
Understanding and Robustifying
Differentiable Architecture Search

Arber Zela1, Thomas Elsken2,1, Tonmoy Saikia1, Yassine Marrakchi1,
Thomas Brox1 & Frank Hutter1,2

1Department of Computer Science, University of Freiburg
{zelaa, saikiat, marrakch, brox, fh}@cs.uni-freiburg.de

2Bosch Center for Artificial Intelligence
Thomas.Elsken@de.bosch.com

February 19, 2020

Accepted as Oral at ICLR 2020
Arber Zela RobustDARTS February 19, 2020 1



The Choice of Architecture Matters

Performance improvements on various tasks mostly due to novel
architectural design choices

Figure: Larger circles, more network parameters [Canziani et al. 2017]

Figure: Inception-v4 modules [Szegedy et al. ‘17]

Designing network architectures is hard, requiring lots of human efforts

- Can we automate this design process?
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Towards efficient Neural Architecture Search (NAS)

RL & Evolution for NAS by Google Brain [Quoc Le’s group, ‘16-’18]

New state-of-the-art results for CIFAR-10, ImageNet, Penn Treebank
Large computational demands

– 800 GPUs for 2 weeks; 12800 architectures evaluated

Code not public

Figure taken from FastAI
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Towards efficient Neural Architecture Search (NAS)

RL & Evolution for NAS by Google Brain [Quoc Le’s group, ‘16-’18]

New state-of-the-art results for CIFAR-10, ImageNet, Penn Treebank
Large computational demands

– 800 GPUs for 2 weeks; 12800 architectures evaluated

Code not public

Weight sharing/One-shot NAS [Pham et al,’18; Bender et al, ’18; Liu et al,

‘19; Xie et al. ’19; Cai et al. ’19, Zhang et al. ’19]

All possible architectures are subgraphs of a large supergraph (the one-shot
model)
Weights are shared between different architectures with common
edges/nodes in the supergraph

Search costs reduced to < 1 GPU day.
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Differentiable NAS (DARTS) [Liu et al. ‘19]

Neural Network as Directed Acyclic Graph

- Nodes: fixed operators (element-wise addition, concatenation) on
feature maps

- Edges: operations (sep conv 3×3, sep conv 5×5, dil conv 3×3,
dil conv 5×5, max pool 3×3, avg pool 3×3, identity and zero)

Between 2 nodes: Categorical choice for which operation to use

- Relax this discrete space to a continuous representation using a convex
combination of these choices (MixedOps) −→ one-shot model

- Use SGD to search in the space of architectures.
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Differentiable Architecture Search (DARTS) [Liu et al. ‘19]
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DARTS: Architecture Optimization

Optimizing both Ltrain and Lvalid corresponds to a bilevel optimization
problem:

min
α
{f(α) , Lvalid(w∗(α), α)}

s.t. w∗(α) = argmin
w

Ltrain(w,α),

where

- α −→ architectural weights
- w −→ operation weights

Approximate w∗(α) ≈ w − ξ∇wLtrain(w,α)

The optimization alternates between:

1 Update w by ∇wLtrain(w,α)
2 Update α by ∇αLvalid(w − ξ∇wLtrain(w,α), α)
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Works quite well on many benchmarks

Original CNN space: 8 operations on each MixedOp

28 MixedOPs in total

> 1023 possible architectures

< 3% on CIFAR-10 in less than 1 GPU day of search
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But not always...

S1: This search space uses a different set of two operators per edge, derived by
iteratively running DARTs and pruning unimportant operations.

S2: {3× 3 SepConv, SkipConnect}.
S3: {3× 3 SepConv, SkipConnect, Zero},
S4: {3× 3 SepConv, Noise}.
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Architecture overfitting

S5: Very small search space with known global optimum.

81 possible architectures trained 3 independent times using the default DARTS
settings.

Architectural parameters start overfitting to the validation set.
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Architecture overfitting

What would be a good feature that would detect overfitting without training and
evaluating the architectures from scratch (too expensive!)?

HINT: flatness/sharpness of minimas, e.g. in large vs. small batch size training of
NN is a good indicator of generalization.
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HINT: flatness/sharpness of minimas, e.g. in large vs. small batch size training of
NN is a good indicator of generalization.

2

2
Hessian-based Analysis of Large Batch Training and Robustness to Adversaries. Yao et al. NeurIPS ‘18
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Generalization of architectures and sharpness of minimas

Compute the full Hessian ∇2
αLval on a randomly sampled mini-batch from the

validation set.

The dominant EV starts increasing at the point where the architecture
generalization error starts increasing.

