well.

F Statement

The authors’ acknowledge that they bear all responsibility in case of violation of rights, etc., and
confirmation of the data license.

18

G Context Features for Each Environment

We list all registered context features with their defaults, bounds and types for each environment
family in Table 4 (classic control), Table 5 (box2d), Table 6 (brax) and Table 7 (RNA and Mario).

Table 4: Context Features: Defaults, Bounds and Types for OpenAI gym’s Classic Control environ-
ments [7]

(a) CARLCartPoleEnv

Context Feature Default Bounds Type

force_magnifier 10.00 (1, 100) int
gravity 9.80 (0.1, inf) float
masscart 1.00 (0.1, 10) float
masspole 0.10 (0.01, 1) float
pole_length 0.50 (0.05, 5) float
update_interval 0.02 (0.002, 0.2) float

(b) CARLPendulumEnv

Context Feature Default Bounds Type

dt 0.05 (0, inf) float
g 10.00 (0, inf) float
l 1.00 (1e-06, inf) float
m 1.00 (1e-06, inf) float
max_speed 8.00 (-inf, inf) float

(c) CARLMountainCarEnv

Context Feature Default Bounds Type

force 0.00 (-inf, inf) float
goal_position 0.50 (-inf, inf) float
goal_velocity 0.00 (-inf, inf) float
gravity 0.00 (0, inf) float
max_position 0.60 (-inf, inf) float
max_speed 0.07 (0, inf) float
min_position -1.20 (-inf, inf) float
start_position -0.50 (-1.5, 0.5) float
start_position_std 0.10 (0.0, inf) float
start_velocity 0.00 (-inf, inf) float
start_velocity_std 0.00 (0.0, inf) float

(d) CARLAcrobotEnv

Context Feature Default Bounds Type

link_com_1 0.50 (0, 1) float
link_com_2 0.50 (0, 1) float
link_length_1 1.00 (0.1, 10) float
link_length_2 1.00 (0.1, 10) float
link_mass_1 1.00 (0.1, 10) float
link_mass_2 1.00 (0.1, 10) float
link_moi 1.00 (0.1, 10) float
max_velocity_1 12.57 (1.26, 125.66) float
max_velocity_2 28.27 (2.83, 282.74) float

Table 5: Context Features: Defaults, Bounds and Types for OpenAI gym’s Box2d environments [7]

(a) CARLBipedalWalkerEnv

Context Feature Default Bounds Type

FPS 50.00 (1, 500) float
FRICTION 2.50 (0, 10) float
GRAVITY_X 0.00 (-20, 20) float
GRAVITY_Y -10.00 (-20, -0.01) float
INITIAL_RANDOM 5.00 (0, 50) float
LEG_DOWN -0.27 (-2, -0.25) float
LEG_H 1.13 (0.25, 2) float
LEG_W 0.27 (0.25, 0.5) float
LIDAR_RANGE 5.33 (0.5, 20) float
MOTORS_TORQUE 80.00 (0, 200) float
SCALE 30.00 (1, 100) float
SPEED_HIP 4.00 (1e-06, 15) float
SPEED_KNEE 6.00 (1e-06, 15) float
TERRAIN_GRASS 10.00 (5, 15) int
TERRAIN_HEIGHT 5.00 (3, 10) float
TERRAIN_LENGTH 200.00 (100, 500) int
TERRAIN_STARTPAD 20.00 (10, 30) int
TERRAIN_STEP 0.47 (0.25, 1) float
VIEWPORT_H 400.00 (200, 800) int
VIEWPORT_W 600.00 (400, 1000) int

(b) CARLLunarLanderEnv

Context Feature Default Bounds Type

FPS 50.00 (1, 500) float
GRAVITY_X 0.00 (-20, 20) float
GRAVITY_Y -10.00 (-20, -0.01) float
INITIAL_RANDOM 1000.00 (0, 2000) float
LEG_AWAY 20.00 (0, 50) float
LEG_DOWN 18.00 (0, 50) float
LEG_H 8.00 (1, 20) float
LEG_SPRING_TORQUE 40.00 (0, 100) float
LEG_W 2.00 (1, 10) float
MAIN_ENGINE_POWER 13.00 (0, 50) float
SCALE 30.00 (1, 100) float
SIDE_ENGINE_AWAY 12.00 (1, 20) float
SIDE_ENGINE_HEIGHT 14.00 (1, 20) float
SIDE_ENGINE_POWER 0.60 (0, 50) float
VIEWPORT_H 400.00 (200, 800) int
VIEWPORT_W 600.00 (400, 1000) int

