
Supplementary for TempoRL: Learning When to Act

A. Detailed Baseline Description
Dynamic Action Repetition (DAR; Lakshminarayanan et al., 2017) is a framework for
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Figure A1. Schematic DAR Ar-
chitecture with duplicate out-
put heads to learn at two time-
scales r1 and r2.

discrete-action space deep RL algorithms. For a discrete-action space A =
{
a1, . . . , a|A|

}
DAR duplicates this space such that an agent can choose from 2 × |A| actions. Further,
DAR introduces two hyperparameters r1 and r2, each of which are associated with one half
of the new action space. These hyperparameters determine the number of time-steps an
action will be played for, with both actions ak and a2k (1 ≤ k ≤ |A|) performing the same
behaviour but ak is repeated for r1 time-steps and a2k for r2 time-steps. When training an
agent, there are no modifications to the training procedure, other than an agent now having
to select from a larger action space. Figure A1 schematically depicts a DAR DQN agents Q-network architecture.

This gives an agent two levels of control to decide on how long to apply an action. A drawback of this framework is that
the output heads are independent from each other and are not aware that certain action outputs have the same influence on
the environment for min(r1, r2) time-steps. Further, both r1 and r2 have to be defined beforehand, requiring good prior
knowledge about the potential levels of fine and coarse control in an environment.

Fine Grained Action Repetition (FiGAR; Sharma et al., 2017) is a framework for both discrete and continuous action
spaces. Instead of learning a single policy that has to learn both which action to play and how long to follow it (as in
DAR), FiGAR decouples the behaviour and repetition learning by using two separate policies πa : S → A and πr : S →
{1, 2, . . . ,max repetition}. When training an agent, based on a state s, πa decides which action to play and simultaneously
πr decides how long to repeat a selected action starting from s. At the time of selecting their respective actions, neither πa
nor πr are aware of the other policies decision. Thus, the action and the respective repetition value are selected independently
from each other.

To couple the learning of both policies Sharma et al. (2017) use a joint loss to update the network weights and further suggest
to use weight-sharing of the input-layers of the two policy networks. Although this aligns the policies when performing
a training step, at decision time the policies remain uninformed about each others behaviour. Counter to DAR, FiGAR
allows for much more fine-grained control over the action repetition. However, FiGAR requires more modification of a base
algorithm to allow for learning of control at different time-steps. With TEMPORL we propose a method that allows for the
same fine-grained level of control while requiring no modifications to the base agent architecture.
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Algorithm 1 TEMPORL Q-learning

1: Input: environment env with states S and actions A, skip-Actions J ,
behaviour and skip Q-functions Q(·, ·), Q(·, ·|·), training episodes E

2: Initialize Q(s, a),Q(s, j|a)∀s ∈ S, a ∈ A, j ∈ J
3: for episode∈ {1, . . . , E} do
4: s← env.reset()
5: repeat
6: a← π(s) # e.g. ε -greedy argmaxa′∈AQ(s, a′)
7: j ← πj(s, a) # e.g. ε -greedy argmaxj′∈J Q(s, j′|a)
8: trajectory← [s] # Tracks the skip trajectory
9: repeat

10: r, s′ ← env.step(a)
11: append s′ to trajectory # Records the state transitions
12: Q(s, a)← td update(Q(s, a), r, s′) # See Equation 1
13: s← s′

14: until all skips 1, . . . , j performed or episode ends
15: G ← build connectedness graph(trajectory) # Build a local connectedness graph from

the observed trajectory
16: for all connections c ∈ G do
17: get sstart, send, j′, r′ from c
18: Q(sstart, j′|a)← td update skip(Q(sstart, j′|a), r′, send) # See Equation 2
19: end for
20: until episode finished
21: end for

B. Implementation Details
Algorithm 1 details how to train a TEMPORL Q-learning agent. All elements that are new to TEMPORL are shown in
black whereas vanilla Q-learning code is greyed out. The functions td update (Line 12) and td update skip (Line 18) are
formally stated in Equations 1 and 2 respectively and give the temporal difference updates required during learning.

