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Abstract
Modern deep learning methods are very sensitive
to many hyperparameters, and, due to the long
training times of state-of-the-art models, vanilla
Bayesian hyperparameter optimization is typi-
cally computationally infeasible. On the other
hand, bandit-based configuration evaluation ap-
proaches based on random search lack guidance
and do not converge to the best configurations as
quickly. Here, we propose to combine the ben-
efits of both Bayesian optimization and bandit-
based methods, in order to achieve the best of
both worlds: strong anytime performance and
fast convergence to optimal configurations. We
propose a new practical state-of-the-art hyperpa-
rameter optimization method, which consistently
outperforms both Bayesian optimization and Hy-
perband on a wide range of problem types, in-
cluding high-dimensional toy functions, support
vector machines, feed-forward neural networks,
Bayesian neural networks, deep reinforcement
learning, and convolutional neural networks. Our
method is robust and versatile, while at the same
time being conceptually simple and easy to imple-
ment.

1. Introduction
Machine learning has recently achieved great successes in
a wide range of practical applications, but the performance
of the most prominent methods depends more strongly than
ever on the correct setting of many internal hyperparameters
(see, e.g., Henderson et al. (2017); Melis et al. (2017)). The
best-performing models for many modern applications of
deep learning are getting ever larger and thus more com-
putationally expensive to train, but at the same time both
researchers and practitioners desire to set as many hyperpa-
rameters automatically as possible. These constraints call
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for a practical solution to the hyperparameter optimization
(HPO) problem that fulfills many desiderata:

1. Strong Anytime Performance. Since large contempo-
rary neural networks often require days or even weeks to
train, HPO methods that view performance as a black box
function to be optimized require extreme resources. The
overall budget that most researchers and practitioners can
afford during development is often not much larger than that
of fully training a handful of models, and hence practical
HPO methods must go beyond this blackbox view to already
yield good configurations with such a small budget.
2. Strong Final Performance. On the other hand, what
matters most at deployment time is the performance of the
best configuration a HPO method can find given a larger
budget. Since finding the best configurations in a large space
requires guidance, this is where methods based on random
search struggle.
3. Effective Use of Parallel Resources. With the rise of
parallel computing, large parallel resources are often avail-
able (e.g., compute clusters or cloud computing), and practi-
cal HPO methods need to be able to use these effectively.
4. Scalability. Modern deep neural networks require the
setting of a multitude of hyperparameters, including archi-
tectural choices (e.g., the number and width of layers), op-
timization hyperparameters (e.g., learning rate schedules,
momentum, and batch size), and regularization hyperpa-
rameters (e.g., weight decay and dropout rates). Practical
modern HPO methods therefore must be able to easily han-
dle problems ranging from just a few to many dozens of
hyperparameters.
5. Robustness & Flexibility. The challenges for hyperpa-
rameter optimization vary substantially across subfields of
machine learning; e.g., deep reinforcement learning sys-
tems are known to be very noisy (Henderson et al., 2017),
while probabilistic deep learning is often very sensitive
to a few key hyperparameters. Different hyperparameter
optimization problems also give rise to different types of
hyperparameters (such as binary, categorical, integer, and
continuous), each of which needs to be handled effectively
by a practical HPO method.

As we will discuss in Section 2, while there has been a lot of
recent progress in the field of hyperparameter optimization,
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Figure 1. Illustration of typical results obtained, here for optimiz-
ing six hyperparameters of a neural network. We show the im-
mediate regret of the best configuration found by 4 methods as
a function of time. Hyperband has strong anytime performance,
but for larger budgets does not perform much better than random
search. In contrast, Bayesian optimization starts slowly (like ran-
dom search), but given enough time outperforms Hyperband. Our
new method BOHB achieves the best of both worlds, starting fast
and also converging to the global optimum quickly.

all existing methods have some strengths and weaknesses,
but none of them fulfills all of these desiderata. The key con-
tribution of this paper is therefore to combine the strengths
of several methods (in particular, Hyperband (Li et al., 2017)
and a robust & effective variant (Bergstra et al., 2011) of
Bayesian optimization (Brochu et al., 2010; Shahriari et al.,
2016)) to propose a practical HPO method that fulfills all
of these desiderata. We first describe Bayesian optimiza-
tion and Hyperband in more detail (Section 3) and then
show how to combine them in our new method BOHB, as
well as how to effectively parallelize the resulting system
(Section 4). Our extensive empirical evaluation (Section 5)
demonstrates that our method combines the best aspects of
Bayesian optimization and Hyperband: it often finds good
solutions over an order of magnitude faster than Bayesian
optimization and converges to the best solutions orders of
magnitudes faster than Hyperband. Figure 1 illustrates this
pattern in a nutshell for optimizing six hyperparameters of
a neural network.

