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The Choice of Architecture Matters

@ Performance improvements on various tasks mostly due to novel
architectural design choices
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Figure: Larger circles, more network parameters [Canziani et al. 2017]
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The Choice of Architecture Matters

@ Performance improvements on various tasks mostly due to novel
architectural design choices

e st
g Tl Goe
(2] ==
e cencat e o
. _ micaw By ey . sricon | | it gone
e i - i Ty il e
[t 71 Cam L o || 3G
) ) . o T com i e i e
a1 Cons e Com 303 conw 2 : o . = i
=) p ] &) 7 Cane
f | T " (= - 4Care
a1 Com 16 cer g Poog L . el -
) 11 Com a1 G \ [ L I
i Pk = & o . . 1 Care . o1 Game
. 2 § - ] £
Fier coneat e conct corca

Figure: Inception-v4 modules [Szegedy et al. ‘17]

@ Designing network architectures is hard, requiring lots of human efforts

- Can we automate this design process?
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Towards efficient Neural Architecture Search (NAS)

@ RL & Evolution for NAS by Google Brain [Quoc Le's group, ‘16-'18]
o New state-of-the-art results for CIFAR-10, ImageNet, Penn Treebank
o Large computational demands
— 800 GPUs for 2 weeks; 12800 architectures evaluated

@ Code not public
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Towards efficient Neural Architecture Search (NAS)

@ RL & Evolution for NAS by Google Brain [Quoc Le's group, ‘16-'18]
o New state-of-the-art results for CIFAR-10, ImageNet, Penn Treebank
o Large computational demands
— 800 GPUs for 2 weeks; 12800 architectures evaluated

@ Code not public

o Weight sharing/One-shot NAS [Pham et al,'18; Bender et al, '18; Liu et al,
‘19; Xie et al. '19; Cai et al. '19, Zhang et al. '19]
@ All possible architectures are subgraphs of a large supergraph (the one-shot
model)
@ Weights are shared between different architectures with common
edges/nodes in the supergraph
o Search costs reduced to < 1 GPU day.
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Differentiable NAS (DARTS) [Liu et al. ‘19]

@ Neural Network as Directed Acyclic Graph
- Nodes: fixed operators (element-wise addition, concatenation) on

feature maps
- Edges: operations (sep_conv_3x3, sep_conv_5x5, dil_conv_3x3,
dil_conv_5x5, max_pool_3x3, avg_pool_3x3, identity and zero)

@ Between 2 nodes: Categorical choice for which operation to use
- Relax this discrete space to a continuous representation using a convex
combination of these choices (MixedOps) — one-shot model
- Use SGD to search in the space of architectures.
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Differentiable Architecture Search (DARTS) [Livetal. ¢
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Differentiable Architecture Search (DARTS) [Liu et al. ‘19]

() (i) () oy (i)
°x]:Z<O’](x ) Zz<]20607a(i,j)o(aj )

oeo € ?

o 00" € argmax alf )

0
A
)
(d) Search start (e) Search end (f) Final cell 9
B
¢

Arber Zela RobustDARTS February 19, 2020

o



DARTS: Architecture Optimization

@ Optimizing both L4 and L,4;4 corresponds to a bilevel optimization

problem:

m;n{f(oz) £ Evalid(w*(a)v Oé)}

st. w*(a) = argmin Lipgim (w, @),
where

-« —> architectural weights
- w — operation weights
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DARTS: Architecture Optimization

@ Optimizing both L4 and L,4;4 corresponds to a bilevel optimization

problem:

m;n{f(oz) £ Evalid(w*(a)v Oé)}

st. w*(a) = argmin Lipgim (w, @),
where

-« —> architectural weights
- w — operation weights

@ Approximate w*(a) & w — EVy Lipain(w, )
@ The optimization alternates between:

@ Update w by V, Lirain(w, o)
9 Update « by Va»cvalid(w - ngﬁtrain (’LU, a)7 a)
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Works quite well on many benchmarks

Original CNN space: 8 operations on each MixedOp
28 MixedOPs in total

> 1023 possible architectures

< 3% on CIFAR-10 in less than 1 GPU day of search
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Figure 4: Normal cell learned on CIFAR-10. Figure 5: Reduction cell learned on CIFAR-10.
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But not always...

S1:

S2:
S3:
S4:

This search space uses a different set of two operators per edge, derived by
iteratively running DARTSs and pruning unimportant operations.

{3 x 3 SepConv, SkipConnect}.
{3 x 3 SepConv, SkipConnect, Zero},
{3 x 3 SepConv, Noise}.
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But not always...

S1: This search space uses a different set of two operators per edge, derived by
iteratively running DARTSs and pruning unimportant operations.

S2: {3 x 3 SepConv, SkipConnect}.

S3: {3 x 3 SepConv, SkipConnect, Zero},

S4: {3 x 3 SepConv, Noise}.
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Architecture overfitting

S5: Very small search space with known global optimum.

@ 81 possible architectures trained 3 independent times using the default DARTS
settings.
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Architecture overfitting

S5: Very small search space with known global optimum.

@ 81 possible architectures trained 3 independent times using the default DARTS
settings.

