
Smooth Variational Graph Embeddings for Efficient Neural Architecture Search

Jovita Lukasik,1 David Friede, 1 Arber Zela,2
Heiner Stuckenschmidt, 1 Frank Hutter, 2 Margret Keuper1

1 University of Mannheim
2 University of Freiburg

{jovita, david, heiner}@informatik.uni-mannheim.de, keuper@uni.mannheim.de
{zelaa, fh}@cs.uni-freiburg.de

Abstract
In this paper, we propose an approach to neural architecture
search (NAS) based on graph embeddings. NAS has been ad-
dressed previously using discrete, sampling based methods,
which are computationally expensive as well as differentiable
approaches, which come at lower costs but enforce stronger
constraints on the search space. The proposed approach lever-
ages advantages from both sides by building a smooth varia-
tional neural architecture embedding space in which we eval-
uate a structural subset of architectures at training time using
the predicted performance while it allows to extrapolate from
this subspace at inference time. We evaluate the proposed ap-
proach in the context of two common search spaces, the graph
structure defined by the ENAS approach and the NAS-Bench-
101 search space, and improve over the state of the art in both.

1 Introduction
Recent progress in computer vision and related domains is to
a large extent coupled to the advancement of novel neural ar-
chitectures (Krizhevsky, Sutskever, and Hinton 2012; Good-
fellow et al. 2014). In this context, the automated search of
neural architectures (Real et al. 2017; Zoph et al. 2018; Real
et al. 2019; Liu et al. 2019; Saikia et al. 2019) becomes in-
creasingly important, as it removes the fatiguing and time-
consuming process of manual trial-and-error neural archi-
tecture design.

Neural Architecture Search (NAS) is intrinsically a dis-
crete optimization problem and can be solved effectively us-
ing black-box methods such as random search (Bergstra and
Bengio 2012), reinforcement learning (Zoph and Le 2017;
Zoph et al. 2018), evolution (Real et al. 2017; Elsken, Met-
zen, and Hutter 2018; Real et al. 2019), Bayesian optimiza-
tion (Kandasamy et al. 2018b; White, Neiswanger, and Sa-
vani 2019; Ru et al. 2020) or local search (White, Nolen,
and Savani 2020). However, finding a good solution typi-
cally requires thousands of function evaluations, which is in-
feasible without company-scale compute infrastructure. Re-
cent research in NAS focuses more on efficient methods via
continuous relaxations of the discrete search space and the
weight-sharing paradigm (Bender et al. 2018; Pham et al.
2018; Liu, Simonyan, and Yang 2018; Cai, Zhu, and Han
2019; Xie et al. 2019), but these approaches have their own
issues leading to sub-optimal solutions in many cases (Zela

Preprint. Under review.

et al. 2020). This leads to the desire of an accurate space
encoding that enables performance prediction via surrogates
and black-box optimization to find high-performing archi-
tectures in a continuous search space.

To this end, inspired by the work of Zhang et al. (2019)
we propose a smooth variational graph embedding of neu-
ral architectures, which can effectively learn to project the
directed acyclic graph (DAG) structure of the architectures
into a continuous latent space. Our proposed approach ex-
tends the method by Li et al. (2018) to build Smooth Varia-
tional Graph embeddings (SVGes) via a variational autoen-
coder (Kingma and Welling 2013) that utilizes graph neu-
ral networks (GNNs) (Gori, Monfardini, and Scarselli 2005;
Kipf and Welling 2016a; Wu et al. 2019) on both its encoder
and decoder level. GNNs are a natural choice when it comes
to learning on graph-structured data due to their ability to
extract local node features and create informative represen-
tations of graphs. We show both theoretically and empiri-
cally that our proposed SVGe can injectively encode graphs
into a continuous latent space and uniquely decodes them
back to a discrete representation. This property is essential
when encoding neural architectures as graphs since the same
topology can be represented by different isomorphic graphs.
For robust performance prediction, these should be mapped
onto the same latent representation. We show that the ex-
trapolation properties of our generative model, i.e. the abil-
ity to accurately represent architectures (graphs) with more
nodes than the ones seen during training, can be exploited to
find novel, larger architectures with good performance. Fi-
nally, by incorporating a triplet loss into the objective, our
method is able to capture structural similarities in the neural
network architectures and project structurally similar ones
close to each other in the variational latent space, facilitat-
ing Bayesian optimization.

After discussing related work in Section 2, we make the
following contributions:

• We introduce a novel graph variational autoencoder
method that builds Smooth Variational Graph embeddings
(SVGes) by learning accurate representations of neural ar-
chitectures in an unsupervised way (Sections 3.1 and 3.2).

• We propose to capture structural relations in graphs and
map similar graphs close to one another in the latent space
using a triplet loss. We theoretically prove that isomor-

ar
X

iv
:2

01
0.

04
68

3v
1 

 [
cs

.L
G

] 
 9

 O
ct

 2
02

0



phic graphs are mapped to the same representation and
are uniquely decoded. (Section 3.4)

• We conduct extensive experimental evaluations on the
ENAS (Pham et al. 2018) and NAS-Bench-101 (Ying
et al. 2019) search spaces and show that optimizing with
Bayesian optimization on the latent space achieves on the
latter search space a best accuracy of 95.13% outperform-
ing recent methods. (Section 4)

2 Related Work
Graph Generative Models. In recent years the urge
for representation learning with Graph Neural Networks
(GNNs) of graph-based data increased (Li et al. 2016; Kipf
and Welling 2016a; Niepert, Ahmed, and Kutzkov 2016;
Hamilton, Ying, and Leskovec 2017). GNNs follow an it-
erative so called message passing scheme, where node fea-
ture vectors aggregate information from their neighbours to
update their feature vector (Gilmer et al. 2017), capturing
the structural information of neighbours. To obtain a graph-
level representation these updated feature vectors are pooled
(Ying et al. 2018). GNNs differ in their neighbourhood node
information as well as in their graph-level aggregation pro-
cedure (Scarselli et al. 2009; Bruna et al. 2013; Henaff,
Bruna, and LeCun 2015; Hamilton, Ying, and Leskovec
2017; Kipf and Welling 2016a; Li et al. 2016; Velickovic
et al. 2018; Xu et al. 2017, 2018; Verma and Zhang 2018;
Ying et al. 2018; Zhang et al. 2018; Xu et al. 2019).

Existing graph generating models can roughly be classi-
fied in global approaches and sequential approaches. Global
approaches output the full graph at once usually by relaxing
the adjacency matrix (Kipf and Welling 2016b; Simonovsky
and Komodakis 2018). The sequential approach is an iter-
ative process of adding nodes and edges alternately. Luo
et al. (2018) used RNNs to generate neural architectures in
this sequential manner. The model in You et al. (2018) in-
troduced a second edge-level RNN capturing the edge de-
pendencies. Zhang et al. (2019) employed an asynchronous
message passing scheme instead of RNNs to decode the
computations of neural architectures. In contrast, the model
in Li et al. (2018) uses the synchronous message passing
scheme as known from GNNs for sequential graph genera-
tion and expresses superiority over RNNs during the graph
generating process. Our model is an extension of the condi-
tional version of Li et al. (2018). The model by Zhang et al.
(2019) is also related to our work; unlike our model, it acts
on a fixed number of nodes and builds a model on an asyn-
chronous message passing scheme that encodes computa-
tions instead of graph structures.
Performance Predictors for Neural Networks. Predict-
ing the performance of neural networks based on features
such as the network architecture, training hyperparame-
ters or learning curves has been exploited previously via
MCMC methods (Domhan, Springenberg, and Hutter 2015),
Bayesian neural networks (Klein et al. 2017) or simple re-
gression models (Baker et al. 2017). Other works such as
White, Neiswanger, and Savani (2019) and Long, Zhang,
and Zhang (2019) manually construct features to regress
simple neural networks or support vector regressors.

