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Abstract
Reinforcement Learning is a powerful approach
to learning behaviour through interactions with
an environment. However, behaviours are learned
in a purely reactive fashion, where an appropriate
action is selected based on an observation. In this
form, it is challenging to learn when it is neces-
sary to make new decisions. This makes learning
inefficient especially in environments with with
very fine-grained time steps. Instead we propose
a more proactive setting in which not only an ac-
tion is chosen in a state but also for how long
to commit to that action. We demonstrate the
effectiveness of our proposed approach on a set
of small grid worlds, showing that our approach
is capable of learning successful policies much
faster than vanilla Q-learning.

1. Introduction
In reinforcement learning (RL), the goal is to learn policies
that optimize a reward signal through interactions with an
environment. In recent years RL has been shown to be a
powerful approach for learning successful policies in var-
ious domains, such as game playing (Mnih et al., 2015),
continuous control (Lillicrap et al., 2016) and multi agent
systems (Baker et al., 2020).

In the classical view on RL, policies are learned in a mostly
reactive fashion, i.e., observe a state and react to that state
with an action. Guided by the reward signal, policies that are
learned in such a way can decide which action is expected to
yield a desired outcome. However, these policies generally
do not learn when a new decision has to be made. This
potentially complicates the learning process as many state-
action-reward-sequences need to be observed in which the
same action has to be chosen always. This reactive way of
learning is particularly problematic in environments with
fine-grained discrete or continuous time.
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Temporal abstractions are a common way to simplify learn-
ing of policies with potentially many required actions. Typ-
ically, the temporal abstraction is learned on the highest
level of a hierarchy and the required behaviour on a lower
level (Schaul et al., 2015). E.g., on the highest level a goal
policy learns which states are necessarily visited and on the
lower level the behaviour to reach goals is learned. Spac-
ing goals very far apart still requires to learn very complex
behaviour policies whereas a narrow goal spacing requires
to learn complex goal policies. Another form of temporal
abstraction is to use actions that work at different time-
scales (Precup et al., 1998). E.g., an agent is tasked with
moving an object from one place to another. On the high-
est level the agent would follow a policy with abstract ac-
tions, such as pick-up object, move object, put-down object,
whereas on the lower level actions could directly control
some actuators to perform the abstract actions. Temporal
abstractions enable interaction with complex environments
by abstracting away complexities.

Such hierarchical approaches are still reactive, but instead
of reacting to an observation on only one level, reactions are
learned on multiple levels. Further, though these approaches
might allow us to learn which states are necessarily traversed
in the environment, they do not enable us to learn when a
new decision has to be made on the behaviour level.

In this work, we propose an alternative: a more proactive
view on learning policies that allows us to learn how long
an action should be played. We do this by reexamining the
relationship between agent and environment and the depen-
dency on time. This allows us to introduce skip connections
into the environment. We can show that these skip connec-
tions do not change the optimal policy or state-action-values
but allow us to propagate information much faster. We ex-
amine our method TEMPORL on a variety of finite MDPs.
Specifically, our contributions are as follows:

1. We propose a proactive alternative to classical RL.

2. We introduce skip-connections for MDPs by playing
an action for several consecutive states, which leads to
faster propagation of information about future rewards.

3. We propose a mechanism based on a flat hierarchy for
learning when to make decisions through the use of
skip-connections.
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2. Related Work
A common framework for temporal abstraction in RL is the
options framework (see e.g. Precup et al., 1998; Sutton et al.,
1999; Stolle & Precup, 2002; Bacon et al., 2017; Harb et al.,
2018; Harutyunyan et al., 2018; Mankowitz et al., 2018;
Khetarpal & Precup, 2019). Options are triples 〈I, π, β〉
where I is the set of admissible states that defines in which
states the option can be played; π is the policy the option
follows when it is played; and β is a random variable that
determines when an option is terminated. In contrast to our
proposed method, options require a lot of prior knowledge
about the environment to determine the set of admissible
states as well as the option policies themselves.

