A Related Work

A.1 Existing NAS benchmarks

Benchmarks for NAS were introduced only recently with NAS-Bench-101 (Ying et al., 2019) as the
first among them. NAS-Bench-101 is a tabular benchmark consisting of ~423k unique architectures
in a cell structured search space evaluated on CIFAR-10 (Krizhevsky, 2009). To restrict the number
of architectures in the search space, the number of nodes and edges was given an upper bound and
only three operations are considered. One result of this limitation is that One-Shot NAS methods
can only be applied to subspaces of NAS-Bench-101 as demonstrated in NAS-Bench-1Shot1 (Zela
et al., 2020b).

NAS-Bench-201 (Dong & Yang, 2020), in contrast, uses a search space with a fixed number of
nodes and edges, hence allowing for a straight-forward application of one-shot NAS methods. How-
ever, this limits the total number of unique architectures to as few as 6466. NAS-Bench-201 in-
cludes evaluations of all these architectures on three different datasets, namely CIFAR-10, CIFAR-
100 (Krizhevsky, 2009) and Downsampled Imagenet 16x 16 (Chrabaszcz et al., 2017), allowing for
transfer learning experiments.

NAS-Bench-NLP (Klyuchnikov et al., 2020) was recently proposed as a tabular benchmark for
NAS in the Natural Language Processing domain. The search space resembles NAS-Bench-101 as
it limits the number of edges and nodes to constrain the search space size resulting in 14k evaluated
architectures.

A.2 Neural Network Performance Prediction

In the past, several works have attempted to predict the performance of neural networks by ex-
trapolating learning curves (Dombhan et al., 2015; Klein et al., 2017; Baker et al., 2017). A more
recent line of work in performance prediction focuses more on feature encoding of neural archi-
tectures. Peephole (Deng et al., 2017) and TAPAS (Istrate et al., 2019) both use an LSTM to
aggregate information about the operations in chain-structured architectures. On the other hand,
BANANAS (White et al., 2019) introduces a path-based encoding of cells that automatically re-
solves the computational equivalence of architectures.

Graph Neural Networks (GNNs) (Gori et al., 2005; Kipf & Welling, 2017; Zhou et al., 2018; Wu
et al., 2019) with their capability of learning representations of graph-structured data appear to be a
natural choice to learning embeddings of NN architectures. Shi et al. (2019) and Wen et al. (2019)
trained a Graph Convolutional Network (GCN) on a subset of NAS-Bench-101 (Ying et al., 2019)
showing its effectiveness in predicting the performance of unseen architectures. Moreover, Friede
et al. (2019) propose a new variational-sequential graph autoencoder (VS-GAE) which utilizes a
GNN encoder-decoder model in the space of architectures and generates valid graphs in the learned
latent space.

Several recent works further adapt the GNN message passing to embed architecture bias via extra
weights to simulate the operations such as in GATES (Ning et al., 2020) or integrate additional
information on the operations (e.g. flop count) (Xu et al., 2019b). Tang et al. (2020) chose to
operate GNNs on relation graphs based on architecture embeddings in a metric learning setting,
allowing to pose NAS performance prediction as a semi-supervised setting.

B Training Details for the GIN in the Motivation
We set the GIN to have a hidden dimension of 64 with 4 hidden layers resulting in around ~40k

parameters. We trained for 30 epochs with a batch size of 128. We chose the MSE loss function and
add a logarithmic transformation to emphasize the data fit on well-performing architectures.

C NAS-Bench-301 Dataset

C.1 Search Space

We use the same architecture search space as in DARTS (Liu et al., 2019). Specifically, the normal
and reduction cell each consist of a DAG with 2 input nodes (receiving the output feature maps from

12

the previous and previous-previous cell), 4 intermediate nodes (each adding element-wise feature
maps from two previous nodes in the cell) and 1 output node (concatenating the outputs of all
intermediate nodes). Input and intermediate nodes are connected by directed edges representing one
of the following operations: {Sep. conv 3 x 3, Sep. conv 5 x 5, Dil. conv 3 x 3, Dil. conv 5 x 5,
Max pooling 3 x 3, Avg. pooling 3 x 3, Skip connection}.

