
MDP Playground:
Meta-Features in Reinforcement Learning

Raghu Rajan
Department of Computer Science

University of Freiburg
Freiburg, Germany

rajanr@cs.uni-freiburg.de

Frank Hutter
Department of Computer Science

University of Freiburg
Freiburg, Germany &

Bosch Center for Artificial Intelligence
fh@cs.uni-freiburg.de

Abstract

Reinforcement Learning (RL) algorithms usually do not try to identify specific
features of environments which could help them perform better. Here, we present
a few key meta-features of environments: delayed rewards, specific reward se-
quences, sparsity of rewards, and stochasticity of environments, adapting to which
should help RL agents perform better. While it is very time consuming to run RL
algorithms on standard benchmarks, we define a parameterised collection of fast-
to-run toy benchmarks in OpenAI Gym by varying these meta-features. Despite
their toy nature and low compute requirements, we show that these benchmarks
present substantial difficulties to current RL algorithms. Furthermore, since we can
generate environments with a desired value for each of the meta-features, we have
fine-grained control over the environments’ difficulty and also have the ground truth
available for evaluating algorithms. We believe that devising algorithms that can
detect such meta-features of environments and adapt to them will be key to creating
robust RL algorithms that work in a variety of different real-world problems.

1 Introduction

Like humans, a true Artificial General Intelligence (AGI) would generalise to all kinds of environments
by adapting to the task at hand. Despite the success of RL algorithms at many tasks (Abbeel et al.,
2010; Mnih et al., 2013; Silver et al., 2016; Chua et al., 2018), we are still far away from AGI.
RL algorithms can solve many tasks, such as the game of Go, video game playing in Atari, and
locomotion in Mujoco, but when faced with a completely new environment, they can’t really adapt
like humans do. We need to understand the environments and their interactions with RL algorithms
better if we are to progress to more intelligent algorithms.

RL algorithms usually assume the environment to be an MDP (or POMDP). However, the state
formulation used may not be Markovian.1 In the POMDP case, the fact that the true state needed
to have Markovianness may not be accessible can have a significant impact on the performance of
algorithms. In this work, we attempt to identify some key meta-features of POMDP environments
which help characterise environments and we provide a platform with different instantiations of these
meta-features in order to understand the workings of different RL algorithms better. The platform
is implemented as a Python package, MDP Playground that allows us complete control over these
meta-features to be able to benchmark RL algorithms.

1This depends on the state formulation in general. But assuming an infinitely differentiable world and
dynamics of arbitrary order, we would need an infinite “stack” of the current “state” and its higher order
derivatives to be able to predict the next state based on the current one and thus have Markovianness.

Submitted to 33rd Conference on Neural Information Processing Systems Deep RL Workshop (NeurIPS 2019).
Do not distribute.

ar
X

iv
:1

90
9.

07
75

0v
2

 [
cs

.L
G

]
 3

 D
ec

 2
01

9

Usual environments that RL algorithms are tested on also tend to take a long time to run. As a remedy,
our platform is meant to be a low cost proxy for identifying how RL algorithms would work on real
world problems.

The main contributions of this paper are:

• Identifying meta-features to characterise POMDP environments

• Implementation of low-cost benchmarks with fine-grained control over the meta-features

• Experiments on baseline RL algorithms to highlight the impact of the meta-features

2 Key Meta-Features

We define an MDP as a 6-tuple (S,A, P,R, ρo, T), where S is the set of states, A is the set of actions,
P : S ×A→ S is the transitions dynamics, R : S ×A→ R is the reward dynamics, ρo : S → R is
the initial state distribution, and T is the set of terminal states.2 For a POMDP, the state would not be
completely observable to an agent.

In RL algorithms, usually the assumption is that we receive immediate reward depending on only the
previous state and action. However, in general, this is not true for even many simple environments

Algorithms like DQN (Mnih et al., 2013) were applied to many varied environments and produce
very variable performance across these. In some simple environments, DQN’s performance exceeds
human performance by large amounts, but in other environments, such as Montezuma’s revenge,
performance is very poor. For such environments, we need a very specific sequence of actions to
get a reward. Another simple real world example is executing a tennis serve, where we need a very
specific sequence of actions which would result in a point if we served an ace.

Environments where specific sequences of states need to be followed to get a reward also tend to have
sparsity. This can significantly impact performance of algorithms.

Another characteristic of environments that can significantly impact performance of algorithms
is stochasticity. The environment itself, i.e., dynamics P and R, may be stochastic or may seem
stochastic to the agent due to partial observability or sensor noise.

Key meta-features of environments that we identify from the above discussion are

• Delayed Rewards

• Specific Sequences

• Sparsity of Rewards

• Stochasticity

These are usually not observable to the agents directly, making the environment a POMDP for the
agent. We now describe the benchmark environment where we can control these meta-features to
study their impact on the performance of various algorithms.

3 MDP Playground

We believe that the meta-features discussed above are key features which can be controlled in small
environments and if an algorithm can master all of these in simple environments, it has gone some
way towards being able to perform at scale as well on vastly different environments. In order to be
able to benchmark how algorithms would perform in such environments, we implement a package,
MDP Playground, which generates randomly configured OpenAI Gym environments to allow us to
benchmark algorithms across a variety of meta-feature configurations. It is also manually configurable
so we can control in a fine-grained manner how exactly we intend the environment to be. We now
briefly describe how the environment and these meta-features are implemented.

2We don’t include the discount factor γ as we feel it is more an intrinsic feature of the learning algorithm
than of the MDP.

2

The environment is implemented as an MDP with an augmented state. For the current discussion,
we restrict ourselves to discrete state and action spaces.3 Some additional meta-features that we
allow the user to fully control are the terminal state density and the reward unit which is the reward
given whenever the environment hands out one (this is intended to help test algorithms with different
reward scales in an environment). We also allow the user to fully specify an MDP they may have in
mind and use it for their experiments.