More recent work utilizes the GNN encodings by adapt-
ing message passing to simulate operations in either edges
or nodes in the graph (Ning et al. 2020) or using a semi-
supervised approach by training GNNs on relation graphs in
the latent space (Tang et al. 2020).
Neural Architecture Search via Bayesian Optimization.
The NAS problem can informally be defined as finding an
optimal architecture configuration such that it minimizes
some validation objective, while that configuration is trained
on the training set. Conventional Bayesian optimization
(BO) methods cannot be directly used in the popular cell-
structured NAS space as it is intrinsically non-continuous
and high-dimensional. Kandasamy et al. (2018a) propose
to use a distance metric, which they find using an optimal
transport program, in order to enable Gaussian process (GP)-
based BO. White, Neiswanger, and Savani (2019) focus
more on encoding the architecture with a high-dimensional
path-based encoding scheme and ensembles of neural net-
works as surrogate models. Recently, Ru et al. (2020) pro-
pose to use a graph kernel with a GP surrogate to naturally
handle the graph-like architectures and capture their topo-
logical structure. Another line of work utilizes the represen-
tations learnt by a GNN in order to fit a Bayesian linear re-
gressor and use that as a surrogate in BO (Shi et al. 2019;
Zhang et al. 2019).

Note that we do not introduce any novel BO algorithm,
but rather focus on the GNN generative model that learns a
smoother latent representation. We use the same strategy as
in Zhang et al. (2019) to run BO on this latent space.

3 Structural Graph Autoencoding
Our objective is to learn a continuous latent representation
of the topology of neural network architectures, which we
cast as directed acyclic graphs (DAGs) with nodes repre-
senting operations (like convolution or pooling) and edges
representing information flow in the network. This enables
to (1) map isomorphic graphs (identical neural architectures)
onto the same latent point, (2) accurately predict the accu-
racy of an unseen graph from few training samples and (3)
draw new samples which are structurally similar to previ-
ously seen ones.

Our end-to-end model is a variational autoencoder
(VAE) (Kingma and Welling 2013). Firstly, the encoder
qφ(z|G) in the VAE maps the input data G (which consists
of a finite number of i.i.d. samples from an unknown distri-
bution) onto a continuous latent variable z via a parametric
function qφ. Then a probabilistic generative model pθ(G|z)
(the decoder) decodes the latent variables z back to the orig-
inal representation. The parameters φ and θ of the encoder
and decoder, respectively, are optimized by maximizing the
evidence lower bound (ELBO):

L(θ, φ;G) = Eqφ(z|G)

[
log pθ(G|z)

]
− DKL(qφ(z|G)‖p(z)),

(1)

After the VAE model is trained, new data can be generated
by decoding latent space variables z sampled from the prior
distribution p(z).



Below we introduce our encoder (Section 3.1) and de-
coder (Section 3.2) models for which we employ a graph
neural network (GNN). Xu et al. (2019) show that if the
GNN function is injective, it maps isomorphic graphs to
the same latent point and non-isomorphic graphs to distinct
ones. Therefore we select such models for our task. Their
expressive capabilities enable to map nodes and graph rela-
tions to low-dimensional spaces such as to facilitate neural
architecture performance prediction and black-box models
such as Bayesian Optimization.

3.1 Encoder
In this section we present our Smooth Variational Graph Em-
bedding (SVGe) encoder which maps from a discrete graph
space onto a continuous vector space. As mentioned above,
we pick a GNN model (more specifically, the one from Li
et al. (2018)) to learn such mapping. Let G = (V,E) be a
graph, where V is the set of vertices with v ∈ V and E the
set of edges with e ∈ E. Each node v has an initial node fea-
ture embedding hv . Let V in(v) = {u ∈ V | (u, v) ∈ E} be
the set of nodes adjacent to v ∈ V . Standard GNNs can be
seen as a two-step procedure. In the first step the GNN learns
a representation for each node v ∈ V , by iteratively ag-
gregating the representations of the neighbouring nodes and
then updating its representation. After K rounds of these it-
erations, the final representation of each node v is computed.
Formally, the first module in the GNN for node aggregation
at iteration k is given by

a(k)
v = A

({
h(k−1)
u : u ∈ V(v)

})
(2)

h(k)
v = U

(
h(k−1)
v ,a(k)

v

)
, (3)

where h
(k)
v is a feature vector representation of node v at

iteration k, A is the node aggregation function and U is the
update function. The second step is the graph-level read-out,
where the node representations of the final iteration h

(K)
v

are aggregated with the graph-level aggregation function Ã
to obtain the global graph representation hG:

hG = Ã
({

h(K)
v

∣∣ v ∈ V }). (4)

In our model the aggregation function A is given by
the sum of node message passing modules mu→v =
fn(hu,hv) = MLP(concat(hu,hv). This message pass-
ing module computes a message vector from node u to
node v. To capture the overall structure of the graphs, we
also consider the reverse message passing module mv→u =

f̂n(hv,hu) = M̂LP(concat(hu,hv), which leads to a bidi-
rectional message passing, yielding the global aggregation

a(k)v =
∑
u∈Vin

fn(hu,hv) +
∑

u∈Vout

f̂n(hv,hu), (5)

where Vout(v) = {u ∈ V | (v, u) ∈ E}. Furthermore,
we use a learnable look-up table Le on the node types for
our initial node embeddings hv . As for the update function
U , we utilize a single gated recurrent unit (GRU) (Chung
et al. 2014). For the graph-level aggregation after the final

round of message passing, we aggregate the node embed-
dings (h

(K)
v )v∈V into a single graph representation using a

gated sum:

hG =
∑
v∈V

g(h(K)
v )� fg(h(K)

v ), (6)

where g = σ(MLP(·)), is a gating network and fg a multi-
layer perceptron (MLP), � being the Hadamard product.
Note that, since we use this encoder in a variational autoen-
coder setting, we add an extra graph aggregation layer equal
to (6) to obtain hvar

G . Thus, the outputs of our encoder are the
parameters of the approximate posterior distribution func-
tion qφ = N (hG,Σ), with hG being the mean and hvar

G the
diagonal of the variance-covariance matrix Σ of the mul-
tivariate normal distribution. See Section 3.4 for a detailed
discussion on the properties of the encoder w.r.t. injectivity
and isomorphic graphs.

3.2 Decoder
The decoder pθ(G|z) takes a sampled point z, which encodes
in a low-dimensional continuous representation the original
graph G, from the latent space qφ(z|G) as input and gener-
ates a graph iteratively as a sequence of operations that add
new nodes and edges until the end/output node is generated.

Graph Generation. Our decoder consists of multiple
modules to define a distribution over the outputs in each it-
eration in the generation process. In each iteration t at least
one of the following inputs is used:

z a sampled point from qφ(z|G),
Ld a look-up table based on the node types,
ht the embedding of the created node vt ∈ Ṽ ,
G̃(t),hG̃(t) the partial graph and its embedding.

Note that the learnable embedding look-up table Ld is in-
dependent of the one in Section 3.1. We begin the iteration
with the initial input node, which is initialized according to
the sampled point z and the look-up table Ld yielding in an
initial node embedding h0. Afterwards, we can represent the
full graph generating process by iterating over the following
modules. Note that the modules’ weights are shared across
different iterations.
Prop. Firstly, this module aggregates and updates the ini-
tial node embeddings hṼ for all nodes vt ∈ Ṽ in the partial
graph G̃(t) = (Ṽ , Ẽ) based on the look-up table Ld. Then,
the updated node embeddings are read-out and aggregated
into a single graph representation hG̃(t) :

(hG̃(t) ,hṼ (t)) = fprop(hṼ , G̃
(t)). (7)

This module is exactly the encoder introduced in Section
3.1, (5) - (6), initialized with its own weights. This idea of
using two distinct GNNs on the encoder and decoder level
is motivated by NLP methods, which use ordinary RNNs
(Bowman et al. 2016; Sutskever, Vinyals, and Le 2014).
AddNode. In this module a new node is created and its
node type (i.e. operation in the network architecture case)
is selected. The input for this module is the updated graph



representation of the already created partial graph hG̃(t) , cre-
ated by the prop module, and the sampled point z, which is a
summary of the input graph given to the encoder. The inten-
tion behind using both these inputs is based on the idea of
comparing the partial graph with the true graph in order to
find the missing pieces and thus recreating the desired graph.
This yields the following module:

NodeType ∼ Categorical(s
(t+1)
addNode), (8)

where
s
(t+1)
addNode = faddNode(z,hG̃(t)) (9)

The addNode module first produces parameters for the node
type distribution. Secondly, we sample from this categorical
distribution over all possible node types yielding a one-hot
encoding of a specific node type. Since we aim to generate
graphs representing neural architectures, the iteration stops
after running through the step that adds the output node in
the DAG.
InitNode. When a new node is added with the addNode
module, we need to initialize its node embedding:

ht+1 = finitNode(z,hG̃(t) ,Ld[type]), (10)

where the input is the sampled point z, the partial graph em-
bedding hG̃(t) and the node embedding based on the look-
up table Ld[type]. Furthermore this new node embedding is
then added to the already existing propagated node embed-
ding, hṼ = concat((hj)0≤j≤t,ht+1).
AddEdges. This module selects the edges towards the
newly created node. For this purpose we calculate scores
for an edge between the new node vt+1 and each previous
node. A high score stands for a high probability. This mod-
ule takes all partial graph node embeddings as input, as well
as the partial graph embedding hG̃(t) and the sampled point
z, leading to

e(i,t+1) ∼ Bernoulli(s
(i,t+1)
addEdges), (11)

where

s
(i,t+1)
addEdges = faddEdges(ht+1,hṼ \vt+1

,hG̃(t) , z). (12)

The calculated score s(i,t+1)
addEdges for each possible edge is then

passed into a Bernoulli distribution over the possible edges.
Sampling from this distribution yields the new set of edges.
Since we want to generate DAGs, we interpret each edge as
directed towards the new node. Unless stated otherwise, in
all our experiments we set faddNode, finitNode and faddEdges

as two-layer MLPs with ReLU non-linearities.
See Algorithm 1 for an overview of our DAG decoder.

3.3 Loss Function and Training
As shown in equation 1, VAE maximizes the evidence
lower bound (ELBO), where the first term is the reconstruc-
tion loss which enforces high similarity between the input
graph and the generated graph, while the second term is
the Kullback–Leibler divergence which regularizes the la-
tent space. In the following, we will discuss the reconstruc-
tion loss of SVGe. We train the encoder and the decoder

Algorithm 1: Graph Generation
Input: embedding z of graph G = (V,E), Ld

look-up table for node types
Output: reconstructed graph G̃ = (Ṽ , Ẽ)

1 initialize v0 ← InputNode with type (v0)←
InputType and its embedding Ld[InputType]

2 h0 ← finitNode(z,Ld[InputType]); . Eq. (10)
3 Ṽ ← {v0}, Ẽ ← ∅
4 hG̃ ← z̃ ∼ qφ(z̃|G̃), h = [h0]
5 vt ← v0,ht ← h0

6 while type(vt) 6= EndingType do
7 Ṽ ← Ṽ ∪ {vt+1} ; . add node
8 saddNode ← faddNode(z,hG̃) ; . Eq. (9)
9 type(vt+1) ∼ Categorical(saddNode) ; . get

type (8)
10 ht+1 ← finitNode(z,hG̃,Ld[type(vt+1)]) ;

. Eq. (10)
11 for vj ∈ Ṽ \ vt+1 do
12 saddEdges(j, t+ 1)←

faddEdges(ht+1,h,hG̃, z) ; . Eq. (12)
13 e(j,t+1) ∼ Ber(saddEdges(j, t+ 1)) ;

. sample whether to add edge,
Eq. (11)

14 if e(j,t+1) = 1 then
15 Ẽ ← Ẽ ∪ {e(j,t+1) = (vj , vt+1)} ;

. add edge
16 end
17 end
18 h← concat(h,ht+1)

19 (h,hG̃)← fprop(h, G̃) ; . update node
embeddings and reconstructed
graph embedding, Eq. (7)

20 t← t+ 1
21 end

of SVGe jointly in an unsupervised manner. Given a fixed
node ordering of the DAG, which we discuss in Section 3.4,
we know the ground truth of the outputs of AddNode (equa-
tion 8) and AddEdges (equation 11) during training. On the
one hand, we can use this ground truth to compute a node-
level loss LtV and an edge-level loss LtE at each iteration t.
On the other hand, we can replace the model output by the
ground truth such that possible errors will not accumulate
throughout iterations. This is also known as teacher forc-
ing (Williams and Zipser 1989).

To compute the overall reconstruction loss for a graph G,
we sum up node losses and edge losses over all iterations:

Lrec = LV + LE . (13)

Following Kingma and Welling (2013), we assume
pθ(z) ∼ N (z; 0,1) and pθ(G|z) ∼ N (hG,Σ). Further-
more, we approximate the posterior by a multivariate Gaus-
sian distribution with diagonal covariance structure. This
can be written as log qφ(z|G) = logN (z; hG,Σ) and en-



sures a closed form of the KL divergence

DKL = −1

2

J∑
j=1

(
1 + log(hvar

G )j − (hG)2j − (hvar
G )j

)
. (14)

Thus, the overall loss function is

L = LV + LE + αDKL, (15)

where the KL divergence is additionally regularized. Fol-
lowing Jin, Barzilay, and Jaakkola (2018) and Zhang et al.
(2019), we set α = 0.005.

Triplet Loss. While the proposed variational graph au-
toencoder is encouraged to create an efficient latent space
representation in which similar graphs are close to one an-
other, there is no guarantee nor explicit loss forcing it to ac-
tually do so. Specifically, depending on the size of the latent
embedding, the encoder might choose to create efficient sub-
space representations for some sub-graphs and map graphs
at random in other latent dimensions. Therefore, we propose
to employ a triplet loss formulated on the graph structure
with the aim to ensure that structurally similar graphs are
closer to one another than structurally dissimilar graphs in
their latent representation.

We measure the distance between two graphs as the edit
distance dκ, which is the smallest number of changes that
are required to transform one graph into another; one change
consists in either turning an operation, i.e. the node’s label,
or adding and removing an edge, respectively. We include
graph triplets Gt in the input to our graph autoencoder. Each
triplet Gt consists of an anchor graph Gi, which is also
used for the generative model as input graph, a ”positive”
graph Gj , for which dκ(Gi, Gj) < ε holds, and a ”nega-
tive” graph Gk with the property dκ(Gi, Gk) > δ, which
we map onto a latent space via the posterior qφ(z|G). Our
aim is to adapt the latent space, which is done by introduc-
ing a triplet loss of the embeddings of the triplet graphs. For
each graph Gi, Gj , Gk we sample its latent variables from
the corresponding posterior ti,j,k ∼ qφ(t|Gi,j,k) in order to
calculate the triplet loss

LTLφ(t|Gi, Gj , Gk) =
(
‖ti − tj)‖2 − ‖ti − tk‖2 + α

)
+

(16)
with ‖ · ‖ being the Euclidean distance and (x)+ :=
max(x, 0). For our proposed SVGe triplet model the overall
loss is then given by a convex combination:

L(θ, φ;Gi, Gj , Gk) = λ
(
Eqφ(z|Gi)

[
log pθ(Gi|z)

]
− DKL(qφ(z|Gi)‖p(z))

)
(17)

+ (1− λ)
(
LTLφ(t|Gi, GjGk)

)
The λ balances the influence of the actual VAE loss and the
triplet loss in the overall model loss. Karaletsos, Belongie,
and Rätsch (2016) use a similar approach, with the differ-
ence that they include triplets from an oracle into the VAE
framework in order to find a mapping which captures depen-
dencies between these triplets and some observations. Our
goal is an adaptation of the embedding space which captures
the structural closeness and dependencies of the graphs G.

3.4 Discussion
To study the graph representation and generation power of
our SVGe, we first analyse the ability of our encoder to map
two non-isomorphic graphs to different embedding space
points as well as mapping isomorphic graphs to the same
one. Then we discuss the ability of our decoder to decode
isomorphic graphs and non-isomorphic graphs uniquely.