In this paper, we focus only on combining Hyperband and
Bayesian optimization, but we would like to mention that
methods improving BO are potentially applicable to BOHB
as well, such as meta learning (Swersky et al., 2013; Feurer
et al., 2015; Poloczek et al., 2016; Springenberg et al., 2016),
active ensembling to combine models found during the opti-
mization (Lévesque et al., 2016), and using multiple fideli-
ties (Swersky et al., 2013; Kandasamy et al., 2017). The
data gathered by BOHB on different budgets could also be
used to quantify the importance of hyperparameters (Hutter
et al., 2014; Biedenkapp et al., 2017; Golovin et al., 2017;
van Rijn & Hutter, 2018). We leave these for future work.

2. Related Work on Model-based
Hyperparamter Optimization

Bayesian optimization has been successfully applied to op-
timize hyperparameters of neural networks in many works:
Snoek et al. (2012) obtained state-of-the-art performance
on CIFAR-10 by optimizing the hyperparameters of convo-
lutional neural networks; Bergstra et al. (2014) used TPE
(Bergstra et al., 2011) to optimize a highly parameterized
three layer convolutional neural network; and Mendoza et al.
(2016) won 3 datasets in the 2016 AutoML challenge by
automatically finding the right architecture and hyperparam-
eters for fully-connected neural networks.

Gaussian processes are the most commonly-used probabilis-
tic model in Bayesian optimization (Shahriari et al., 2016),
since they obtain smooth and well-calibrated uncertainty
estimates. However, Gaussian processes do not typically
scale well to high dimensions and exhibit cubic complex-
ity in the number of data points (scalability); they also do
not apply to complex configuration spaces without special
kernels (flexibility) and require carefully-set hyperpriors
(robustness).

To speed up the hyperparameter optimization of machine
learning algorithms, recent methods in Bayesian optimiza-
tion try to extend the traditional blackbox setting by exploit-
ing cheaper fidelities of the objective function (Swersky
et al., 2014; Klein et al., 2017a; Swersky et al., 2013; Kan-
dasamy et al., 2017; Klein et al., 2017c; Poloczek et al.,
2017). For instance, multi-task Bayesian optimization
(Swersky et al., 2013) exploits correlation between tasks
to warm-start the optimization procedure. Fabolas (Klein
et al., 2017a) uses similar techniques to evaluate configu-
rations on subsets of the training data and to extrapolate
their performance to the full dataset. Even though these
methods achieved both good anytime and final performance,
they are based on Gaussian processes, which, as described
above, do not satisfy all of our desiderata. Alternative mod-
els, such as random forests (Hutter et al., 2011) or Bayesian
neural networks (Snoek et al., 2015; Springenberg et al.,
2016; Perrone et al., 2017), scale better with the number of
dimensions, but with the exception of Klein et al. (2017c)
have not yet been adopted for multi-fidelity optimization.

Hyperband (Li et al., 2017) is a bandit strategy that dynam-
ically allocates resources to a set of random configurations
and uses successive halving (Jamieson & Talwalkar, 2016)
to stop poorly performing configurations. We describe this
in more detail in Section 3.2. Compared to Bayesian opti-
mization methods that do not use multiple fidelities, Hyper-
band showed strong anytime performance, as well as flexibil-
ity and scalability to higher-dimensional spaces. However,
it only samples configurations randomly and does not learn
from previously sampled configurations. This can lead to a
worse final performance than model-based approaches, as
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we show empirically in Section 5.

Concurrently to our work, two other groups (Bertrand
et al., 2017; Wang et al., 2018) also attempted to combine
Bayesian optimization with Hyperband. However, neither of
them achieve the consistent and large speedups our method
achieves. Furthermore, the method of Bertrand et al. (2017)
is based on Gaussian processes and thus shares the limita-
tions discussed above. We discuss differences between our
work and these two papers in more detail in Appendix B.

