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Outline

◮ multi layer perceptrons (MLP)

◮ learning MLPs

◮ function minimization: gradient descend & related methods

Machine Learning: Multi Layer Perceptrons – p.2/61



Neural networks

◮ single neurons are not able to solve complex tasks (e.g. restricted to linear
calculations)

◮ creating networks by hand is too expensive; we want to learn from data

◮ nonlinear features also have to be generated by hand; tessalations become
intractable for larger dimensions
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Neural networks

◮ single neurons are not able to solve complex tasks (e.g. restricted to linear
calculations)

◮ creating networks by hand is too expensive; we want to learn from data

◮ nonlinear features also have to be generated by hand; tessalations become
intractable for larger dimensions

◮ we want to have a generic model that can adapt to some training data

◮ basic idea: multi layer perceptron (Werbos 1974, Rumelhart, McClelland, Hinton

1986), also named feed forward networks
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Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w, ~x〉)

 8
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Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w, ~x〉)

◮ due to technical reasons, neurons in
MLPs calculate a smoothed variant
of this:

~x 7→ flog(w0 + 〈~w, ~x〉)

with

flog(z) =
1

1 + e−z

flog is called logistic function
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Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w, ~x〉)

◮ due to technical reasons, neurons in
MLPs calculate a smoothed variant
of this:

~x 7→ flog(w0 + 〈~w, ~x〉)

with

flog(z) =
1

1 + e−z

flog is called logistic function
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◮ properties:

• monotonically increasing

• limz→∞ = 1

• limz→−∞ = 0

• flog(z) = 1− flog(−z)

• continuous, differentiable
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Multi layer perceptrons

◮ A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are
neurons with logistic activation.

x1

x2

...

xn

Σ

Σ

...

Σ

Σ

Σ

...

Σ

. . .

. . .

. . .

Σ

Σ

...

Σ

Σ

◮ neurons of i-th layer serve as input features for neurons of i + 1th layer

◮ very complex functions can be calculated combining many neurons
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Multi layer perceptrons
(cont.)

◮ multi layer perceptrons, more formally:
A MLP is a finite directed acyclic graph.

• nodes that are no target of any connection are called input neurons. A
MLP that should be applied to input patterns of dimension n must have n

input neurons, one for each dimension. Input neurons are typically
enumerated as neuron 1, neuron 2, neuron 3, ...

• nodes that are no source of any connection are called output neurons. A
MLP can have more than one output neuron. The number of output
neurons depends on the way the target values (desired values) of the
training patterns are described.

• all nodes that are neither input neurons nor output neurons are called
hidden neurons.

• since the graph is acyclic, all neurons can be organized in layers, with the
set of input layers being the first layer.

Machine Learning: Multi Layer Perceptrons – p.6/61



Multi layer perceptrons
(cont.)

• connections that hop over several layers are called shortcut

• most MLPs have a connection structure with connections from all neurons of
one layer to all neurons of the next layer without shortcuts

• all neurons are enumerated

• Succ(i) is the set of all neurons j for which a connection i→ j exists

• Pred(i) is the set of all neurons j for which a connection j → i exists

• all connections are weighted with a real number. The weight of the connection
i→ j is named wji

• all hidden and output neurons have a bias weight. The bias weight of neuron i

is named wi0

Machine Learning: Multi Layer Perceptrons – p.7/61



Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)
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Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)T to the MLP:

• for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi
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Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)T to the MLP:

• for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

• for all hidden and output neurons i:
after the values aj have been calculated for all predecessors

j ∈ Pred(i), calculate net i and ai as:

net i ← wi0 +
∑

j∈Pred(i)

(wijaj)

ai ← flog(net i)
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Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)T to the MLP:

• for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

• for all hidden and output neurons i:
after the values aj have been calculated for all predecessors

j ∈ Pred(i), calculate net i and ai as:

net i ← wi0 +
∑

j∈Pred(i)

(wijaj)

ai ← flog(net i)

• the network output is given by the ai of the output neurons
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Multi layer perceptrons
(cont.)

◮ illustration:
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• apply pattern ~x = (x1, x2)
T
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Multi layer perceptrons
(cont.)

