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Abstract

Deep Learning has enabled remarkable progress over the last years on a variety of tasks,
such as image recognition, speech recognition, and machine translation. One crucial aspect
for this progress are novel neural architectures. Currently employed architectures have
mostly been developed manually by human experts, which is a time-consuming and error-
prone process. Because of this, there is growing interest in automated neural architecture
search methods. We provide an overview of existing work in this field of research and cate-
gorize them according to three dimensions: search space, search strategy, and performance
estimation strategy.

Keywords: Neural Architecture Search, AutoML, AutoDL, Search Space Design, Search
Strategy, Performance Estimation Strategy

1. Introduction

The success of deep learning in perceptual tasks is largely due to its automation of the
feature engineering process: hierarchical feature extractors are learned in an end-to-end
fashion from data rather than manually designed. This success has been accompanied,
however, by a rising demand for architecture engineering, where increasingly more complex
neural architectures are designed manually. Neural Architecture Search (NAS), the process
of automating architecture engineering, is thus a logical next step in automating machine
learning. Already by now, NAS methods have outperformed manually designed architec-
tures on some tasks such as image classification (Zoph et al., 2018; Real et al., 2019), object
detection (Zoph et al., 2018) or semantic segmentation (Chen et al., 2018). NAS can be
seen as subfield of AutoML (Hutter et al., 2019) and has significant overlap with hyperpa-
rameter optimization (Feurer and Hutter, 2019) and meta-learning (Vanschoren, 2019). We
categorize methods for NAS according to three dimensions: search space, search strategy,
and performance estimation strategy:
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Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

• Search Space. The search space defines which architectures can be represented
in principle. Incorporating prior knowledge about typical properties of architectures
well-suited for a task can reduce the size of the search space and simplify the search.
However, this also introduces a human bias, which may prevent finding novel archi-
tectural building blocks that go beyond the current human knowledge.

• Search Strategy. The search strategy details how to explore the search space
(which is often exponentially large or even unbounded). It encompasses the clas-
sical exploration-exploitation trade-off since, on the one hand, it is desirable to find
well-performing architectures quickly, while on the other hand, premature convergence
to a region of suboptimal architectures should be avoided.

• Performance Estimation Strategy. The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data. Performance
Estimation refers to the process of estimating this performance: the simplest option is
to perform a standard training and validation of the architecture on data, but this is
unfortunately computationally expensive and limits the number of architectures that
can be explored. Much recent research therefore focuses on developing methods that
reduce the cost of these performance estimations.

We refer to Figure 1 for an illustration. The article is also structured according to these
three dimensions: we start with discussing search spaces in Section 2, cover search strategies
in Section 3, and outline performance estimation methods in Section 4. We conclude with
an outlook on future directions in Section 5.

2. Search Space

The search space defines which neural architectures a NAS approach might discover in
principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural networks, as illus-
trated in Figure 2 (left). A chain-structured neural network architecture A can be written
as a sequence of n layers, where the i’th layer Li receives its input from layer i − 1 and
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Figure 2: An illustration of different architecture spaces. Each node in the graphs cor-
responds to a layer in a neural network, e.g., a convolutional or pooling layer.
Different layer types are visualized by different colors. An edge from layer Li to
layer Lj denotes that Lj receives the output of Li as input. Left: an element of a
chain-structured space. Right: an element of a more complex search space with
additional layer types and multiple branches and skip connections.

its output serves as the input for layer i + 1, i.e., A = Ln ◦ . . . L1 ◦ L0. The search space
is then parametrized by: (i) the (maximum) number of layers n (possibly unbounded);
(ii) the type of operation every layer executes, e.g., pooling, convolution, or more advanced
operations like depthwise separable convolutions (Chollet, 2016) or dilated convolutions (Yu
and Koltun, 2016); and (iii) hyperparameters associated with the operation, e.g., number
of filters, kernel size and strides for a convolutional layer (Baker et al., 2017a; Suganuma
et al., 2017; Cai et al., 2018a), or simply number of units for fully-connected networks (Men-
doza et al., 2016). Note that the parameters from (iii) are conditioned on (ii), hence the
parametrization of the search space is not fixed-length but rather a conditional space.