C.2 Data Collection

To achieve good global coverage, we use random search to eval-

b=
uate ~23k architectures. We note that space-filling designs < a0k S
such as quasi-random sequences, e.g. Sobol sequences (Sobol’, £ ©
1967), or Latin Hypercubes (McKay et al., 2000) and Adaptive £ :E;
Submodularity (Golovin & Krause, 2011) may also provide good g 20k o
initial coverage. 5 =
Random search is supplemented by data which we collect from 50 0 50 =
running a variety of optimizers, representing Bayesian Opti- 1st component

mization (BO), evolutionary algorithms and One-Shot Optimiz- Fjgure 6: t-SNE visualization of
ers. We used Tree-of-Parzen-Estimators (TPE) (Bergstra et al., the sampled architectures.

2011) as implemented by Falkner et al. (2018) as a baseline BO

method. Since several recent works have proposed to apply BO over combinatorial spaces (Oh
et al., 2019; Baptista & Poloczek, 2018) we also used COMBO (Oh et al., 2019). We included BA-
NANAS (White et al., 2019) as our third BO method, which uses a neural network with a path-based
encoding as a surrogate model and hence scales better with the number of function evaluations. As
two representatives of evolutionary approaches to NAS, we chose Regularized Evolution (RE) (Real
et al., 2019) as it is still one of the state-of-the art methods in discrete NAS and Differential Evolu-
tion (Price et al., 2006) as implemented by Awad et al. (2020). Accounting for the surge in interest in
One-Shot NAS, our collected data collection also entails evaluation of architectures from search tra-
jectories of DARTS (Liu et al., 2019), GDAS (Dong & Yang, 2019), DrNAS (Chen et al., 2020) and
PC-DARTS (Xu et al., 2020). For details on the architecture training details, we refer to Section C.6.

For each architecture a € A, the dataset contains the following metrics: train/validation/test accu-
racy, training time and number of model parameters.

C.3 Optimizer Performance

The trajectories from the different NAS optimizers yield . 1.00

quite different performance distributions. This can be ‘§ 0.75

seen in Figure 7 which shows the ECDF of the valida- o — oMo
tion errors of the architectures evaluated by each opti- 2 ¢ .50 — o
mizer. As the computational budgets allocated to each 2 — ORs
optimizer vary widely, this data does not allow for a fair £ 0.25 | pepanrs
comparison between the optimizers. However, itis worth O) g
mentioning that the evaluations of BANANAS feature the 0.00 0.05 01 0.2

best distribution of architecture performances, followed
by PC-DARTS, DrNAS, DE, GDAS, and RE. TPE only
evaluated marginally better architectures than RS, while Figure 7: Empirical Cumulative Den-
COMBO and DARTS evaluated the worst architectures. ity Function (ECDF) plot comparing

In Figure 6 we visualize the overall coverage of the search a1l optimizers in the dataset. Optimizers
space as well as the similarity between sampled archi- Which cover good regions of the search
tectures using t-SNE (van der Maaten & Hinton, 2008). SPac€ feature higher values in the low
Besides showing a good overall coverage, some well- validation error region.

performing architectures in the search space form distinct

clusters which are mostly located outside the main cloud of points. This clearly indicates that archi-
tectures with similar performance are close to each other in the architecture space. Additionally, we
observe that different optimizers sample different types of architectures, see Figure 8.