@ Architectural parameters start overfitting to the validation set.
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Architecture overfitting

@ What would be a good feature that would detect overfitting without training and
evaluating the architectures from scratch (too expensive!)?
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Architecture overfitting

@ What would be a good feature that would detect overfitting without training and
evaluating the architectures from scratch (too expensive!)?

@ HINT: flatness/sharpness of minimas, e.g. in large vs. small batch size training of
NN is a good indicator of generalization.
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Figure 1: Top 20 eigenvalues of the Hessian is shown for C1 on CIFAR-10 (left) and M1 on MNIST
(right) datasets. The spectrum is computed using power iteration with relative error of 1E-4.
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Generalization of architectures and sharpness of minimas

@ Compute the full Hessian V2 L,q; on a randomly sampled mini-batch from the
validation set.
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Generalization of architectures and sharpness of minimas

@ Compute the full Hessian V2 L,q; on a randomly sampled mini-batch from the
validation set.

@ The dominant EV starts increasing at the point where the architecture
generalization error starts increasing.
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Generalization of architectures and sharpness of minimas

@ Compute the full Hessian V2 L,q; on a randomly sampled mini-batch from the

validation set.

@ The dominant EV starts increasing at the point where the architecture
generalization error starts increasing.

@ High correlation between generalization and the dominant eigenvalue (EV)
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Early Stopping and Meta-regularization

@ Goal: Keep the dominant eigenvalue to a low value

o Early stop whenever the EV increases rapidly
e Regularize the inner problem
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How the curvature relates with generalization?

@ Sharp minimas much more sensitive to variations in the input space.
@ DARTS discretizes (i.e. takes argmax over o) to get the final architecture.

Lossyaiia

1
T

1

disc a* a disc a*

UNI
1

FREIBURG

Arber Zela RobustDARTS February 19, 2020 13



How the curvature relates with generalization?

@ Sharp minimas much more sensitive to variations in the input space.

@ DARTS discretizes (i.e. takes argmax over o) to get the final architecture.

Validation accuracy drop (%)

Eigenvalues vs. Accuracy Drop
Spearman corr. coef.: 0.736
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@ Evaluate the found architectures with the search model weights. Report the
accuracy drop relative to the search model performance.
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How the curvature relates with generalization?

@ Sharp minimas much more sensitive to variations in the input space.
@ DARTS discretizes (i.e. takes argmax over o) to get the final architecture.
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Figure: Taken from SDARTS-RS [Chen & Hsieh, 2020]
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Benchmark Results

Empirical evaluation of practical robustified versions of DARTS. Each entry is the
test error after retraining the selected architecture as usual. The best method for

each setting is boldface and underlined, the second best boldface.

| Benchmark | RS-ws | DARTS|[R-DARTS(DP) [ R-DARTS(L2) [ DARTS-ES [ DARTS-ADA |

S1[ 323 | 3.84 311 2.78 3.01 3.10
10 | 52 [ 3.66 | 485 3.48 3.31 3.26 335
S3 | 2.05 | 3.34 2.93 2.51 274 2.59
S4 | 8.07 | 7.20 3.58 3.56 371 484
S1 [23.30] 29.46 25.93 24.25 28.37 24.03
100 | 52 [21.21] 26.05 22.30 22.24 23.25 23.52
S3 | 23.75 | 28.90 22.36 23.99 23.73 23.37
S4 [28.10 | 22.85 22.18 21.94 21.26 23.20
S1 [ 259 | 458 2.55 4.79 272 2.53
ounn | 52| 272 | 353 2.52 2.51 2.60 2.54
S3 | 2.87 | 3.41 2.49 2.48 2.50 2.50
S4 | 3.46 | 3.05 2.61 2.50 251 2.46
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More results

Effect of regularization for disparity estimation.
Search was conducted on FlyingThings3D (FT)

and then evaluated on both FT and Sintel. DARTS vs. RobustDARTS on

Aug. One-shot valid FT test Sintel test Params the original DARTS search

Scale EPE EPE EPE (M) spaces. We show mean +

0.0 4.49 3.83 5.69 9.65 e

01 353 37 jopes 068 stddev for 5 repetitions.

05 3.28 3.37 5.22 943 Benchmark| DARTS |R-DARTS(L2)

1'2 g'gé S'éé Z"g gg? C10 291+ 0.25] 2.95 + 0.21
: : : : : C100  |20.58 + 0.44| 18.01 + 0.26

20 7.45 2.33 3.76 12.25 SVAN | 2.46 = 0.00 | 2.17 = 0.00

Lo reg. One-shot valid FT test Sintel test Params [ PiB_ | 5864 | 57.50 |

factor EPE EPE EPE (M)

3x 1077 3.95 3.25 6.13 11.00

9x1074 5.97 2.30 4.12 13.92

27 x 107* 4.25 2.72 4.83 10.29

81 x 1074 4.61 2.34 3.85 12.16
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Conclusions

@ We identify 12 NAS benchmarks in which standard DARTS yields
degenerate architectures with poor test performance.

@ We show that there is a strong correlation between the sharpness of
minimas and the architecture's generalization error.

© Based on these observations we propose regularizers in the
architectural level, such as:
- EV-based early stopping

- (Adaptive) regularization in the inner objective of DARTS
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