Recent work on NAS (Brock et al., 2017; Elsken et al., 2017; Zoph et al., 2018; Elsken
et al., 2019; Real et al., 2019; Cai et al., 2018b) incorporates modern design elements
known from hand-crafted architectures, such as skip connections, which allow to build
complex, multi-branch networks, as illustrated in Figure 2 (right). In this case the input
of layer i can be formally described as a function gi(L

out
i−1, . . . , L

out
0 ) combining previous

layer outputs. Employing such a function results in significantly more degrees of freedom.
Special cases of these multi-branch architectures are (i) the chain-structured networks (by
setting gi(L

out
i−1, . . . , L

out
0 ) = Lout

i−1), (ii) Residual Networks (He et al., 2016), where previous
layer outputs are summed (gi(L

out
i−1, . . . , L

out
0 ) = Lout

i−1 + Lout
j , j < i− 1) and (iii) DenseNets

(Huang et al., 2017), where previous layer outputs are concatenated (gi(L
out
i−1, . . . , L

out
0 ) =

concat(Lout
i−1, . . . , L

out
0 )).

Motivated by hand-crafted architectures consisting of repeated motifs (Szegedy et al.,
2016; He et al., 2016; Huang et al., 2017), Zoph et al. (2018) and Zhong et al. (2018a)
propose to search for such motifs, dubbed cells or blocks, respectively, rather than for whole
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Figure 3: Illustration of the cell search space. Left: Two different cells, e.g., a normal cell
(top) and a reduction cell (bottom) (Zoph et al., 2018). Right: an architecture
built by stacking the cells sequentially. Note that cells can also be combined in a
more complex manner, such as in multi-branch spaces, by simply replacing layers
with cells.

architectures. Zoph et al. (2018) optimize two different kind of cells: a normal cell that
preserves the dimensionality of the input and a reduction cell which reduces the spatial
dimension. The final architecture is then built by stacking these cells in a predefined
manner, as illustrated in Figure 3. This search space has three major advantages compared
to the ones discussed above:

1. The size of the search space is drastically reduced since cells usually consist of signif-
icantly less layers than whole architectures. For example, Zoph et al. (2018) estimate
a seven-times speed-up compared to their previous work (Zoph and Le, 2017) while
achieving better performance.

2. Architectures built from cells can more easily be transferred or adapted to other data
sets by simply varying the number of cells and filters used within a model. Indeed,
Zoph et al. (2018) transfer cells optimized on CIFAR-10 to ImageNet and achieve
state-of-the-art performance.

3. Creating architectures by repeating building blocks has proven a useful design prin-
ciple in general, such as repeating an LSTM block in RNNs or stacking a residual
block.

Consequently, this cell-based search space is also successfully employed by many recent
works (Real et al., 2019; Liu et al., 2018a; Pham et al., 2018; Elsken et al., 2019; Cai et al.,
2018b; Liu et al., 2019b; Zhong et al., 2018b). However, a new design-choice arises when
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using a cell-based search space, namely how to choose the macro-architecture: how many
cells shall be used and how should they be connected to build the actual model? For exam-
ple, Zoph et al. (2018) build a sequential model from cells, in which each cell receives the
outputs of the two preceding cells as input, while Cai et al. (2018b) employ the high-level
structure of well-known manually designed architectures, such as DenseNet (Huang et al.,
2017), and use their cells within these models. In principle, cells can be combined arbi-
trarily, e.g., within the multi-branch space described above, by simply replacing layers with
cells. Ideally, both the macro-architecture and the micro-architecture (i.e., the structure of
the cells) should be optimized jointly instead of solely optimizing the micro-architecture;
otherwise, one may easily end up having to do manual macro-architecture engineering after
finding a well-performing cell. One step in the direction of optimizing macro-architectures
is the hierarchical search space introduced by Liu et al. (2018b), which consists of several
levels of motifs. The first level consists of the set of primitive operations, the second level
of different motifs that connect primitive operations via a directed acyclic graph, the third
level of motifs that encode how to connect second-level motifs, and so on. The cell-based
search space can be seen as a special case of this hierarchical search space where the number
of levels is three, the second level motifs correspond to the cells, and the third level is the
hard-coded macro-architecture.

The choice of the search space largely determines the difficulty of the optimization
problem: even for the case of the search space based on a single cell with fixed macro-
architecture, the optimization problem remains (i) non-continuous and (ii) relatively high-
dimensional (since more complex models tend to perform better, resulting in more design
choices).

