
Machine Learning:

Multi Layer Perceptrons

Prof. Dr. Martin Riedmiller

Albert-Ludwigs-University Freiburg

AG Maschinelles Lernen

Machine Learning: Multi Layer Perceptrons – p.1/61

Outline

◮ multi layer perceptrons (MLP)

◮ learning MLPs

◮ function minimization: gradient descend & related methods

Machine Learning: Multi Layer Perceptrons – p.2/61

Neural networks

◮ single neurons are not able to solve complex tasks (e.g. restricted to linear
calculations)

◮ creating networks by hand is too expensive; we want to learn from data

◮ nonlinear features also have to be generated by hand; tessalations become
intractable for larger dimensions

Machine Learning: Multi Layer Perceptrons – p.3/61

Neural networks

◮ single neurons are not able to solve complex tasks (e.g. restricted to linear
calculations)

◮ creating networks by hand is too expensive; we want to learn from data

◮ nonlinear features also have to be generated by hand; tessalations become
intractable for larger dimensions

◮ we want to have a generic model that can adapt to some training data

◮ basic idea: multi layer perceptron (Werbos 1974, Rumelhart, McClelland, Hinton

1986), also named feed forward networks

Machine Learning: Multi Layer Perceptrons – p.3/61

Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w, ~x〉)

 8

Machine Learning: Multi Layer Perceptrons – p.4/61

Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w, ~x〉)

◮ due to technical reasons, neurons in
MLPs calculate a smoothed variant
of this:

~x 7→ flog(w0 + 〈~w, ~x〉)

with

flog(z) =
1

1 + e−z

flog is called logistic function

 0

 0.2

 0.4

 0.6

 0.8

 1

−8 −6 −4 −2 0 2 4 6 8

Machine Learning: Multi Layer Perceptrons – p.4/61

Neurons in a multi layer perceptron

◮ standard perceptrons calculate a
discontinuous function:

~x 7→ fstep(w0 + 〈~w, ~x〉)

◮ due to technical reasons, neurons in
MLPs calculate a smoothed variant
of this:

~x 7→ flog(w0 + 〈~w, ~x〉)

with

flog(z) =
1

1 + e−z

flog is called logistic function

 0

 0.2

 0.4

 0.6

 0.8

 1

−8 −6 −4 −2 0 2 4 6 8

◮ properties:

• monotonically increasing

• limz→∞ = 1

• limz→−∞ = 0

• flog(z) = 1− flog(−z)

• continuous, differentiable

Machine Learning: Multi Layer Perceptrons – p.4/61

Multi layer perceptrons

◮ A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are
neurons with logistic activation.

x1

x2

...

xn

Σ

Σ

...

Σ

Σ

Σ

...

Σ

. . .

. . .

. . .

Σ

Σ

...

Σ

Σ

◮ neurons of i-th layer serve as input features for neurons of i + 1th layer

◮ very complex functions can be calculated combining many neurons

Machine Learning: Multi Layer Perceptrons – p.5/61

Multi layer perceptrons
(cont.)

◮ multi layer perceptrons, more formally:
A MLP is a finite directed acyclic graph.

• nodes that are no target of any connection are called input neurons. A
MLP that should be applied to input patterns of dimension n must have n

input neurons, one for each dimension. Input neurons are typically
enumerated as neuron 1, neuron 2, neuron 3, ...

• nodes that are no source of any connection are called output neurons. A
MLP can have more than one output neuron. The number of output
neurons depends on the way the target values (desired values) of the
training patterns are described.

• all nodes that are neither input neurons nor output neurons are called
hidden neurons.

• since the graph is acyclic, all neurons can be organized in layers, with the
set of input layers being the first layer.

Machine Learning: Multi Layer Perceptrons – p.6/61

Multi layer perceptrons
(cont.)

• connections that hop over several layers are called shortcut

• most MLPs have a connection structure with connections from all neurons of
one layer to all neurons of the next layer without shortcuts

• all neurons are enumerated

• Succ(i) is the set of all neurons j for which a connection i→ j exists

• Pred(i) is the set of all neurons j for which a connection j → i exists

• all connections are weighted with a real number. The weight of the connection
i→ j is named wji

• all hidden and output neurons have a bias weight. The bias weight of neuron i

is named wi0

Machine Learning: Multi Layer Perceptrons – p.7/61

Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)

Machine Learning: Multi Layer Perceptrons – p.8/61

Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)T to the MLP:

• for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

Machine Learning: Multi Layer Perceptrons – p.8/61

Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)T to the MLP:

• for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

• for all hidden and output neurons i:
after the values aj have been calculated for all predecessors

j ∈ Pred(i), calculate net i and ai as:

net i ← wi0 +
∑

j∈Pred(i)

(wijaj)

ai ← flog(net i)

Machine Learning: Multi Layer Perceptrons – p.8/61

Multi layer perceptrons
(cont.)