Q(st, at) = Q(st, at) + α


rt + γmaxQ(st+1, ·)︸ ︷︷ ︸

TD-Target

−Q(st, at)
︸ ︷︷ ︸

TD-Delta

 (1)

Q(st, jt|at) = Q(st, jt|at) + α




j−1∑
k=0

γkrt+k + γj maxQ(st+j , ·)︸ ︷︷ ︸
TD-Target

−Q(st, jt|at)
︸ ︷︷ ︸

TD-Delta


(2)

Where α is the learning rate and γ the discount factor. Note that the TD-Target in Equation 2 (as well as the skipQ-function in
Equation 4) is using the behaviourQ-function and not the skipQ-function. Thus, the skipQ-function estimates the expected
future rewards, assuming that the current skip will be the only skip in the MDP. This allows us to avoid overestimating
Q-values through multiple skips and focuses on learning of the value of the executed skip similar to double Q-learning (van
Hasselt, 2010). Further, learning of the skip-values does not interfere with learning of the behaviour Q-function.

The function build connectedness graph (Line 15) builds takes an observed trajectory and builds connectedness graph of
states that are reachable by repeatedly playing the same action (see Figure 1 in the main paper). Each connection contains
information about start and end states, the length of the skip and the discounted reward for that skip.
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C. Used Compute Resources
Tabular & Deep RL Experiments on Featurized Environments For the tabular as well as the deep experiments on
featurized environments, we evaluated all agents on a compute cluster with nodes equipped with two Intel Xeon Gold 6242
32-core CPUs, 20 MB cache and and 188GB (shared) RAM running Ubuntu 18.04 LTS 64 bit. In all cases, the agents were
allocated one CPU. The tabular agents required at most 20 minutes to complete training, whereas the deep agents required at
most 15 hours.

Deep RL Experiments on Atari Environments These experiments were run on a compute cluster with nodes equipped
with two Intel Xeon E5-2630v4 and 128GB memory running CentOS 7. For training, the agents were allocated 10 CPUs
and required at most 48 hours to complete training.

D. Gridworld Details
All considered environments (see Figure D1) are discrete, deterministic, have sparse rewards and have size 6× 10. Falling
off a cliff results in a negative reward (−1) and reaching a goal state results in a positive reward (+1). Both cliff and goal
states terminate an episode. All other states result in no reward. An agent can only execute the actions up, down, left,
right with diagonal moves not possible. If the agent does not reach a goal/cliff in 100 steps, an episode terminates without a
reward.

For the Cliff environment, a shortest path through the environment requires 16 steps. However, to reach the goal, decisions
about unique actions are only required at 3 time points. The first is in the starting state and determines that action up should
be repeated 3-times, the next is repeating action right 10-times and the final one is repeating action down 3-times. Thereby,
an optimal proactive policy that is capable of joint decision of action and skip length requires ∼ 80% fewer decisions than
an optimal reactive policy that has to make decisions in each state. As the Bridge environment is very similar, but has a
smaller cliff area below, an optimal proactive policy also requires roughly ∼ 80% fewer decisions.

On the more complex ZigZag environment, an optimal policy requires 20 steps in total to reach the goal. In this environment
however, an agent has to switch direction more often. Leading to a total of 5 required decisions. Thus in this environment an
optimal proactive policy requires roughly 75% fewer decisions.

GS

(a) Cliff

GS

(b) Bridge

G

S

(c) ZigZag

Figure D1. Copy of Figure 4 form the main paper. 6× 10 Grid Worlds. Agents have to reach a fixed goal state from a fixed start state.
Large/small dots represent decision steps of vanilla and TEMPORL Q-learning policies.
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Table E1. Normalized AUC for reward and average number of decision steps for varying maximal skip-lengths J . All agents are trained
with the same ε schedule. R denotes normalized area under the reward curve and D the average number of decision steps. Values are
results of running 10 random seeds. Columns 1 and 7 are equivalent to columns 5 & 6 in Table 1.