We note that the architectures in many search spaces can be written as fixed-length
vectors; e.g., the search space for each of the two cells by Zoph et al. (2018) can be written as
a 40-dimensional1 search space with categorical dimensions, each of which chooses between
a small number of different building blocks and inputs. Unbounded search spaces can be
constrained to have a (potentially very large, but finite) number of layers, which again gives
rise to fixed-size search spaces with (potentially many) conditional dimensions.

In the next section, we discuss Search Strategies that are well-suited for these kinds of
search spaces.

3. Search Strategy

Many different search strategies can be used to explore the space of neural architectures, in-
cluding random search, Bayesian optimization, evolutionary methods, reinforcement learn-
ing (RL), and gradient-based methods. Historically, evolutionary algorithms were already
used by many researchers to evolve neural architectures (and often also their weights)
decades ago (see, e.g., Angeline et al., 1994; Stanley and Miikkulainen, 2002; Floreano

1. Each of the 2 cells consists of 5 blocks. For each block, 2 inputs are chosen and for each of these inputs
an operation to be applied to the input is chosen, resulting in a 2 ·5 ·2 ·2 = 40 dimensional representation.
Note that originally there was another dimension for either summing or concatenating the operations
within a block. However, this choice was discarded in the experiments of the paper and the outputs
within a block were always summed.
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et al., 2008; Stanley et al., 2009; Jozefowicz et al., 2015). Yao (1999) provides a literature
review of work earlier than 2000.

Bayesian optimization celebrated several early successes in NAS since 2013, leading to
state-of-the-art vision architectures (Bergstra et al., 2013), state-of-the-art performance for
CIFAR-10 without data augmentation (Domhan et al., 2015), and the first automatically-
tuned neural networks to win on competition data sets against human experts (Mendoza
et al., 2016). NAS became a mainstream research topic in the machine learning community
after Zoph and Le (2017) obtained competitive performance on the CIFAR-10 and Penn
Treebank benchmarks with a search strategy based on reinforcement learning. While Zoph
and Le (2017) used vast computational resources to achieve this result (800 GPUs for
three to four weeks), after their work, a wide variety of methods have been published in
quick succession to reduce the computational costs and achieve further improvements in
performance.

To frame NAS as a reinforcement learning (RL) problem (Baker et al., 2017a; Zoph and
Le, 2017; Zhong et al., 2018a; Zoph et al., 2018), the generation of a neural architecture can
be considered to be the agent’s action, with the action space identical to the search space.
The agent’s reward is based on an estimate of the performance of the trained architecture
on unseen data (see Section 4). Different RL approaches differ in how they represent
the agent’s policy and how they optimize it: Zoph and Le (2017) use a recurrent neural
network (RNN) policy to sequentially sample a string that in turn encodes the neural
architecture. They initially trained this network with the REINFORCE policy gradient
algorithm (Williams, 1992), but in their follow-up work (Zoph et al., 2018) use Proximal
Policy Optimization (Schulman et al., 2017) instead. Baker et al. (2017a) use Q-learning to
train a policy which sequentially chooses a layer’s type and corresponding hyperparameters.

An alternative view of these approaches is as sequential decision processes in which the
policy samples actions to generate the architecture sequentially, the environment’s “state”
contains a summary of the actions sampled so far, and the (undiscounted) reward is obtained
only after the final action. However, since no interaction with an environment occurs during
this sequential process (no external state is observed, and there are no intermediate rewards),
we find it more intuitive to interpret the architecture sampling process as the sequential
generation of a single action; this simplifies the RL problem to a stateless multi-armed
bandit problem.

A related approach was proposed by Cai et al. (2018a), who frame NAS as a sequential
decision process: in their approach the state is the current (partially trained) architecture,
the reward is an estimate of the architecture’s performance, and the action corresponds to an
application of function-preserving mutations, dubbed network morphisms (Chen et al., 2016;
Wei et al., 2017), see also Section 4, followed by a training phase of the network. In order to
deal with variable-length network architectures, they use a bi-directional LSTM to encode
architectures into a fixed-length representation. Based on this encoded representation,
actor networks decide on the sampled action. The combination of these two components
constitute the policy, which is trained end-to-end with the REINFORCE policy gradient
algorithm. We note that this approach will not visit the same state (architecture) twice.