(c) CARLVehicleRacingEnv

Context Feature Default Bounds Type

VEHICLE 0 - categorical, n = 29

19

Table 6: Context Features: Defaults, Bounds and Types for Google Brax environments [17]

(a) CARLAnt

Context Feature Default Bounds Type

actuator_strength 300.00 (1, inf) float
angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 35.00 (0, inf) float
joint_stiffness 5000.00 (1, inf) float
torso_mass 10.00 (0.1, inf) float

(b) CARLFetch

Context Feature Default Bounds Type

actuator_strength 300.00 (1, inf) float
angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 35.00 (0, inf) float
joint_stiffness 5000.00 (1, inf) float
target_distance 15.00 (0.1, inf) float
target_radius 2.00 (0.1, inf) float
torso_mass 1.00 (0.1, inf) float

(c) CARLGrasp

Context Feature Default Bounds Type

actuator_strength 300.00 (1, inf) float
angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 50.00 (0, inf) float
joint_stiffness 5000.00 (1, inf) float
target_distance 10.00 (0.1, inf) float
target_height 8.00 (0.1, inf) float
target_radius 1.10 (0.1, inf) float

(d) CARLHumanoid

Context Feature Default Bounds Type

angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 20.00 (0, inf) float
torso_mass 8.91 (0.1, inf) float

Table 7: Context Features: Defaults, Bounds and Types for RNA Design [48] and Mario Environ-
ment [3, 50]

(a) CARLRnaDesignEnv

Context Feature Default Bounds Type

mutation_threshold 5 (0.1, inf) float
reward_exponent 1 (0.1, inf) float
state_radius 5 (1, inf) float
dataset eterna - categorical, n = 3
target_structure_ids f(dataset) (0, inf) list of int

(b) CARLMarioEnv

Context Feature Default Bounds Type

level_index 0 - categorical, n = 15
noise f(level_index, width, height) (-1, 1) float
mario_state 0 - categorical, n = 3
mario_inertia 0.89 (0.5, 1.5) float

20

Bibliography

261

Adriaensen, S., A. Biedenkapp, G. Shala, N. Awad, T. Eimer, M. Lindauer, and F. Hutter
(2022). “Automated Dynamic Algorithm Configuration”. In: arXiv:2205.13881 [cs.AI]
(cit. on pp. 17, 39).

Almeida, D., C. Winter, J. Tang, and W. Zaremba (2021). “A Generalizable Approach to
Learning Optimizers”. In: arXiv:2106.00958 [cs.LG] (cit. on p. 19).

Ansótegui, C., M. Sellmann, and K. Tierney (2009). “A Gender-Based Genetic Algorithm for
the Automatic Configuration of Algorithms”. In: Proceedings of the Fifteenth International
Conference on Principles and Practice of Constraint Programming (CP’09). Ed. by I. Gent.
Vol. 5732. Lecture Notes in Computer Science. Springer, pp. 142–157 (cit. on p. 189).

Awad, N., G. Shala, D. Deng, N. Mallik, M. Feurer, K. Eggensperger, A. Biedenkapp, D.
Vermetten, H. Wang, C. Doerr, M. Lindauer, and F. Hutter (2020). “Squirrel: A Switching
Hyperparameter Optimizer Description of the entry by AutoML.org & IOHprofiler to
the NeurIPS 2020 BBO challenge”. In: arXiv:2012.08180 [cs.LG] (cit. on pp. 17, 18).

Bach, F. R. and E. Moulines (2011). “Non-Asymptotic Analysis of Stochastic Approximation
Algorithms for Machine Learning”. In: Proceedings of the 24th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’11). Ed. by J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger. Curran Associates, pp. 451–
459 (cit. on pp. 9, 19).

Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2013). “The Arcade Learning
Environment: An Evaluation Platform for General Agents”. In: jair 47, pp. 253–279
(cit. on pp. 15, 24).