◮ variables for calculation:

• hidden and output neurons have some variable net i (“network input”)

• all neurons have some variable ai (“activation”/“output”)

◮ applying a pattern ~x = (x1, . . . , xn)T to the MLP:

• for each input neuron the respective element of the input pattern is
presented, i.e. ai ← xi

• for all hidden and output neurons i:
after the values aj have been calculated for all predecessors

j ∈ Pred(i), calculate net i and ai as:

net i ← wi0 +
∑

j∈Pred(i)

(wijaj)

ai ← flog(net i)

• the network output is given by the ai of the output neurons
Machine Learning: Multi Layer Perceptrons – p.8/61

Multi layer perceptrons
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

Machine Learning: Multi Layer Perceptrons – p.9/61

Multi layer perceptrons
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

Machine Learning: Multi Layer Perceptrons – p.9/61

Multi layer perceptrons
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations:

Machine Learning: Multi Layer Perceptrons – p.9/61

Multi layer perceptrons
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step

Machine Learning: Multi Layer Perceptrons – p.9/61

Multi layer perceptrons
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step by

Machine Learning: Multi Layer Perceptrons – p.9/61

Multi layer perceptrons
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step by step

Machine Learning: Multi Layer Perceptrons – p.9/61

Multi layer perceptrons
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• calculate activation of input neurons: ai ← xi

• propagate forward the activations: step by step

• read the network output from both output neurons

Machine Learning: Multi Layer Perceptrons – p.9/61

Multi layer perceptrons
(cont.)

◮ algorithm (forward pass):

Require: pattern ~x, MLP, enumeration of all neurons in topological order
Ensure: calculate output of MLP
1: for all input neurons i do
2: set ai ← xi

3: end for
4: for all hidden and output neurons i in topological order do
5: set net i ← wi0 +

∑

j∈Pred(i) wijaj

6: set ai ← flog(net i)
7: end for
8: for all output neurons i do
9: assemble ai in output vector ~y

10: end for
11: return ~y

Machine Learning: Multi Layer Perceptrons – p.10/61

Multi layer perceptrons
(cont.)

◮ variant:
Neurons with logistic activation can
only output values between 0 and 1.
To enable output in a wider range of
real number variants are used:

• neurons with tanh activation
function:

ai =tanh(net i)=
enet

i −e−neti

enet
i +e−neti

• neurons with linear activation:

ai = net i

linear activation

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−3 −2 −1 0 1 2 3

flog(2x)

tanh(x)

Machine Learning: Multi Layer Perceptrons – p.11/61

Multi layer perceptrons
(cont.)

◮ variant:
Neurons with logistic activation can
only output values between 0 and 1.
To enable output in a wider range of
real number variants are used:

• neurons with tanh activation
function:

ai =tanh(net i)=
enet

i −e−neti

enet
i +e−neti

• neurons with linear activation:

ai = net i

linear activation

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−3 −2 −1 0 1 2 3

flog(2x)

tanh(x)

• the calculation of the network
output is similar to the case of
logistic activation except the
relationship between net i and ai

is different.

• the activation function is a local
property of each neuron.

Machine Learning: Multi Layer Perceptrons – p.11/61

Multi layer perceptrons
(cont.)

◮ typical network topologies:

• for regression: output neurons with linear activation

• for classification: output neurons with logistic/tanh activation

• all hidden neurons with logistic activation

• layered layout:
input layer – first hidden layer – second hidden layer – ... – output layer
with connection from each neuron in layer i with each neuron in layer
i + 1, no shortcut connections

Machine Learning: Multi Layer Perceptrons – p.12/61

Multi layer perceptrons
(cont.)

◮ typical network topologies:

• for regression: output neurons with linear activation

• for classification: output neurons with logistic/tanh activation

• all hidden neurons with logistic activation

• layered layout:
input layer – first hidden layer – second hidden layer – ... – output layer
with connection from each neuron in layer i with each neuron in layer
i + 1, no shortcut connections

◮ Lemma:
Any boolean function can be realized by a MLP with one hidden layer. Any
bounded continuous function can be approximated with arbitrary precision by
a MLP with one hidden layer.
Proof: was given by Cybenko (1989). Idea: partition input space in small
cells

Machine Learning: Multi Layer Perceptrons – p.12/61

MLP Training

◮ given training data: D = {(~x(1), ~d(1)), . . . , (~x(p), ~d(p))} where ~d(i) is the
desired output (real number for regression, class label 0 or 1 for
classification)

◮ given topology of a MLP

◮ task: adapt weights of the MLP

Machine Learning: Multi Layer Perceptrons – p.13/61

MLP Training
(cont.)

◮ idea: minimize an error term

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

with y(~x; ~w): network output for input pattern ~x and weight vector ~w,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

Machine Learning: Multi Layer Perceptrons – p.14/61

MLP Training
(cont.)

◮ idea: minimize an error term

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

with y(~x; ~w): network output for input pattern ~x and weight vector ~w,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

◮ learning means: calculating weights for which the error becomes minimal

minimize
~w

E(~w;D)

Machine Learning: Multi Layer Perceptrons – p.14/61

MLP Training
(cont.)