An alternative to using RL are neuro-evolutionary approaches that use evolutionary
algorithms for optimizing the neural architecture. The first such approach for designing
neural networks we are aware of dates back almost three decades: Miller et al. (1989)
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use genetic algorithms to propose architectures and use backpropagation to optimize their
weights. Many neuro-evolutionary approaches since then (Angeline et al., 1994; Stanley and
Miikkulainen, 2002; Stanley et al., 2009) use genetic algorithms to optimize both the neural
architecture and its weights; however, when scaling to contemporary neural architectures
with millions of weights for supervised learning tasks, SGD-based weight optimization meth-
ods currently outperform evolutionary ones.2 More recent neuro-evolutionary approaches
(Real et al., 2017; Suganuma et al., 2017; Liu et al., 2018b; Real et al., 2019; Miikkulainen
et al., 2017; Xie and Yuille, 2017; Elsken et al., 2019) therefore again use gradient-based
methods for optimizing weights and solely use evolutionary algorithms for optimizing the
neural architecture itself. Evolutionary algorithms evolve a population of models, i.e., a
set of (possibly trained) networks; in every evolution step, at least one model from the
population is sampled and serves as a parent to generate offsprings by applying mutations
to it. In the context of NAS, mutations are local operations, such as adding or removing a
layer, altering the hyperparameters of a layer, adding skip connections, as well as altering
training hyperparameters. After training the offsprings, their fitness (e.g., performance on
a validation set) is evaluated and they are added to the population.

Neuro-evolutionary methods differ in how they sample parents, update populations,
and generate offsprings. For example, Real et al. (2017), Real et al. (2019), and Liu et al.
(2018b) use tournament selection (Goldberg and Deb, 1991) to sample parents, whereas
Elsken et al. (2019) sample parents from a multi-objective Pareto front using an inverse
density. Real et al. (2017) remove the worst individual from a population, while Real et al.
(2019) found it beneficial to remove the oldest individual (which decreases greediness), and
Liu et al. (2018b) do not remove individuals at all. To generate offspring, most approaches
initialize child networks randomly, while Elsken et al. (2019) employ Lamarckian inheri-
tance, i.e, knowledge (in the form of learned weights) is passed on from a parent network
to its children by using network morphisms. Real et al. (2017) also let an offspring inherit
all parameters of its parent that are not affected by the applied mutation; while this in-
heritance is not strictly function-preserving it might also speed up learning compared to a
random initialization. Moreover, they also allow mutating the learning rate which can be
seen as a way for optimizing the learning rate schedule during NAS. We refer to Stanley
et al. (2019) for a recent in-depth review on neuro-evolutionary methods.

Real et al. (2019) conduct a case study comparing RL, evolution, and random search
(RS), concluding that RL and evolution perform equally well in terms of final test accuracy,
with evolution having better anytime performance and finding smaller models. Both ap-
proaches consistently perform better than RS in their experiments, but with a rather small
margin: RS achieved test errors of approximately 4% on CIFAR-10, while RL and evolution
reached approximately 3.5% (after “model augmentation” where depth and number of fil-
ters was increased; the difference on the non-augmented space actually used for the search
was approx. 2%). The difference was even smaller for Liu et al. (2018b), who reported a
test error of 3.9% on CIFAR-10 and a top-1 validation error of 21.0% on ImageNet for RS,
compared to 3.75% and 20.3% for their evolution-based method, respectively.

2. Some recent work shows that evolving even millions of weights is competitive to gradient-based opti-
mization when only high-variance estimates of the gradient are available, e.g., for reinforcement learning
tasks (Salimans et al., 2017; Such et al., 2017; Chrabaszcz et al., 2018). Nonetheless, for supervised
learning tasks gradient-based optimization is by far the most common approach.
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Bayesian Optimization (BO, see, e.g., (Shahriari et al., 2016)) is one of the most pop-
ular methods for hyperparameter optimization, but it has not been applied to NAS by
many groups since typical BO toolboxes are based on Gaussian processes and focus on low-
dimensional continuous optimization problems. Swersky et al. (2013) and Kandasamy et al.
(2018) derive kernel functions for architecture search spaces in order to use classic GP-based
BO methods. In contrast, several works use tree-based models (in particular, tree Parzen
estimators (Bergstra et al., 2011), or random forests (Hutter et al., 2011)) to effectively
search high-dimensional conditional spaces and achieve state-of-the-art performance on a
wide range of problems, optimizing both neural architectures and their hyperparameters
jointly (Bergstra et al., 2013; Domhan et al., 2015; Mendoza et al., 2016; Zela et al., 2018).
While a full comparison is lacking, there is preliminary evidence that these approaches can
also outperform evolutionary algorithms (Klein et al., 2018).