Bellman, R. (1957). “A Markovian decision process”. In: Journal of Mathematics and
Mechanics, pp. 679–684 (cit. on p. 22).

Bellman, R. (1957/2003). Dynamic Programming. Dover Publications. ISBN: 0-486-42809-5
(cit. on pp. 23, 24). Original: Dynamic Programming. Princeton University Press, 1957.

Benjamins, C., T. Eimer, F. Schubert, A. Biedenkapp, B. Rosenhan, F. Hutter, and M. Lin-
dauer (2021). “CARL: A Benchmark for Contextual and Adaptive Reinforcement Learn-
ing”. In: Workshop on Ecological Theory of Reinforcement Learning (EcoRL@NeurIPS’21)
(cit. on pp. 17, 163).

Benjamins, C., T. Eimer, F. Schubert, A. Mohan, A: Biedenkapp, B. Rosenhan, F. Hutter,
and M. Lindauer (2022). “Contextualize Me – The Case for Context in Reinforcement
Learning”. In: arXiv:2202.04500 [cs.LG] (cit. on p. 188).

Bertsekas, D. P. and J. N. Tsitsiklis (1996). Neuro-dynamic programming. Vol. 3. Opti-
mization and neural computation series. Athena Scientific. ISBN: 1886529108 (cit. on
p. 22).

Biedenkapp, A., H. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer (June 2020). “Dynamic
Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework”. In:
Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI’20).
Ed. by J. Lang, G. De Giacomo, B. Dilkina, and M. Milano, pp. 427–434 (cit. on pp. 16,
29).

Biedenkapp, A., N. Dang, M. S. Krejca, F. Hutter, and C. Doerr (2022a). “Theory-inspired
Parameter Control Benchmarks for Dynamic Algorithm Configuration”. In: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’22). Ed. by J. Fieldsend.
ACM (cit. on pp. 17, 18, 125).

262 Bibliography

Biedenkapp, A., J. Marben, M. Lindauer, and F. Hutter (2018). “CAVE: Configuration Assess-
ment, Visualization and Evaluation”. In: Proceedings of the International Conference on
Learning and Intelligent Optimization (LION). Ed. by R. Battiti, M. Brunato, I. Kotsireas,
and P. Pardalos. Lecture Notes in Computer Science. Springer (cit. on p. 18).

Biedenkapp, A., R. Rajan, F. Hutter, and M. Lindauer (2021). “TempoRL: Learning When to
Act”. In: Proceedings of the 38th International Conference on Machine Learning (ICML’21).
Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning Research.
PMLR, pp. 914–924 (cit. on pp. 16, 21, 139).

Biedenkapp, A., D. Speck, S. Sievers, F. Hutter, M. Lindauer, and J. Seipp (2022b). “Learn-
ing Domain-Independent Policies for Open List Selection”. In: Workshop on Bridging the
Gap Between AI Planning and Reinforcement Learning (PRL@ICAPS’22) (cit. on p. 188).

Biere, A., M. Heule, H. van Maaren, and T. Walsh, eds. (2009). Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press. ISBN: 978-1-
58603-929-5 (cit. on p. 3).

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba
(2016). “OpenAI Gym”. In: arXiv:1606.01540 [cs.LG] (cit. on p. 14).

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei (2020). “Language Models are Few-Shot Learners”. In: (cit. on p. 188).

Campbell, M., A. J. Hoane Jr., and F. Hsu (2002). “Deep Blue”. In: Artificial Intelligence
134.1-2, pp. 57–83 (cit. on p. 3).

Chrabaszcz, P., I. Loshchilov, and F. Hutter (2018). “Back to Basics: Benchmarking Canoni-
cal Evolution Strategies for Playing Atari”. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’18). Ed. by J. Lang. ijcai.org, pp. 1419–1426
(cit. on p. 23).

Daniel, C., J. Taylor, and S. Nowozin (2016). “Learning Step Size Controllers for Robust
Neural Network Training”. In: Proceedings of the Thirtieth National Conference on
Artificial Intelligence (AAAI’16). Ed. by D. Schuurmans and M. Wellman. AAAI Press
(cit. on p. 19).