◮ idea: minimize an error term

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

with y(~x; ~w): network output for input pattern ~x and weight vector ~w,

||~u||2 squared length of vector ~u: ||~u||2 =
∑dim(~u)

j=1 (uj)
2

◮ learning means: calculating weights for which the error becomes minimal

minimize
~w

E(~w;D)

◮ interpret E just as a mathematical function depending on ~w and forget about
its semantics, then we are faced with a problem of mathematical optimization

Machine Learning: Multi Layer Perceptrons – p.14/61

Optimization theory

◮ discusses mathematical problems of the form:

minimize
~u

f(~u)

~u can be any vector of suitable size. But which one solves this task and how
can we calculate it?

Machine Learning: Multi Layer Perceptrons – p.15/61

Optimization theory

◮ discusses mathematical problems of the form:

minimize
~u

f(~u)

~u can be any vector of suitable size. But which one solves this task and how
can we calculate it?

◮ some simplifications:
here we consider only functions f which are continuous and differentiable

continuous, non differentiable
function

non continuous function differentiable function
(disrupted) (folded) (smooth)

x

y y y

x x

Machine Learning: Multi Layer Perceptrons – p.15/61

Optimization theory
(cont.)

◮ A global minimum ~u∗ is a point so
that:

f(~u∗) ≤ f(~u)

for all ~u.

◮ A local minimum ~u+ is a point so that
exist r > 0 with

f(~u+) ≤ f(~u)

for all points ~u with ||~u− ~u+|| < r

y

x

global local
minima

Machine Learning: Multi Layer Perceptrons – p.16/61

Optimization theory
(cont.)

◮ analytical way to find a minimum:
For a local minimum ~u+, the gradient of f becomes zero:

∂f

∂ui

(~u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good idea
(c.f. linear regression)

Machine Learning: Multi Layer Perceptrons – p.17/61

Optimization theory
(cont.)

◮ analytical way to find a minimum:
For a local minimum ~u+, the gradient of f becomes zero:

∂f

∂ui

(~u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good idea
(c.f. linear regression)

but: there are also other points for which ∂f

∂ui
= 0, and resolving these

equations is often not possible

Machine Learning: Multi Layer Perceptrons – p.17/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

slope is negative (descending),
go right!

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

slope is positive (ascending),
go left!

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

slope is small, small step!

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

slope is large, large step!

~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Optimization theory
(cont.)

◮ numerical way to find a minimum, searching:
assume we are starting at a point ~u.
Which is the best direction to search for a
point ~v with f(~v) < f(~u) ?

Which is the best stepwidth?

◮ general principle:

vi ← ui − ǫ
∂f

∂ui

ǫ > 0 is called learning rate
~u

Machine Learning: Multi Layer Perceptrons – p.18/61

Gradient descent

◮ Gradient descent approach:

Require: mathematical function f , learning rate ǫ > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point ~u
2: while ||gradf(~u)|| not close to 0 do
3: ~u← ~u− ǫ · gradf(~u)
4: end while
5: return ~u

◮ open questions:

• how to choose initial ~u

• how to choose ǫ

• does this algorithm really converge?

Machine Learning: Multi Layer Perceptrons – p.19/61

Gradient descent
(cont.)

◮ choice of ǫ

Machine Learning: Multi Layer Perceptrons – p.20/61

Gradient descent
(cont.)

◮ choice of ǫ

1. case small ǫ: convergence

Machine Learning: Multi Layer Perceptrons – p.20/61

Gradient descent
(cont.)

◮ choice of ǫ

2. case very small ǫ: convergence, but it may
take very long

Machine Learning: Multi Layer Perceptrons – p.20/61

Gradient descent
(cont.)

◮ choice of ǫ

3. case medium size ǫ: convergence

Machine Learning: Multi Layer Perceptrons – p.20/61

Gradient descent
(cont.)

◮ choice of ǫ

4. case large ǫ: divergence

Machine Learning: Multi Layer Perceptrons – p.20/61

Gradient descent
(cont.)

◮ choice of ǫ

• is crucial. Only small ǫ guarantee
convergence.

• for small ǫ, learning may take very long

• depends on the scaling of f : an optimal
learning rate for f may lead to divergence
for 2 · f

Machine Learning: Multi Layer Perceptrons – p.20/61

Gradient descent
(cont.)

◮ some more problems with gradient descent:

• flat spots and steep valleys:
need larger ǫ in ~u to jump over the
uninteresting flat area but need smaller ǫ

in ~v to meet the minimum

~u ~v

Machine Learning: Multi Layer Perceptrons – p.21/61

Gradient descent
(cont.)

◮ some more problems with gradient descent:

• flat spots and steep valleys:
need larger ǫ in ~u to jump over the
uninteresting flat area but need smaller ǫ

in ~v to meet the minimum

• zig-zagging:
in higher dimensions: ǫ is not appropriate
for all dimensions

~u ~v

Machine Learning: Multi Layer Perceptrons – p.21/61

Gradient descent
(cont.)

◮ conclusion:
pure gradient descent is a nice theoretical framework but of limited power in
practice. Finding the right ǫ is annoying. Approaching the minimum is time
consuming.

Machine Learning: Multi Layer Perceptrons – p.22/61

Gradient descent
(cont.)

◮ conclusion:
pure gradient descent is a nice theoretical framework but of limited power in
practice. Finding the right ǫ is annoying. Approaching the minimum is time
consuming.