An important element in DQN’s success in tackling various
Atari games (Mnih et al., 2015) is due to the use of frame
skipping (Bellemare et al., 2013). Thereby the agent does
not have to act at every possible state but skips over a few
states, always playing the same action, before making a new
decision. Without the use of frame skipping, the change
between successive observations is virtually indistinguish-
able and would have required more observations to learn
the same policy. Tuning the skip-size can additionally im-
prove performance (Braylan et al., 2015; Khan et al., 2019).
However, a static skip-size might not be ideal. E.g., in Pong
there is little to no need to react to the ball moving away.

Different techniques have been proposed to handle contin-
uous time environments (Baird, 1994; Doya, 2000; Tiganj
et al., 2017). A well known technique is advantage learn-
ing (Baird, 1994) which allows identifying which actions
are more promising than others. Recently, Huang et al.
(2019) proposed to use Markov Jump Processes (MJPs) that
are closely connected to the idea of skip-MDPs which we
present here. MJPs are designed to study optimal control in
MDPs where observations have an associated cost. The goal
there is to balance the costs of observations and the environ-
ment to act in an optimal manner with respect to total cost.
Their analysis demonstrated that frequent observations are
necessary in regions where an optimal action might change
rapidly, while in areas of infrequent change, fewer obser-
vations are sufficient. In contrast to ours, this formalism
prohibits observations of intermediate transitions.

Lakshminarayanan et al. (2017) proposed a network with
multiple output heads per action to handle different repe-
tition lengths, drastically increasing the action space. In
contrast to that, Sharma et al. (2017) proposed a framework,
FiGAR, that jointly learns an action policy and a second
policy that decides how often to repeat an action. FiGAR
proved to be useful with different algorithms for different
tasks. However, its repetition policy is not conditioned on
the chosen action. The polices are learned together through
a joint loss. Thus, the repetition policy only learns which
repetition length works well on average for all actions.

3. TempoRL
We begin this section by introducing skip connections into
MDPs to propagate information about expected future re-
wards faster. We then introduce a novel learning mechanism
that makes use of a flat hierarchy to learn a policy that is
capable of not only learning which action to take, but also
for how long this action should be taken.

3.1. Temporal Abstraction through Skip MDPs

We contextualize an existing MDP M to allow for
skip connections as MJ := {Mj}j∈J with Mj :=

〈S,A,Pj ,Rj〉. The skip-connections j ∈ J act as con-
text to the MDP and induce different MDPs with shared
state and action spaces (S, A), but different transitions Pj
and reward functions Rj . All parts of the skip MDPs are
inherited from the original MDP, but the transition function
is adapted to allow for skip transitions. The introduction
of the skip transitions also requires the reward function to
handle the newly introduced transitions. Therefore, the skip
MDPs are all equal except in those states where skips intro-
duce new transitions from a state s to states that were not
reachable from s before.

Similarly to options, a skip is a triple 〈s, a, j〉, where s is
the starting state for a skip transition (and not a set of states
as in the options framework); a is the action that is executed
when skipping through the MDP; and j is the skip-length.
A skip connects two states s and s′ iff state s′ is reachable
from state s by repeating action a, (j+1)-times. This gives
us the following skip transition function:

Pj(s, a, s′) =
{ ∏j

k=0 Pasksk+1
if reachable

0 otherwise
(1)

with sk and sk+1 the states traversed by playing action a
for the kth time, and with s0 = s and sj+1 = s′. This
change in the transition function is reflected accordingly in
the reward function:

Rj(s, a, s′) =
{ ∑j

k=0 γ
kRasksk+1

if reachable
0 otherwise.

(2)

Note that for a skip of length 0 we recover the original tran-
sition function P0(s, a, s

′) = Pass′ as well as the original
reward functionR0(s, a, s

′) = Rass′ . Through this formula-
tion of skip MDPs, information about future rewards can be
propagated much more quickly and enables us to determine
when it becomes beneficial to switch actions. The goal with
skip-MDPs is to find an optimal skip policy, i.e., a policy
with the fewest decision points to reach the optimal reward.