Dimopoulos, Y., B. Nebel, and J. Koehler (1997). “Encoding Planning Problems in Non-
monotonic Logic Programs”. In: Recent Advances in AI Planning, 4th European Conference
on Planning, ECP’97. Ed. by S. Steel and R. Alami. Vol. 1348. Lecture Notes in Computer
Science. Springer, pp. 169–181 (cit. on p. 3).

Doerr, B. (2019). “Analyzing randomized search heuristics via stochastic domination”. In:
Theoretical Computer Science 773, pp. 115–137. URL: https://doi.org/10.1016/j.tc
s.2018.09.024 (cit. on p. 14).

Doerr, B. and C. Doerr (2018). “Theory of Parameter Control for Discrete Black-Box
Optimization: Provable Performance Gains Through Dynamic Parameter Choices”. In:
arXiv:1804.05650 [cs.NE] (cit. on p. 14).

Eimer, T., A. Biedenkapp, F. Hutter, and M. Lindauer (2021a). “Self-Paced Context Evalua-
tion for Contextual Reinforcement Learning”. In: Proceedings of the 38th International
Conference on Machine Learning (ICML’21). Ed. by M. Meila and T. Zhang. Vol. 139.
Proceedings of Machine Learning Research. PMLR, pp. 2948–2958 (cit. on pp. 16, 151).

https://doi.org/10.1016/j.tcs.2018.09.024
https://doi.org/10.1016/j.tcs.2018.09.024

263

Eimer, T., A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer (2021b).
“DACBench: A Benchmark Library for Dynamic Algorithm Configuration”. In: Proceedings
of the 30th International Joint Conference on Artificial Intelligence, IJCAI’21. Ed. by Z.
Zhou. ijcai.org, pp. 1668–1674 (cit. on pp. 16, 117).

Feurer, M., A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter (2019).
“Auto-sklearn: Efficient and Robust Automated Machine Learning”. In: Automated
Machine Learning: Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and J.
Vanschoren. Vol. 5. The Springer Series on Challenges in Machine Learning. Available
for free at http://automl.org/book. Springer. Chap. 6, pp. 113–134 (cit. on p. 189).

François-Lavet, V., R. Fonteneau, and D. Ernst (2015). “How to Discount Deep Reinforce-
ment Learning: Towards New Dynamic Strategies”. In: arXiv:1512.02011 [cs.LG] (cit.
on pp. 22, 188).

Franke, J. KH, G. Köhler, A. Biedenkapp, and F. Hutter (2021). “Sample-Efficient Auto-
mated Deep Reinforcement Learning”. In: Proceedings of the International Conference on
Learning Representations (ICLR’21). Published online: iclr.cc (cit. on p. 17).

Ghallab, M., D. S. Nau, and P. Traverso (2004). Automated planning - Theory and Practice.
Elsevier. ISBN: 978-1-55860-856-6 (cit. on p. 3).

Goodfellow, I. J., Y. Bengio, and A. C. Courville (2016). Deep Learning. Adaptive computa-
tion and machine learning. MIT Press. ISBN: 978-0-262-03561-3. URL: http://www.dee
plearningbook.org/ (cit. on p. 3).

Hafner, D., T. P. Lillicrap, M. Norouzi, and J. Ba (2021). “Mastering Atari with Discrete
World Models”. In: Proceedings of the International Conference on Learning Representa-
tions (ICLR’21). Published online: iclr.cc. URL: https://openreview.net/forum?id
=0oabwyZbOu (cit. on p. 23).

Hallak, A., D. Di Castro, and S. Mannor (2015). “Contextual Markov Decision Processes”.
In: arXiv:1502.02259 [stat.ML] (cit. on p. 12).

Hansen, N. (2006). “The CMA evolution strategy: a comparing review”. In: Towards a
new evolutionary computation. Advances on estimation of distribution algorithms. Ed. by
J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea. Springer, pp. 75–102 (cit. on p. 12).

Hansen, N. and A. Ostermeier (2001). “Completely Derandomized Self-Adaptation in
Evolution Strategies”. In: Evolutionary Computation 9, pp. 159–195 (cit. on pp. 12, 13).

Heath, D. and D. Allum (1997). “The Historical Development of Computer Chess and its
Impact on Artificial Intelligence”. In: Deep Blue Versus Kasparov: The Significance for
Artificial Intelligence, Collected Papers from the 1997 AAAI Workshop. AAAI Press, p. 63
(cit. on p. 3).