Validation error

We also perform a t-SNE analysis on the data collected by the different optimizers in Figure 8. We
find that RE discovers well-performing architectures which form clusters distinct from the architec-
tures found via RS. We observe that COMBO searched previously unexplored areas of the search

13

BANANAS COMBO DARTS
WAL 50000

40000
DRMNAS GDAS

- 30000

PC_DARTS RE

BLiuey auniaajyay

- 20000

TPE
40

20

10000

o

—20
-50 o 50

Figure 8: Visualization of the exploration of different parts of the architectural t-SNE embedding
space for all optimizers used for data collection. The architecture ranking by validation accuracy
(lower is better) is global over the entire data collection of all optimizers.

space. BANANAS, which found some of the best architectures, explores clusters outside the main
cluster. However, it heavily exploits regions at the cost of exploration. We argue that this is a re-
sult of the optimization of the acquisition function via random mutations based on the previously
found iterates, rather than on new random architectures. DE is the only optimizer which finds well
performing architectures in the center of the embedding space.

C.4 Cell topology, operations and noise

T normal

0.2 [reduction

0.1

Validation error
Cell Depth
EN o)
s —~o-4
Re —o—@—

RS —o—4&—

Og
GDy4
Tpg

/4/?72; E=—<<E§>—-§f§>——e
Omgy —@—

g

3 4 5 6
Cell depth

0.05

I»)
C
"Coagy,

Figure 9: Distribution of the validation error for Figure 10: Comparison between the normal and
different cell depth. reduction cell depth for the architectures found
by each optimizer.

In this section, we investigate the influence of the cell topology and the operations on the perfor-
mance of the architectures in our setting. The discovered properties of the search space inform our
choice of metrics for the evaluation of different surrogate models.

14

First, we study how the validation error depends on the depth of architectures. Figure 9 visualizes
the performance distribution of normal and reduction cells of different depth® by approximating
empirical distributions with a kernel density estimation used in violin plots (Hwang et al., 1994).
We observe that the performance distributions are similar for the normal and reduction cells with
the same cell depth. Although cells of all depths can reach high performances, shallower cells
seem slightly favored. Note that these observations are subject to changes in the hyperparameter
setting, e.g. training for more epochs may render deeper cells more competitive. The best-found
architecture features a normal and reduction cell of depth 4. Color-coding the cell depth in our
t-SNE projection also confirms that the t-SNE analysis captures the cell depth well as a structural
property (c.f. Figure 12). It also reinforces that the search space is well-covered.

We also show the distribution of normal and reduction cell depths of each optimizer in Figure 10
to get a sense for the diversity between the discovered architectures. We observe that DARTS and
BANANAS generally find architectures with a shallow reduction cell and a deeper normal cell, while
the reverse is true for RE. DE, TPE, COMBO and RS appear to find normal and reduction cells with
similar cell depth.

Aside from the cell topology, we can also use our dataset to study
the influence of operations to the architecture performance. The
DARTS search space contains operation choices without parame-
ters such as Skip-Connection, Max Pooling 3 x 3 and Avg Pooling
3 x 3. We visualize the influence of these parameter-free oper-
ations on the validation error in the normal and reduction cell in
Figure 16a, respectively Figure 13. While pooling operations in the
normal cell seem to have a negative impact on performance, a small
number of skip connections improves the overall performance. This
is somewhat expected, since the normal cell is dimension preserv-
ing and skip connections help training by improving gradient flow
like in ResNets (He et al., 2016). In the reduction cell, the num-
ber of parameter-free operations has less effect as shown in Figure 13. In contrast to the normal cell
where 2-3 skip-connections lead to generally better performance, the reduction cell shows no similar
trend. For both cells, however, featuring many parameter-free operations significantly deteriorates
performance. We therefore expect that a good surrogate also models this case as a poorly performing
region.

o
©
w

Validation accuracy

=
o

0.002 0.004
Standard deviation

Figure 11: Standard deviation
of the val. accuracy for multi-
ple architecture evaluations.