3.2. Learning When to Make Decisions

In order to learn using skip connections we need a new
mechanism that selects which skip connection to use. In



Towards TempoRL

s0 s1 s2 s3

Figure 1. Example transitions with skip of length two (· · · ). At the
same time we can also observe shorter skips of length one (- - -).
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Figure 2. 6× 10 Grid Worlds. Agents have to reach a fixed goal
state from a fixed start state. Large/small dots represent decision
steps of vanilla and TEMPORL Q-learning policies.

order to facilitate this, we propose using a flat hierarchy
in which a behaviour policy determines the action a to be
played given the current state s, and a skip policy determines
how long to play this action for.

To learn the behaviour, we can make use of classi-
cal Q-learning, where the Q-function Qπ(st, a) :=
E
[∑∞

k=0 γ
krt+k|s = st, a

]
gives a mapping of expected

future rewards when playing action a in state st at time t
and continuing to follow the behaviour policy π thereafter.
To learn to skip, we first have to define a skip-action space
that determines all possible lengths of skip-connections,
e.g., aj ∈ 〈0, 1, . . . , J〉. To learn the value of a skip we can
simply make use of n-step Q-learning with the condition
that, at each step, the action stays the same: Qπj (st, j|a) :=
E
[∑j−1

k=0 γ
krt+k + γjQπ(st+j , a)|s = st, a, j

]
. We call

this a flat hierarchy since the behaviour and the skip policy
have to always make decisions at the same time.

One observation we can make about this learning scheme is
that, when playing skip action aj , we are able to observe all
smaller skip transitions for all intermediate steps. Figure 1
gives a visual representation. This allows us to learn about
all smaller skips when playing a larger skip action, making
training potentially much more efficient.

4. Experiments
In this section, we describe experiments for a tabular Q-
learning implementation1 that we evaluated on various grid-
worlds with sparse rewards (see Figure 2). We first evaluate
our approach on the cliff environment (see Figure 2a) before
evaluating the influence of the exploration schedule on both
vanilla Q-learning as well as TEMPORL.

1https://github.com/automl/TabularTempoRL

Gridworlds All considered environments (see Figure 2)
are discrete, deterministic, have sparse rewards and have size
6× 10. Falling off a cliff results in a negative reward (−1)
and reaching a goal state results in a positive reward (+1).
Both cliff and goal states terminate an episode. All other
states result in no reward. An agent can only execute the
actions up, down, left, right with diagonal moves not
possible. If the agent does not reach a goal/cliff in 100 steps,
an episode terminates without a reward.

For the cliff environment, a shortest path through the en-
vironment requires 16 steps. However, to reach the goal,
decisions about unique actions are only required at 3 time
points. The first is in the starting state and determines that
action up should be repeated 3-times, the next is repeating
action right 10-times thereafter and the final one is repeat-
ing action down 3-times. Thereby, an optimal proactive
policy that is capable of joint decision of action and skip
length requires ∼ 80% fewer decisions than an optimal
reactive policy that has to make decisions in each state.

For this experiment, we limit our TEMPORL agent to a
maximum skip length of 7; thus, a learned optimal policy
requires 4 decision points instead of 3.2 We compare the
learning speed, in terms of training policies, of our approach
to a vanilla Q-learning agent. Both methods are trained for
10 000 episodes using the same ε-greedy strategy, where ε
is linearly decayed from 1.0 to 0.0 over all episodes.

Figure 3a depicts the evaluation performance of both meth-
ods. We can observe that TEMPORL is 13.6× faster than
its vanilla counterpart to reach a reward of 0.5, and 12.4×
faster to reach a reward of 1.0 (i.e., always reach the goal).
Figure 3b shows the number of required steps in the envi-
ronment, as well as the number of decision steps. We can
observe that TEMPORL is capable of finding a successful
policy much faster than vanilla Q-learning while requiring
far fewer decision steps. Further, TEMPORL recovers the
optimal policy quicker than vanilla Q-learning. Lastly we
can observe that after having trained for ∼ 6 000 episodes
TEMPORL starts to increase the number of decision points.
This can be attributed to all skip values of an action having
converged to the same value. Our implementation selects
the skip action at random instead of always selecting the
largest skip as a tie-breaker, which would keep the number
of decisions as small as possible.