Unique embeddings of neural architectures into a low-
dimensional space are in particular relevant for any per-
formance prediction model utilizing the latent represen-
tation. These performance prediction models can eventu-
ally be used as surrogate models in black-box optimiza-
tion (White, Neiswanger, and Savani 2019; Zhang et al.
2019; Shi et al. 2019; Siems et al. 2020). If two non-
isomorphic graphs with very different performances were
mapped to the same representation in the latent space, the
loss at this ground truth performance would not be well de-
fined hindering the model training process. Conversely, if
two isomorphic graphs which have by definition the same
performance, are mapped to two different embeddings in the
latent space, a performance prediction model would inter-
pret these equal graphs as different ones. This prevents the
efficient embedding of structural similarity.

Unique Latent Space Representation. Following the
above discussion, we discuss the suitability of the pro-
posed GNN encoder w.r.t. mapping any two different (non-
isomorphic) graphs to different encodings in the latent space
and to learn to map isomorphic graphs to the same encoding.

Theorem 3 in Xu et al. (2019) states that if the GNN’s
node aggregation moduleA and its update module U are in-
jective, and the graph-level readout aggregation is injective
on the multiset h

(k)
v , the GNN maps any two non-isomorphic

graphs to different embeddings. With our choice of aggrega-
tion modules for the node level features and for the graph-
level read-out and of the update module, we fulfil the crite-
ria in Theorem 3. This property enables robust performance
prediction out of the embedding space, which can be crucial
for many NAS algorithms (Liu, Simonyan, and Yang 2018;
White, Neiswanger, and Savani 2019; Zhang et al. 2019).

Decoding from the Latent Space. We now discuss how
the decoder handles isomorphic DAGs in a suitable way.
Proposition 1. Let G1, G2 be two isomorphic graphs rep-
resenting neural networks. Let furthermore the encoder be
able to injectively encode isomorphic graphs to the same la-
tent point.

Given the input node v0 in the DAG and a sampled point
in the latent space z, the SVGe decoder decodes isomorphic
graphs to the same output.

One obvious question arises: what does the decoder do
at training time, when it has to learn to decode two isomor-
phic graphs, having the same multivariate Normal distribu-
tion as an input? Learning to decode graph G1 instead of
any isomorphic graph G2 leads to a loss at training time. To
keep this loss as small as possible, the decoder needs a cer-
tain node ordering in the training signal. Since the decoder
decodes the graphs in a sequential manner the order is re-
stricted to be an upper triangular adjacency matrix.



Proposition 2. Every isomorphy class Sn of graphs con-
tains at least of one graph whose adjacency matrix is in up-
per triangular form.

The proofs of both propositions can be found in the ap-
pendix C. It follows from proposition 2, that the set of iso-
morphic upper triangular matrices is a subset of the isomor-
phy class Sn itself. Eventually, we only need to consider
that subset. Here is it worth discussing if we can bound this
subset. To remove as many possible isomorphic graphs from
the training set as possible, we bring the graphs in a unified
form by transforming them into an upper triangular matrix
such that they can be built in a sequential manner. Specif-
ically, nodes in the adjacency matrix are ordered such that
every node is connected to at least one preceding node. The
number of such graphs, including isomorphic graphs, can be
upper bounded to

∑n
k=1 2k−1 − 1. The remaining isomor-

phic graphs are removed from the training set by the method
used in Ying et al. (2019).

As described in Section 3.2 the SVGe decoder generates
node vi and connects it to previous nodes vj , j < i with an
edge (j, i). Thus, the decoder builds such an upper triangular
adjacency matrix, which is filled column-wise.

4 Experiments
We pick 2 different search spaces from the NAS literature
and run our SVGe model to learn a latent representation of
the architectures sampled from those spaces.

NAS-Bench-101. NAS-Bench-101 (Ying et al. 2019) is
a tabular benchmark that consists of cell-structured search
space containing 423k unique architectures evaluated for
4, 12, 36 and 108 epochs on the CIFAR-10 classification
task. The cell structure is limited to a number of nodes
|V | ≤ 7 (including the input and output node) and edges
|E| ≤ 9. The nodes represent an operation from the opera-
tion set O = {1 × 1 convolution, 3 × 3 convolution, 3 ×
3 max pooling}. In our experiments, we use 90% of the
423k (architecture, accuracy) pairs as training examples
and 10% as validation ones.

ENAS search space. The ENAS (Pham et al. 2018) search
space consists of architectures represented by a DAG with
|V | = 8 nodes (including the input and output node) and 6
operation choices on each of the non-input and non-output
nodes. The total number of sampled architectures we utilize
from this space 19, 020 (as in Zhang et al. (2019)). Differ-
ently from the NAS-Bench-101 benchmark, which contains
the true performance of the fully trained architectures, here
we utilize the weights of the optimized one-shot model as
a proxy for the validation/test performance of the sampled
architectures. Again, we split the (architecture, accuracy)
pairs into 90% training and 10% testing examples.

More details on both search spaces are given in the ap-
pendix A. We conduct experiments on three complementary
tasks and in the appendix D we provide a further analysis
of other basic abilities of the SVGe and SVGe triplet mod-
els. In all our experiments, we set hv ∈ R250 for the node
dimension and hG ∈ R56 for the latent space dimension.
Training details are given in appendix B. All the algorithms

and routines are implemented using PyTorch (Paszke et al.
2017) and PyTorch Geometric (Fey and Lenssen 2019).

4.1 Performance Prediction from Latent Space
In the following, we evaluate the smooth embedding space
generated by our SVGe and SVGe triplet model to accu-
rately predict performances of NAS-Bench-101 architec-
tures, which allows direct comparison to the contemporary
work Tang et al. (2020). Concretely, we train the SVGe on
all 423k datapoints for reconstruction to obtain the latent
space. The triplets are generated by setting ε = 3 and δ = 4
and we sample in total 38k (10%) triplets out of the training
set to train the SVGe triplet model for graph reconstruction.
Then, we fine-tune the unsupervisedly trained model for per-
formance prediction using a regressor, which is a four-layer
MLP with ReLU non-linearities. Both the SVGe model and
the regressor are trained jointly for performance prediction
on 1k randomly sampled architectures and their test accura-
cies queried from NAS-Bench-101.

Firstly, we compare the ability to predict performances
accurately on the validation set. In table 1 (left) we show the
mean MSE, which denotes the empirical squared loss be-
tween the predicted and ground truth data, and relative stan-
dard deviation of 3 runs. Our proposed SVGe triplet has a
slightly better mean MSE compared to the method in Tang
et al. (2020), which focuses precisely on this subproblem,
when a small amount of annotated data is given. This is im-
portant in particular for NAS, since every training sample
corresponds to a fully evaluated architecture and is thus ex-
pensive to evaluate.

Next, we analyse the ability of the proposed SVGe to
find high-performing neural architectures in the validation
set. For that we train the SVGe model jointly with the re-
gressor using 3k random samples of labelled data. The true
best neural architecture in this validation set achieves a test
accuracy of 94.22%, which is comparable to the values in
Tang et al. (2020), whose true best neural architecture has
a test accuracy of 94.23%. Table 1 (right) shows the result
of the best found architecture and their ranking within our
validation set. The best network found by SVGe has a true
test accuracy of 94.10%, which is within the best 0.01% ar-
chitectures, outperforming the proposed method from Tang
et al. (2020). As soon as we have enough labelled data for
the performance prediction task, the triplet loss does not fur-
ther improve the interpolation ability.

4.2 Extrapolation Ability
To validate the search of neural architectures with high per-
formance out of the embedding space, we exploit in this sec-
tion the ability of our generative model to extrapolate from
the labelled dataset, i.e. the ability to predict neural architec-
tures with high performance on the CIFAR-10 classification
task with more nodes and edges than seen at training time in
both NAS-Bench-101 and ENAS search spaces.