Il | | | ’
_62 . (.2 |HEE Num avg pool '
E = g Num max pool
c _53 v BN Num skip conn.
2) c
£ o S 01
o o [CHE
o _4‘— '9
2 & g i
™~ = >
= 0.05
-50 0 50_3 01 2 3 456 7 8
1st component Num operations

Figure 12: t-SNE projection colored by the depth Figure 13: Distribution of validation error in de-

of the normal cell. pendence of the number of parameter-free opera-
tions in the reduction cell. Violin plots are cut off
at the respective observed minimum and maxi-
mum value.

C.5 Noise in Architecture Evaluations

As discussed in Section 2, the noise in architecture evaluations can be large enough for surrogate
models to yield more realistic estimates of architecture performance than a tabular benchmark based

>We follow the definition of cell depth used by Shu et al. (2020), i.e. the length of the longest simple path
through the cell.

15

on a single evaluation per architecture. To study the magnitude of this noise on NAS-Bench-301, we
evaluated 500 architectures randomly sampled from our Differential Evolution (DE) (Awad et al.,
2020) run with 5 different seeds each.® We find a mean standard deviation of 1.6e—3 for the final
validation accuracy which is slightly less than the noise observed in NAS-Bench-101 (Ying et al.,
2019); one possible reason for this could be a more robust training pipeline. Figure 11 in the Ap-
pendix shows that, while the noise tends to be lower for the best architectures, a correct ranking
based on a single evaluation is still difficult. Finally, we compare the MAE when estimating the
architecture performance from only one sample to the results from Table 1. Here, we also find a
slightly lower MAE of 1.38e—3 than for NAS-Bench-101.

C.6 Training details

Each architecture was evaluated on CIFAR-10 (Krizhevsky, 2009) using the standard 40k, 10k, 10k
split for train, validation and test set. The networks were trained using SGD with momentum 0.9,
initial learning rate of 0.025 and a cosine annealing schedule (Loshchilov & Hutter, 2017), annealing
towards 1075,

We apply a variety of common data augmentation techniques which differs from previous NAS
benchmarks where the training accuracy of many evaluated architectures reached 100% (Ying et al.,
2019; Dong & Yang, 2020) indicating overfitting on the training set. We used CutOut (DeVries &
Taylor, 2017) with cutout length 16 and MixUp (Zhang et al., 2018) with alpha 0.2. For regulariza-
tion, we used an auxiliary tower (Szegedy et al., 2015) with a weight of 0.4 and DropPath (Larsson
et al., 2017) with drop probability of 0.2. We trained each architecture for 100 epochs with a batch
size of 96, using 32 initial channels and 8 cell layers. We chose these values to be close to the proxy
model used by DARTS while also achieving good performance.

D Surrogate Model Analysis

D.1 Preprocessing of the graph topology

DGN preprocessing All DGN were implemented using PyTorch Geometric (Fey & Lenssen,
2019) which supports the aggregation of edge attributes. Hence, we can naturally represent the
DARTS architecture cells, by assigning the embedded operations to the edges. The nodes are labeled
as input, intermediate and output nodes. We represent the DARTS graph as shown in Figure 14, by
connecting the output node of each cell type with the inputs of the other cell, allowing information
from both cells to be aggregated during message passing. Note the self-loop on the output node of
the normal cell, which we found necessary to get the best performance.

Preprocessing for other surrogate models Since we make use of the framework implemented
by BOHB (Falkner et al., 2018) to easily parallelize the architecture search algorithms across many
compute nodes, we also represent our search space using ConfigSpace (Lindauer et al., 2019). For
all non-DGN based surrogate models, we use the vector representation of a configuration given by
ConfigSpace as input to the model.

D.2 Details on the GIN

Normal

The GIN implementation on the Open Graph Benchmark
(OGB) (Hu et al., 2020) uses virtual nodes (additional nodes which
are connected to all nodes in the graph) to boost performance as
well as generalization and consistently achieves good performance
on their public leaderboards. Other GNNSs from Errica et al. (2020),
such as DGCNN and DiffPool, performed worse in our initial ex-
periments and are therefore not considered. Reduction

Following recent work in Predictor-based NAS (Ning et al., 2020;
Xu et al., 2019b), we use a per batch ranking loss because the rank-
ing of an architecture is equally important to an accurate prediction
of the validation accuracy in a NAS setting. We use the ranking

Figure 14: Architecture with
inputs in green, intermediate
nodes in blue and outputs in
red.