High correlation between generalization and the dominant eigenvalue (EV)
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Generalization of architectures and sharpness of minimas

Compute the full Hessian ∇2
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 Pearson corr. coef.: 0.867, p-value: 0.00000
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Early Stopping and Meta-regularization

Goal: Keep the dominant eigenvalue to a low value

Early stop whenever the EV increases rapidly
Regularize the inner problem
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Benchmark DARTS DARTS-ES

C10

S1 4.66± 0.71 3.05 ± 0.07
S2 4.42± 0.40 3.41 ± 0.14
S3 4.12± 0.85 3.71 ± 1.14
S4 6.95± 0.18 4.17 ± 0.21

C100

S1 29.93± 0.41 28.90 ± 0.81
S2 28.75± 0.92 24.68 ± 1.43
S3 29.01± 0.24 26.99 ± 1.79
S4 24.77 ± 1.51 23.90 ± 2.01

SVHN

S1 9.88± 5.50 2.80 ± 0.09
S2 3.69± 0.12 2.68 ± 0.18
S3 4.00± 1.01 2.78 ± 0.29
S4 2.90± 0.02 2.55 ± 0.15
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How the curvature relates with generalization?

Sharp minimas much more sensitive to variations in the input space.

DARTS discretizes (i.e. takes argmax over α) to get the final architecture.
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Eigenvalues vs. Accuracy Drop
 Spearman corr. coef.: 0.736

Evaluate the found architectures with the search model weights. Report the
accuracy drop relative to the search model performance.
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How the curvature relates with generalization?

Sharp minimas much more sensitive to variations in the input space.

DARTS discretizes (i.e. takes argmax over α) to get the final architecture.

Figure: Taken from SDARTS-RS [Chen & Hsieh, 2020]
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Benchmark Results

Empirical evaluation of practical robustified versions of DARTS. Each entry is the
test error after retraining the selected architecture as usual. The best method for
each setting is boldface and underlined, the second best boldface.

Benchmark RS-ws DARTS R-DARTS(DP) R-DARTS(L2) DARTS-ES DARTS-ADA

C10

S1 3.23 3.84 3.11 2.78 3.01 3.10
S2 3.66 4.85 3.48 3.31 3.26 3.35
S3 2.95 3.34 2.93 2.51 2.74 2.59
S4 8.07 7.20 3.58 3.56 3.71 4.84

C100

S1 23.30 29.46 25.93 24.25 28.37 24.03
S2 21.21 26.05 22.30 22.24 23.25 23.52
S3 23.75 28.90 22.36 23.99 23.73 23.37
S4 28.19 22.85 22.18 21.94 21.26 23.20

SVHN

S1 2.59 4.58 2.55 4.79 2.72 2.53
S2 2.72 3.53 2.52 2.51 2.60 2.54
S3 2.87 3.41 2.49 2.48 2.50 2.50
S4 3.46 3.05 2.61 2.50 2.51 2.46
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More results

Effect of regularization for disparity estimation.
Search was conducted on FlyingThings3D (FT)
and then evaluated on both FT and Sintel.

Aug. One-shot valid FT test Sintel test Params
Scale EPE EPE EPE (M)
0.0 4.49 3.83 5.69 9.65
0.1 3.53 3.75 5.97 9.65
0.5 3.28 3.37 5.22 9.43
1.0 4.61 3.12 5.47 12.46
1.5 5.23 2.60 4.15 12.57
2.0 7.45 2.33 3.76 12.25

L2 reg. One-shot valid FT test Sintel test Params
factor EPE EPE EPE (M)
3× 10−4 3.95 3.25 6.13 11.00
9× 10−4 5.97 2.30 4.12 13.92
27× 10−4 4.25 2.72 4.83 10.29
81× 10−4 4.61 2.34 3.85 12.16

DARTS vs. RobustDARTS on
the original DARTS search
spaces. We show mean ±
stddev for 5 repetitions.

Benchmark DARTS R-DARTS(L2)

C10 2.91 ± 0.25 2.95 ± 0.21
C100 20.58 ± 0.44 18.01 ± 0.26

SVHN 2.46 ± 0.09 2.17 ± 0.09

PTB 58.64 57.59
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Conclusions

1 We identify 12 NAS benchmarks in which standard DARTS yields
degenerate architectures with poor test performance.

2 We show that there is a strong correlation between the sharpness of
minimas and the architecture’s generalization error.

3 Based on these observations we propose regularizers in the
architectural level, such as:

- EV-based early stopping
- (Adaptive) regularization in the inner objective of DARTS
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