Negrinho and Gordon (2017) and Wistuba (2017) exploit the tree-structure of their
search space and use Monte Carlo Tree Search. Elsken et al. (2017) propose a simple
yet well performing hill climbing algorithm that discovers high-quality architectures by
greedily moving in the direction of better performing architectures without requiring more
sophisticated exploration mechanisms.

While the methods above employ a discrete search space, Liu et al. (2019b) propose a
continuous relaxation to enable direct gradient-based optimization: instead of fixing a single
operation oi (e.g., convolution or pooling) to be executed at a specific layer, the authors
compute a convex combination from a set of operations {o1, . . . , om}. More specifically, given
a layer input x, the layer output y is computed as y =

∑m
i=1 αioi(x), αi ≥ 0,

∑m
i=1 αi = 1,

where the convex coefficients αi effectively parametrize the network architecture. Liu et al.
(2019b) then optimize both the network weights and the network architecture by alternating
gradient descent steps on training data for weights and on validation data for architectural
parameters such as α. Eventually, a discrete architecture is obtained by choosing the
operation i∗ with i∗ = arg maxi αi for every layer. Instead of optimizing a weighting α of
possible operations, Xie et al. (2019); Cai et al. (2019) propose to optimize a parametrized
distribution over the possible operations. Shin et al. (2018) and Ahmed and Torresani
(2018) also employ gradient-based optimization of neural architectures, however focusing
on optimizing layer hyperparameters or connectivity patterns, respectively.

4. Performance Estimation Strategy

The search strategies discussed in Section 3 aim at finding a neural architecture A that
maximizes some performance measure, such as accuracy on unseen data. To guide their
search process, these strategies need to estimate the performance of a given architecture A
they consider. The simplest way of doing this is to train A on training data and evaluate its
performance on validation data. However, training each architecture to be evaluated from
scratch frequently yields computational demands in the order of thousands of GPU days
for NAS (Zoph and Le, 2017; Real et al., 2017; Zoph et al., 2018; Real et al., 2019). This
naturally leads to developing methods for speeding up performance estimation, which we
will now discuss. We refer to Table 4 for an overview of existing methods.

Performance can be estimated based on lower fidelities of the actual performance after
full training (also denoted as proxy metrics). Such lower fidelities include shorter training

8



Speed-up method How are speed-ups achieved? References

Lower fidelity
estimates

Training time reduced by
training for fewer epochs, on
subset of data, downscaled
models, downscaled data, ...

Li et al. (2017),
Zoph et al. (2018),
Zela et al. (2018),
Falkner et al. (2018),
Real et al. (2019),
Runge et al. (2019)

Learning Curve
Extrapolation

Training time reduced as
performance can be extrapolated
after just a few epochs of training.

Swersky et al. (2014),
Domhan et al. (2015),
Klein et al. (2017a),
Baker et al. (2017b)

Weight Inheritance/
Network Morphisms

Instead of training models from
scratch, they are warm-started by
inheriting weights of, e.g., a
parent model.

Real et al. (2017),
Elsken et al. (2017),
Elsken et al. (2019),
Cai et al. (2018a,b)

One-Shot Models/
Weight Sharing

Only the one-shot model needs
to be trained; its weights are
then shared across different
architectures that are just
subgraphs of the one-shot model.

Saxena and Verbeek (2016),

Pham et al. (2018),
Bender et al. (2018),
Liu et al. (2019b),
Cai et al. (2019),
Xie et al. (2019)

Table 1: Overview of different methods for speeding up performance estimation in NAS.

times (Zoph et al., 2018; Zela et al., 2018), training on a subset of the data (Klein et al.,
2017b), on lower-resolution images (Chrabaszcz et al., 2017), or with less filters per layer
and less cells (Zoph et al., 2018; Real et al., 2019). While these low-fidelity approximations
reduce the computational cost, they also introduce bias in the estimate as performance will
typically be underestimated. This may not be problematic as long as the search strategy
only relies on ranking different architectures and the relative ranking remains stable. How-
ever, recent results indicate that this relative ranking can change dramatically when the
difference between the cheap approximations and the “full” evaluation is too big (Zela et al.,
2018), arguing for a gradual increase in fidelities (Li et al., 2017; Falkner et al., 2018).