Helmert, M. (2006). “The Fast Downward Planning System”. In: Journal of Artificial
Intelligence Research 26, pp. 191–246 (cit. on p. 13).

Henderson, P., R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger (2018). “Deep
reinforcement learning that matters”. In: Proceedings of the Thirty-Second Conference
on Artificial Intelligence (AAAI’18). Ed. by S. McIlraith and K. Weinberger. AAAI Press
(cit. on pp. 186, 188).

Hessel, M., J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. G. Azar, and D. Silver (2018). “Rainbow: Combining Improvements in Deep
Reinforcement Learning”. In: Proceedings of the Thirty-Second Conference on Artificial

iclr.cc
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
iclr.cc
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu

264 Bibliography

Intelligence (AAAI’18). Ed. by S. McIlraith and K. Weinberger. AAAI Press, pp. 3215–
3222 (cit. on p. 24).

Hutter, F., H. Hoos, and K. Leyton-Brown (2011). “Sequential Model-Based Optimization for
General Algorithm Configuration”. In: Proceedings of the Fifth International Conference
on Learning and Intelligent Optimization (LION’11). Ed. by C. Coello. Vol. 6683. Lecture
Notes in Computer Science. Springer, pp. 507–523 (cit. on p. 189).

Hutter, F., H. Hoos, K. Leyton-Brown, and T. Stützle (2009). “ParamILS: An Automatic
Algorithm Configuration Framework”. In: Journal of Artificial Intelligence Research 36,
pp. 267–306 (cit. on p. 5).

Hutter, F., L. Kotthoff, and J. Vanschoren, eds. (2019). Automated Machine Learning:
Methods, Systems, Challenges. Vol. 5. The Springer Series on Challenges in Machine
Learning. Available for free at http://automl.org/book. Springer (cit. on p. 19).

Izquierdo, S., J. Guerrero-Viu, S. Hauns, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken,
D. Deng, M. Lindauer, and F. Hutter (2021). “Bag of Baselines for Multi-objective
Joint Neural Architecture Search and Hyperparameter Optimization”. In: Workshop on
Automated Machine Learning (AutoML@ICML’21) (cit. on p. 17).

Kingma, D. and J. Ba (2015). “Adam: A Method for Stochastic Optimization”. In: Proceedings
of the International Conference on Learning Representations (ICLR’15). Published online:
iclr.cc (cit. on p. 19).

Kirk, R., A. Zhang, E. Grefenstette, and T. Rocktäschel (2021). “A Survey of Generalisation
in Deep Reinforcement Learning”. In: arXiv:2111.09794 [cs.LG] (cit. on p. 15).

Kulkarni, T. D., K. Narasimhan, A. Saeedi, and J. Tenenbaum (2016). “Hierarchical Deep
Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation”.
In: Proceedings of the 29th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’16). Ed. by D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon,
and R. Garnett. Vol. 29. Curran Associates (cit. on p. 22).

Kumar, M. Pawan, B. Packer, and D. Koller (2010). “Self-Paced Learning for Latent Variable
Models”. In: Proceedings of the 23rd International Conference on Advances in Neural
Information Processing Systems (NeurIPS’10). Ed. by J. Lafferty, C. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta. Curran Associates, pp. 1189–1197 (cit. on p. 15).

LeCun, Y., P. Haffner, L. Bottou, and Y. Bengio (1999). “Object Recognition with Gradient-
Based Learning”. In: Shape, Contour and Grouping in Computer Vision. Ed. by D. A.
Forsyth, J. L. Mundy, V. Di Gesù, and R. Cipolla. Vol. 1681. Lecture Notes in Computer
Science. Springer, p. 319. DOI: 10.1007/3-540-46805-6_19. URL: https://doi.org
/10.1007/3-540-46805-6%5C_19 (cit. on p. 24).

Levine, S. and P. Abbeel (2014). “Learning Neural Network Policies with Guided Policy
Search under Unknown Dynamics”. In: Proceedings of the 27th International Confer-
ence on Advances in Neural Information Processing Systems (NeurIPS’14). Ed. by Z.
Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger. Curran Associates,
pp. 1071–1079 (cit. on p. 12).