3. Bayesian Optimization and Hyperband
The validation performance of machine learning algorithms
can be modelled as a function f : X → R of their hy-
perparameters x ∈ X . We note that the hyperparameter
configuration space X can include both discrete and contin-
uous dimensions. The hyperparameter optimization (HPO)
problem is then defined as finding x? ∈ argminx∈X f(x).

Due to the intrinsic randomness of most machine learning
algorithms (e. g. stochastic gradient descent), we assume
that we cannot observe f(x) directly but rather only trough
noisy observations y(x) = f(x)+ε, with ε ∼ N (0, σ2

noise).
We now discuss the two methods for tackling this optimiza-
tion problem in more detail that we will use as components
of our new method: Bayesian optimization and Hyperband.

3.1. Bayesian Optimization

In each iteration i, Bayesian optimization (BO) uses a
probabilistic model p(f |D) to model the objective func-
tion f based on the already observed data points D =
{(x0, y0), . . . , (xi−1, yi−1)}. BO uses an acquisition func-
tion a : X → R based on the current model p(f |D) that
trades off exploration and exploitation. Based on the model
and the acquisition function, it iterates the following three
steps: (1) select the point that maximizes the acquisition
function xnew = argmaxx∈X a(x), (2) evaluate the objec-
tive function ynew = f(xnew)+ε, and (3) augment the data
D ← D ∪ (xnew, ynew) and refit the model. A common
acquisition function is the expected improvement (EI) over
the currently best observed value α = min{y0, . . . , yn}:

a(x) =

∫
max(0, α− f(x))dp(f |D). (1)

Tree Parzen Estimator. The Tree Parzen Estimator
(TPE) (Bergstra et al., 2011) is a Bayesian optimization
method that uses a kernel density estimator to model the
densities

l(x) = p(y < α|x, D)

g(x) = p(y > α|x, D)
(2)

over the input configuration space instead of modeling the
objective function f directly by p(f |D). To select a new

candidate xnew to evaluate, it maximizes the ratio l(x)/g(x);
Bergstra et al. (2011) showed that this is equivalent to max-
imizing EI in Equation (1). Due to the nature of kernel
density estimators, TPE easily supports mixed continuous
and discrete spaces, and model construction scales linearly
in the number of data points (in contrast to the cubic-time
Gaussian processes (GPs) predominant in the BO literature).

3.2. Hyperband

While the objective function f : X → R is typically ex-
pensive to evaluate (since it requires training a machine
learning model with the specified hyperparameters), in most
applications it is possible to define cheap-to-evaluate ap-
proximate versions f̃(·, b) of f(·) that are parameterized by
a so-called budget b ∈ [bmin, bmax]. With the maximum
budget b = bmax, we have f̃(·, bmax) = f(·), whereas with
b < bmax, f̃(·, b) is only an approximation of f(·) whose
quality typically increases with b. In our experiments, we
will use this budget to encode the number of iterations for
an iterative algorithm, the number of data points used, the
number of steps in an MCMC chain, and the number of
trials in deep reinforcement learning.

Hyperband (HB) (Li et al., 2017) is a multi-armed ban-
dit strategy for hyperparameter optimization that takes ad-
vantage of these different budgets b by repeatedly calling
SuccessiveHalving (SH) (Jamieson & Talwalkar, 2016) to
identify the best out of n randomly sampled configurations.
It balances very agressive evaluations with many configu-
rations on the smallest budget, and very conservative runs
that are directly evaluated on bmax. The exact procedure
for this trade-off is shown in Algorithm 1 (with pseudocode
for SH shown in Appendix C). Line 1 computes the geo-
metrically spaced budget ∈ [bmin, bmax]. The number of
configurations sampled in line 3 is chosen such that ev-
ery SH run requires the same total budget. SH internally
evaluates configurations on a given budget, ranks them by
their performance, and continues the top η−1 (usually the
best-performing third) on a budget η times larger. This is
repeated until the maximum budget is reached. In prac-
tice, HB works very well and typically outperforms random
search and Bayesian optimization methods operating on
the full function evaluation budget quite easily for small
to medium total budgets. However, its convergence to the
global optimum is limited by its reliance on randomly-drawn
configurations, and with large budgets its advantage over
random search typically diminishes.