Algorithm 1 Generating random MDPs with MDP Playground

1: Input: number of states |S|, number of actions |A|, reward delay d, length of reward sequences
n, density of reward sequences rd, transition noise t_n, reward noise σr_n, reward_unit,
make_denser, terminal_state_density

2:
3: function INIT_TRANSITION_FUNCTION() . For generating a completely connected P
4: for each state s do
5: Set possible successor states: S′ = S
6: for each action a do
7: Set P (s, a) = s′ sampled uniformly from S′ and remove s′ from S′

8:
9: function INIT_REWARD_FUNCTION(n)

10: Randomly sample rd ∗ |S|!
(|S|−n)! sequences and store in rewardable_sequences

11:
12: function REWARD_FUNCTION(s, a)
13: r = 0
14: if not make_denser then
15: if state sequence of n states ending d steps in the past is in rewardable_sequences then
16: r = reward_unit
17: else
18: for i in range(n) do
19: if sequence of i states ending d steps in the past is in sub-sequences of length i in

rewardable_sequences then
20: r+ = reward_unit * i/n
21: r+ = N (0, σ2

r_n)
22: return r
23:
24: function TRANSITION_FUNCTION(s, a)
25: s′ = P (s, a)
26: if U(0, 1) < t_n then
27: s′ = a random state in S \ {P (s, a)}
28: return s′
29:
30: INIT_TERMINAL_STATES() . Set T according to terminal_state_density
31: INIT_INIT_STATE_DIST() . Set ρo to uniform distribution over non-terminal states
32: INIT_TRANSITION_FUNCTION()
33: INIT_REWARD_FUNCTION()

For a user chosen |S| and |A|, S and A contain categorical elements and we generate random
instantiations of P and R for each instantiation of an environment. The generated P and R are
deterministic unless we deliberately inject stochasticity through the respective meta-features we have
created for them. We currently keep ρo to be uniform over the non-terminal states and T is fixed to
be a subset of S based on the user chosen terminal state density.

Delayed Rewards We delay the reward for a state-action pair by a non-negative integer number of
timesteps, which we call the delay length, d. In general, d will not be a constant in real world envi-
ronments and would be a function of the state and action (sequence), but for our simple experiments
here, we use a fixed d.

3The playground also supports some basic continuous environments. Expanded support is under development.

3

Specific Sequences We reward only specific sequence of states of positive integer length n. Like d,
n would not be a constant in real world environments, but for our simple experiments here, we use
a fixed n. For our experiments, we consider that specific sequences of states would be rewardable,
though, in general, specific sequences of states and actions should be considered for rewards.4

Sparsity of Rewards We define the reward density rd of sequences in terms of the fraction of
possible sequences of length n that are actually rewarded by the environment, for the specific case
when the sequence length n is constant. There are |S|!

(|S|−n)! possible specific sequences (when no
state repeats along the sequence) for an environment with sequence length n and state space size |S|
and if numr of them are rewarded we define the reward density to be rd = numr ∗ (|S|−n)!

|S|! and
sparsity as 1− rd.5

Stochasticity Stochastic environments are implemented by making P and R noisy. For discrete
environments, for the randomly generated P we do this by taking a transition noise t_n ∈ [0, 1],
and with probability t_n, we let the environment transition to a state that is not the true next state
given by the generated P . For R, we take a reward_noise σr_n ∈ R and add a normal random
variable distributed according to N (0, σ2

r_n) to the reward that would have been given out by the
environment had there been no reward noise.

With regard to sparsity, recall the tennis serve again. The point received by serving an ace would be a
sparse reward. We as humans know to reward ourselves for executing only a part of the sequence
correctly. Rewards in continuous control tasks to reach a target point (e.g., in Mujoco (Todorov
et al., 2012)), are usually dense (such as the negative squared distance from the target). This lets
the algorithm obtain a dense signal in space to guide learning, and it is well known that it would be
much harder for the algorithm to learn if it only received a single reward at the target point. The
environments in MDP Playground have a configuration option, make_denser, to allow this kind
of reward shaping to make the reward denser and enable algorithms to learn faster. To achieve this,
when make_denser is True, the environment gives a fractional reward if a fraction of a specific
sequence is achieved. (Please refer Algorithm 1.)

A parallel and independent work along similar lines as the MDP Playground, which was released last
month, is the Behaviour Suite for RL (bsuite, Osband et al. (2019)). That suite collects simple RL
benchmarks from the literature that are representative of various types of problems which occur in RL
and tries to characterise RL algorithms. However, they do not employ orthogonal meta-features like
we do and as a result, they do not have the same type of fine-grained control over their environments’
difficulty, especially not along controllable dimensions. They also do not generate completely
random P and R for their environments like we do, which would help avoid algorithms overfitting to
benchmarks. Unlike their framework, where currently there’s no toy environment for Hierarchical
RL (HRL) algorithms, the specific sequences that we describe would also fit very well with HRL.
An important distinction between the two platforms could be summed up by saying that they try to
characterise algorithms while we try to characterise environments with the aim that new adaptable
algorithms can be developed that can tackle environments of desired difficulty.

4 Experiments and Results

Experimental Setup We ran DQN (Mnih et al., 2013), Rainbow DQN (Hessel et al., 2017), A3C
(Mnih et al., 2016), A3C with LSTM (all from the Ray RLLib (Liang et al., 2017) implementations)
on grids of values for the meta-features discussed above. We fixed |S| and |A| to be 8, ρo to be
uniformly random over non-terminal states, and the density of terminal states, equal to |T |/|S|, to
be 0.25 for the experiments. The reward unit is fixed to be 1.0 whenever a reward is given by the
environment. We generated random P s that were completely connected, i.e., from each state there
was a transition possible to every state in state space (including itself).