◮ illustration:
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• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi
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Multi layer perceptrons
(cont.)

◮ illustration:
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• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations:
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Multi layer perceptrons
(cont.)

◮ illustration:
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• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step
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Multi layer perceptrons
(cont.)

◮ illustration:
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• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step by

Machine Learning: Multi Layer Perceptrons – p.9/61



Multi layer perceptrons
(cont.)

◮ illustration:
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• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step by step
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Multi layer perceptrons
(cont.)

◮ illustration:
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• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step by step

• read the network output from both output neurons
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Multi layer perceptrons
(cont.)

◮ algorithm (forward pass):

Require: pattern ~x, MLP, enumeration of all neurons in topological order
Ensure: calculate output of MLP
1: for all input neurons i do
2: set ai ← xi

3: end for
4: for all hidden and output neurons i in topological order do
5: set net i ← wi0 +

∑

j∈Pred(i) wijaj

6: set ai ← flog(net i)
7: end for
8: for all output neurons i do
9: assemble ai in output vector ~y

10: end for
11: return ~y
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Multi layer perceptrons
(cont.)

◮ variant:
Neurons with logistic activation can
only output values between 0 and 1.
To enable output in a wider range of
real number variants are used:

• neurons with tanh activation
function:

ai =tanh(net i)=
enet

i −e−neti

enet
i +e−neti

• neurons with linear activation:

ai = net i

linear activation

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−3 −2 −1  0  1  2  3

flog(2x)
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Multi layer perceptrons
(cont.)

◮ variant:
Neurons with logistic activation can
only output values between 0 and 1.
To enable output in a wider range of
real number variants are used:

• neurons with tanh activation
function:

ai =tanh(net i)=
enet

i −e−neti

enet
i +e−neti

• neurons with linear activation:

ai = net i

linear activation
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• the calculation of the network
output is similar to the case of
logistic activation except the
relationship between net i and ai

is different.

• the activation function is a local
property of each neuron.
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Multi layer perceptrons
(cont.)

◮ typical network topologies:

• for regression: output neurons with linear activation

• for classification: output neurons with logistic/tanh activation

• all hidden neurons with logistic activation

• layered layout:
input layer – first hidden layer – second hidden layer – ... – output layer
with connection from each neuron in layer i with each neuron in layer
i + 1, no shortcut connections
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Multi layer perceptrons
(cont.)

◮ typical network topologies:

• for regression: output neurons with linear activation

• for classification: output neurons with logistic/tanh activation

• all hidden neurons with logistic activation

• layered layout:
input layer – first hidden layer – second hidden layer – ... – output layer
with connection from each neuron in layer i with each neuron in layer
i + 1, no shortcut connections

◮ Lemma:
Any boolean function can be realized by a MLP with one hidden layer. Any
bounded continuous function can be approximated with arbitrary precision by
a MLP with one hidden layer.
Proof: was given by Cybenko (1989). Idea: partition input space in small
cells
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MLP Training

◮ given training data: D = {(~x(1), ~d(1)), . . . , (~x(p), ~d(p))} where ~d(i) is the
desired output (real number for regression, class label 0 or 1 for
classification)

◮ given topology of a MLP

◮ task: adapt weights of the MLP
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MLP Training
(cont.)

◮ idea: minimize an error term

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

with y(~x; ~w): network output for input pattern ~x and weight vector ~w,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2
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MLP Training
(cont.)

◮ idea: minimize an error term

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

with y(~x; ~w): network output for input pattern ~x and weight vector ~w,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

◮ learning means: calculating weights for which the error becomes minimal

minimize
~w

E(~w;D)
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MLP Training
(cont.)

◮ idea: minimize an error term

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

with y(~x; ~w): network output for input pattern ~x and weight vector ~w,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

◮ learning means: calculating weights for which the error becomes minimal

minimize
~w

E(~w;D)

◮ interpret E just as a mathematical function depending on ~w and forget about
its semantics, then we are faced with a problem of mathematical optimization
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Optimization theory

◮ discusses mathematical problems of the form:

minimize
~u

f(~u)

~u can be any vector of suitable size. But which one solves this task and how
can we calculate it?
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Optimization theory

◮ discusses mathematical problems of the form:

minimize
~u

f(~u)

~u can be any vector of suitable size. But which one solves this task and how
can we calculate it?