SWe chose DE because it both explored and exploited well, see Figure 8 in the Appendix.

16

loss formulation by GATES (Ning et al., 2020) which is a hinge
pair-wise ranking loss with margin m=0.1.

D.3 Details on HPO for surrogate models

All hyperparameters of the surrogate models were tuned using BOHB (Falkner et al., 2018) as a
black-box optimizer; details on their respective hyperparameter search spaces are given in Table 5.
We use train/val/test splits (0.8/0.1/0.1) stratified by the NAS methods used for the data collection.

D.4 HPO for runtime prediction model

Our runtime prediction model is an LGB model trained on the runtimes of architecture evaluations
of DE. This is because we partially evaluated the architectures utilizing different CPUs. Hence, we
only choose to train on the evaluations carried out by the same optimizer on the same hardware to
keep a consistent estimate of the runtime. DE is a good choice in this case because it both explored
and exploited the architecture space well. The HPO space used for the LGB runtime model is the
same used for the LGB surrogate model.

D.5 Leave One-Optimizer-Out Analysis

Since the aim of NAS-Bench-301 is to allow efficient benchmarking of novel NAS algorithms, it is
necessary to ensure that the surrogate model can deliver accurate performance estimation on data
from trajectories by unseen NAS methods. Similarly to Eggensperger et al. (2015), we therefore
perform a form of cross-validation on the optimizers we used for data collection, i.e. we leave out
all data collected by one of the NAS methods entirely during training (using a stratified 0.9/0.1
train/val split over the other NAS methods). Then, we predict the unseen results from the left-out
NAS method to evaluate how well the models extrapolate to the region covered by the 'unseen’
method. We refer to this as the leave-one-optimizer-out (LOOO) setting.

Results The results in Table 6 show that the rank correlation between the predicted and observed
validation accuracy remains high even when a well-performing optimizer such as RE is left out.
Predicting BANANAS in the LOOO fashion yields a lower rank correlation, because it focuses on
well-performing architectures that are harder to rank; however, the high R? shows that the fit is still
good.

Conversely, leaving out DARTS causes a low R? but still high sKT; this is due to architectures with
many skip connections in the DARTS data that are overpredicted (further discussed in Section E.1).
For full details, Figure 15 in the appendix provides scatter plots of the predicted vs. true perfor-
mance for each NAS method. A detailed scatter plot of the predicted performance against the true
performance for each optimizer and surrogate model in an LOOO analysis is provided in Figure 15.

D.6 Parameter-free Operations

Several works have found that methods based on DARTS (Liu et al., 2019) are prone to finding sub-
optimal architectures that contain many, or even only, parameter-free operations (max. pooling, avg.
pooling or skip connections) and perform poorly (Zela et al., 2020a). We therefore evaluated the
surrogate models on such architectures by replacing a random selection of operations in a cell with
one type of parameter-free operations to match a certain ratio of parameter-free operations in a cell.
This analysis is carried out over the test set of the surrogate models and hence contains architectures
collected by all optimizers. For a more robust analysis, we repeated this experiment 4 times for each
ratio of operations to replace.

Results Figure 16 shows that both the GIN and the XGB model correctly predict that the accuracy
drops with too many parameter-free operations, particularly for skip connections. The groundtruth of
architectures with only parameter-free operations is displayed as scatter plot. Out of the two models,
XGB captures the slight performance improvement of using a few skip connections better. LGB
failed to capture this trend but performed very similarly to XGB for the high number of parameter-
free operations.