4Our implementation would be easily extendable to additionally consider actions for future experiments.
5For the general case where n is variable, it may be worthwhile to define reward density as the average

reward a random agent receives in an environment, but for the fixed length case, it makes sense to implement
and define it like we have done here.

4

(a) DQN (b) Rainbow (c) A3C (d) A3C + LSTM

Figure 1: Mean episodic reward at the end of training for the different algorithms when varying
delay and sequence lengths. Please note the different colorbar scales. We note that the intent of
this figure is solely to show how the performance of an algorithm across meta-features gets worse
for greater violations of Markovianness. It is not to compare DQN with A3C since the training
procedures were different and we stopped training after different number of environment timesteps.
What we tried to keep constant was the number of optimizer steps trained.

Results for varying reward delay and length of specific reward sequences We plot the average
over 10 runs6 of the final mean episodic reward7 at the end of training for all the algorithms in
Figure 1 for a grid of values over the delay and specific sequences meta-features. As can be seen
from the figure, all algorithms perform very well in the vanilla environment where the MDP is
completely observable because there is no delay and the sequence length is 1, but performance
degrades in environments where the meta-features induce partial observability and hence make the
state used by the algorithm non-Markovian. Performance clearly degrades more as we become
more non-Markovian. It is interesting (and expected) that Rainbow DQN is more robust than DQN.
However, it is unexpected that A3C with an LSTM does not improve over vanilla A3C (even though
we set the LSTM max sequence length to the delay + sequence length which would let it remember
the stack of states that would let the environment be modelled as a fully observable MDP); we plan to
study this effect in more detail in the future.

Figure 2: DQN train-
ing reward standard devi-
ation across 10 runs.

We plot the standard deviation in the training of one of the algorithms
(DQN) in Figure 2. The plot shows high variance in many of the environ-
ments with partial observability. Sometimes, DQN nevertheless managed
to perform decently, which emphasizes that algorithms can sometimes
perform well even when their assumption of complete observability is
violated; this is one of the possible explanatory factors for the fact that
tuning seeds can lead to good results.

We relegate plots of the evaluation reward at the end of the training8 to
the Appendix (Figure 9 in Appendix) since they are qualitatively similar
to the training episodic rewards in Figure 1.

Results for varying transition and reward noise We see a similar
trend, as for delays and sequences, when we vary the transition and
reward noises in Figure 3. Performance degrades gradually as more and
more noise is injected. It is interesting that DQN seems to be more
sensitive to noise in the transition dynamics compared to the reward dynamics: transition noise values
as low as 0.02 lead to a clear handicap in learning while for the reward dynamics (with the reward
unit being 1.0) reward noise variances of σ2

r = 1 still resulted in decent learning.

Next to the training performance in Figure 3, we also plot the evaluation performance in Figure 4.9
Comparing the 2 figures shows that the training performance of the algorithms is more sensitive to
noise in the transition dynamics than the eventual evaluation performance is. While it is obvious
that the mean episodic reward during training would be perturbed when noise is injected into the

6over 10 random seeds for the algorithm but fixed seed for the environment
7over previous 100 episodes
8rollout with the learnt policy, averaged over 10 episodes
9Here, for evaluation, and not for training because training is in the noisy environment, we evaluated in the

corresponding environment without noise to assess how well the true learning is proceeding.

5

(a) DQN (b) Rainbow (c) A3C (d) A3C + LSTM

Figure 3: Mean episodic reward at the end of training for the different algorithms when varying
transition noise and reward noise. Please note the different colorbar scales.

(a) DQN (b) Rainbow (c) A3C (d) A3C + LSTM

Figure 4: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of
training for the different algorithms when varying transition noise and reward noise. Please note
the different colorbar scales.

reward function, it is non-trivial that injecting noise into the transition function still leads to good
learning (as displayed in the evaluation rollout plots). An additional seeming anomaly is that the
evaluation rollouts for A3C suggest that it performs better in the presence of transition noise (when
reward noise variance σ2

r_n is 0 or 1); this might indicate that, with little reward noise which doesn’t
disrupt training too much, A3C in the presence of no transition noise does not explore enough and is
actually helped when transition noise is present during training.

In addition to the plots for the rewards at the end of the training, we plot the complete learning
curves for evaluation rollouts for DQN in the presence of injected transition and reward noises in
Figure 5. (This means that each square in the heatmap in Figure 4a corresponds to the mean over the
rightmost points in the corresponding evaluation learning curve plot in Figure 5). This underlines
that throughout the trajectory, training is more robust to transition noise than to reward noise.

Results for sparsity The plots for controlling the meta-feature sparsity in the vanilla environment
show that DQN variants are able to learn the important rewarding states in the vanilla environment
even when these are sparse while the behaviour of A3C was once again somewhat unexpected (Figure
6). One explanation could be that A3C’s exploration was not very good (as was also conjectured in
the unexpected results for varying the noise meta-features), in which case increasing reward density
would help as in 6c. But adding in an LSTM to the A3C agent seems to show the opposite trend as
increasing reward density leads to worsening performance. This could mean that having a greater
density of rewarding states makes it harder for the LSTM to remember one state to stick to. This
behaviour of A3C warrants more investigation in the future.

The make_denser configuration option, where we make the environment give denser rewards by
rewarding even when only a fraction of a rewardable sequence has been achieved, makes learning
less variant across different runs of an algorithm although the algorithms still don’t perform as well
as they could (as would be expected when making rewards denser) in the evaluation rollouts where
we turn off the option to evaluate true learning, probably due to the sequence lengths still violating
the complete observability assumption made by the algorithm. The plots for learning curves for DQN
are in Figure 7 and the rest are present in the Appendix (Figure 10 and Figures 26-32).