Levine, S. and V. Koltun (2013). “Guided Policy Search”. In: Proceedings of the 30th
International Conference on Machine Learning (ICML’13). Ed. by S. Dasgupta and D.
McAllester. Omnipress, pp. 1–9 (cit. on p. 12).

Li, K. and J. Malik (2017). “Learning to Optimize”. In: Proceedings of the International
Conference on Learning Representations (ICLR’17). Published online: iclr.cc (cit. on
p. 12).

iclr.cc
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6%5C_19
https://doi.org/10.1007/3-540-46805-6%5C_19
iclr.cc

265

Lindauer, M., K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T.
Ruhkopf, R. Sass, and F. Hutter (2022). “SMAC3: A Versatile Bayesian Optimization
Package for Hyperparameter Optimization”. In: Journal of Machine Learning Research
(JMLR) – MLOSS 23.54, pp. 1–9 (cit. on pp. 17, 189).

Lindauer, M., K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and F. Hutter
(2019a). “BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of
Hyperparameters”. In: arXiv:1908.06756 [cs.LG]. URL: https://arxiv.org/abs/1908
.06756 (cit. on p. 18).

Lindauer, M., M. Feurer, K. Eggensperger, A. Biedenkapp, and F. Hutter (2019b). “Towards
Assessing the Impact of Bayesian Optimization’s Own Hyperparameters”. In: IJCAI 2019
DSO Workshop. Ed. by P. De Causmaecker, M. Lombardi, and Y. Zhang (cit. on p. 18).

López-Ibáñez, M., J. Dubois-Lacoste, T. Stützle, and M. Birattari (2011). The irace package,
Iterated Race for Automatic Algorithm Configuration. Tech. rep. IRIDIA, Université Libre
de Bruxelles, Belgium (cit. on p. 189).

Malashin, R. O. (Sept. 6, 2021). “Sparsely Ensembled Convolutional Neural Network
Classifiers via Reinforcement Learning”. In: 6th International Conference on Machine
Learning Technologies (ICMLT’21). ICMLT 2021, pp. 102–110. ISBN: 9781450389402.
DOI: 10.1145/3468891.3468906 (cit. on p. 19).

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A.
Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H.
King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis (2015). “Human-level control
through deep reinforcement learning”. In: Nature 518.7540, pp. 529–533 (cit. on pp. 10,
13, 24).

Obando-Ceron, J. S. and P. S. Castro (2021). “Revisiting Rainbow: Promoting more in-
sightful and inclusive deep reinforcement learning research”. In: Proceedings of the 38th
International Conference on Machine Learning (ICML’21). Ed. by M. Meila and T. Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 1373–1383 (cit. on
p. 24).

OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A.
Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder,
L. Weng, Q. Yuan, W. Zaremba, and L. Zhang (2019). “Solving Rubik’s Cube with a
Robot Hand”. In: arXiv:1910.07113 [cs.LG] (cit. on p. 22).

Parker-Holder, J., R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang, V. Nguyen,
R. Calandra, A. Faust, F. Hutter, and M. Lindauer (2022). “Automated Reinforcement
Learning (AutoRL): A Survey and Open Problems”. In: Journal of Artificial Intelligence
Research (JAIR) 74, pp. 517–568 (cit. on pp. 17, 20, 188).

Pettinger, J. and R. Everson (2002). “Controlling genetic algorithms with reinforcement
learning”. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation, pp. 692–692 (cit. on p. 20).

Rajan, R., J. L. B. Diaz, S. Guttikonda, F. Ferreira, A. Biedenkapp, J. O. von Hartz, and Frank
Hutter (2020). “MDP Playground: Controlling Dimensions of Hardness in Reinforcement
Learning”. In: arXiv:1909.07750. URL: https://arxiv.org/abs/1909.07750 (cit. on
p. 18).