(a) linear decaying ε-schedule

Q t-Q
J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R 0.57 0.63 0.76 0.87 0.93 0.93 0.92 0.91 0.90 0.91 0.88 0.87 0.86 0.87 0.85 0.84
D 83.6 36.5 20.6 13.2 10.1 8.3 7.7 7.8 7.5 7.4 7.6 7.4 7.6 7.6 7.8 7.4

(b) logarithmic decaying ε-schedule

R 0.90 0.91 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95
D 35.6 21.7 14.9 11.6 9.5 8.6 6.4 6.3 6.5 5.9 6.1 6.2 7.0 6.8 7.0 6.0

(c) constant ε = 0.1

R 0.95 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
D 27.6 15.8 12.0 9.1 8.2 7.8 6.8 6.9 6.7 7.1 6.6 7.2 6.2 6.5 7.0 6.9

E. Influence of the Maximum Skip-Length
The maximum skip length J is a crucial hyperparameter of TEMPORL. A too large value might lead to many irrelevant
choices which the agent has to learn to ignore; whereas a too small value might not reduce the complexity of the environment
sufficiently enough, leading to barely an improvement over the vanilla counterpart. To evaluate the influence of the
hyperparameter on our method we trained various TEMPORL agents with varying maximal skip-lengths, starting from 2 up
to 16. Larger skips than 10 will never be beneficial for the agent as the agent is guaranteed to run into a wall for some steps.
Depending on where in the environment the agent is located, smaller skip-values might allow it to quickly traverse through
the environment.

Table E1 shows the influence of J on the ZigZag environment (see Figure 4c). In this environment, the largest skip value
that is possible without running into a wall is 6. Thus, small skip values up to 5 quickly improve the performance over
the vanilla counterpart, not only in terms of anytime performance but also in terms of required decisions. In the case of a
suboptimal exploration policy, in the form of linearly decaying ε-greedy schedule (see Table E1a), larger skip-values quickly
lead to a decrease in anytime performance, as the agent has to learn to never choose many non-improving skip actions.

For a more suiting exploration policy, too large skip-actions do not as quickly degrade the anytime performance of our
TEMPORL agents. In the case of a logarithmically decaying ε schedule (Table E1b), we can see that skip sizes larger or
equal than 12 start to negatively influence the anytime performance, whereas with a constant ε schedule only a skip-size of
16, nearly 3 times as large as the largest sensible choice, has a negative effect.

Similar observations can be made for deep TEMPORL on both Pedulum, MountainCar and LunarLander, see Tables 2 - 4
in the main paper. We can see that choosing larger maximal skip-values is beneficial, up to a point, at which many
irrelevant, and potentially useless choices are in the action space. For these, TEMPORL first has to learn on which part of the
skip-action-space to focus before really learning when new decisions need to be taken.

It is worth noting that, in the tabular case, all evaluated skip-sizes J result in better anytime-performance and a lower number
of required decision points compared to vanilla Q-learning, for all considered exploration strategies. In future work, we will
study how to allow TEMPORL to select large skip-actions without needing to learn to distinguish between many irrelevant
choices. One possible way of doing this could be by putting the skip-size on a log scale. For example using log2 could
result in only 10 actions where a TEMPORL agent could skip up to 1024 steps ahead but would still be able to exert fine
control with the smaller actions.
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Figure F1. Learning curves of different DDPG agents on Pendulum-v0. J indicates the maximal skip-length used when training t-DDPG
and FiGAR. Solid lines give the mean and the shaded area the standard deviation over 15 seeds. Top-row images show the reward achieved
and bottom-row images the required steps and decisions per evaluation rollout.
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F. DDPG Implementation Details and Additional Results
As base implementation for DDPG, we used publicly available code1 and used the default hyperparameters, except we
replaced the number of maximal training steps and initial random steps as described in the main paper. When implementing
FiGAR, we followed the description by Sharma et al. (2017). Thus, the repetition policy uses a constant epsilon-greedy
exploration. Likewise, we use a constant epsilon-greedy exploration to learn our t-DDPG.

For our t-DDPG implementation we could use the same algorithm as described in Algorithm 1. Only the greyed out parts of
normalQ-learning have to replaced by DDPG training specific elements. For example, for DDPG, the exploration policy for
the actor is given by adding exploration noise rather than following an epsilon-greedy policy. Further, we again can make
use of the base agents Q-function as shown in Equation 2.

Figure F1 depicts the learning curve for all DDPG agents with increasing maximal skip-value. As described in the main
paper, both FiGAR and t-DDPG slightly lag behind vanilla DDPG when only allowing for skips of length 2. However,
with increasing max-skip value FiGAR quickly begins to struggle and in the end even converges to worse policies, always
preferring large skip-values. Our t-DDPG using TEMPORL performs much more stable and is hardly affected by increasing
the maximal skip length. Further, t-DDPG over time learns when it is necessary to switch to new actions, roughly halving
the required decisions.