17

GIN LGB XGB

N,
I N
Y

GIN LGB XGB

a5 95
p / / 7l e F 4 y 4 V4
Z%90 g9
== L
<l
CI—. 85

a5

g || s " /| & d / /
Syq9 / g 590
oF =
% as £ 85

o P ” s
/ / -, VY
wao 2290
BE oF
g5 85
95
= / / VAR / I /
u : 390
w S 90 =
== EF
85
B5
g5 90 95 g5 90 95 &5 90 o5 85 90 95 85 90 95 85 90 95
Predicted Predicted Predicted Predicted Predicted Predicted

Figure 15: Scatter plots of the predicted performance against the true performance of different
surrogate models on the test set in a Leave-One-Optimizer-Out setting.

0.2 EEE Num.avg. pool I 0.2 EEE Num.avg. pool I

I

. (0.2 |(EEE Num avg pool . = -
S " |mm Num max pool ‘ g EE Num. max pool g W Num. max pool
© B Num skip conn. ﬂc) BN Num. skip conn. :‘:) B Num. skip conn.
c
© o} 3
S 2 2
s ‘ ‘ |1 s g

0.05 0.05 0.05

0123456 7 8 01234561738 01234561738
Num operations Num. operations Num. operations
(a) NAS-Bench-301 dataset (b) GIN (c) XGB

Figure 16: (Left) Distribution of validation error in dependence of the number of parameter-free
operations in the normal cell on the NAS-Bench-301 dataset. (Middle and Right) Predictions of the
GIN and XGB surrogate model. The collected groundtruth data is shown as scatter plot. Violin plots
are cut off at the respective observed minimum and maximum value.

E Benchmark Analysis

E.1 One-Shot Trajectories

NAS-Bench-301 can also be used to monitor the behavior of one-shot NAS optimizers throughout
their search phase, by querying the surrogate model with the currently most promising discrete
architecture. This can be extremely useful in many scenarios since uncorrelated proxy and true
objectives can lead to potential failure modes, e.g., to a case where the found architectures contain
only skip connections in the normal cell (Zela et al., 2020a,b; Dong & Yang, 2020) (we study such
a failure case in Appendix E.2 to ensure robustness of the surrogates in said case). We demonstrate
this use case in a similar LOOO analysis as for the black-box optimizers, using evaluations of the
discrete architectures from each search epoch of multiple runs of DARTS, PC-DARTS and GDAS

18

o6 True Benchmark GIN Surrogate Benchmark XGB Surrogate Benchmark

= DARTS
— PC_DARTS
— GDAS

0.08

Validation error
o
(=1
~

=4
=]
&

=
=3
-

o 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epachs Epochs

Figure 17: Anytime performance of one-shot optimizers, comparing performance achieved on the
real benchmark and on surrogate benchmarks built with GIN and XGB in a LOOO fashion.

as ground-truth. We performed 5 runs for each optimizer with 50 search epochs and evaluated the
architecture obtained by discretizing the one-shot model at each search epoch. Figure 17 shows that
the surrogate trajectories closely resemble the true trajectories.

E.2 Diverging One-Shot Methods

For DARTS, in addition to the default search space, we collected trajectories on the constrained
search spaces from Zela et al. (2020a) to cover a failure case where DARTS diverges and finds
architectures that only contain skip connections in the normal cell. To show that our benchmark
is able to predict this divergent behavior, we show surrogate trajectories when training on all data,
when leaving out the trajectories under consideration from the training data, and when leaving out
all DARTS data in Figure 18.

While the surrogates model the divergence in all cases, they still overpredict the architectures with
only skip connections in the normal cell especially when leaving out all data from DARTS. The
bad performance of these architectures is predicted more accurately when including data from other
DARTS runs. This can be attributed to the fact that the surrogate models have not seen any, re-
spectively very few data, in this region of the search space. Nevertheless, it is modeled as a bad-
performing region and we expect that this could be further improved on by including additional
training data accordingly, since including all data in training shows that the models are capable to of
capturing this behavior.