We start with the extrapolation task on the NAS-Bench-
101 search space, where we generate graphs (cells) contain-
ing 8 and 9 nodes. Note that our SVGe model has never
seen during training these types of architectures since NAS-
Bench-101 contains only architectures with cells up to 7



Surrogate-Model Performance Prediction Test Accuracies (in %)
1, 000 10, 000 100, 000 Top-1 Acc. Ranking

Semi-Superv. Ass.(Tang et al. 2020) 0.0031 0.0026 0.0016 94.01 0.03
SVGe 0.0037± 0.007 0.0025± 0.006 0.0021± 0.1079 94.10 0.01
SVGe Triplet 0.003± 0.078 0.0023± 0.009 0.0021± 0.0100 94.10 0.01

Table 1: Comparison of predictive performance of surrogate models in terms of MSE and the relative standard deviation on the
test accuracies of NAS-Bench-101 (left). Test accuracies on the CIFAR-10 classification task. 3k randomly sampled architec-
tures from NAS-Bench-101 are used for fine-tuning (right).

Dataset Method Top-1 Acc. (%) Top-5 Acc. (%)

NB101-7 oracle 95.15 -
NB101-8 SVGe 95.18 95.21
NB101-9 SVGe 94.71 95.15

ENAS-12 D-VAE 96.12 -
SVGe 96.15 96.15

Table 2: Validation accuracies for architecture extrapolation
on NAS-Bench-101 and the ENAS search space.

nodes and no more than that. To generate these new graphs
we firstly pick the best performing graph from NAS-Bench-
101 based on the validation accuracy and expand it to graphs
with 8 and 9 nodes. Next, we randomly generate the upper
triangular matrices considering the new node length. The to-
tal number of sampled graphs is 3k and out of these we se-
lect the best 5 based on the predicted validation accuracy
(see section 4.1). These best models are finally trained from
scratch on CIFAR-10 using the exact training pipeline as in
Ying et al. (2019). As we can see from the top 3 rows in
Table 2, the architectures found by extrapolating using our
SVGe model achieve a top-1 validation accuracy of 95.18%
for graphs of length 8, which is comparable to the best
7-node architecture accuracy (95.15%). The lower valida-
tion accuracy (94.71%) of the architecture with 9 nodes is
not surprising since we are using the exact training settings
which were tuned for the 7-node case.

On the ENAS search space, we evaluated our SVGe on
the macro architecture containing a total of 12 nodes (lay-
ers) compared to architectures with 8 nodes used during the
SVGe training. We further fine-tune the embedding space
by sampling 1k architectures from the training set and train
the SVGe together with the performance predictor jointly.
Note that the performance predictor here uses the weight-
sharing accuracies as proxy for the true accuracy of the fully
trained architectures. We select top 5 architectures based on
the predicted validation performance and again fully train
them on CIFAR-10, using the exact settings as in Zhang
et al. (2019). As shown in table 2, the best found architecture
in the ENAS search space achieves a validation accuracy of
96.15% which is close to the one found by extrapolating us-
ing the model in (Zhang et al. 2019), but the runtime re-
quired to evaluate the embedding space is faster by factor 3.

Dataset Method Top-1 Acc. (%) Runtime (GPU h)

ENAS
D-VAE 94.80 16
SVGe 95.04 5
SVGe Triplet 95.13 10

Table 3: Bayesian optimization on the ENAS Search Space.
Both our embeddings outperform the recent method D-VAE
and reduce the runtime required to evaluate the embedding
space by a factor up to 3.

4.3 Bayesian Optimization
We have seen in the previous experiments that our proposed
SVGe generates a latent space which enables to interpolate
and extrapolate from seen labels/performances. Next, we
perform NAS via Bayesian optimization (BO) in the gen-
erated continuous ENAS search space, in order to have a
fair comparison to D-VAE (Zhang et al. 2019) by changing
only the D-VAE generative model with our SVGe and using
exactly the same setup as in Zhang et al. (2019).

Following Zhang et al. (2019) and Kusner, Paige, and
Hernández-Lobato (2017) we perform 10 iterations of batch
BO (with a batch size of 50) and average the results across
10 trials based on a Sparse Gaussian Process (SGP) (Snel-
son and Ghahramani 2005) with 500 inducing points and
expected improvement (EI) (Mockus 1974) as acquisition
function. We select the best 15 architectures w.r.t. their
weight-sharing accuracies and fully train them from scratch
on CIFAR-10, as done in (Zhang et al. 2019). As we can
see in Table 3, SVGe’s best found architecture achieves an
accuracy of 95.04%. Using SVGe with triplet loss enables
finding an architecture with 95.13% test accuracy, which
is 0.33 percentage points better than the best found archi-
tecture using the D-VAE learned embedding. BO on NAS-
Bench-101 yields a well performing architecture with accu-
racy of 94.73% (i.e. on par with D-VAE on ENAS).

5 Conclusion
In this paper, we proposed SVGe and SVGe triplet, a Smooth
Variational Graph embedding model for NAS. We give theo-
retical results on SVGe about injectively encoding properties
and uniquely decoding abilities of graph-structured data. We
present results on the NAS-Bench-101 and the ENAS search
spaces and show improvements over state of the art ap-
proaches for performance prediction surrogate models and
Bayesian optimization in the smooth embedding space.



Acknowledgement
The authors acknowledge support by the German Federal
Ministry of Education and Research Foundation via the
project DeToL.

References
Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2017. Design-
ing Neural Network Architectures using Reinforcement Learning.
ICLR .

Bender, G.; Kindermans, P.-J.; Zoph, B.; Vasudevan, V.; and Le,
Q. 2018. Understanding and Simplifying One-Shot Architecture
Search. In ICML.

Bergstra, J.; and Bengio, Y. 2012. Random Search for Hyper-
Parameter Optimization. Journal of Machine Learning Research
13(10): 281–305.

Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Józefowicz,
R.; and Bengio, S. 2016. Generating Sentences from a Continuous
Space. In Conference on Computational Natural Language Learn-
ing,, 10–21.

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013. Spectral
networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203 .

Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Direct Neural
Architecture Search on Target Task and Hardware. In ICLR.

Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Empirical
evaluation of gated recurrent neural networks on sequence model-
ing. In NIPS 2014 Workshop on Deep Learning, December 2014.

Domhan, T.; Springenberg, J. T.; and Hutter, F. 2015. Speeding
Up Automatic Hyperparameter Optimization of Deep Neural Net-
works by Extrapolation of Learning Curves. In IJCAI, 3460–3468.

Elsken, T.; Metzen, J. H.; and Hutter, F. 2018. Neural architecture
search: A survey. arXiv preprint arXiv:1808.05377 .

Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Robust and Effi-
cient Hyperparameter Optimization at Scale. In Dy, J.; and Krause,
A., eds., Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine Learning
Research, 1437–1446. PMLR.

Fey, M.; and Lenssen, J. E. 2019. Fast graph representation learn-
ing with PyTorch Geometric. arXiv preprint arXiv:1903.02428 .

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and Dahl,
G. E. 2017. Neural message passing for quantum chemistry. In
ICML, 1263–1272. JMLR. org.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Genera-
tive adversarial nets. In Advances in neural information processing
systems, 2672–2680.

Gori, M.; Monfardini, G.; and Scarselli, F. 2005. A new model
for learning in graph domains. In Proceedings. 2005 IEEE Inter-
national Joint Conference on Neural Networks, 2005., volume 2,
729–734. IEEE.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive represen-
tation learning on large graphs. In Advances in Neural Information
Processing Systems, 1024–1034.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In CVPR.

Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep convolutional net-
works on graph-structured data. arXiv preprint arXiv:1506.05163
.

Jin, W.; Barzilay, R.; and Jaakkola, T. S. 2018. Junction Tree Vari-
ational Autoencoder for Molecular Graph Generation. In ICML,
2328–2337.

Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; and
Xing, E. 2018a. Neural Architecture Search with Bayesian Op-
timisation and Optimal Transport. In NeurIPS.

Kandasamy, K.; Neiswanger, W.; Schneider, J.; Póczos, B.; and
Xing, E. P. 2018b. Neural Architecture Search with Bayesian Op-
timisation and Optimal Transport. In Advances in Neural Informa-
tion Processing Systems, 2020–2029.

Karaletsos, T.; Belongie, S. J.; and Rätsch, G. 2016. When crowds
hold privileges: Bayesian unsupervised representation learning
with oracle constraints. In Bengio, Y.; and LeCun, Y., eds., ICLR.

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for Stochastic
Optimization. In ICLR.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114 .

