NAS-Bench-1Shot1: Benchmarking and Dissecting One-Shot Neural Architecture Search

Julien Siems, Arbër Zela and Frank Hutter

Under review as a conference paper at ICLR 2020
Motivation

- Recent Neural Architecture Search (NAS) methods use a one-shot model to perform the search.

Motivation

- Recent Neural Architecture Search (NAS) methods use a one-shot model to perform the search.

- **Reproducibility crisis**
 - Need proper benchmarks [Lindauer and Hutter 2019]
 - NAS-Bench-101 [Ying et al. 2019]
Motivation

- Recent Neural Architecture Search (NAS) methods use a one-shot model to perform the search.

- Optimize architecture w.r.t. the one-shot validation loss.
 - Goal: Find an architecture which performs well when trained on its own.
 - Question: How correlated are the two objectives?

- Question: How sensitive are the search methods towards their hyperparameters?

- Problem: Independent training of discrete architectures is very expensive.
 - How could we increase the evaluation speed?
Outline

- Idea
- One-Shot NAS Optimizers
- Results
- Conclusion
Idea

DARTS Search Phases

Architecture Search

\[
\min_{\alpha} L_{\text{val}}(w^*(\alpha), \alpha)
\]
\[
s.t. w^*(\alpha) = \arg\min_w L_{\text{train}}(w, \alpha)
\]

Epoch 0

\[
\text{Epoch 50}
\]

Liu et al. 2018

Architecture Evaluation

- Train discrete arch. from scratch
- Higher fidelity model:
 - More channels
 - More cells
- Different training hyperparameters

Discretize
Idea

DARTS Search Phases

Architecture Search

\[\min_{\alpha} L_{val}(w^*(\alpha), \alpha) \]
\[\text{s.t. } w^*(\alpha) = \arg\min_w L_{train}(w, \alpha) \]

Epoch 0
Epoch 50

Architecture Evaluation

- Train discrete arch. from scratch
- Higher fidelity model:
 - More channels
 - More cells
- Different training hyperparameters

DARTS (first order): 1.5 days
DARTS (second order): 4 days

DARTS: 1 day

Price to pay to check intermediate architectures
Idea

NASBench-101

- Exhaustively evaluated search space CIFAR-10 [REF]
 - > 400k unique graphs
- Evaluated on 4 different budgets
- Evaluated 3 times

How can we use NASBench for Architecture Evaluation?

Architecture Evaluation

- Train discrete arch. from scratch
- Higher fidelity model:
 - More channels
 - More cells
- Different training hyperparameters
Idea

DARTS Search Space

- **Representation**: edges are ops, nodes are combinations of tensors
- **Input** of each cell are the 2 previous cells.
- Intermediate node have 2 incoming edges
- Output of cell is concatenation of all intermediate node outputs

NASBench Search Space

- **Representation**: edges depict tensor flow, nodes are operations
- Limited number of architectures by restricting each cell:
 - <= 9 edges
 - <= 5 intermediate nodes
 - Max-Pool, Conv-1x1, Conv-3x3
- Input of each cell is only previous cell.

Architectures in the DARTS Search Space are usually not part of the NASBench Search Space.
- Modified search space by Bender et al. 2018
- Architectural weights:
 - On edges to output
 - On input edges to choice block
 - On the ‘mixed-op’ for each operation
- Modified search space by Bender et al. 2018
- Architectural weights:
 - On edges to output
 - On input edges to choice block
 - On the ‘mixed-op’ for each operation
Idea

- Modified search space by Bender et al. 2018
- Architectural weights:
 - On edges to output
 - On input edges to choice block
 - On the ‘mixed-op’ for each operation
- Define search spaces by number of parents of each node:

Table 1: Characteristic information of the search spaces.

<table>
<thead>
<tr>
<th></th>
<th>Search space</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Node 2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Node 3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Node 4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Node 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Output</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>No. archs. w/ loose ends</td>
<td>6240</td>
<td>29160</td>
<td>363648</td>
<td></td>
</tr>
<tr>
<td>w/o loose ends</td>
<td>2487</td>
<td>3609</td>
<td>24066</td>
<td></td>
</tr>
</tbody>
</table>
This allowed the following **analysis**:
- Follow architecture trajectory of One-Shot NAS
 - **Comparison** of 4 One-shot NAS optimizers
- **Correlation** between One-shot validation error and NASBench validation error
- **Hyperparameter Optimization** of search methods.
Outline

✓ Idea
- One-Shot NAS Optimizers
- Results
- Conclusion
One-Shot NAS Optimizers

DARTS [Liu et al. 18]

- Differentiably sample paths through each cell.
- Only operations on path need to be evaluated
- Very fast search
- Avoids co-adaption

PC-DARTS [Xu et al. 19]

- BOHB
- Hyperband
- Random Search
- Regularized Evolution
- SMAC
- TPE
- Reinforce

GDAS [Dong et al. 19]

- Random Search with Weight Sharing [Li et al. 19]
 - **Training:**
 - Sample architecture from search space for each batch and train one-shot model weights.
 - **Evaluation:**
 - Sample many archs., rank according to one-shot validation error of 10 batches
 - Fully evaluate top-10 archs.

More optimizers to be done …

Figure from Xu, Yuhui, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. "PC-DARTS: Partial Channel Connections for Memory-Efficient Differentiable Architecture Search." (2019).
Outline

- Idea
- One-Shot NAS Optimizers
 - Results
 - NASBench 1-Shot-1 Analysis
 - NASBench 1-Shot-1 HPO
 - Conclusion
Optimizer Comparison

- **DARTS** and **GDAS:**
 - stuck in local optimum
- **PC-DARTS:**
 - stable search and relatively good performance for the given number of epochs
- **Random Search with WS:**
 - explores mainly poor architectures
NAS-Bench-1Shot1 as Analysis Framework

Regularized Search (Cutout) – Search Space 3

- Longer search -> architectural overfitting
- Cutout largely stabilized the search

GDAS

- Little impact of cutout on found architectures.

PC-DARTS

- Additional regularization has no positive impact
NAS-Bench-1Shot1 as Analysis Framework

Regularized Search (Weight Decay) – Search Space 3

DARTS
Higher regularization -> less stable search

GDAS
Higher regularization -> less stable search

PC-DARTS
High regularization -> less stable search
Effect of one-shot learning rate – Search Space 3

DARTS
High learning-rate -> less stable search

GDAS
High learning-rate -> less stable search

PC-DARTS
High learning-rate -> **better** search
Correlation

- **No correlation** between one-shot validation error and NASBench validation error:
 - For all one-shot search methods
 - For all search spaces
 - Follows results by Sciuto et al. 19: They only estimated using 32 architectures
Tunability of NAS optimizers

Optimize the hyperparameters of one-shot NAS optimizers using BOHB [Falkner et al. 2018]

- Outperform the default configuration by a factor of 7-10
- With the same number of function evaluations, they are able to outperform black-box NAS optimizers
Conclusion and Future Directions

- We presented NAS-Bench-1Shot1, a framework containing 3 benchmarks that enable to evaluate the **anytime performance** of one-shot NAS algorithms
- NAS-Bench-1Shot1 as **analysis framework**
- One-shot NAS optimizers can outperform black-box optimizers if tuned properly

Future work:
- Add other methods such as ENAS [Pham et al. 2018], ProxylessNAS [Cai et al. 2019], etc.
- Automate the generation of plots, analysis results, or benchmark tables.
- Towards NAS-Bench-201