Table 1a summarizes the result on all environments in terms
of normalized area under the reward curve and in terms
of number of decisions when using a linearly decaying ε-
greedy schedule. In terms of reward AUC, a value closer to
1.0 indicates that the agent not only was capable of learning
to reach the goal but also that it was done quickly. For the
number of decisions, a lower value is better as it indicates

2For evaluations using larger skips we refer to the appendix.

https://github.com/automl/TabularTempoRL
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Figure 3. Evaluation performance of tabular Q-learning agents on a 6 × 10 cliff environment (similar to Figure 2a) over 100 random
seeds with a maximum of 100 steps per episode. The agents were trained with a linearly-decaying ε-greedy policy. t-Q is our proposed
agent. (a) Achieved reward. (b) Length of executed policy (· · · ) and number of decisions (—) made by the policies. An optimal policy
requires 15 steps to reach the goal but only 3 decision points. The lines/shaded area represent the mean/standard deviation over 100 seeds.

Cliff Bridge ZigZag

Q t-Q Q t-Q Q t-Q
Reward 0.92 0.99 0.75 0.97 0.57 0.92

Decisions 27.9 5.2 49.5 5.0 83.6 7.9

(a) linearly decaying ε-schedule

Reward 0.96 0.99 0.94 0.98 0.90 0.96

Decisions 21.7 4.9 21.4 5.3 35.6 6.9

(b) logarithmically decaying ε-schedule

Reward 0.99 0.99 0.98 0.99 0.95 0.99

Decisions 17.1 5.1 14.7 5.2 27.6 7.1

(c) constant ε = 0.1

Table 1. Normalized AUC for reward and average number of deci-
sion steps. Both agents are trained with the same ε schedule.

that fewer decisions were required to reach the goal, making
a policy easier to learn. We can see that the TEMPORL agent
readily outperforms the vanilla agent, always learning much
faster as well as requiring far fewer decisions.

Sensitivity to Exploration As the used exploration mech-
anism can have a dramatic impact on agent performance
we evaluated the agents for three commonly used ε-greedy
exploration schedules. In the cases of linearly and loga-
rithmically decaying schedules, we decay ε over all 10 000
training episodes, starting from 1.0 and decaying it to 0 /
10−5, respectively. In the constant case we used a constant
ε of 0.1.

As would be expected, we observe that too much exploration
(linear) and too little exploration (log) are both detrimental
to the agent’s performance, see Table 1. However, we can
also see that TEMPORL already performs quite well using
suboptimal exploration strategies. TEMPORL outperforms

its vanilla counterpart in all cases, showing the effectiveness
of our proposed method.

In the difficult ZigZag world, both agents experience the
largest improvement when switching from a linearly de-
caying schedule to a constant. Due to the difficulty of the
environment, a vanilla agent takes much longer than a TEM-
PORL agent in propagating reward information when reach-
ing the goal. When learning with a constant ε this leads
to 5.4× speedup over the vanilla variant to reach a mean
reward of 0.5 and a 5.8× speedup to reach a mean reward
of 1.0.

5. Conclusion
We introduced skip-connections into the existing MDP for-
mulation to propagate information about future rewards
much faster. Based on the concept of skip-MDPs, we pre-
sented a learning mechanism that makes use of existing and
well understood learning methods. We demonstrated that
our new method, TEMPORL is capable of learning not only
how to act in a state, but also when a new action has to be
applied, without the need for prior knowledge about the
environment. We empirically evaluated our method in a
tabular setting.

As pointed out by Huang et al. (2019), observations might
be costly. In such cases, we could make use of TEMPORL
to learn how to behave and when new actions need to be
taken; then, when using the learned policies, we could use
the learned skip behaviour to only observe after having
executed the longest skips possible.