◮ some simplifications:
here we consider only functions f which are continuous and differentiable

continuous, non differentiable
function

non continuous function differentiable function
(disrupted) (folded) (smooth)

x

y y y

x x
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Optimization theory
(cont.)

◮ A global minimum ~u∗ is a point so
that:

f(~u∗) ≤ f(~u)

for all ~u.

◮ A local minimum ~u+ is a point so that
exist r > 0 with

f(~u+) ≤ f(~u)

for all points ~u with ||~u− ~u+|| < r

y

x

global local
minima
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Optimization theory
(cont.)

◮ analytical way to find a minimum:
For a local minimum ~u+, the gradient of f becomes zero:

∂f

∂ui

(~u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good idea
(c.f. linear regression)
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Optimization theory
(cont.)

◮ analytical way to find a minimum:
For a local minimum ~u+, the gradient of f becomes zero:

∂f

∂ui

(~u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good idea
(c.f. linear regression)

but: there are also other points for which ∂f

∂ui
= 0, and resolving these

equations is often not possible
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

slope is negative (descending),
go right!

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

slope is positive (ascending),
go left!

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

slope is small, small step!

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

slope is large, large step!

~u
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Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

◮ general principle:

vi ← ui − ǫ
∂f

∂ui

ǫ > 0 is called learning rate
~u
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Gradient descent

◮ Gradient descent approach:

Require: mathematical function f , learning rate ǫ > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point ~u
2: while ||gradf(~u)|| not close to 0 do
3: ~u← ~u− ǫ · gradf(~u)
4: end while
5: return ~u

◮ open questions:

• how to choose initial ~u

• how to choose ǫ

• does this algorithm really converge?
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Gradient descent
(cont.)

◮ choice of ǫ
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Gradient descent
(cont.)

◮ choice of ǫ

1. case small ǫ: convergence
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Gradient descent
(cont.)

◮ choice of ǫ

2. case very small ǫ: convergence, but it may
take very long

Machine Learning: Multi Layer Perceptrons – p.20/61



Gradient descent
(cont.)

◮ choice of ǫ

3. case medium size ǫ: convergence
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Gradient descent
(cont.)

◮ choice of ǫ

4. case large ǫ: divergence
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Gradient descent
(cont.)

◮ choice of ǫ

• is crucial. Only small ǫ guarantee
convergence.

• for small ǫ, learning may take very long

• depends on the scaling of f : an optimal
learning rate for f may lead to divergence
for 2 · f
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Gradient descent
(cont.)

◮ some more problems with gradient descent:

• flat spots and steep valleys:
need larger ǫ in ~u to jump over the
uninteresting flat area but need smaller ǫ

in ~v to meet the minimum

~u ~v
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Gradient descent
(cont.)

◮ some more problems with gradient descent:

• flat spots and steep valleys:
need larger ǫ in ~u to jump over the
uninteresting flat area but need smaller ǫ

in ~v to meet the minimum

• zig-zagging:
in higher dimensions: ǫ is not appropriate
for all dimensions

~u ~v
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Gradient descent
(cont.)

◮ conclusion:
pure gradient descent is a nice theoretical framework but of limited power in
practice. Finding the right ǫ is annoying. Approaching the minimum is time
consuming.
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Gradient descent
(cont.)

◮ conclusion:
pure gradient descent is a nice theoretical framework but of limited power in
practice. Finding the right ǫ is annoying. Approaching the minimum is time
consuming.

◮ heuristics to overcome problems of gradient descent:

• gradient descent with momentum

• individual lerning rates for each dimension

• adaptive learning rates

• decoupling steplength from partial derivates
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Gradient descent
(cont.)

◮ gradient descent with momentum
idea: make updates smoother by carrying forward the latest update.