F Guidelines on using NAS-Bench-301

We want to mention the risk that prior knowledge about the surrogate model in NAS-Bench-301
could lead to the design of algorithms that may overfit to the surrogate benchmark. To this end, we
recommend the following best practices to ensure a safe and fair benchmarking of NAS methods on
NAS-Bench-301 and future surrogate benchmarks:

e The surrogate model should be treated as a black-box function, hence only be used for perfor-
mance prediction and not exploited to extract, e.g., gradient information.

All data LOT! LO
0.10 0.10 © 0.10 2
— GT
0.09 — GIN 0.09 0.09
g —
T 0.08 0.08 0.08
c
=]
= 0.07 0.07 0.07
=
£ 0.06 0.06 0.06
0.05 0.05 : 0.05
0 20 40 0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs Epochs

Figure 18: Groundtruth (GT) and surrogate trajectories on a constrained search space where the
surrogates are trained with all data, leaving out the trajectories under consideration (LOTO), and
leaving out all DARTS architectures (LOOO).

19

e We discourage benchmarking methods that internally use the same model as the surrogate model
picked in NAS-Bench-301 (e.g. GNN-based Bayesian optimization should not only be bench-
marked using the GIN surrogate benchmark).

e In order to ensure comparability of results in different published papers, we ask users to state the
benchmark’s version number. We will continuously collect more training data and further improve
the surrogate model predictions. So far, we release NB301-XGB-v1.0 and NB301-GIN-v1.0.

G Guidelines for Creating Surrogate Benchmarks

In order to help with the design of realistic surrogate benchmarks in the future, we provide the
following list of guidelines:

e Data Collection: The data collected for the NAS benchmark should provide (1) a good overall
coverage, (2) explore strong regions of the space well, and (3) optimally also cover special areas
in which poor generalization performance may otherwise be expected.

1. A good overall coverage can be obtained by random search (as in our case), but one could
also imagine using better space-filling designs or adaptive methods for covering the space
even better. In order to add additional varied architectures, one could also think about fitting
one or more surrogate models to the data collected thus far, finding the regions of maximal
predicted uncertainty, evaluate architectures there and add them to the collected data, and
iterate. This would constitute an active learning approach.

2. A convenient and efficient way to identify regions of strong architectures is to run NAS
methods. In this case, the found regions should not only be based on the strong architectures
one NAS method finds but rather on a set of strong and varied NAS methods (such as,
in our case, one-shot methods and different types of discrete methods, such as Bayesian
optimization and evolution). In order to add additional strong architectures, one could also
think about fitting one or more several surrogate models to the data collected thus far, finding
the predicted optima of these models, evaluate and add them to the collected data and iterate.
This would constitute a special type of Bayesian optimization.

3. Special areas in which poor generalization performance may otherwise be expected may, as
in our case, e.g., include architectures with many parameterless connections, and in particu-
lar, skip connections. Other types of failure modes the community learns about would also
be useful to cover.

e Surrogate Models: As mentioned in the guidelines for using a surrogate benchmark (see Sec-
tion 7), benchmarking an algorithm that internally uses the same model type as the surrogate
model should be avoided. Therefore, to provide a benchmark for a diverse set of algorithms, we
recommend providing different types of surrogate models with a surrogate benchmark.

e Verification: As a means to verify surrogate models, we stress the importance of leave-one-
optimizer-out experiments both for data fit and benchmarking, which simulate the benchmarking
of "unseen’ optimizers.

e Since most surrogate benchmarks will continue to grow for some time after their first release, to
allow apples-to-apples comparisons, we strongly encourage to only release surrogate benchmarks
with a version number.

o In order to allow the evaluation of multi-objective NAS methods, we encourage the logging of
as many relevant metrics of the evaluated architectures other than accuracy as possible, including
training time, number of parameters, and multiply-adds.

e Alongside a released surrogate benchmark, we strongly encourage to release the training data its
surrogate(s) were constructed on, as well as the test data used to validate it.

e In order to facilitate checking hypotheses gained using the surrogate benchmarks in real experi-
ments, the complete source code for training the architectures should be open-sourced alongside
the repository, allowing to easily go back and forth between querying the model and gathering
new data.