Kipf, T. N.; and Welling, M. 2016a. Semi-supervised clas-
sification with graph convolutional networks. arXiv preprint
arXiv:1609.02907 .

Kipf, T. N.; and Welling, M. 2016b. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308 .

Klein, A.; Falkner, S.; Springenberg, J. T.; and Hutter, F. 2017.
Learning Curve Prediction with Bayesian Neural Networks. In
ICLR.

Krizhevsky, A. 2009. Learning multiple layers of features from
tiny images. Technical report, University of Toronto.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, 1097–1105.

Kusner, M. J.; Paige, B.; and Hernández-Lobato, J. M. 2017. Gram-
mar Variational Autoencoder. In Precup, D.; and Teh, Y. W., eds.,
ICML, volume 70 of Proceedings of Machine Learning Research,
1945–1954.

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. S. 2016. Gated
Graph Sequence Neural Networks. In Bengio, Y.; and LeCun, Y.,
eds., ICLR.

Li, Y.; Vinyals, O.; Dyer, C.; Pascanu, R.; and Battaglia, P. W.
2018. Learning Deep Generative Models of Graphs. CoRR
abs/1803.03324.

Liu, C.; Chen, L.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A. L.;
and Li, F. 2019. Auto-DeepLab: Hierarchical Neural Architecture
Search for Semantic Image Segmentation. In CVPR, 82–92. Com-
puter Vision Foundation / IEEE.

Liu, H.; Simonyan, K.; and Yang, Y. 2018. DARTS: Differentiable
Architecture Search. CoRR abs/1806.09055. URL http://arxiv.org/
abs/1806.09055.

Long, D.; Zhang, S.; and Zhang, Y. 2019. Performance Predic-
tion Based on Neural Architecture Features. 2019 2nd China Sym-
posium on Cognitive Computing and Hybrid Intelligence (CCHI)
77–80.

Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018. Neural
architecture optimization. In Advances in neural information pro-
cessing systems, 7816–7827.

Mockus, J. 1974. On Bayesian Methods for Seeking the Extremum.
In Marchuk, G. I., ed., Optimization Techniques, IFIP Technical
Conference, Novosibirsk, USSR, volume 27 of Lecture Notes in
Computer Science, 400–404. Springer.

http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1806.09055


Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning convo-
lutional neural networks for graphs. In ICML, 2014–2023.

Ning, X.; Zheng, Y.; Zhao, T.; Wang, Y.; and Yang, H. 2020. A
Generic Graph-based Neural Architecture Encoding Scheme for
Predictor-based NAS. CoRR abs/2004.01899.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic Differentiation in PyTorch. In NIPS Autodiff Workshop.

Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean, J. 2018. Ef-
ficient Neural Architecture Search via Parameter Sharing. In ICML,
4092–4101.

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized Evolution for Image Classifier Architecture Search. In
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI,
4780–4789. AAAI Press.

Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y. L.; Tan, J.;
Le, Q. V.; and Kurakin, A. 2017. Large-Scale Evolution of Image
Classifiers. In ICML, 2902–2911.

Ru, B.; Wan, X.; Dong, X.; and Osborne, M. 2020. Neural Ar-
chitecture Search using Bayesian Optimisation with Weisfeiler-
Lehman Kernel. ArXiv abs/2006.07556.

Saikia, T.; Marrakchi, Y.; Zela, A.; Hutter, F.; and Brox, T. 2019.
AutoDispNet: Improving Disparity Estimation With AutoML. In
2019 IEEE/CVF International Conference on Computer Vision,
ICCV, 1812–1823. IEEE.

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and Mon-
fardini, G. 2009. The Graph Neural Network Model. IEEE Trans.
Neural Networks 20(1): 61–80.

Shi, H.; Pi, R.; Xu, H.; Li, Z.; Kwok, J. T.; and Zhang, T. 2019.
Multi-objective Neural Architecture Search via Predictive Network
Performance Optimization. arXiv preprint arXiv:1911.09336 .

Siems, J.; Zimmer, L.; Zela, A.; Lukasik, J.; Keuper, M.; and Hut-
ter, F. 2020. NAS-Bench-301 and the Case for Surrogate Bench-
marks for Neural Architecture Search. arXiv:2008.09777 [cs.LG]
.

Simonovsky, M.; and Komodakis, N. 2018. Graphvae: Towards
generation of small graphs using variational autoencoders. In In-
ternational Conference on Artificial Neural Networks, 412–422.
Springer.

Snelson, E.; and Ghahramani, Z. 2005. Sparse Gaussian Processes
using Pseudo-inputs. In Advances in Neural Information Process-
ing Systems 18 NIPS, 1257–1264.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to Se-
quence Learning with Neural Networks. In Advances in Neural
Information Processing Systems, 3104–3112.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z.
2016. Rethinking the inception architecture for computer vision.
In CVPR.

Tang, Y.; Wang, Y.; Xu, Y.; Chen, H.; Shi, B.; Xu, C.; Xu, C.; Tian,
Q.; and Xu, C. 2020. A Semi-Supervised Assessor of Neural Ar-
chitectures. In CVPR, 1807–1816. IEEE.

Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; and
Bengio, Y. 2018. Graph Attention Networks. In ICLR. OpenRe-
view.net.

Verma, S.; and Zhang, Z. 2018. Graph Capsule Convolutional Neu-
ral Networks. CoRR abs/1805.08090. URL http://arxiv.org/abs/
1805.08090.

White, C.; Neiswanger, W.; and Savani, Y. 2019. BANANAS:
Bayesian Optimization with Neural Architectures for Neural Ar-
chitecture Search. arXiv preprint arXiv:1910.11858 .

White, C.; Nolen, S.; and Savani, Y. 2020. Local Search is State
of the Art for NAS Benchmarks. CoRR abs/2005.02960. URL
https://arxiv.org/abs/2005.02960.

Williams, R. J.; and Zipser, D. 1989. A Learning Algorithm for
Continually Running Fully Recurrent Neural Networks. Neural
Comput. 1(2): 270–280.

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S. 2019.
A comprehensive survey on graph neural networks. arXiv preprint
arXiv:1901.00596 .

Xie, S.; Hehui, Z.; Liu, C.; and Lin, L. 2019. SNAS: stochastic
neural architecture search. In ICLR.

Xu, D.; Zhu, Y.; Choy, C. B.; and Fei-Fei, L. 2017. Scene graph
generation by iterative message passing. In CVPR, 5410–5419.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How Powerful
are Graph Neural Networks? In ICLR.

Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.; and
Jegelka, S. 2018. Representation Learning on Graphs with Jumping
Knowledge Networks. In Dy, J. G.; and Krause, A., eds., Proceed-
ings of the 35th International Conference on Machine Learning,
ICML, volume 80 of Proceedings of Machine Learning Research,
5449–5458. PMLR.

Ying, C. 2019. Enumerating Unique Computational Graphs via an
Iterative Graph Invariant. CoRR abs/1902.06192.

Ying, C.; Klein, A.; Real, E.; Christiansen, E.; Murphy, K.; and
Hutter, F. 2019. Nas-bench-101: Towards reproducible neural ar-
chitecture search. arXiv preprint arXiv:1902.09635 .

Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.; and
Leskovec, J. 2018. Hierarchical Graph Representation Learn-
ing with Differentiable Pooling. In Bengio, S.; Wallach, H. M.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems 31,
4805–4815.

You, J.; Ying, R.; Ren, X.; Hamilton, W. L.; and Leskovec, J. 2018.
Graphrnn: Generating realistic graphs with deep auto-regressive
models. arXiv preprint arXiv:1802.08773 .

Zela, A.; Elsken, T.; Saikia, T.; Marrakchi, Y.; Brox, T.; and Hutter,
F. 2020. Understanding and Robustifying Differentiable Architec-
ture Search. In ICLR.

Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An End-
to-End Deep Learning Architecture for Graph Classification. In
McIlraith, S. A.; and Weinberger, K. Q., eds., Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, 4438–
4445. AAAI Press.

Zhang, M.; Jiang, S.; Cui, Z.; Garnett, R.; and Chen, Y. 2019.
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs.
arXiv preprint arXiv:1904.11088 .