1: choose an initial point ~u

2: set ~∆← ~0 (stepwidth)
3: while ||gradf(~u)|| not close to 0 do

4: ~∆← −ǫ · gradf(~u)+µ~∆

5: ~u← ~u + ~∆
6: end while
7: return ~u

µ ≥ 0, µ < 1 is an additional parameter that has to be adjusted by hand.
For µ = 0 we get vanilla gradient descent.
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Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging
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Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

vanilla gradient descent
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Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

gradient descent with
momentum
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Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

gradient descent with
strong momentum
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Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

vanilla gradient descent

Machine Learning: Multi Layer Perceptrons – p.24/61



Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

gradient descent with
momentum
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Gradient descent
(cont.)

◮ adaptive learning rate
idea:

• make learning rate individual for each dimension and adaptive

• if signs of partial derivative change, reduce learning rate

• if signs of partial derivative don’t change, increase learning rate

◮ algorithm: Super-SAB (Tollenare 1990)
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Gradient descent
(cont.)

1: choose an initial point ~u
2: set initial learning rate ~ǫ

3: set former gradient ~γ ← ~0
4: while ||gradf(~u)|| not close to 0 do
5: calculate gradient ~g ← gradf(~u)
6: for all dimensions i do

7: ǫi ←











η+ǫi if gi · γi > 0

η−ǫi if gi · γi < 0

ǫi otherwise

8: ui ← ui − ǫigi

9: end for
10: ~γ ← ~g

11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are
additional parameters that
have to be adjusted by
hand. For η+ = η− = 1
we get vanilla gradient
descent.
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Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives
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Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

vanilla gradient descent
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Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

SuperSAB
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Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

vanilla gradient descent
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Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

SuperSAB
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Gradient descent
(cont.)

◮ make steplength independent of partial derivatives
idea:

• use explicit steplength parameters, one for each dimension

• if signs of partial derivative change, reduce steplength

• if signs of partial derivative don’t change, increase steplegth

◮ algorithm: RProp (Riedmiller&Braun, 1993)
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Gradient descent
(cont.)

1: choose an initial point ~u

2: set initial steplength ~∆

3: set former gradient ~γ ← ~0
4: while ||gradf(~u)|| not close to 0 do

5: calculate gradient ~g ← gradf(~u)
6: for all dimensions i do

7: ∆i ←











η+∆i if gi · γi > 0

η−∆i if gi · γi < 0

∆i otherwise

8: ui ←











ui + ∆i if gi < 0

ui −∆i if gi > 0

ui otherwise

9: end for
10: ~γ ← ~g

11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are
additional parameters that
have to be adjusted by
hand. For MLPs, good
heuristics exist for
parameter settings:
η+ = 1.2, η− = 0.5,
initial ∆i = 0.1
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Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length
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Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

vanilla gradient descent
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Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

Rprop
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Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

vanilla gradient descent
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Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

Rprop
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Beyond gradient descent

◮ Newton

◮ Quickprop

◮ line search
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Beyond gradient descent
(cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f(~u + ~∆) ≈ f(~u) + gradf(~u) · ~∆ +
1

2
~∆T H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.
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Beyond gradient descent
(cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f(~u + ~∆) ≈ f(~u) + gradf(~u) · ~∆ +
1

2
~∆T H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Zeroing the gradient of approximation with respect to ~∆:

~0 ≈ (gradf(~u))T + H(~u)~∆

Hence:

~∆ ≈ −(H(~u))−1(gradf(~u))T
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Beyond gradient descent
(cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f(~u + ~∆) ≈ f(~u) + gradf(~u) · ~∆ +
1

2
~∆T H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Zeroing the gradient of approximation with respect to ~∆:

~0 ≈ (gradf(~u))T + H(~u)~∆

Hence:

~∆ ≈ −(H(~u))−1(gradf(~u))T

◮ advantages: no learning rate, no parameters, quick convergence

◮ disadvantages: calculation of H and H−1 very time consuming in high
dimensional spaces
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Beyond gradient descent
(cont.)

◮ Quickprop (Fahlmann, 1988)

• like Newton’s method, but replaces H by a diagonal matrix containing
only the diagonal entries of H .

• hence, calculating the inverse is simplified

• replaces second order derivatives by approximations (difference ratios)
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Beyond gradient descent
(cont.)