20

Model

Hyperparameter

Range

Log-transform

Default

Value
Hidden dim. [16, 256] true 24
Num. Layers [2, 10] false 8
Dropout Prob. [0, 1] false 0.035
Learning rate [1e-3, le-2] true 0.0777
Learning rate min. const. - 0.0
GIN Batch size const. - 51
Undirected graph [true, false] - false
Pairwise ranking loss [true, false] - true
Self-Loops [true, false] - false
Loss log transform [true, false] - true
Node degree one-hot const. - true
Num. Layers [1, 10] true 17
Layer width [16, 256] true 31
Dropout Prob. const. - 0.0
BANANAS Learn@ng rate) [1e-3, le-1] true 0.0021
Learning rate min. const. - 0.0
Batch size [16, 128] - 122
Loss log transform [true, false] - true
Pairwise ranking loss [true, false] - false
gzruli dSStoppmg const. - 100
Booster const. - gbtree
Max. depth [1, 15] false 13
Min. child weight [1, 100] true 39
XGBoost Col. sample bylevel [0.0, 1.0] false 0.6909
Col. sample bytree [0.0, 1.0] false 0.2545
lambda [0.001, 1000] true 31.3933
alpha [0.001, 1000] true 0.2417
Learning rate [0.001, 0.1] true 0.00824
Early stop. rounds const. - 100
Max. depth [1, 25] false 18
Num. leaves [10, 100] false 40
Max. bin [100, 400] false 336
Feature Fraction [0.1, 1.0] false 0.1532
LGBoost Min. child weight [0.001, 10] true 0.5822
Lambda L1 [0.001, 1000] true 0.0115
Lambda L2 [0.001, 1000] true 134.5075
Boosting type const. - gbdt
Learning rate [0.001, 0.1] true 0.0218
Num. estimators [16, 128] true 116
Min. samples split. [2, 20] false 2
l‘ﬁ;;‘e‘i‘t’m Min. samples leaf [1,20] false 2
” Max. features [0.1, 1.0] false 0.1706
Bootstrap [true, false] - false
C [1.0, 20.0] true 3.066
coef. 0 [-0.5, 0.5] false 0.1627
degree [1, 128] true 1
«SVR epsilon [0.01, 0.99] true 0.0251
gamma [scale, auto] - auto
kernel [linear, rbf, poly, sigmoid] - sigmoid
shrinking [true, false] - false
tol [0.0001, 0.01] - 0.0021
C [1.0,20.0] true 5.3131
coef. 0 [-0.5, 0.5] false -0.3316
degree [1, 128] true 128
gamma [scale, auto] - scale
#-SVR kernel [linear, rbf, poly, sigmoid] - rbf
nu [0.01, 1.0] false 0.1839
shrinking [true, false] - true
tol [0.0001, 0.01] - 0.003

Table 5: Hyperparameters of the surrogate models and the default values found via HPO.

Model NoRE NoDE NoCOMBO NoTPE NoBANANAS NoDARTS NoPC-DARTS NoDrNAS No GDAS
LGB 0917 0.892 0.919 0.857 0.909 -0.093 0.826 0.699 0.429
R* XGB 0907 0888 0.876 0.842 0.911 -0.151 0.817 0.631 0.672
GIN 0.856 0.864 0.775 0.789 0.881 0.115 0.661 0.790 0.572
LGB 0.834 0.782 0.833 0.770 0.592 0.780 0.721 0.694 0.595
sKT XGB 0831 0.780 0.817 0.762 0.596 0.775 0.710 0.709 0.638
GIN 0.798 0.757 0.737 0.718 0.567 0.765 0.645 0.706 0.607

Table 6: Leave One-Optimizer-Out performance of the best surrogate models.

21