Zoph, B.; and Le, Q. V. 2017. Neural Architecture Search with
Reinforcement Learning. In ICLR.

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018. Learning
transferable architectures for scalable image recognition. In CVPR,
8697–8710.

http://arxiv.org/abs/1805.08090
http://arxiv.org/abs/1805.08090
https://arxiv.org/abs/2005.02960


Appendices
In this supplement to the main paper we present some addi-
tional details and results regarding the NAS-Bench-101 and
ENAS search spaces, training details of the models, proofs
of the propositions and additional experiments and visual-
izations. Moreover, we present additional neural architec-
ture search results using Bayesian optimization on NAS-
Bench-101. Thus, we demonstrate that the proposed SVGe
is well suited to find high-performing architectures in this
search space. These results are only briefly mentioned in the
main paper because there is no directly comparable method
or baseline available from the literature evaluated on NAS-
Bench-101. In addition to BO, we also evaluate a random
search approach on the same SVGe triplet latent space and
find promising architectures even in this simpler setup.

• Section A gives a more detailed overview about the NAS-
Bench-101 dataset and the ENAS search space.

• In Section B we visualize the decoding process and in-
clude technical implementation details about our SVGe
model.

• Section C contains the proofs of the proposition in the
main paper.

• Section D presents additional experiments of our SVGe
model and SVGe triplet.

A Details on Search Spaces
A.1 NAS-Bench-101
NAS-Bench-101 (Ying et al. 2019) is a public tabular bench-
mark in a restricted cell-structured search space (Zoph et al.
2018) evaluated on the CIFAR-10 image classification task
(Krizhevsky 2009). The following constraints are consid-
ered: only directed-acyclic graphs are considered, the num-
ber of nodes is limited to |V | ≤ 7 (including the input
and output node) and the number of edges is limited to
|E| ≤ 9. Each node represents an operation from the op-
eration setO = {1× 1 convolution, 3× 3 convolution, 3×
3 max pooling}. Moreover as already mentioned in Sec-
tion 3.4, graphs may be isomorphic. The isomorphisms in
NAS-Bench-101 are detected by a graph hashing algorithm
(Ying 2019). Eventually, the NAS-Bench-101 dataset con-
tains in total 423k unique convolutional neural architectures.
These architectures are built as follows: Each cell is stacked
3 times, followed by a downsampling max-pooling layer,
which halves the feature map. This pattern is repeated in to-
tal 3 times, followed by global average pooling and a dense
softmax layer, which produces the output. Note that the
NAS-Bench-101 search space covers ResNet-like (He et al.
2016) and InceptionNet-like (Szegedy et al. 2016) cells.

Each architecture is evaluated for {4, 12, 36, 108} epochs
and mapped to its training, test and validation quantities.

A.2 ENAS
ENAS (Pham et al. 2018) trains an RNN controller to derive
new neural architectures using a weight-sharing approach,
which forces all derived architectures to share the same

weights. The ENAS approach consists of a macro search
space and a micro search space. The macro search space
contains architectures with |V | = 12 nodes (excluding the
input and output node) and an operation set

O = {3× 3 convolution, 5× 5 convolution,
3× 3 depthwise-separable convolution,
5× 5 depthwise-separable convolution,
3× 3 max pooling, 3× 3 average pooling}.

The ENAS micro search space consists of cells with a to-
tal of |V | = 7 nodes (including input and output nodes),
which are connected to create the neural network itself
(same idea as in NAS-Bench-101). In this search space node
1 and node 2 are treated as input nodes (outputs of the two
previous cells in the neural network). Each node in the DAG
is a concatenation (summation of the results) of two opera-
tions. In the micro search space the 5 possible operations are
O = {3 × 3 convolution, 5 × 5 convolution, identity, 3 ×
3 max pooling, 3 × 3 average pooling}. The overall neu-
ral architecture is build as follows: Each convolution cell is
stacked 6 times, followed by a reduction cell. This pattern is
repeated two more times, followed by a final dense softmax
layer. The reduction cell is similar to the convolution cell
with a spatial dimension reduction of 2 (all operations have
stride 2).

In our experiments the macro search space is used with
6 layers (excluding the input and output node) and extrapo-
lated to the original macro search space with 12 layers, with-
out the input and output node.

B Training Details
B.1 Decoder Visualization
In Figure 1 we illustrate the decoding iterations of our SVGe
model and its individual modules:

− a) visualizes the Prop module from Eq. (7) for the partial
graph and its initial node embeddings

− b) creates a new node using module AddNode and selects
its node type via Eq. (8)

− c) initializes the new node’s embedding in the module
InitNode Eq. (10)

− d) decides whether to add an edge to the new created node
with module AddEdges using Eq. (11)

B.2 Details on Hyperparameters
We use similar settings to (Zhang et al. 2019) for our autoen-
coder models. Other hyperparamters as the learning rate are
optimized using BOHB (Falkner, Klein, and Hutter 2018).
All hyperparameters are summarized in Table 4. We use the
model GIN for additional experiments in appendix D. SGD
with Adam optimizer (Kingma and Ba 2015) is used for all
models. Whenever the loss does not decrease for 10 epochs
we multiply the learning rate with 0.1.



hG(t)

. . . h
(t)
2

h
(t)
1

h
(t)
0

h
(t+1)
1

?

h
(t+1)
2h

(t+1)
1

h
(t+1)
0

h
(t+1)
2h

(t+1)
1

h
(t+1)
0

h
(t+1)
3 h

(t+1)
3

h
(t+1)
2

h
(t+1)
0

1x11x1

in

MP

out

z

. . .

a) b) c) d)

1

Figure 1: Illustration of a single iteration during the graph generation process. a) A decoder-level GNN propagates the node
embeddings through the partially created graph and aggregates them into a summary. b) A new node is created and its node
type is selected using the summary of the partially created and the original graph. c) The newly created node is initialized with
a node embedding. d) A score of all edges connecting the new node is calculated and evaluated into the set of new edges.

Fine tuned SVGe For training the SVGe model jointly
with the regressor for the performance prediction task, we
modify the overall training loss, such that the performance
prediction loss Lpred is included in the overall training loss,
yielding

L = ψ
(
LV + LE + αDKL

)
+ (1− ψ)Lpred, (18)

where we make use of Eq. (15) for the reconstruction train-
ing of the autoencoder itself.

C Proofs
C.1 Proof of Proposition 1
Proof. Let n be the number of vertices and m the number
of edges. The encoder φ : V n × Em → N maps a graph
G = (v, e) ∈ V n × Em to a normal distribution in N ,
with N being the space of normal distribution. The decoder
ψ : N ×V0 → V n×Em maps the latent variable back to its
original representation, given the initial input node v0 ∈ V .
Let G1 = (v̄1, ē1), G2 = (v̄2, ē2) ∈ V n × Em be iso-
morphic graphs to each other, with v̄ = (v0, . . . , vn−1). It
furthermore holds by construction of all our DAGs v10 = v20 .
With Section 3.4 we know that our encoder φ maps G1 and
G2 injectively, that is: φ(G1) = φ(G2). Moreover our SVGe
variational autoencoder is given by:

Ξ: V n × Em → V n × Em

(v̄, ē) 7→ ψ(φ(v̄, ē), v0).
(19)

Therefore

Ξ(G1) = Ξ(v̄1, ē1)

= ψ(φ(v̄1, ē1), v10)

= ψ(φ(v̄2, ē2), v20)

= Ξ(v̄2, ē2)

= Ξ(G2).

C.2 Proof of Proposition 2
Proof. Considering any arbitrary graph G with a fixed la-
belling L, we can transform this graph into a graph with an

upper triangular adjacency matrix without leaving its iso-
morphy class Sn.

This transformation goes as follows: One compares every
pair of two adjacent nodes in the graph and in case that the
later node appears earlier in the ordering one permutes those
two nodes. After finally many steps this procedure yields a
graph, whose adjacency matrix is an upper triangular matrix.