Hyperparameter Tuning Hyperparameters were tuned for the vanilla environment; we did so
manually in order to obtain good intuition about them before applying automated tools. We tuned the
hyperparameters in sets, loosely in order of their significance and did 3 runs over each setting to get a

6

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.01, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.02, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.1, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.1, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

50
Re

wa
rd

P Noise 0.25, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

P Noise 0.25, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 5: Evaluation Learning Curves for DQN when varying transition noise and reward noise. Please
note the different Y-axis scales.

(a) DQN (b) Rainbow (c) A3C (d) A3C + LSTM

Figure 6: Mean episodic reward at the end of training for the different algorithms when varying
reward sparsity. Please note the different colorbar scales.

more robust performance estimate. Our prior was that for such toy environments we would not need
much hyperparameter tuning, but it turned out that hyperparameter tuning was still very significant.
Thus, our toy environments might in fact be good test beds for researching hyperparameters in RL,
too. We describe a small part of our hyperparameter tuning for DQN next. All hyperparameter
settings for tuned agents can be found in Appendix C.

We expected that quite small neural networks would already perform well for such toy environments
and we initially grid searched over small network sizes (Figure 8a). However, the variance in
performance was quite high (Figure 8b. When we tried to tune DQN hyperparameters learning

10000 20000
Train Timesteps

0

100

200

Re
wa

rd

Sequence Length 2

10000 20000
Train Timesteps

0

200

400

Re
wa

rd

Sequence Length 3

10000 20000
Train Timesteps

0

500

1000

Re
wa

rd

Sequence Length 4

Figure 7: Training Learning Curves for DQN when make_denser is True for specific sequences. Please note
the different Y-axis scales.

7

(a) Reward (b) Std dev. (c) Reward (d) Std. Dev. (e) Reward (f) Std dev.

Figure 8: Mean episodic reward at the end of training for different hyperparameter sets for DQN.
Please note the different colorbar scales.

starts and target network update frequency, however, it became clear that the target network update
frequency was very significant (Figure 8c and 8d) and when we repeated the grid search over network
sizes with a better value of 800 for the target network update frequency (instead of the old 80) this
led to both better performance and lower variance (Figure 8e and 8f).

5 Conclusion and Future Work

We introduced a low-cost10 platform to test RL algorithms in environments with varying, controllable,
key meta-features that we identified; we also evaluated some baseline RL algorithms using the
platform. The platform allows us to disentangle various factors that make RL benchmarks hard by
providing fine-grained control over various meta-feature dimensions. It therefore allows us to assess
which characteristics make RL problems hard for different algorithms and would also allow us to
evaluate future algorithms which may adapt to variations in these and other meta-features.

We will release all our code as Open Source to facilitate better, cheaper, more reproducible, and more
directed benchmarking in the RL community.11

We will further implement plug and play model-based metrics to evaluate model-based algorithms,
such as the Wasserstein metric (likely a sampled version because analytical calculation would be
intractable in many cases) between the true dynamics models and the learnt one to keep track of how
model learning is proceeding. Our Environments already allow using their transition and reward
functions to perform imaginary rollouts without affecting the current state of the system.

We also have existing support for basic continuous environments and a toy task where we hand out
greater rewards the closer a point object is to moving along a line. This is also a better task to test
exploration than the completely random discrete environments. It was already giving some interesting
results and further work will follow.12

Another significant meta-feature is reachability in the transition graph. We believe a lot of insights
can be gained from graph theory to model toy environments which try to mimic specific real life
situations at a very high level. Users can already specify their own transition graphs, but we plan to
add random generation of specific types of graphs.

Even though we have a playground to generate environments where the meta-features such as
sequence length are constant, being able to solve environments with variable delay and sequence
lengths and identifying them (i.e., segmentation of events in the time domain) is another area we are
currently working on with attention-based agents and various other ideas.

It would also be interesting to integrate our platform with the bsuite. Overall, we intend to promote
more adaptivity in RL algorithms and we hope this platform is a first small step towards that.

10The runtimes depend a lot on the algorithm, network size and meta-features. But to give the reader an idea
of the runtimes involved for our experiments, the DQN experiments (with a network with 2 hidden layers of 256
units each) in Figure 1a took about 3.5 hours, which equates to 1 minute for every single run of DQN for 20,000
environment steps.

11The code is currently available for anonymous review at https://github.com/anonips/
-MDP-Playground.git.

12Since the platform has many new improvements planned, we expand further on some of the points mentioned
here in some more detail in the Appendix (Section D).

8

https://github.com/anonips/-MDP-Playground.git
https://github.com/anonips/-MDP-Playground.git

Acknowledgments

The authors gratefully acknowledge support by BMBF grant DeToL, by the Bosch Center for Artificial
Intelligence, and by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant no. 716721. They would like to thank their
group, especially André Biedenkapp, for helpful discussions. Raghu would like to additionally thank
the RLSS 2019, Lille organizers and participants for a stimulating summer school.

References
Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous helicopter aerobatics through apprentice-

ship learning. The International Journal of Robotics Research, 29(13):1608–1639.

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Unterthiner, T., Brandstetter, J., and Hochreiter, S.
(2018). Rudder: Return decomposition for delayed rewards.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pages 4754–4765.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2017). Deep reinforce-
ment learning that matters.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot,
B., Azar, M., and Silver, D. (2017). Rainbow: Combining improvements in deep reinforcement
learning.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Goldberg, K., Gonzalez, J. E., Jordan, M. I.,
and Stoica, I. (2017). Rllib: Abstractions for distributed reinforcement learning.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2015). Continuous control with deep reinforcement learning.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu,
K. (2016). Asynchronous methods for deep reinforcement learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McKinney, K., Lattimore, T.,
Szepezvari, C., Singh, S., Roy, B. V., Sutton, R., Silver, D., and Hasselt, H. V. (2019). Behaviour
suite for reinforcement learning.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
5026–5033. IEEE.

