BOHB: Robust and Efficient Hyperparameter Optimization at Scale

Stefan Falkner, Aaron Klein, Frank Hutter

{ sfalkner | kleinaa | fh }@cs.uni-freiburg.de

Department of Computer Science

University of Freiburg, Germany

Summary

- We propose and evaluate a hyperparameter optimizer that combines Bayesian Optimization and HyperBand
- BOHB exploits low fidelity approximations and incorporates past evaluations into its model to speed up the optimization
- Our algorithms exhibit
 - strong anytime and final performance
 - efficient parallelization (multi-core machine or cluster)
 - scalability w.r.t. the search space dimensionality
 - flexibility towards different problem domains, i.e. continuous, discrete and mixed problems
- robustness regarding different characteristics of the loss function, e.g., fidelity dependent noise or systematic differences across fidelities

BOHB

- BOHB takes advantage of smaller budgets (like HB) and previous evaluations (like TPE)
- model distributions for each budget of HB similar to TPE
- TPE: hierarchy of one-dimensional KDEs
- BOHB: single multidimensional KDE
- samples from a model replace random configurations
- small fraction of random configurations for guaranteed global convergence with at least the same rate as random search
- parallelization through limited optimization of the acquisition function to introduce diversity

Tree of Parzen Estimators (TPE)

- TPE (Berstra et al. 2011) is an instantiation of Bayesian Optimization
- Expected Improvement as the acquisition function
 \[
 a(x, \alpha) = \int \max(0, \alpha - f(x)) d\pi_f(x) \quad (1)
 \]
- Non-parametric Parzen kernel density estimators (KDEs) to model the distribution of good and bad configurations w.r.t. a reference value α
 \[
 l(x) = p(y < \alpha | x) \quad \text{and} \quad g(x) = p(y > \alpha | x) \quad (2)
 \]
- KDEs in (2) can be used to compute (1) and optimized via sampling
- TPE has been shown to scale to higher dimensions (Eggensperger et al. 2013) with little overhead and to parallelize easily (Berstra et al. 2011)

Hyperband (HB)

- HB (Li et al. 2017) iteratively allocates resources to random configurations using Successive-Halving (Jamieson and Talwalkar 2016).
- In each iteration HB selects N configurations for Successive-Halving which runs many configurations on a small budget.
- increases the budget for the best ones.
- terminates a constant fraction at each step to limit the computational cost.
- HB automatically trades off between simple random search (full budget) and a very aggressive early stopping (by evaluation on smaller budgets)
- HB is guaranteed to be at most a constant factor slower than random search
- If applicable, HB typically outperforms standard blackbox Bayesian optimization by exploiting cheap evaluations, e.g., subsets of the data, fewer iterations, limited execution time, or any continuous fidelity

Experiments

- Benchmarks to evaluate performance:
 - Architecture and hyperparameters (6 parameters in total) of Feed Forward Networks on featured data from OpenML (Vanschoren et al. 2014): Adult, Higgs, OptDigits, Letter, and Poker
 - To afford more runs, we build a surrogate (Eggensperger et al. 2015) based on 10000 random configurations each
 - Budget: training time
 - Support Vector Machine on MNIST (also a surrogate)
 - additional baselines: MTBO (Swersky et al. 2013), Fabolas (Klein et al. 2017); two competitive multi-fidelity optimizers
 - Budget: data subset size
 - Proximal Policy Optimization (Schulman et al. 2017) on OpenAI Gym (Brockman et al. 2016) environment cartpole
 - global convergence w.r.t. the search space dimensionality
 - Hyperband (HB) iteratively allocates resources to random configurations
 - A Synthetic function (a generalized counting ones) with arbitrary dimensionality (see paper for details)
 - additional base line: SMAC (Hutter et al. 2013)
 - Budget: draws from independent Bernoulli distributions, effectively controlling the noise
 - Results:
 - Plots show average over 512 runs for FFNs, SVM and the synthetic function, and 50 runs for BNNs and PPO
 - Bayesian Optimization (TPE, GP-BO, SMAC) outperforms Random Search (RS) after about 30 function evaluations
 - TPE is similar to Random Search (RS) for the first ~30 evaluations, but better afterwards
 - HB and BOHB (and MTBO and Fabolas on the SVM) have strong performance early on by exploiting small budgets
 - Bayesian Optimization (TPE, GP-BO, SMAC) often outperforms HB for large optimization budgets but (usually) not BOHB

Algorithm 1: BOHB’s sampling procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>observations Ω, fraction of random runs p, percentile q, number of samples $N_{n\text{ew}}$, min number of points in a model N_{min}</td>
</tr>
<tr>
<td>2.</td>
<td>output: next configuration to evaluate</td>
</tr>
<tr>
<td>3.</td>
<td>if random() $< q$ then return random configuration</td>
</tr>
<tr>
<td>4.</td>
<td>find largest budget B with at least $N_{\text{max}} + 1$ observations</td>
</tr>
<tr>
<td>5.</td>
<td>if no such B exist then return random configuration</td>
</tr>
<tr>
<td>6.</td>
<td>$\alpha = q^{\text{th}}$ percentile of all $y \in D_b$</td>
</tr>
<tr>
<td>7.</td>
<td>fit KDEs for probabilities in Eqs. (2)</td>
</tr>
<tr>
<td>8.</td>
<td>draw N_b samples $\Gamma(x)$</td>
</tr>
<tr>
<td>9.</td>
<td>return sample with highest ratio $l(x) / g(x)$</td>
</tr>
</tbody>
</table>

Available under github.com/automl/HpBandSter