◮ heuristics to overcome problems of gradient descent:

• gradient descent with momentum

• individual lerning rates for each dimension

• adaptive learning rates

• decoupling steplength from partial derivates

Machine Learning: Multi Layer Perceptrons – p.22/61

Gradient descent
(cont.)

◮ gradient descent with momentum
idea: make updates smoother by carrying forward the latest update.

1: choose an initial point ~u

2: set ~∆← ~0 (stepwidth)
3: while ||gradf(~u)|| not close to 0 do

4: ~∆← −ǫ · gradf(~u)+µ~∆

5: ~u← ~u + ~∆
6: end while
7: return ~u

µ ≥ 0, µ < 1 is an additional parameter that has to be adjusted by hand.
For µ = 0 we get vanilla gradient descent.

Machine Learning: Multi Layer Perceptrons – p.23/61

Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

Machine Learning: Multi Layer Perceptrons – p.24/61

Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

vanilla gradient descent

Machine Learning: Multi Layer Perceptrons – p.24/61

Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

gradient descent with
momentum

Machine Learning: Multi Layer Perceptrons – p.24/61

Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

gradient descent with
strong momentum

Machine Learning: Multi Layer Perceptrons – p.24/61

Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

vanilla gradient descent

Machine Learning: Multi Layer Perceptrons – p.24/61

Gradient descent
(cont.)

◮ advantages of momentum:

• smoothes zig-zagging

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantage:

• additional parameter µ

• may cause additional zig-zagging

gradient descent with
momentum

Machine Learning: Multi Layer Perceptrons – p.24/61

Gradient descent
(cont.)

◮ adaptive learning rate
idea:

• make learning rate individual for each dimension and adaptive

• if signs of partial derivative change, reduce learning rate

• if signs of partial derivative don’t change, increase learning rate

◮ algorithm: Super-SAB (Tollenare 1990)

Machine Learning: Multi Layer Perceptrons – p.25/61

Gradient descent
(cont.)

1: choose an initial point ~u
2: set initial learning rate ~ǫ

3: set former gradient ~γ ← ~0
4: while ||gradf(~u)|| not close to 0 do
5: calculate gradient ~g ← gradf(~u)
6: for all dimensions i do

7: ǫi ←











η+ǫi if gi · γi > 0

η−ǫi if gi · γi < 0

ǫi otherwise

8: ui ← ui − ǫigi

9: end for
10: ~γ ← ~g

11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are
additional parameters that
have to be adjusted by
hand. For η+ = η− = 1
we get vanilla gradient
descent.

Machine Learning: Multi Layer Perceptrons – p.26/61

Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

Machine Learning: Multi Layer Perceptrons – p.27/61

Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

vanilla gradient descent

Machine Learning: Multi Layer Perceptrons – p.27/61

Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

SuperSAB

Machine Learning: Multi Layer Perceptrons – p.27/61

Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

vanilla gradient descent

Machine Learning: Multi Layer Perceptrons – p.27/61

Gradient descent
(cont.)

◮ advantages of Super-SAB and related
approaches:

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

◮ disadavantages:

• steplength still depends on partial
derivatives

SuperSAB

Machine Learning: Multi Layer Perceptrons – p.27/61

Gradient descent
(cont.)

◮ make steplength independent of partial derivatives
idea:

• use explicit steplength parameters, one for each dimension

• if signs of partial derivative change, reduce steplength

• if signs of partial derivative don’t change, increase steplegth

◮ algorithm: RProp (Riedmiller&Braun, 1993)

Machine Learning: Multi Layer Perceptrons – p.28/61

Gradient descent
(cont.)

1: choose an initial point ~u

2: set initial steplength ~∆

3: set former gradient ~γ ← ~0
4: while ||gradf(~u)|| not close to 0 do

5: calculate gradient ~g ← gradf(~u)
6: for all dimensions i do

7: ∆i ←











η+∆i if gi · γi > 0

η−∆i if gi · γi < 0

∆i otherwise

8: ui ←











ui + ∆i if gi < 0

ui −∆i if gi > 0

ui otherwise

9: end for
10: ~γ ← ~g

11: end while
12: return ~u

η+ ≥ 1, η− ≤ 1 are
additional parameters that
have to be adjusted by
hand. For MLPs, good
heuristics exist for
parameter settings:
η+ = 1.2, η− = 0.5,
initial ∆i = 0.1

Machine Learning: Multi Layer Perceptrons – p.29/61

Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

Machine Learning: Multi Layer Perceptrons – p.30/61

Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

vanilla gradient descent

Machine Learning: Multi Layer Perceptrons – p.30/61

Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

Rprop

Machine Learning: Multi Layer Perceptrons – p.30/61

Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

vanilla gradient descent

Machine Learning: Multi Layer Perceptrons – p.30/61

Gradient descent
(cont.)