9

A Additional Reward Plots

(a) DQN (b) Rainbow (c) A3C (d) A3C + LSTM

Figure 9: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of training
for the different algorithms when varying delay and specific sequences. Please note the different
colorbar scales.

(a) DQN (b) Rainbow (c) A3C (d) A3C + LSTM

Figure 10: Mean episodic evaluation rollout reward at the end of training for the different algorithms
when making reward for specific sequences denser. Please note the different colorbar scales.

B Additional Learning Curves

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 0, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 0, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 4

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 1, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 1, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 1, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

10

20

Re
wa

rd

Delay 1, Sequence Length 4

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 2, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 2, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 2, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 2, Sequence Length 4

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 4, Sequence Length 1

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 4, Sequence Length 2

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 4, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

Delay 4, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 8, Sequence Length 1

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 8, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 8, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 8, Sequence Length 4

Figure 11: Training Learning Curves for DQN when varying delay and specific sequences. Please note the
different colorbar scales.

10

0 5000 10000 15000 20000
Train Timesteps

0

50

100
Re

wa
rd

Delay 0, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 0, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 0, Sequence Length 4

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 1, Sequence Length 4

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 2, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 2, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 2, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 2, Sequence Length 4

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 4, Sequence Length 1

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 4, Sequence Length 2

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 4, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

Delay 4, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 8, Sequence Length 1

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 8, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 8, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 8, Sequence Length 4

Figure 12: Evaluation Learning Curves for DQN when varying delay and specific sequences. Please note
the different colorbar scales.

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.01, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.02, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

25

0

25

Re
wa

rd

P Noise 0.1, R Noise 25

0 5000 10000 15000 20000
Train Timesteps

5

10

Re
wa

rd

P Noise 0.25, R Noise 0

0 5000 10000 15000 20000
Train Timesteps

0

5

10

Re
wa

rd

P Noise 0.25, R Noise 1

0 5000 10000 15000 20000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.25, R Noise 5

0 5000 10000 15000 20000
Train Timesteps

10

0

10

Re
wa

rd

P Noise 0.25, R Noise 10

0 5000 10000 15000 20000
Train Timesteps

20

0

20

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 13: Training Learning Curves for DQN when varying transition noise and reward noise. Please note
the different colorbar scales.

11

0 50000 100000 150000
Train Timesteps

0

500
Re

wa
rd

Delay 0, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

100

Re
wa

rd

Delay 0, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 0, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 0, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

Delay 1, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 1, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 1, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 1, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 2, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20
Re

wa
rd

Delay 2, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 2, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 2, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 4, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 4, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 4, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 4, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

25

50

Re
wa

rd

Delay 8, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 8, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 8, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0.02

0.04

Re
wa

rd

Delay 8, Sequence Length 4

Figure 14: Training Learning Curves for A3C when varying delay and specific sequences. Please note the
different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 0, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 0, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

Delay 0, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 1, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 1, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

Delay 1, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 2, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 2, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 2, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

Delay 2, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 4, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 4, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 4, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

Re
wa

rd

Delay 4, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 8, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 8, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 8, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0.0

0.2

0.4

Re
wa

rd

Delay 8, Sequence Length 4

Figure 15: Evaluation Learning Curves for A3C when varying delay and specific sequences. Please note the
different Y-axis scales.

12

0 50000 100000 150000
Train Timesteps

0

500

Re
wa

rd
P Noise 0, R Noise 0

0 50000 100000 150000
Train Timesteps

0

500

Re
wa

rd

P Noise 0, R Noise 1

0 50000 100000 150000
Train Timesteps

0

200

400

Re
wa

rd

P Noise 0, R Noise 5

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

P Noise 0, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0, R Noise 25

0 50000 100000 150000
Train Timesteps

0

200

Re
wa

rd

P Noise 0.01, R Noise 0

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

P Noise 0.01, R Noise 1

0 50000 100000 150000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.01, R Noise 25

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

P Noise 0.02, R Noise 0

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

P Noise 0.02, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.02, R Noise 25

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.1, R Noise 0

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.1, R Noise 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.1, R Noise 5

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.1, R Noise 25

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.25, R Noise 0

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.25, R Noise 1

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

P Noise 0.25, R Noise 5

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

P Noise 0.25, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 16: Training Learning Curves for A3C when varying noises. Please note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 5

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

P Noise 0, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 5

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.01, R Noise 10

0 50000 100000 150000
Train Timesteps

0

2

Re
wa

rd

P Noise 0.01, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 5

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.02, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

P Noise 0.02, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 5

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.1, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

P Noise 0.1, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 5

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

Re
wa

rd

P Noise 0.25, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 17: Evaluation Learning Curves for A3C when varying noises. Please note the different Y-axis scales.

13

0 50000 100000 150000
Train Timesteps

0

500

Re
wa

rd
Delay 0, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

100

Re
wa

rd

Delay 0, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 0, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 0, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

Delay 1, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

100

Re
wa

rd

Delay 1, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 1, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 1, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 2, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

50

100
Re

wa
rd

Delay 2, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 2, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 2, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 4, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

Delay 4, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 4, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 4, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 8, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 8, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 8, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

Re
wa

rd

Delay 8, Sequence Length 4

Figure 18: Training Learning Curves for A3C with LSTM when varying delay and specific sequences. Please
note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 0, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 0, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 0, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 1, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 1, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 1, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 1, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 2, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Delay 2, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 2, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 2, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 4, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 4, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

Delay 4, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

Delay 4, Sequence Length 4

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Delay 8, Sequence Length 1

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

Delay 8, Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

Delay 8, Sequence Length 3

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

Re
wa

rd

Delay 8, Sequence Length 4

Figure 19: Evaluation Learning Curves for A3C with LSTM when varying delay and specific sequences.
Please note the different Y-axis scales.