Another possible way of estimating an architecture’s performance builds upon learning
curve extrapolation (Swersky et al., 2014; Domhan et al., 2015; Klein et al., 2017a; Baker
et al., 2017b; Rawal and Miikkulainen, 2018). Domhan et al. (2015) propose to extrapo-
late initial learning curves and terminate those predicted to perform poorly to speed up
the architecture search process. Swersky et al. (2014), Klein et al. (2017a), Baker et al.
(2017b), and Rawal and Miikkulainen (2018) also consider architectural hyperparameters
for predicting which partial learning curves are most promising. Training a surrogate model
for predicting the performance of novel architectures is also proposed by Liu et al. (2018a),
who do not employ learning curve extrapolation but support predicting performance based
on architectural/cell properties and extrapolate to architectures/cells with larger size than
seen during training. The main challenge for predicting the performances of neural archi-
tectures is that, in order to speed up the search process, good predictions in a relatively
large search space need to be made based on relatively few evaluations.
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Another approach to speed up performance estimation is to initialize the weights of
novel architectures based on weights of other architectures that have been trained before.
One way of achieving this, dubbed network morphisms (Wei et al., 2016), allows modifying
an architecture while leaving the function represented by the network unchanged, resulting
in methods that only require a few GPU days (Elsken et al., 2017; Cai et al., 2018a,b; Jin
et al., 2018). This allows increasing the capacity of networks successively and retaining
high performance without requiring training from scratch. Continuing training for a few
epochs can also make use of the additional capacity introduced by network morphisms.
An advantage of these approaches is that they allow search spaces without an inherent
upper bound on the architecture’s size (Elsken et al., 2017); on the other hand, strict
network morphisms can only make architectures larger and may thus lead to overly complex
architectures. This can be attenuated by employing approximate network morphisms that
allow shrinking architectures (Elsken et al., 2019).

One-Shot Architecture Search (see Figure 4) treats all architectures as different sub-
graphs of a supergraph (the one-shot model) and shares weights between architectures that
have edges of this supergraph in common (Saxena and Verbeek, 2016; Brock et al., 2017;
Pham et al., 2018; Liu et al., 2019b; Bender et al., 2018; Cai et al., 2019; Xie et al., 2019).
Only the weights of a single one-shot model need to be trained (in one of various ways),
and architectures (which are just subgraphs of the one-shot model) can then be evaluated
without any separate training by inheriting trained weights from the one-shot model. This
greatly speeds up performance estimation of architectures, since no training is required (only
evaluating performance on validation data), again resulting in methods that only require
a few GPU days. The one-shot model typically incurs a large bias as it underestimates
the actual performance of the best architectures severely; nevertheless, it allows ranking
architectures, which would be sufficient if the estimated performance correlates strongly
with the actual performance. However, it is currently not clear if this is actually the case
(Bender et al., 2018; Sciuto et al., 2019).

Different one-shot NAS methods differ in how the one-shot model is trained: ENAS
(Pham et al., 2018) learns a RNN controller that samples architectures from the search
space and trains the one-shot model based on approximate gradients obtained through RE-
INFORCE. DARTS (Liu et al., 2019b) optimizes all weights of the one-shot model jointly
with a continuous relaxation of the search space, obtained by placing a mixture of candidate
operations on each edge of the one-shot model. Instead of optimizing real-valued weights
on the operations as in DARTS, SNAS (Xie et al., 2019) optimizes a distribution over
the candidate operations. The authors employ the concrete distribution (Maddison et al.,
2017; Jang et al., 2017) and reparametrization (Kingma and Welling, 2014) to relax the
discrete distribution and make it differentiable, enabling optimization via gradient descent.
To overcome the necessity of keeping the entire one-shot model in the GPU memory, Prox-
ylessNAS (Cai et al., 2019) “binarizes” the architectural weights, masking out all but one
edge per operation. The probabilities for an edge being either masked out or not are then
learned by sampling a few binarized architectures and using BinaryConnect (Courbariaux
et al., 2015) to update the corresponding probabilities. Bender et al. (2018) only train the
one-shot model once and show that this is sufficient when deactivating parts of this model
stochastically during training using path dropout.
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Figure 4: Illustration of one-shot architecture search. Simple network with an input node
(denoted as 0), three hidden nodes (denoted as 1,2,3) and one output node (de-
noted as 4). Instead of applying a single operation (such as a 3x3 convolution)
to a node, the one-shot model (left) contains several candidate operations for ev-
ery node, namely 3x3 convolution (red edges), 5x5 convolution (blue edges) and
MaxPooling (green edges) in the above illustration. Once the one-shot model is
trained, its weights are shared across different architectures, which are simply
subgraphs of the one-shot model (right). Figure inspired by Liu et al. (2019b).

