Towards White-Box Benchmarks for Algorithm Control

André Biedenkapp, H. Furkan Bozkurt, Frank Hutter, Marius Lindauer, University of Freiburg

Albert-Ludwigs-Universität Freiburg

In a Nutshell

Related Work

m

- Algorithm *configuration*, often necessary to achieve peak performance over a set of instances (e.g. Al Planning and SAT)
- It has been shown that **different parameter settings are** optimal at different stages of an algorithm
- Algorithm control adjusts parameters depending on an observed state
- **Goal:** Learn this control policy from data

Definition: Algorithm Control

Given:

- a parameterized algorithm \mathcal{A} with a parameter **configuration space** Λ ,
- a state description $s_t \in S$ of algorithm A at each time point t,
- a space of **control policies** $\Pi: S \rightarrow \Lambda$ mapping from states to configurations, and
- a cost metric c assessing the cost of a control policy π by running \mathcal{A} with π (e.g., runtime or accuracy), and

- RL for Algorithm Control:
 - Battiti and Campigotto (2012) applied Least Squares
 - Policy Iteration to learn a policy of **one SAT parameter**
 - Daniel et al. (2016) used Relative Entropy Policy Search to learn a controller for the step size of NN optimizers.
- Jaderberg et al. (2017) use Population Based Training to adjust the hyperparameters of RL agents over time

• a set of problems \mathcal{I}

Goal: obtain a control policy $\pi^*_{i \in I} \in \Pi$ with minimal cost *c*.

Control of hyperparameter λ at time step *t* on problem *i*. State *s*_t is given by some internal statistics of the Algorithm.

Insights Gained on White-Box Benchmarks

10

- Plethora of instance-feature we can
- What temporal information can we