◮ advantages of Rprop

• decouples learning rates of different
dimensions

• accelerates learning at flat spots

• slows down when signs of partial
derivatives change

• independent of gradient length

Rprop

Machine Learning: Multi Layer Perceptrons – p.30/61

Beyond gradient descent

◮ Newton

◮ Quickprop

◮ line search

Machine Learning: Multi Layer Perceptrons – p.31/61

Beyond gradient descent
(cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f(~u + ~∆) ≈ f(~u) + gradf(~u) · ~∆ +
1

2
~∆T H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Machine Learning: Multi Layer Perceptrons – p.32/61

Beyond gradient descent
(cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f(~u + ~∆) ≈ f(~u) + gradf(~u) · ~∆ +
1

2
~∆T H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Zeroing the gradient of approximation with respect to ~∆:

~0 ≈ (gradf(~u))T + H(~u)~∆

Hence:

~∆ ≈ −(H(~u))−1(gradf(~u))T

Machine Learning: Multi Layer Perceptrons – p.32/61

Beyond gradient descent
(cont.)

◮ Newton’s method:

approximate f by a second-order Taylor polynomial:

f(~u + ~∆) ≈ f(~u) + gradf(~u) · ~∆ +
1

2
~∆T H(~u)~∆

with H(~u) the Hessian of f at ~u, the matrix of second order partial
derivatives.

Zeroing the gradient of approximation with respect to ~∆:

~0 ≈ (gradf(~u))T + H(~u)~∆

Hence:

~∆ ≈ −(H(~u))−1(gradf(~u))T

◮ advantages: no learning rate, no parameters, quick convergence

◮ disadvantages: calculation of H and H−1 very time consuming in high
dimensional spaces

Machine Learning: Multi Layer Perceptrons – p.32/61

Beyond gradient descent
(cont.)

◮ Quickprop (Fahlmann, 1988)

• like Newton’s method, but replaces H by a diagonal matrix containing
only the diagonal entries of H .

• hence, calculating the inverse is simplified

• replaces second order derivatives by approximations (difference ratios)

Machine Learning: Multi Layer Perceptrons – p.33/61

Beyond gradient descent
(cont.)

◮ Quickprop (Fahlmann, 1988)

• like Newton’s method, but replaces H by a diagonal matrix containing
only the diagonal entries of H .

• hence, calculating the inverse is simplified

• replaces second order derivatives by approximations (difference ratios)

◮ update rule:

△wt
i :=

−gt
i

gt
i − gt−1

i

(wt
i − wt−1

i)

where gt
i = grad f at time t.

◮ advantages: no learning rate, no parameters, quick convergence in many
cases

◮ disadvantages: sometimes unstable

Machine Learning: Multi Layer Perceptrons – p.33/61

Beyond gradient descent
(cont.)

◮ line search algorithms:

two nested loops:

• outer loop: determine serach
direction from gradient

• inner loop: determine minimizing
point on the line defined by current
search position and search
direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm may
be more complex algorithm, e.g.
Newton

search line

grad

◮ problem: time consuming for
high-dimensional spaces

Machine Learning: Multi Layer Perceptrons – p.34/61

Beyond gradient descent
(cont.)

◮ line search algorithms:

two nested loops:

• outer loop: determine serach
direction from gradient

• inner loop: determine minimizing
point on the line defined by current
search position and search
direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm may
be more complex algorithm, e.g.
Newton

search line

grad

◮ problem: time consuming for
high-dimensional spaces

Machine Learning: Multi Layer Perceptrons – p.34/61

Beyond gradient descent
(cont.)

◮ line search algorithms:

two nested loops:

• outer loop: determine serach
direction from gradient

• inner loop: determine minimizing
point on the line defined by current
search position and search
direction

◮ inner loop can be realized by any
minimization algorithm for
one-dimensional tasks

◮ advantage: inner loop algorithm may
be more complex algorithm, e.g.
Newton

grad

search line

◮ problem: time consuming for
high-dimensional spaces

Machine Learning: Multi Layer Perceptrons – p.34/61

Summary: optimization theory

◮ several algorithms to solve problems of the form:

minimize
~u

f(~u)

◮ gradient descent gives the main idea

◮ Rprop plays major role in context of MLPs

◮ dozens of variants and alternatives exist

Machine Learning: Multi Layer Perceptrons – p.35/61

Back to MLP Training

◮ training an MLP means solving:

minimize
~w

E(~w;D)

for given network topology and training dataD

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

Machine Learning: Multi Layer Perceptrons – p.36/61

Back to MLP Training

◮ training an MLP means solving:

minimize
~w

E(~w;D)

for given network topology and training dataD

E(~w;D) =
1

2

p
∑

i=1

||y(~x(i); ~w)− ~d(i)||2

◮ optimization theory offers algorithms to solve task of this kind

open question: how can we calculate derivatives of E?

Machine Learning: Multi Layer Perceptrons – p.36/61

Calculating partial derivatives

◮ the calculation of the network output of a MLP is done step-by-step: neuron i

uses the output of neurons j ∈ Pred(i) as arguments, calculates some

output which serves as argument for all neurons j ∈ Succ(i).

◮ apply the chain rule!

Machine Learning: Multi Layer Perceptrons – p.37/61

Calculating partial derivatives
(cont.)

◮ the error term

E(~w;D) =

p
∑

i=1

(1

2
||y(~x(i); ~w)− ~d(i)||2

)

introducing e(~w; ~x, ~d) = 1
2
||y(~x; ~w)− ~d||2 we can write:

Machine Learning: Multi Layer Perceptrons – p.38/61

Calculating partial derivatives
(cont.)