G. Featurized Environments Description
MountainCar is a challenging exploration task and requires an agent to control an under powered car to drive up a steep
hill on one side (Moore, 1990). To reach the goal, an agent has to build up momentum. The agent always receives a reward
of −1 until it has crossed the goal position and a reward of 0 afterwards. The observation consists of the car position and
velocity and the agent can either accelerate to the left or right or do nothing. To build up momentum an agent potentially
has to repeat the same action multiple times. Thus, we evaluate both t-DQN and DAR on the grid {2, 4, 6, 8, 10} for the
maximal (while keeping the minimal skip value fixed to 1) skip-value over 50 random seeds (see Tables 3a & 4a).

LunarLander The task for an agent is to land a space-ship on a lunar surface. To this end, the agent can choose to fire
the main engine, steer left or right or do nothing. Firing of the engines incurs a small cost of −0.3, whereas crashing or
successfully landing results in a large cost or reward of −100 and 100 respectively. We expect that an environment with
such a dense reward, where actions directly influence the achieved reward does not benefit from leveraging skips.

1https://github.com/sfujim/TD3

https://github.com/sfujim/TD3
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(a) Pong (b) BeamRider

Figure H1. Evaluation performance on Atari environments. Solid lines give the mean and the shaded area the standard deviation over 15
random seeds. (top) Achieved rewards. (bottom) Length of executed policy (· · · ) and number of decisions (—) made by the policies.

H. Atari
Table H1. Hyperparameters used for the Atari
Experiments

Hyperparameter Value

Batch Size 32
γ 0.99
Gradient Clip 40.0
Target update frequency 500
Learning starts 10 000
Initial ε 1.0
Final ε 0.01
ε time-steps 200 000
Train frequency 4
Loss Function Huber Loss
Optimizer Adam
Learning rate 10−4
β1 0.9
β2 0.999
Replay-Buffer Size 5× 104

Skip Replay-Buffer Size 5× 104

J 10

Architectures DQN: As architecture for DQN we used that of Mnih et al.
(2015) and used this as basis for our shared architecture. This architecture
has three layers of convolutions to handle the 84×84 input images. The first
convolution layer has 84 input channels, 32 output channels, a kernel size
of 8 and a stride of 4. The second has 32 input channels, 64 output channels,
a kernel size of 4 and a stride of 2. The second has 64 input channels, 64
output channels, a kernel size of 3 and a stride of 1. This is followed by two
hidden layers with 512 units each.

TEMPORL: The shared architecture used by our TEMPORL agent uses the
same architecture as just described but has an additional output stream for
the skip-outputs. The skip output stream combines a hidden layer with
10 units together with the output of the last convolutional layer. It then
processes these features again in two fully connected hidden layers with 512
units each.

DAR: Similarly, the DAR agent builds on the DQN architecture of Mnih
et al. (2015). However, the final output layer is duplicated and the duplicate
outputs act at a different time-resolution. To give DAR the same coarse
control as would be possible with our TEMPORL agent we fix the fine and
coarse control levels to 1 and 10 respectively.

Additional Results on PONG: Our learned t-DQN exhibits a slight improvement in learning speed, PONG before being
caught up by DQN (similar to the results on MsPacman in the main paper, see Figure 7a), with both methods converging to
the same final reward. Nevertheless, TEMPORL learns to make use of different degrees of fine and coarse control to achieve
the same performance, requiring roughly 1 000 fewer decisions.

The DAR agent really struggles to learn a meaningful policy on this game, never learning to properly avoid getting scored
on or scoring itself. A likely reason for the poor performance is the choice of hyperparameters. Potentially choosing smaller
skip-value for the coarse control could allow to learn better behaviour with DAR.

Additional Results on BEAMRIDER: Figure H1b shows an immediate benefit to jointly learning when and how to act
through TEMPORL. Our t-DQN begins to learn faster and achieve a better final reward than vanilla DQN.

Interestingly, the DAR agent, starting out with choosing to mostly apply fine control starts to learn much faster than vanilla
DQN and our TEMPORL agent, nearly reaching the final performance of vanilla DQN already ≈ 900 000 time-steps earlier.
However, the performance starts to drop when DAR starts to increase usage of the coarse control. Once the DAR agents
have learned this over-reliance on the coarse control, they do not recover, resulting in the worst final performance.
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