14

0 50000 100000 150000
Train Timesteps

0

500
Re

wa
rd

P Noise 0, R Noise 0

0 50000 100000 150000
Train Timesteps

0

250

500

Re
wa

rd

P Noise 0, R Noise 1

0 50000 100000 150000
Train Timesteps

0

200

Re
wa

rd

P Noise 0, R Noise 5

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0, R Noise 25

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

P Noise 0.01, R Noise 0

0 50000 100000 150000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 5

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.01, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.01, R Noise 25

0 50000 100000 150000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.02, R Noise 0

0 50000 100000 150000
Train Timesteps

0

100

Re
wa

rd
P Noise 0.02, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.02, R Noise 5

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.02, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.02, R Noise 25

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.1, R Noise 0

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.1, R Noise 1

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

P Noise 0.1, R Noise 5

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.1, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.1, R Noise 25

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

P Noise 0.25, R Noise 0

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

P Noise 0.25, R Noise 1

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

P Noise 0.25, R Noise 5

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

P Noise 0.25, R Noise 10

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 20: Training Learning Curves for A3C with LSTM when varying noises. Please note the different
Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0, R Noise 5

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

P Noise 0, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd
P Noise 0, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 5

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

Re
wa

rd

P Noise 0.01, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

Re
wa

rd

P Noise 0.01, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.02, R Noise 5

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

Re
wa

rd

P Noise 0.02, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

Re
wa

rd

P Noise 0.02, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 1

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.1, R Noise 5

0 50000 100000 150000
Train Timesteps

0

2

4

Re
wa

rd

P Noise 0.1, R Noise 10

0 50000 100000 150000
Train Timesteps

0.5
1.0
1.5

Re
wa

rd

P Noise 0.1, R Noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 1

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.25, R Noise 5

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

P Noise 0.25, R Noise 10

0 50000 100000 150000
Train Timesteps

0

1

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 21: Evaluation Learning Curves for A3C with LSTM when varying noises. Please note the different
Y-axis scales.

15

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd
Delay 0, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 0, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 0, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 1, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 1, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 2, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100
Re

wa
rd

Delay 2, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 2, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 2, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 4, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 4, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 4, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 4, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 8, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

Delay 8, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 8, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 8, Sequence Length 4

Figure 22: Training Learning Curves for Rainbow when varying delay and specific sequences. Please note
the different Y-axis scales.

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 0, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 0, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 1, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 1, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 1, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 2, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

Delay 2, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 2, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 2, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 4, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 4, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 4, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 4, Sequence Length 4

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 8, Sequence Length 1

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

Delay 8, Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 8, Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

Delay 8, Sequence Length 4

Figure 23: Evaluation Learning Curves for Rainbow when varying delay and specific sequences. Please note
the different Y-axis scales.

16

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd
P Noise 0, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 10

5000 10000 15000 20000
Train Timesteps

10

0

10

Re
wa

rd

P Noise 0, R Noise 25

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

100

Re
wa

rd

P Noise 0.01, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.01, R Noise 10

5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.01, R Noise 25

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd
P Noise 0.02, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

P Noise 0.02, R Noise 10

5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.02, R Noise 25

5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

20

Re
wa

rd

P Noise 0.1, R Noise 10

5000 10000 15000 20000
Train Timesteps

10

0

10

Re
wa

rd

P Noise 0.1, R Noise 25

5000 10000 15000 20000
Train Timesteps

5

10

Re
wa

rd

P Noise 0.25, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

5

10

Re
wa

rd

P Noise 0.25, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

5

10

Re
wa

rd

P Noise 0.25, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

10

Re
wa

rd

P Noise 0.25, R Noise 10

5000 10000 15000 20000
Train Timesteps

10

0

10

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 24: Training Learning Curves for Rainbow when varying noises. Please note the different Y-axis
scales.

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0, R Noise 10

5000 10000 15000 20000
Train Timesteps

0

5

10

Re
wa

rd
P Noise 0, R Noise 25

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.01, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.01, R Noise 10

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.01, R Noise 25

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.02, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.02, R Noise 10

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.02, R Noise 25

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.1, R Noise 10

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

P Noise 0.1, R Noise 25

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 0

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 1

5000 10000 15000 20000
Train Timesteps

0

50

100

Re
wa

rd

P Noise 0.25, R Noise 5

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

P Noise 0.25, R Noise 10

5000 10000 15000 20000
Train Timesteps

0

25

50

Re
wa

rd

P Noise 0.25, R Noise 25

Figure 25: Evaluation Learning Curves for Rainbow when varying noises. Please note the different Y-axis
scales.

17

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

Sequence Length 2

5000 10000 15000 20000
Train Timesteps

0

10

20

Re
wa

rd

Sequence Length 3

5000 10000 15000 20000
Train Timesteps

0

10

20

Re
wa

rd

Sequence Length 4

Figure 26: Evaluation Learning Curves for DQN when make_denser is True for specific sequences. Please
note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

500

1000

1500

Re
wa

rd

Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

1000

2000
Re

wa
rd

Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

2000

4000

Re
wa

rd

Sequence Length 4

Figure 27: Training Learning Curves for A3C when make_denser is True for specific sequences. Please note
the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

Sequence Length 4

Figure 28: Evaluation Learning Curves for A3C when make_denser is True for specific sequences. Please
note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

500

1000

1500

Re
wa

rd

Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

1000

2000

3000

Re
wa

rd

Sequence Length 4

Figure 29: Training Learning Curves for A3C + LSTM when make_denser is True for specific sequences.
Please note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

7.5

Re
wa

rd

Sequence Length 2

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

Sequence Length 3

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

Sequence Length 4

Figure 30: Evaluation Learning Curves for A3C + LSTM when make_denser is True for specific sequences.
Please note the different Y-axis scales.