◮ Quickprop (Fahlmann, 1988)

• like Newton’s method, but replaces H by a diagonal matrix containing
only the diagonal entries of H .

• hence, calculating the inverse is simplified

• replaces second order derivatives by approximations (difference ratios)

◮ update rule:

△wt
i :=

−gt
i

gt
i − gt−1

i

(wt
i − wt−1

i )

where gt
i = grad f at time t.

◮ advantages: no learning rate, no parameters, quick convergence in many
cases

◮ disadvantages: sometimes unstable
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Beyond gradient descent
(cont.)

◮ line search algorithms:

two nested loops:

• outer loop: determine serach
direction from gradient

• inner loop: determine minimizing
point on the line defined by current
search position and search
direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm may
be more complex algorithm, e.g.
Newton

search line

grad

◮ problem: time consuming for
high-dimensional spaces
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Beyond gradient descent
(cont.)

◮ line search algorithms:

two nested loops:

• outer loop: determine serach
direction from gradient

• inner loop: determine minimizing
point on the line defined by current
search position and search
direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm may
be more complex algorithm, e.g.
Newton

search line

grad

◮ problem: time consuming for
high-dimensional spaces
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Beyond gradient descent
(cont.)

◮ line search algorithms:

two nested loops:

• outer loop: determine serach
direction from gradient

• inner loop: determine minimizing
point on the line defined by current
search position and search
direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm may
be more complex algorithm, e.g.
Newton

grad

search line

◮ problem: time consuming for
high-dimensional spaces
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Summary: optimization theory

◮ several algorithms to solve problems of the form:

minimize
~u

f(~u)

◮ gradient descent gives the main idea

◮ Rprop plays major role in context of MLPs

◮ dozens of variants and alternatives exist

Machine Learning: Multi Layer Perceptrons – p.35/61



Back to MLP Training

◮ training an MLP means solving:

minimize
~w

E(~w;D)

for given network topology and training dataD

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2
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Back to MLP Training

◮ training an MLP means solving:

minimize
~w

E(~w;D)

for given network topology and training dataD

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

◮ optimization theory offers algorithms to solve task of this kind

open question: how can we calculate derivatives of E?
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Calculating partial derivatives

◮ the calculation of the network output of a MLP is done step-by-step: neuron i

uses the output of neurons j ∈ Pred(i) as arguments, calculates some

output which serves as argument for all neurons j ∈ Succ(i).

◮ apply the chain rule!
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Calculating partial derivatives
(cont.)

◮ the error term

E(~w;D) =

p
∑

i=1

(1

2
||y(~x(i); ~w)− ~d(i)||2

)

introducing e(~w; ~x, ~d) = 1
2
||y(~x; ~w)− ~d||2 we can write:
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Calculating partial derivatives
(cont.)

◮ the error term

E(~w;D) =

p
∑

i=1

(1

2
||y(~x(i); ~w)− ~d(i)||2

)

introducing e(~w; ~x, ~d) = 1
2
||y(~x; ~w)− ~d||2 we can write:

E(~w;D) =

p
∑

i=1

e(~w; ~x(i), ~d(i))

applying the rule for sums:
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Calculating partial derivatives
(cont.)

◮ the error term

E(~w;D) =

p
∑

i=1

(1

2
||y(~x(i); ~w)− ~d(i)||2

)

introducing e(~w; ~x, ~d) = 1
2
||y(~x; ~w)− ~d||2 we can write:

E(~w;D) =

p
∑

i=1

e(~w; ~x(i), ~d(i))

applying the rule for sums:

∂E(~w;D)

∂wkl

=

p
∑

i=1

∂e(~w; ~x(i), ~d(i))

∂wkl

we can calculate the derivatives for each training pattern indiviudally and
sum up
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Calculating partial derivatives
(cont.)

◮ individual error terms for a pattern ~x, ~d

simplifications in notation:

• omitting dependencies from ~x and ~d

• y(~w) = (y1, . . . , ym)T network output (when applying input pattern ~x)

Machine Learning: Multi Layer Perceptrons – p.39/61



Calculating partial derivatives
(cont.)