Note, that permuting two nodes vi, vj , with σ(vi) =
vj , σ(vj) = vi, yields an isomorphic graph, since for each
edge (i, j) in G the edge (j, i) exists in the permuted graph
G̃, in case one permuted the nodes i and j by construction.
In this argument it is enough to consider the case where only
two nodes are permuted since every permutation can be writ-
ten as a product of these transformations.

D Additional Experiments
D.1 Models
We compare our SVGe and its triplet loss expansion SVGe
triplet with two other baselines: D-VAE (Zhang et al. 2019)
and GIN (Xu et al. 2019). D-VAE is also a graph-based au-
toencoder using an asynchronous message passing scheme.
GIN is a graph convolution network, which also uses mes-
sage passing to embed the neural architectures. In order to
examine the ability of GIN in our setting, we replace our
encoder with GIN and keep the decoder.

Autoencoder Abilites. Following previous work (Zhang
et al. 2019; Jin, Barzilay, and Jaakkola 2018; Kusner, Paige,
and Hernández-Lobato 2017), we evaluate SVGe by means
of reconstruction ability, valid generation of neural architec-
tures, the share of unique neural architectures from the valid
graph set and the portion of graphs from the valid graph set,
which are never seen before. For comparison reasons we
evaluate these abilites on the ENAS dataset. To do so, we
train the models on 90% of the dataset and test it on the 10%
held-out data.

We first measure the reconstruction accuracy which de-
scribes how often our model can reconstruct the input graphs
of the test set perfectly. For this purpose, after calculating
the mean hG and the variance hvarG of the approximated pos-
terior qφ(z|G) for the test set, we sample z from the latent



Model Hyperparamter Default Value

GIN

Num. node operations (ENAS) 8
Graph hiddem dim. 56
Num. GNN iterations layers 5
Trainable par. ε no
VAE loss α (15) 0.005
Batch size (ENAS) 32
Dropout Prob. 0
Learning rate 0.001
Epochs 300

SVGe

Num. node operations (NAS) 5
Num. node operations (ENAS) 8
Node hiddem dim. 56
Graph hiddem dim. 250
Num. GNN iterations layers 2
VAE loss α (15) 0.005
Batch size (ENAS) 32
Batch size (NAS) 128
Dropout Prob. 0
Learning rate 0.0001
Epochs 300

SVGe Triplet

Triplet Loss α (16) 1.0328
VAE Triplet loss λ (17) 0.9
dκ ≤ ε (ENAS) 2
dκ ≥ δ (ENAS) 5
Epochs 300

Regression

Loss proportion ψ 0.1
Num. Acc. Layers 4
Learning rate 0.001
Batch Size 128
Epochs 100

Table 4: Hyperparameters of the variational autoencoder and
the surrogate model for performance prediction.

representation of each input graph 10 times and decode each
sample again 10 times. The average portion of the decoded
graphs that are identical to the input ones is then reported as
the reconstruction accuracy.

The second ability we are interested in is the prior valid-
ity which quantifies how often our model is able to generate
valid graphs from the SVGe prior distribution. Following
(Zhang et al. 2019), we sample 1k vectors from the latent
space with prior distribution p(z) and decode each vector
10 times. The average portion of the decoded graphs that
are valid is then reported as the prior validity. For a valid
graph by means of the ENAS (Pham et al. 2018) search
space, it has to pass the following validity checks: 1) exactly
one starting point, i.e., the input node, 2) exactly one ending
point, i.e., the output node, 3) there exist no nodes which do
not have any predecessors, except for the input node, 4) there
exist no nodes which do not have any successors, except for
the output node, 5) the graphs are DAGs. The average por-
tion of unique/novel graphs from the valid decoded graphs
are reported as uniqueness/novelty.

See Table 5 for the evaluation results. We find that almost
all models have a nearly perfect reconstruction accuracy,
prior validity, uniqueness and novelty. GIN has the worst

Method Accuracy Validity Uniqueness Novelty

SVGe 98.97 99.69 40.22 100
SVGe Triplet 99.80 99.75 35.37 99.99
GIN 97.51 100 49.15 100
D-VAE 99.96 100 37.26 100

Table 5: Autoencoder Abilites on ENAS in %.

reconstruction accuracy for neural architectures. Since the
reconstruction accuracy is very important for our tasks, we
leave evaluations on GIN out of our experiments.

D.2 Performance Prediction
Figure 2 shows the predicted performance vs. the true per-
formance of our fine tuned SVGe model from Section 4.2
for 100 sampled graphs from the training set and for 100
sampled graph from the test set on the NAS-Bench-101 test
accuracies. The SVGe model is trained jointly with the re-
gressor using 3k random samples of labelled data. We see
that our model predicts the performances in an accurate and
stable way.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
predicted

0.70

0.75

0.80

0.85

0.90

0.95

1.00

tru
e

SVGe Linear Prediction on NAS-Bench-101 (train)

0.70 0.75 0.80 0.85 0.90 0.95 1.00
predicted

0.70

0.75

0.80

0.85

0.90

0.95

1.00

tru
e

SVGe Linear Prediction on NAS-Bench-101 (test)

Figure 2: Performance Prediction of fine tuned SVGe on
NAS-Bench-101 test accuracy of 100 sampled graphs from
the training set (left) and 100 sampled graphs from the test
set (right).

Dataset Method Top-1 Acc. (%)

NAS-Bench-101
SVGe Triplet + RS 94.72
SVGe + BO 94.73
SVGe Triplet + BO 94.99

Table 6: Bayesian optimization on the NAS-Bench-101
Search Space.

Bayesian Optimization on NAS-Bench-101 In addition
to the experiment in Section 4.3 we also perform Bayesian
optimization (BO) on the NAS-Bench-101 search space with
our SVGe and SVGe triplet models. In order to cover a
higher amount of graphs in the generated latent space, we
sample in total 114k (30%) triplets out of the training set to
train the SVGe triplet for graph reconstruction. In addition
to BO, we also consider a simple random search approach
on our learnt SVGe triplet space. As we can see in Table 6,
SVGe’s best found model achieves a validation accuracy of



94.73% when BO is used, from SVGe triplet BO even finds
an architecture with an accuracy of 94.99% validation accu-
racy. Applying random search to the latent space allows to
find an architecture with 94.72%. Thus, both our proposed
smooth embedding spaces SVGe and SVGe triplet enable
to find high-performing architectures - where SVGe triplet
slightly improves over SVGe and even simple approaches
such as random search in this latent space allow to find rea-
sonable architectures.

input

conv3

conv3

conv3

output

conv1

conv3

input

conv3

conv3

conv3

conv3

conv3

conv1

output

Figure 3: Visualization of the best network architectures in
NAS-Bench-101 search space with respect to the validation
accuracy with node length 7 (left) and node length 8 (right).

Visualization In the following we visualize the best found
architectures in our extrapolation experiments, correspond-
ing to the results in Table 2 in the main paper.

input

sep5

conv5

sep3

conv3

conv3

conv3

conv5

max3

conv5

sep5

output

conv5

conv5

Figure 4: Visualization of the best 12-layer network archi-
tectures found by SVGe for the extrapolation task of graphs
in the ENAS search space.

Figure 3 (right) visualizes the best found architecture with
8 nodes from the extrapolation experiment in Section 4.2
using the SVGe fine tuned model. We see that the predicted
best performing architecture is from the superset of the best
graph in the NAS-Bench-101 dataset (Figure 3 (left)).

We plot in Figure 4 the predicted best architecture with 12
layers from the ENAS macro search space.


	1 Introduction
	2 Related Work
	3 Structural Graph Autoencoding
	3.1 Encoder
	3.2 Decoder
	3.3 Loss Function and Training
	3.4 Discussion

	4 Experiments
	4.1 Performance Prediction from Latent Space
	4.2 Extrapolation Ability
	4.3 Bayesian Optimization

	5 Conclusion
	A Details on Search Spaces
	A.1 NAS-Bench-101
	A.2 ENAS

	B Training Details
	B.1 Decoder Visualization
	B.2 Details on Hyperparameters

	C Proofs
	C.1 Proof of Proposition 1
	C.2 Proof of Proposition 2

	D Additional Experiments
	D.1 Models
	D.2 Performance Prediction