While the previously mentioned approaches optimize a distribution over architectures
during training, the approach of Bender et al. (2018) can be seen as using a fixed dis-
tribution. The high performance obtainable by the latter indicates that the combination
of weight sharing and a fixed (carefully chosen) distribution might (perhaps surprisingly)
be the only required ingredients for one-shot NAS. Related to these approaches is meta-
learning of hypernetworks that generate weights for novel architectures and thus requires
only training the hypernetwork but not the architectures themselves (Brock et al., 2017;
Zhang et al., 2019). The main difference here is that weights are not strictly shared but
generated by the shared hypernetwork (conditional on the sampled architecture).

A general limitation of one-shot NAS is that the supergraph defined a priori restricts
the search space to its subgraphs. Moreover, approaches which require that the entire
supergraph resides in GPU memory during architecture search will be restricted to relatively
small supergraphs and search spaces accordingly, and are thus typically used in combination
with cell-based search spaces. While approaches based on weight sharing have substantially
reduced the computational resources required for NAS (from thousands to a few GPU
days), it is currently not well understood which biases they introduce into the search if the
sampling distribution of architectures is optimized along with the one-shot model instead of
fixing it (Bender et al., 2018). For instance, an initial bias in exploring certain parts of the
search space more than others might lead to the weights of the one-shot model being better
adapted for these architectures, which in turn would reinforce the bias of the search to
these parts of the search space. This might result in premature convergence of NAS or little
correlation between the one-shot and true performance of an architecture (Sciuto et al.,
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2019). In general, a more systematic analysis of biases introduced by different performance
estimators would be a desirable direction for future work.

5. Future Directions

In this section, we discuss several current and future directions for research on NAS. Most
existing work has focused on NAS for image classification. On the one hand, this provides a
challenging benchmark since a lot of manual engineering has been devoted to finding archi-
tectures that perform well in this domain and are not easily outperformed by NAS. On the
other hand, it is relatively easy to define a well-suited search space by exploiting knowledge
from manual engineering. This in turn makes it unlikely that NAS will find architectures
that substantially outperform existing ones considerably since the found architectures can-
not differ fundamentally. We thus consider it important to go beyond image classification
problems by applying NAS to less explored domains. Notable first steps in this direction
have been taken in image restoration (Suganuma et al., 2018), semantic segmentation (Chen
et al., 2018; Nekrasov et al., 2018; Liu et al., 2019a), transfer learning (Wong et al., 2018),
machine translation (So et al., 2019), reinforcement learning (Runge et al., 2019)3, as well
as optimizing recurrent neural networks (Greff et al., 2015; Jozefowicz et al., 2015; Zoph and
Le, 2017; Rawal and Miikkulainen, 2018), e.g., for language or music modeling. Further
promising application areas for NAS would be generative adversarial networks or sensor
fusion.

An additional promising direction is to develop NAS methods for multi-task problems
(Liang et al., 2018; Meyerson and Miikkulainen, 2018) and for multi-objective problems
(Elsken et al., 2019; Dong et al., 2018; Zhou et al., 2018), in which measures of resource
efficiency are used as objectives along with the predictive performance on unseen data. We
highlight that multi-objective NAS is closely related to network compression (Han et al.,
2016; Cheng et al., 2018): both aim at finding well-performing but efficient architectures.
Hence, some compression methods can also be seen as NAS methods (Han et al., 2015; Liu
et al., 2017; Gordon et al., 2018; Liu et al., 2019c; Cao et al., 2019) and vice versa (Saxena
and Verbeek, 2016; Liu et al., 2019b; Xie et al., 2019).

Likewise, it would be interesting to extend RL/bandit approaches, such as those dis-
cussed in Section 3, to learn policies that are conditioned on a state that encodes task
properties/resource requirements (i.e., turning the setting into a contextual bandit). A
similar direction was followed by Ramachandran and Le (2018) in extending one-shot NAS
to generate different architectures depending on the task or instance on-the-fly. Moreover,
applying NAS to searching for architectures that are more robust to adversarial examples
(Cubuk et al., 2017) is an intriguing recent direction.