◮ individual error term:

e(~w) =
1

2
||y(~x; ~w)− ~d||2 =

1

2

m
∑

j=1

(yj − dj)
2

by direct calculation:
∂e

∂yj

= (yj − dj)

yj is the activation of a certain output neuron, say ai

Hence:
∂e

∂ai

=
∂e

∂yj

= (ai − dj)
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Calculating partial derivatives
(cont.)

◮ calculations within a neuron i

assume we already know ∂e
∂ai

observation: e depends indirectly from ai and ai depends on net i

⇒ apply chain rule
∂e

∂net i

=
∂e

∂ai

·
∂ai

∂net i

what is ∂ai

∂neti
?
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Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i
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Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i

• linear activation: fact(net i) = net i

⇒ ∂fact (neti)
∂neti

= 1
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Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i

• linear activation: fact(net i) = net i

⇒ ∂fact (neti)
∂neti

= 1

• logistic activation: fact(net i) = 1
1+e−neti

⇒ ∂fact (neti)
∂neti

= e−neti

(1+e−neti )2
= flog(net i) · (1− flog(net i))
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Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i

• linear activation: fact(net i) = net i

⇒ ∂fact (neti)
∂neti

= 1

• logistic activation: fact(net i) = 1
1+e−neti

⇒ ∂fact (neti)
∂neti

= e−neti

(1+e−neti )2
= flog(net i) · (1− flog(net i))

• tanh activation: fact(net i) = tanh(net i)

⇒ ∂fact (neti)
∂neti

= 1− (tanh(net i))
2
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Calculating partial derivatives
(cont.)

◮ from neuron to neuron

assume we already know ∂e
∂netj

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j

depends on ai⇒ apply chain rule
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Calculating partial derivatives
(cont.)

◮ from neuron to neuron

assume we already know ∂e
∂netj

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j

depends on ai⇒ apply chain rule

∂e

∂ai

=
∑

j∈Succ(i)

( ∂e

∂net j

·
∂net j

∂ai

)
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Calculating partial derivatives
(cont.)

◮ from neuron to neuron

assume we already know ∂e
∂netj

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j

depends on ai⇒ apply chain rule

∂e

∂ai

=
∑

j∈Succ(i)

( ∂e

∂net j

·
∂net j

∂ai

)

and:

net j = wjiai + ...

hence:
∂netj

∂ai

= wji
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Calculating partial derivatives
(cont.)

◮ the weights

assume we already know ∂e
∂neti

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
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Calculating partial derivatives
(cont.)

◮ the weights

assume we already know ∂e
∂neti

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
∂e

∂wij

=
∂e

∂net i

·
∂net i

∂wij
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Calculating partial derivatives
(cont.)

◮ the weights

assume we already know ∂e
∂neti

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
∂e

∂wij

=
∂e

∂net i

·
∂net i

∂wij

and:

net i = wijaj + ...

hence:
∂neti

∂wij

= aj
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Calculating partial derivatives
(cont.)

◮ bias weights

assume we already know ∂e
∂neti

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
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Calculating partial derivatives
(cont.)

◮ bias weights

assume we already know ∂e
∂neti

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
∂e

∂wi0

=
∂e

∂net i

·
∂net i

∂wi0
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Calculating partial derivatives
(cont.)

◮ bias weights

assume we already know ∂e
∂neti

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
∂e

∂wi0

=
∂e

∂net i

·
∂net i

∂wi0

and:

net i = wi0 + ...

hence:
∂neti

∂wi0

= 1
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Calculating partial derivatives
(cont.)

◮ a simple example:

1

neuron 1

Σ

neuron 2

Σ

neuron 3

e
w2,1 w3,2
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Calculating partial derivatives
(cont.)