◮ the error term

E(~w;D) =

p
∑

i=1

(1

2
||y(~x(i); ~w)− ~d(i)||2

)

introducing e(~w; ~x, ~d) = 1
2
||y(~x; ~w)− ~d||2 we can write:

E(~w;D) =

p
∑

i=1

e(~w; ~x(i), ~d(i))

applying the rule for sums:

Machine Learning: Multi Layer Perceptrons – p.38/61

Calculating partial derivatives
(cont.)

◮ the error term

E(~w;D) =

p
∑

i=1

(1

2
||y(~x(i); ~w)− ~d(i)||2

)

introducing e(~w; ~x, ~d) = 1
2
||y(~x; ~w)− ~d||2 we can write:

E(~w;D) =

p
∑

i=1

e(~w; ~x(i), ~d(i))

applying the rule for sums:

∂E(~w;D)

∂wkl

=

p
∑

i=1

∂e(~w; ~x(i), ~d(i))

∂wkl

we can calculate the derivatives for each training pattern indiviudally and
sum up

Machine Learning: Multi Layer Perceptrons – p.38/61

Calculating partial derivatives
(cont.)

◮ individual error terms for a pattern ~x, ~d

simplifications in notation:

• omitting dependencies from ~x and ~d

• y(~w) = (y1, . . . , ym)T network output (when applying input pattern ~x)

Machine Learning: Multi Layer Perceptrons – p.39/61

Calculating partial derivatives
(cont.)

◮ individual error term:

e(~w) =
1

2
||y(~x; ~w)− ~d||2 =

1

2

m
∑

j=1

(yj − dj)
2

by direct calculation:
∂e

∂yj

= (yj − dj)

yj is the activation of a certain output neuron, say ai

Hence:
∂e

∂ai

=
∂e

∂yj

= (ai − dj)

Machine Learning: Multi Layer Perceptrons – p.40/61

Calculating partial derivatives
(cont.)

◮ calculations within a neuron i

assume we already know ∂e
∂ai

observation: e depends indirectly from ai and ai depends on net i

⇒ apply chain rule
∂e

∂net i

=
∂e

∂ai

·
∂ai

∂net i

what is ∂ai

∂neti
?

Machine Learning: Multi Layer Perceptrons – p.41/61

Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i

Machine Learning: Multi Layer Perceptrons – p.42/61

Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i

• linear activation: fact(net i) = net i

⇒ ∂fact (neti)
∂neti

= 1

Machine Learning: Multi Layer Perceptrons – p.42/61

Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i

• linear activation: fact(net i) = net i

⇒ ∂fact (neti)
∂neti

= 1

• logistic activation: fact(net i) = 1
1+e−neti

⇒ ∂fact (neti)
∂neti

= e−neti

(1+e−neti)2
= flog(net i) · (1− flog(net i))

Machine Learning: Multi Layer Perceptrons – p.42/61

Calculating partial derivatives
(cont.)

◮
∂ai

∂neti

ai is calculated like: ai = fact(net i) (fact activation function)
Hence:

∂ai

∂net i

=
∂fact(net i)

∂net i

• linear activation: fact(net i) = net i

⇒ ∂fact (neti)
∂neti

= 1

• logistic activation: fact(net i) = 1
1+e−neti

⇒ ∂fact (neti)
∂neti

= e−neti

(1+e−neti)2
= flog(net i) · (1− flog(net i))

• tanh activation: fact(net i) = tanh(net i)

⇒ ∂fact (neti)
∂neti

= 1− (tanh(net i))
2

Machine Learning: Multi Layer Perceptrons – p.42/61

Calculating partial derivatives
(cont.)

◮ from neuron to neuron

assume we already know ∂e
∂netj

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j

depends on ai⇒ apply chain rule

Machine Learning: Multi Layer Perceptrons – p.43/61

Calculating partial derivatives
(cont.)

◮ from neuron to neuron

assume we already know ∂e
∂netj

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j

depends on ai⇒ apply chain rule

∂e

∂ai

=
∑

j∈Succ(i)

(∂e

∂net j

·
∂net j

∂ai

)

Machine Learning: Multi Layer Perceptrons – p.43/61

Calculating partial derivatives
(cont.)

◮ from neuron to neuron

assume we already know ∂e
∂netj

for all j ∈ Succ(i)

observation: e depends indirectly from net j of successor neurons and net j

depends on ai⇒ apply chain rule

∂e

∂ai

=
∑

j∈Succ(i)

(∂e

∂net j

·
∂net j

∂ai

)

and:

net j = wjiai + ...

hence:
∂netj

∂ai

= wji

Machine Learning: Multi Layer Perceptrons – p.43/61

Calculating partial derivatives
(cont.)

◮ the weights

assume we already know ∂e
∂neti

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule

Machine Learning: Multi Layer Perceptrons – p.44/61

Calculating partial derivatives
(cont.)

◮ the weights

assume we already know ∂e
∂neti

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
∂e

∂wij

=
∂e

∂net i

·
∂net i

∂wij

Machine Learning: Multi Layer Perceptrons – p.44/61

Calculating partial derivatives
(cont.)