Rice, J. (1976). “The Algorithm Selection Problem”. In: Advances in Computers 15, pp. 65–
118 (cit. on p. 4).

https://arxiv.org/abs/1908.06756
https://arxiv.org/abs/1908.06756
https://doi.org/10.1145/3468891.3468906
https://arxiv.org/abs/1909.07750

266 Bibliography

Sakurai, Y., K. Takada, T. Kawabe, and S. Tsuruta (2010). “A Method to Control Parameters
of Evolutionary Algorithms by Using Reinforcement Learning”. In: Proceedings of Sixth
International Conference on Signal-Image Technology and Internet-Based Systems (SITIS).
Ed. by K. Yétongnon, A. Dipanda, and R. Chbeir. IEEE Computer Society, pp. 74–79
(cit. on p. 20).

Sass, René, Eddie Bergman, André Biedenkapp, Frank Hutter, and Marius Lindauer
(2022). “DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning”.
In: Workshop on Adaptive Experimental Design and Active Learning in the Real World
(ReALML@ICML’22). DOI: 10.48550/arXiv.2206.03493 (cit. on p. 18).

Schmidhuber, J. (2015). “Deep Learning in Neural Networks: An Overview”. In: Neural
Networks 61, pp. 85–117 (cit. on p. 24).

Shala, G., A. Biedenkapp, N. Awad, S. Adriaensen, M. Lindauer, and F. Hutter (2020).
“Learning Step-Size Adaptation in CMA-ES”. In: Proceedings of the Sixteenth International
Conference on Parallel Problem Solving from Nature (PPSN’20). Ed. by T. Bäck, M. Preuss,
A. Deutz, H. Wang, C. Doerr, M. Emmerich, and H. Trautmann. Lecture Notes in
Computer Science. Springer, pp. 691–706 (cit. on pp. 16, 87).

Sharma, M., A. Komninos, M. López-Ibáñez, and D. Kazakov (2019). “Deep reinforcement
learning based parameter control in differential evolution”. In: Proceedings of the Genetic
and Evolutionary Computation Conference. Ed. by M. López-Ibáñez. ACM, pp. 709–717
(cit. on p. 20).

Solomonoff, R. J. (1957). “An inductive inference machine”. In: IRE Convention Record,
Section on Information Theory. Vol. 2. Institute of Radio Engineers New York, pp. 56–62
(cit. on p. 3).

Speck, D., A. Biedenkapp, F. Hutter, R. Mattmüller, and M. Lindauer (2021). “Learning
Heuristic Selection with Dynamic Algorithm Configuration”. In: Proceedings of the 31st
International Conference on Automated Planning and Scheduling (ICAPS’21). Ed. by H. H.
Zhuo, Q. Yang, M. Do, R. Goldman, S. Biundo, and M. Katz. AAAI, pp. 597–605 (cit. on
pp. 16, 105).

Sutton, R. S. (1988). “Learning to Predict by the Methods of Temporal Differences”. In:
Machine Learning 3, pp. 9–44. DOI: 10.1007/BF00115009. URL: https://doi.org/10
.1007/BF00115009 (cit. on p. 24).

Sutton, R. S. and A. G. Barto (2018). Reinforcement learning: An introduction. 2nd ed.
Adaptive computation and machine learning. MIT Press (cit. on pp. 3, 21, 23, 24).

Turner, R., D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon (2021).
“Bayesian Optimization is Superior to Random Search for Machine Learning Hyperpa-
rameter Tuning: Analysis of the Black-Box Optimization Challenge 2020”. In: Proceedings
of the NeurIPS 2020 Competition and Demonstration Track. Ed. by H. Escalante and
K. Hofmann. PMLR, pp. 3–26 (cit. on p. 18).

van Hasselt, H. (2010). “Double Q-learning”. In: Proceedings of the 23rd International
Conference on Advances in Neural Information Processing Systems (NeurIPS’10). Ed. by
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta. Vol. 23. Curran
Associates (cit. on p. 25).

van Hasselt, H., A. Guez, and D. Silver (2016). “Deep Reinforcement Learning with Double
Q-Learning”. In: Proceedings of the Thirtieth National Conference on Artificial Intelligence
(AAAI’16). Ed. by D. Schuurmans and M. Wellman. AAAI Press, pp. 2094–2100 (cit. on
pp. 12, 13, 24, 25).

https://doi.org/10.48550/arXiv.2206.03493
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009

267

Watkins, C. J. C. H. (1989). “Learning from Delayed Rewards”. PhD thesis. Cambridge,
United Kingdom: King’s College (cit. on pp. 12, 24).