Related to this is research on defining more general and flexible search spaces. For
instance, while the cell-based search space provides high transferability between different
image classification tasks, it is largely based on human experience on image classification
and does not generalize easily to other domains where the hard-coded hierarchical struc-
ture (repeating the same cells several times in a chain-like structure) does not apply (e.g.,

3. Many authors have optimized some architectural choices of deep reinforcement learning algorithms before.
Runge et al. (2019) used the largest and most versatile space of policy network architectures so far (e.g.,
including both convolutional and recurrent building blocks), but a full study of NAS for RL is yet missing.
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semantic segmentation or object detection). A search space which allows representing and
identifying more general hierarchical structure would thus make NAS more broadly applica-
ble, see Liu et al. (2018b, 2019a) for first work in this direction. Moreover, common search
spaces are also based on predefined building blocks, such as different kinds of convolutions
and pooling, but do not allow identifying novel building blocks on this level; going beyond
this limitation might substantially increase the power of NAS.

The comparison of different methods for NAS and even the reproducibility of published
results4 is complicated by the fact that measurements of an architecture’s performance de-
pend on many factors other than the architecture itself. While most authors report results
on the CIFAR-10 data set, experiments often differ with regard to search space, compu-
tational budget, data augmentation, training procedures, regularization, and other factors.
For example, for CIFAR-10, performance substantially improves when using a cosine an-
nealing learning rate schedule (Loshchilov and Hutter, 2017), data augmentation by CutOut
(Devries and Taylor, 2017), by MixUp (Zhang et al., 2017) or by a combination of factors
(Cubuk et al., 2018), and regularization by Shake-Shake regularization (Gastaldi, 2017) or
ScheduledDropPath (Zoph et al., 2018). It is therefore conceivable that improvements in
these ingredients have a larger impact on reported performance numbers than the better
architectures found by NAS. We thus consider the definition of common benchmarks to
be crucial for a fair comparison of different NAS methods. A first step in this direction is
the benchmark proposed by Ying et al. (2019), where a search space consisting of approxi-
mately 423,000 unique convolutional architectures is considered. Each element of this space
was pre-trained and evaluated multiple times, resulting in a data set containing training,
validation and test accuracies as well as training times and model sizes for different training
budgets for multiple runs. Different search strategies can hence be compared with low com-
putational resources on this benchmark by simply querying the pre-computed data set. In
a smaller previous study, Klein et al. (2018) pre-evaluated the joint space of neural archi-
tectures and hyperparameters. It would also be interesting to evaluate NAS methods not
in isolation but as part of a full open-source AutoML system, where also hyperparameters
(Mendoza et al., 2016; Real et al., 2017; Zela et al., 2018), and data augmentation pipeline
(Cubuk et al., 2018) are optimized along with NAS.

While NAS has achieved impressive performance, so far it provides little insights into
why specific architectures work well and how similar the architectures derived in indepen-
dent runs would be. Identifying common motifs, providing an understanding why those
motifs are important for high performance, and investigating if these motifs generalize over
different problems would be desirable.

Acknowledgments

We would like to thank Arber Zela, Esteban Real, Gabriel Bender, Kenneth Stanley, Thomas
Pfeil and the anonymous reviewers for feedback on this survey. This work has partly been
supported by the European Research Council (ERC) under the European Unions Horizon
2020 research and innovation programme under grant no. 716721.

4. We refer to Li and Talwalkar (2019) for a detailed discussion on reproducibility for NAS.

13



References

Karim Ahmed and Lorenzo Torresani. Maskconnect: Connectivity learning by gradient
descent. In European Conference on Computer Vision (ECCV), 2018.

Peter J. Angeline, Gregory M. Saunders, and Jordan B. Pollack. An evolutionary algorithm
that constructs recurrent neural networks. IEEE transactions on neural networks, 5 1:
54–65, 1994.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network
architectures using reinforcement learning. In International Conference on Learning Rep-
resentations, 2017a.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating Neural Ar-
chitecture Search using Performance Prediction. In NIPS Workshop on Meta-Learning,
2017b.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le.
Understanding and simplifying one-shot architecture search. In International Conference
on Machine Learning, 2018.

James Bergstra, Dan Yamins, and David D. Cox. Making a science of model search: Hy-
perparameter optimization in hundreds of dimensions for vision architectures. In ICML,
2013.
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