◮ the weights

assume we already know ∂e
∂neti

for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net i and net i depends on wij

⇒ apply chain rule
∂e

∂wij

=
∂e

∂net i

·
∂net i

∂wij

and:

net i = wijaj + ...

hence:
∂neti

∂wij

= aj

Machine Learning: Multi Layer Perceptrons – p.44/61

Calculating partial derivatives
(cont.)

◮ bias weights

assume we already know ∂e
∂neti

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule

Machine Learning: Multi Layer Perceptrons – p.45/61

Calculating partial derivatives
(cont.)

◮ bias weights

assume we already know ∂e
∂neti

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
∂e

∂wi0

=
∂e

∂net i

·
∂net i

∂wi0

Machine Learning: Multi Layer Perceptrons – p.45/61

Calculating partial derivatives
(cont.)

◮ bias weights

assume we already know ∂e
∂neti

for neuron i

observation: e depends indirectly from net i and net i depends on wi0

⇒ apply chain rule
∂e

∂wi0

=
∂e

∂net i

·
∂net i

∂wi0

and:

net i = wi0 + ...

hence:
∂neti

∂wi0

= 1

Machine Learning: Multi Layer Perceptrons – p.45/61

Calculating partial derivatives
(cont.)

◮ a simple example:

1

neuron 1

Σ

neuron 2

Σ

neuron 3

e
w2,1 w3,2

Machine Learning: Multi Layer Perceptrons – p.46/61

Calculating partial derivatives
(cont.)

◮ a simple example:

1

neuron 1

Σ

neuron 2

Σ

neuron 3

e
w2,1 w3,2

∂e
∂a3

= a3 − d1

∂e
∂net3

= ∂e
∂a3

· ∂a3

∂net3
= ∂e

∂a3

· 1
∂e
∂a2

=
∑

j∈Succ(2)(
∂e

∂netj
·

∂netj

∂a2

) = ∂e
∂net3

· w3,2

∂e
∂net2

= ∂e
∂a2

· ∂a2

∂net2
= ∂e

∂a2

· a2(1− a2)
∂e

∂w3,2
= ∂e

∂net3
· ∂net3

∂w3,2
= ∂e

∂net3
· a2

∂e
∂w2,1

= ∂e
∂net2

· ∂net2
∂w2,1

= ∂e
∂net2

· a1

∂e
∂w3,0

= ∂e
∂net3

· ∂net3
∂w3,0

= ∂e
∂net3

· 1
∂e

∂w2,0
= ∂e

∂net2
· ∂net2

∂w2,0
= ∂e

∂net2
· 1

Machine Learning: Multi Layer Perceptrons – p.46/61

Calculating partial derivatives
(cont.)

◮ calculating the partial derivatives:

• starting at the output neurons

• neuron by neuron, go from output to input

• finally calculate the partial derivatives with respect to the weights

◮ Backpropagation

Machine Learning: Multi Layer Perceptrons – p.47/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations:

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by step

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by step

• calculate ∂e
∂wji

Machine Learning: Multi Layer Perceptrons – p.48/61

Calculating partial derivatives
(cont.)

◮ illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

• apply pattern ~x = (x1, x2)
T

• propagate forward the activations: step by step

• calculate error, ∂e
∂ai

, and ∂e
∂neti

for output neurons

• propagate backward error: step by step

• calculate ∂e
∂wji

• repeat for all patterns and sum up

Machine Learning: Multi Layer Perceptrons – p.48/61

Back to MLP Training

◮ bringing together building blocks of MLP learning:

• we can calculate ∂E
∂wij

• we have discussed methods to minimize a differentiable mathematical
function

Machine Learning: Multi Layer Perceptrons – p.49/61

Back to MLP Training

◮ bringing together building blocks of MLP learning:

• we can calculate ∂E
∂wij

• we have discussed methods to minimize a differentiable mathematical
function

◮ combining them yields a learning algorithm for MLPs:

• (standard) backpropagation = gradient descent combined with

calculating ∂E
∂wij

for MLPs

• backpropagation with momentum = gradient descent with moment

combined with calculating ∂E
∂wij

for MLPs

• Quickprop

• Rprop

• ...

Machine Learning: Multi Layer Perceptrons – p.49/61

Back to MLP Training
(cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do

4: for all (~x, ~d) ∈ D do
5: apply ~x to network and calculate the network output

6: calculate
∂e(~x)
∂wij

for all weights

7: end for
8: calculate

∂E(D)
∂wij

for all weights suming over all training patterns

9: perform one update step of the minimization approach
10: end while

◮ learning by epoch: all training patterns are considered for one update step of
function minimization

Machine Learning: Multi Layer Perceptrons – p.50/61

Back to MLP Training
(cont.)

◮ generic MLP learning algorithm:

1: choose an initial weight vector ~w

2: intialize minimization approach
3: while error did not converge do

4: for all (~x, ~d) ∈ D do
5: apply ~x to network and calculate the network output

6: calculate
∂e(~x)
∂wij

for all weights

7: perform one update step of the minimization approach
8: end for
9: end while

◮ learning by pattern: only one training patterns is considered for one update
step of function minimization (only works with vanilla gradient descent!)