◮ a simple example:

1

neuron 1

Σ

neuron 2

Σ

neuron 3

e
w2,1 w3,2

∂e
∂a3

= a3 − d1

∂e
∂net3

= ∂e
∂a3

· ∂a3

∂net3
= ∂e

∂a3

· 1
∂e
∂a2

=
∑

j∈Succ(2 )(
∂e

∂netj
·

∂netj

∂a2

) = ∂e
∂net3

· w3,2

∂e
∂net2

= ∂e
∂a2

· ∂a2

∂net2
= ∂e

∂a2

· a2(1− a2)
∂e

∂w3,2
= ∂e

∂net3
· ∂net3

∂w3,2
= ∂e

∂net3
· a2

∂e
∂w2,1

= ∂e
∂net2

· ∂net2
∂w2,1

= ∂e
∂net2

· a1

∂e
∂w3,0

= ∂e
∂net3

· ∂net3
∂w3,0

= ∂e
∂net3

· 1
∂e

∂w2,0
= ∂e

∂net2
· ∂net2

∂w2,0
= ∂e

∂net2
· 1
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Calculating partial derivatives
(cont.)

◮ calculating the partial derivatives:

• starting at the output neurons

• neuron by neuron, go from output to input

• finally calculate the partial derivatives with respect to the weights

◮ Backpropagation
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations:
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step

Machine Learning: Multi Layer Perceptrons – p.48/61



Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by step
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by step

• calculate ∂e
∂wji
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Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by step

• calculate ∂e
∂wji

• repeat for all patterns and sum up
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Back to MLP Training

◮ bringing together building blocks of MLP learning:

• we can calculate ∂E
∂wij

• we have discussed methods to minimize a differentiable mathematical
function
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Back to MLP Training

◮ bringing together building blocks of MLP learning:

• we can calculate ∂E
∂wij

• we have discussed methods to minimize a differentiable mathematical
function

◮ combining them yields a learning algorithm for MLPs:

• (standard) backpropagation = gradient descent combined with

calculating ∂E
∂wij

for MLPs

• backpropagation with momentum = gradient descent with moment

combined with calculating ∂E
∂wij

for MLPs

• Quickprop

• Rprop

• ...
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Back to MLP Training
(cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do

4: for all (~x, ~d) ∈ D do
5: apply ~x to network and calculate the network output

6: calculate
∂e(~x)
∂wij

for all weights

7: end for
8: calculate

∂E(D)
∂wij

for all weights suming over all training patterns

9: perform one update step of the minimization approach
10: end while

◮ learning by epoch: all training patterns are considered for one update step of
function minimization
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Back to MLP Training
(cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do

4: for all (~x, ~d) ∈ D do
5: apply ~x to network and calculate the network output

6: calculate
∂e(~x)
∂wij

for all weights

7: perform one update step of the minimization approach
8: end for
9: end while

◮ learning by pattern: only one training patterns is considered for one update
step of function minimization (only works with vanilla gradient descent!)
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Lernverhalten und Parameterwahl - 3 Bit Parity
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Lernverhalten und Parameterwahl - 6 Bit Parity
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Lernverhalten und Parameterwahl - 10 Encoder
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Lernverhalten und Parameterwahl - 12 Encoder
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Lernverhalten und Parameterwahl - ’two sprials’
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Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most frequently sold
newspaper in Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets in Germany,
differing in a lot of facets
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Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most frequently sold
newspaper in Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets in Germany,
differing in a lot of facets

◮ problem: how many copies are sold in which
sales outlet?

◮ neural approach: train a neural network for
each sales outlet, neural network predicts next
week’s sales rates

◮ system in use since mid of 1990s
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Examples: Alvinn (Dean, Pommerleau, 1992)

◮ autonomous vehicle driven by a multi-layer perceptron

◮ input: raw camera image

◮ output: steering wheel angle

◮ generation of training data by a human driver

◮ drives up to 90 km/h

◮ 15 frames per second
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Alvinn MLP structure
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Alvinn Training aspects

◮ training data must be ’diverse’

◮ training data should be balanced (otherwise e.g. a bias towards steering left
might exist)

◮ if human driver makes errors, the training data contains errors

◮ if human driver makes no errors, no information about how to do corrections
is available

◮ generation of artificial training data by shifting and rotating images
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Summary

◮ MLPs are broadly applicable ML models

◮ continuous features, continuos outputs

◮ suited for regression and classification

◮ learning is based on a general principle: gradient descent on an error
function

◮ powerful learning algorithms exist

◮ likely to overfit⇒ regularisation methods
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