18

10000 20000
Train Timesteps

0

100

200

300

Re
wa

rd

Sequence Length 2

10000 20000
Train Timesteps

0

250

500

750

Re
wa

rd

Sequence Length 3

10000 20000
Train Timesteps

0

500

1000

Re
wa

rd

Sequence Length 4

Figure 31: Training Learning Curves for Rainbow when make_denser is True for specific sequences. Please
note the different Y-axis scales.

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

Sequence Length 2

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

Sequence Length 3

10000 20000
Train Timesteps

0

2

4

6

Re
wa

rd

Sequence Length 4

Figure 32: Evaluation Learning Curves for Rainbow when make_denser is True for specific sequences.
Please note the different Y-axis scales.

19

C Tuned Hyperparameters

The following contain the hyperparameter and environment meta-feature settings that we ran Ray
tune with. The names of the hyperparameters for the algorithms will match those used in Ray 0.7.3.
These configurations can be inserted into run_experiments.py in the git repository to rerun the
experiments from the paper.

C.1 DQN

tune.run(
"DQN",
stop={

"timesteps_total": 20000,
},

config={
"adam_epsilon": 1e-4,
"beta_annealing_fraction": 1.0,
"buffer_size": 1000000,
"double_q": False,
"dueling": False,
"exploration_final_eps": 0.01,
"exploration_fraction": 0.1,
"final_prioritized_replay_beta": 1.0,
"hiddens": None,
"learning_starts": 1000,
"lr": 1e-4,
"n_step": 1,
"noisy": False,
"num_atoms": 1,
"prioritized_replay": False,
"prioritized_replay_alpha": 0.5,
"sample_batch_size": 4,
"schedule_max_timesteps": 20000,
"target_network_update_freq": 800,
"timesteps_per_iteration": 100,
"train_batch_size": 32,

"env": "RLToy-v0",
"env_config": {

’dummy_seed’: dummy_seed,
’seed’: 0,
’state_space_type’: ’discrete’,
’action_space_type’: ’discrete’,
’state_space_size’: state_space_size,
’action_space_size’: action_space_size,
’generate_random_mdp’: True,
’delay’: delay,
’sequence_length’: sequence_length,
’reward_density’: reward_density,
’terminal_state_density’: terminal_state_density,
’repeats_in_sequences’: False,
’reward_unit’: 1.0,
’make_denser’: False,
’completely_connected’: True
},

"model": {
"fcnet_hiddens": [256, 256],
"custom_preprocessor": "ohe",
"custom_options": {},

20

"fcnet_activation": "tanh",
"use_lstm": False,
"max_seq_len": 20,
"lstm_cell_size": 256,
"lstm_use_prev_action_reward": False,
},

"callbacks": {
"on_episode_end": tune.function(on_episode_end),
"on_train_result": tune.function(on_train_result),

},
"evaluation_interval": 1,
"evaluation_config": {
"exploration_fraction": 0,
"exploration_final_eps": 0,
"batch_mode": "complete_episodes",
’horizon’: 100,

"env_config": {
"dummy_eval": True,
}

},
},
)

C.2 Rainbow

tune.run(
"DQN",
stop={

"timesteps_total": 20000,
},

config={
"adam_epsilon": 1e-4,
"buffer_size": 1000000,
"double_q": True,
"dueling": True,
"lr": 1e-3,
"exploration_final_eps": 0.01,
"exploration_fraction": 0.1,
"schedule_max_timesteps": 20000,
"learning_starts": 500,
"target_network_update_freq": 80,
"n_step": 4,
"noisy": True,
"num_atoms": 10,
"prioritized_replay": True,
"prioritized_replay_alpha": 0.75,
"prioritized_replay_beta": 0.4,
"final_prioritized_replay_beta": 1.0,
"beta_annealing_fraction": 1.0,

"sample_batch_size": 4,
"timesteps_per_iteration": 1000,
"train_batch_size": 32,
"min_iter_time_s": 1,

"env": "RLToy-v0",
"env_config": {

’dummy_seed’: dummy_seed,

21

’seed’: 0,
’state_space_type’: ’discrete’,
’action_space_type’: ’discrete’,
’state_space_size’: state_space_size,
’action_space_size’: action_space_size,
’generate_random_mdp’: True,
’delay’: delay,
’sequence_length’: sequence_length,
’reward_density’: reward_density,
’terminal_state_density’: terminal_state_density,
’repeats_in_sequences’: False,
’reward_unit’: 1.0,
’make_denser’: False,
’completely_connected’: True
},

"model": {
"fcnet_hiddens": [256, 256],
"custom_preprocessor": "ohe",
"custom_options": {},
"fcnet_activation": "tanh",
"use_lstm": False,
"max_seq_len": 20,
"lstm_cell_size": 256,
"lstm_use_prev_action_reward": False,
},

"callbacks": {
"on_episode_end": tune.function(on_episode_end),
"on_train_result": tune.function(on_train_result),

},
"evaluation_interval": 1,
"evaluation_config": {
"exploration_fraction": 0,
"exploration_final_eps": 0,
"batch_mode": "complete_episodes",
’horizon’: 100,

"env_config": {
"dummy_eval": True,
}

},
},

)

C.3 A3C

tune.run(
"A3C",
stop={

"timesteps_total": 150000,
},

config={
"sample_batch_size": 10,
"train_batch_size": 100,
"use_pytorch": False,
"lambda": 0.0,
"grad_clip": 10.0,
"lr": 0.0001,
"lr_schedule": None,
"vf_loss_coeff": 0.5,
"entropy_coeff": 0.1,

22

"min_iter_time_s": 0,
"sample_async": True,
"timesteps_per_iteration": 5000,
"num_workers": 3,
"num_envs_per_worker": 5,