Watkins, C. J. C. H. and P. Dayan (1992). “Q-learning”. In: Machine learning 8.3, pp. 279–
292 (cit. on p. 24).

Xu, C., T. Qin, G. Wang, and T. Liu (2017). “Reinforcement learning for learning rate
control”. In: arXiv:1705.11159 [cs.LG] (cit. on p. 19).

Xu, L., H. Hoos, and K. Leyton-Brown (2010). “Hydra: Automatically Configuring Algo-
rithms for Portfolio-Based Selection”. In: Proceedings of the Twenty-fourth National
Conference on Artificial Intelligence (AAAI’10). Ed. by M. Fox and D. Poole. AAAI Press,
pp. 210–216 (cit. on p. 6).

Xu, Z., A. M. Dai, J. Kemp, and L. Metz (2019). “Learning an Adaptive Learning Rate
Schedule”. In: arXiv:1909.09712 [cs.LG] (cit. on p. 19).

Zhang, B., R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua, F. Hutter, and R.
Calandra (2021). “On the Importance of Hyperparameter Optimization for Model-
based Reinforcement Learning”. In: Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics (AISTATS). Ed. by A. Banerjee and K. Fukumizu.
Proceedings of Machine Learning Research (cit. on p. 17).

	Introduction
	Motivation
	In a Nutshell
	How to Read This Dissertation

	Goals of this Dissertation
	Key Challenges
	Contributions
	List of Publications

	Additional Related Work
	Reinforcement Learning
	Markov Decision Processes
	Learning the Value of a State

	Dynamic Algorithm Configuration: The Problem
	Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework
	Introduction
	Related Work
	DAC as Contextual MDP
	Reinforcement Learning for DAC
	White-Box Benchmarks for DAC
	Baselines
	Experimental Study
	Discussion
	Conclusion

	Automated Dynamic Algorithm Configuration
	Introduction
	Related Work
	Problem Definition
	Solution Methods
	Benchmark Library
	Empirical Case Studies
	Conclusion

	Dynamic Algorithm Configuration: Case Studies
	Learning Step-Size Adaptation in CMA-ES
	Introduction
	Related Work
	Background on CMA-ES
	Learning Step-Size Adaptation
	Experiments
	Conclusion

	Learning Heuristic Selection with Dynamic Algorithm Configuration
	Introduction
	Background
	Dynamic Heuristic Selection
	Empirical Evaluation
	Conclusion

	Dynamic Algorithm Configuration: Benchmarking
	DACBench: A Benchmark Library for Dynamic Algorithm Configuration
	Introduction
	Related Work
	Formal Background on DAC
	DACBench
	Empirical Insights Gained from DACBench
	Conclusion

	Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration
	Introduction
	Parameterized RLS for LeadingOnes
	Optimal Policies and Portfolios for LeadingOnes
	Algorithm Configuration With Reinforcement Learning
	Conclusion and Outlook

	Improving RL From the Lens of DAC
	TempoRL: Learning When to Act
	Introduction
	Related Work
	TempoRL
	Experiments
	Analysis of TempoRL Policies
	Conclusion

	Self-Paced Context Evaluation for Contextual Reinforcement Learning
	Introduction
	Related Work
	Contextual Reinforcement Learning
	Self-Paced Context Evaluation
	Experiments
	Limitations
	Conclusion

	CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
	Introduction
	CARL’s Theoretical Foundation: Contextual RL (cRL)
	Related Work
	The Role of Context in Deep RL and CARL
	The CARL Benchmarks
	Experiments
	Further Open Challenges Enabled by CARL
	Limitations and Societal and Ethical Implications
	Conclusion

	Conclusion
	Summary and Discussion
	Lessons Learned for a new Research Field
	Future Work

	Appendices
	Appendix for Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework
	Appendix for Automated Dynamic Algorithm Configuration
	Appendix for Learning Step-Size Adaptation in CMA-ES
	Appendix for Learning Heuristic Selection with Dynamic Algorithm Configuration
	Appendix for DACBench: A Benchmark Library for Dynamic Algorithm Configuration
	Appendix for TempoRL: Learning When to Act
	Appendix for Self-Paced Context Evaluation for Contextual Reinforcement Learning
	Appendix for CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning

	Bibliography