All in all, we believe that TEMPORL opens up new avenues
for RL methods to be more sample efficient and to learn
complex behaviours. As future work, we plan to study
TEMPORL with neural network function approximators as
well as how to employ different exploration policies when
learning the skip policies and behaviour policies.
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Q t-Q
J 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R 0.57 0.63 0.76 0.87 0.93 0.93 0.92 0.91 0.90 0.91 0.88 0.87 0.86 0.87 0.85 0.84
D 83.6 36.5 20.6 13.2 10.1 8.3 7.7 7.8 7.5 7.4 7.6 7.4 7.6 7.6 7.8 7.4

(a) linear decaying ε-schedule

R 0.90 0.91 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95
D 35.6 21.7 14.9 11.6 9.5 8.6 6.4 6.3 6.5 5.9 6.1 6.2 7.0 6.8 7.0 6.0

(b) logarithmic decaying ε-schedule

R 0.95 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
D 27.6 15.8 12.0 9.1 8.2 7.8 6.8 6.9 6.7 7.1 6.6 7.2 6.2 6.5 7.0 6.9

(c) constant ε = 0.1

Table 2. Normalized AUC for reward and average number of decision steps for varying maximal skip-lengths J . All agents are trained
with the same ε schedule. R denotes normalized area under the reward curve and D the average number of decision steps. Values are
results of running 10 random seeds. Columns 1 and 7 are equivalent to columns 5 & 6 in Table 1.

A. Appendix
A.1. Influence of the Maximum Skip-Length

The maximum skip length J is a crucial hyperparameter of TEMPORL. A too large value might lead to many irrelevant
choices which the agent has to learn to ignore; whereas a too small value might not reduce the complexity of the environment
sufficiently enough, leading to barely an improvement over the vanilla counterpart. To evaluate the influence of the
hyperparameter on our method we trained various TEMPORL agents with varying maximal skip-lengths, starting from 2 up
to 16. Larger skips than 10 will never be beneficial for the agent as the agent is guaranteed to run into a wall for some steps.
Depending on where in the environment the agent is located, smaller skip-values might allow it to quickly traverse through
the environment.

Table 2 shows the influence of J on the ZigZag environment (see Figure 2c). In this environment, the largest skip value that
is possible without running into a wall is 6. Thus, small skip values up to 5 quickly improve the performance over the vanilla
counterpart, not only in terms of anytime performance but also in terms of required decisions. In the case of a suboptimal
exploration policy, in the form of linearly decaying ε-greedy schedule (see Table 2a), larger skip-values quickly lead to a
decrease in anytime performance, as the agent has to learn to never choose many non-improving skip actions.

For a more suiting exploration policy, too large skip-actions do not as quickly degrade the anytime performance of our
TEMPORL agents. In the case of a logarithmically decaying ε schedule (Table 2b), we can see that skip sizes larger or equal
than 12 start to negatively influence the anytime performance, whereas with a constant ε schedule only a skip-size of 16,
nearly 3 times as large as the largest sensible choice, has a negative effect.

It is worth noting that all evaluated skip-sizes J result in better anytime-performance and a lower number of required
decision points compared to vanilla Q-learning, for all considered exploration strategies. In future work, we will study how
to allow TEMPORL to select large skip-actions without needing to learn to distinguish between many irrelevant choices.
One possible way of doing this could be by putting the skip-size on a log scale. For example using log2 could result in only
10 actions where a TEMPORL agent could skip up to 1024 steps ahead but would still be able to exert fine control with the
smaller actions.

A.2. Generalization

So far we studied TEMPORL only in a tabular setting, and thus we can only conjecture about its generalization capabilities if
we combine TEMPORL with deep reinforcement learning. We guess that for fine-grained time environments TEMPORL will
be able to improve learning speed across environments that operate on a similar time-scale. For example in games like Super
Mario, multiple levels require an agent to reach the right side of the screen and skipping behaviour on one level is likely
transferable to another level. A TEMPORL agent might be able to learn to anticipate when it will collide with an enemy,
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leading to a negative reward, and thus only repeat the action go right until the jump action allows it to avoid the negative
reward. As situations like this are seldom unique to a single level, we expect that TEMPORL can also improve generalization
to environments that exhibit similar elements.