"optimizer": {
"grads_per_step": 10

},

"env": "RLToy-v0",
"env_config": {

’dummy_seed’: dummy_seed,
’seed’: 0,
’state_space_type’: ’discrete’,
’action_space_type’: ’discrete’,
’state_space_size’: state_space_size,
’action_space_size’: action_space_size,
’generate_random_mdp’: True,
’delay’: delay,
’sequence_length’: sequence_length,
’reward_density’: reward_density,
’terminal_state_density’: terminal_state_density,
’repeats_in_sequences’: False,
’reward_unit’: 1.0,
’make_denser’: False,
’completely_connected’: True
},

"model": {
"fcnet_hiddens": [128, 128, 128],
"custom_preprocessor": "ohe",
"custom_options": {},
"fcnet_activation": "tanh",
"use_lstm": False,
"max_seq_len": 20,
"lstm_cell_size": 256,
"lstm_use_prev_action_reward": False,
},

"callbacks": {
"on_episode_end": tune.function(on_episode_end),
"on_train_result": tune.function(on_train_result),

},
"evaluation_interval": 1,
"evaluation_config": {
"exploration_fraction": 0,
"exploration_final_eps": 0,
"batch_mode": "complete_episodes",
’horizon’: 100,

"env_config": {
"dummy_eval": True,
}

},
},

)

C.4 A3C + LSTM

tune.run(

23

"A3C",
stop={

"timesteps_total": 150000,
},

config={
"sample_batch_size": 10,
"train_batch_size": 100,
"use_pytorch": False,
"lambda": 0.0,
"grad_clip": 10.0,
"lr": 0.0001,
"lr_schedule": None,
"vf_loss_coeff": 0.1,
"entropy_coeff": 0.1,
"min_iter_time_s": 0,
"sample_async": True,
"timesteps_per_iteration": 5000,
"num_workers": 3,
"num_envs_per_worker": 5,

"optimizer": {
"grads_per_step": 10

},

"env": "RLToy-v0",
"env_config": {

’dummy_seed’: dummy_seed,
’seed’: 0,
’state_space_type’: ’discrete’,
’action_space_type’: ’discrete’,
’state_space_size’: state_space_size,
’action_space_size’: action_space_size,
’generate_random_mdp’: True,
’delay’: delay,
’sequence_length’: sequence_length,
’reward_density’: reward_density,
’terminal_state_density’: terminal_state_density,
’repeats_in_sequences’: False,
’reward_unit’: 1.0,
’make_denser’: False,
’completely_connected’: True
},

"model": {
"fcnet_hiddens": [128, 128, 128],
"custom_preprocessor": "ohe",
"custom_options": {},
"fcnet_activation": "tanh",
"use_lstm": True,
"max_seq_len": delay + sequence_length,
"lstm_cell_size": 64,
"lstm_use_prev_action_reward": True,
},

"callbacks": {
"on_episode_end": tune.function(on_episode_end),
"on_train_result": tune.function(on_train_result),

},
"evaluation_interval": 1,

24

"evaluation_config": {
"exploration_fraction": 0,
"exploration_final_eps": 0,
"batch_mode": "complete_episodes",
’horizon’: 100,

"env_config": {
"dummy_eval": True,
}

},
},

)

D More on Conclusion and Future Work

Further interesting toy experiments which are already possible with our platform are varying the
terminal state densities to have environments for benchmarking safe RL.

Another key meta-feature, or rather meta-feature related to specific sequences, is manifolds. Let’s say
every specific sequence that was rewarded had a length n and the reward density was, say, 0.1. If
we had no prior knowledge of the environment and did completely random exploration, we would
need O(n|S|) sequences to obtain a reward signal which is exponential in the state space size (if we
ignore the action space). We need to have some prior knowledge about the manifolds that exist in
the environment to explore in a directed manner. This we intend to infuse through having a model
of the environment. We will initially create simple manifolds for different tasks, such as rewarding
following a circle in a 3-D continuous space and test directed exploration strategies to see how these
choose to explore.

The states and actions contained in a specific sequence could just be a single compound state and
compound action if we discretised time in a suitable manner. This brings us to the idea of learning at
multiple timescales. HRL algorithms with formulations like the options framework (Sutton et al.,
1999), could try to identify these specific sequences at the higher level and then carry out "atomic"
actions at the lower level.

We also hope to benchmark other algorithms like PPO13 (Schulman et al., 2017), Rudder (Arjona-
Medina et al., 2018), MCTS (Silver et al., 2016), DDPG14 (Lillicrap et al., 2015) on continuous tasks
and table-based algorithms and to show theoretical results match with practice on toy benchmarks.

We also aim to promote reproducibility in RL as in (Henderson et al., 2017) and hope our benchmark
helps with that goal. To this end, we have already improved the Gym Box and Discrete Spaces to
allow them to be seeded as well.

We need different RL algorithms for different environments. Aside from some basic heuristics
such as applying DDPG (Lillicrap et al., 2015) to continuous environments and DQN to discrete
environments, it is not very clear when to use which RL algorithms. We hope this will be a first
step to being able to identify from the environment what sort of algorithm to use and to help build
adaptive algorithms which adapt to the environment at hand. Additionally, aside from being a great
benchmark for RL algorithms, it is also a great didactic tool for teaching how RL algorithms work in
different environments.

13We tried PPO but could not get it to learn
14We tried DDPG also but there seemed to be a bug in the implementation and it crashed even on tuned

examples from Ray

25

	1 Introduction
	2 Key Meta-Features
	3 MDP Playground
	4 Experiments and Results
	5 Conclusion and Future Work
	A Additional Reward Plots
	B Additional Learning Curves
	C Tuned Hyperparameters
	C.1 DQN
	C.2 Rainbow
	C.3 A3C
	C.4 A3C + LSTM

	D More on Conclusion and Future Work