Machine Learning: Multi Layer Perceptrons – p.51/61

Lernverhalten und Parameterwahl - 3 Bit Parity

10

20

30

40

50

60

70

80

90

100

0.001 0.01 0.1 1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

3 Bit Paritiy - Sensitivity

Rprop

BP

QP

SSAB

Machine Learning: Multi Layer Perceptrons – p.52/61

Lernverhalten und Parameterwahl - 6 Bit Parity

0

50

100

150

200

250

300

350

400

450

500

0.0001 0.001 0.01 0.1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

6 Bit Paritiy - Sensitivity

Rprop

BP

QP

SSAB

Machine Learning: Multi Layer Perceptrons – p.53/61

Lernverhalten und Parameterwahl - 10 Encoder

0

50

100

150

200

250

300

350

400

450

500

0.001 0.01 0.1 1 10

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

10-5-10 Encoder - Sensitivity

Rprop

BP

QP

SSAB

Machine Learning: Multi Layer Perceptrons – p.54/61

Lernverhalten und Parameterwahl - 12 Encoder

0

200

400

600

800

1000

0.001 0.01 0.1 1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

12-2-12 Encoder - Sensitivity

Rprop

QP

SSAB

Machine Learning: Multi Layer Perceptrons – p.55/61

Lernverhalten und Parameterwahl - ’two sprials’

0

2000

4000

6000

8000

10000

12000

14000

1e-05 0.0001 0.001 0.01 0.1

a
v
e
r
a
g
e

n
o
.

e
p
o
c
h
s

learning parameter

Two Spirals - Sensitivity

Rprop

BP

QP

SSAB

Machine Learning: Multi Layer Perceptrons – p.56/61

Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most frequently sold
newspaper in Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets in Germany,
differing in a lot of facets

Machine Learning: Multi Layer Perceptrons – p.57/61

Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most frequently sold
newspaper in Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets in Germany,
differing in a lot of facets

◮ problem: how many copies are sold in which
sales outlet?

Machine Learning: Multi Layer Perceptrons – p.57/61

Real-world examples: sales rate prediction

◮ Bild-Zeitung is the most frequently sold
newspaper in Germany, approx. 4.2 million
copies per day

◮ it is sold in 110 000 sales outlets in Germany,
differing in a lot of facets

◮ problem: how many copies are sold in which
sales outlet?

◮ neural approach: train a neural network for
each sales outlet, neural network predicts next
week’s sales rates

◮ system in use since mid of 1990s

Machine Learning: Multi Layer Perceptrons – p.57/61

Examples: Alvinn (Dean, Pommerleau, 1992)

◮ autonomous vehicle driven by a multi-layer perceptron

◮ input: raw camera image

◮ output: steering wheel angle

◮ generation of training data by a human driver

◮ drives up to 90 km/h

◮ 15 frames per second

Machine Learning: Multi Layer Perceptrons – p.58/61

Alvinn MLP structure

Machine Learning: Multi Layer Perceptrons – p.59/61

Alvinn Training aspects

◮ training data must be ’diverse’

◮ training data should be balanced (otherwise e.g. a bias towards steering left
might exist)

◮ if human driver makes errors, the training data contains errors

◮ if human driver makes no errors, no information about how to do corrections
is available

◮ generation of artificial training data by shifting and rotating images

Machine Learning: Multi Layer Perceptrons – p.60/61

Summary

◮ MLPs are broadly applicable ML models

◮ continuous features, continuos outputs

◮ suited for regression and classification

◮ learning is based on a general principle: gradient descent on an error
function

◮ powerful learning algorithms exist

◮ likely to overfit⇒ regularisation methods

Machine Learning: Multi Layer Perceptrons – p.61/61

	Outline
	Neural networks
	Neurons in a multi layer perceptron
	Multi layer perceptrons
	Multi layer perceptrons\(cont.)
	Multi layer perceptrons\(cont.)
	Multi layer perceptrons\(cont.)
	Multi layer perceptrons\(cont.)
	Multi layer perceptrons\(cont.)
	Multi layer perceptrons\(cont.)
	Multi layer perceptrons\(cont.)
	MLP Training
	MLP Training\(cont.)
	Optimization theory
	Optimization theory\(cont.)
	Optimization theory\(cont.)
	Optimization theory\(cont.)
	Gradient descent
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Gradient descent\(cont.)
	Beyond gradient descent
	Beyond gradient descent\(cont.)
	Beyond gradient descent\(cont.)
	Beyond gradient descent\(cont.)
	Summary: optimization theory
	Back to MLP Training
	Calculating partial derivatives
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Calculating partial derivatives\(cont.)
	Back to MLP Training
	Back to MLP Training\(cont.)
	Back to MLP Training\(cont.)
	Lernverhalten und Parameterwahl - 3 Bit Parity
	Lernverhalten und Parameterwahl - 6 Bit Parity
	Lernverhalten und Parameterwahl - 10 Encoder
	Lernverhalten und Parameterwahl - 12 Encoder
	Lernverhalten und Parameterwahl - 'two sprials'
	Real-world examples: sales rate prediction
	Examples: Alvinn (Dean, Pommerleau, 1992)
	Alvinn MLP structure
	Alvinn Training aspects
	Summary