4. Model-Based Hyperband
We now introduce our new practical HPO method, which we
dub BOHB since it combines Bayesian optimization (BO)
and Hyperband (HB). We designed BOHB to satisfy all the
desiderata described in the introduction. HB already satis-
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Algorithm 1: Pseudocode for Hyperband using Suc-
cessiveHalving (SH) as a subroutine.Typo in the origi-
nal paper: ηs instead of η−s in line 4

input :budgets bmin and bmax, η
1 smax = blogη bmax

bmin
c

2 for s ∈ {smax, smax − 1, . . . , 0} do
3 sample n = d smax+1

s+1 · ηse configurations
4 run SH on them with η−s · bmax as initial budget

fies most of these desiderata (in particular, strong anytime
performance, scalability, robustness and flexibility), and we
combine it with BO to also satisfy the desideratum of strong
final performance in BOHB. We also describe how to extend
BOHB to make effective use of parallel resources.

In the design of BOHB’s BO component, on top of the five
desiderata above, we also followed two additional ones:

6. Simplicity. Simplicity is a virtue, since simple ap-
proaches can be easily verified, have less components that
can break, and can be easily reimplemented in different
frameworks. HB is very simple, but standard GP-BO meth-
ods are not: they tend to require complex approximations,
complex MCMC sampling over hyperparameters, and for
good performance also data-dependent choices of kernel
functions and hyperpriors.
7. Computational efficiency. Since our HB component al-
lows us to carry out many function evaluations at small
budgets, the cubic complexity of standard GPs, and even
the lower complexity of approximate GPs would become
problematic. Furthermore, compared to these cheap func-
tion evaluations, the complexity of computing sophisticated
acquisition functions may also become a bottleneck, espe-
cially when parallelization effectively reduces the cost of
function evaluations.

For these reasons, along with the reasons of scalability,
robustness & flexibility, we based BOHB’s BO component
on the simple TPE method discussed above. As reliable
GP-based BO methods become available that satisfy all the
desiderata above, it would be easy to replace TPE with them.

4.1. Algorithm description

BOHB relies on HB to determine how many configurations
to evaluate with which budget, but it replaces the random
selection of configurations at the beginning of each HB it-
eration by a model-based search. Once the desired number
of configurations for the iteration is reached, the standard
successive halving procedure is carried out using these con-
figurations. We keep track of the performance of all function
evaluations g(x, b) + ε of configurations x on all budgets b
to use as a basis for our models in later iterations.

We follow HB’s way of choosing the budgets and continue
to use SH, but we replace the random sampling by a BO
component to guide the search. We construct a model and
use BO to select a new configuration, based on the configu-
rations evaluated so far. In the remainder of this section, we
will explain this procedure summarized by the pseudocode
in Algorithm 2.

The BO part of BOHB closely resembles TPE, with one
major difference: we opted for a single multidimensional
KDE compared to the hierarchy of one-dimensional KDEs
used in TPE in order to better handle interaction effects in
the input space. To fit useful KDEs (in line 4 of Algorithm
2), we require a minimum number of data points Nmin; this
is set to d+1 for our experiments, where d is the number of
hyperparameters. To build a model as early as possible, we
do not wait until Nb = |Db|, the number of observations for
budget b, is large enough to satisfy q ·Nb ≥ Nmin. Instead,
after initializing with Nmin+2 random configurations (line
3), we choose the

Nb,l = max(Nmin, q ·Nb)
Nb,g = max(Nmin, Nb −Nb,l)

(3)

best and worst configurations, respectively, to model the
two densities. This ensures that both models have enough
datapoints and have the least overlap when only a limited
number of observations is available. We used the KDE im-
plementation from statsmodels (Seabold & Perktold, 2010),
estimating the KDE’s bandwidth with the default estimation
procedure (Scott’s rule of thumb), which is efficient and
performed well in our experience. Details on our KDE are
given in Appendix D.

As the optimization progresses, more configurations are
evaluated on bigger budgets. Given that the goal is to opti-
mize on the largest budget, BOHB always uses the model
for the largest budget for which enough observations are
available (line 2). This enables it to overcome wrong con-
clusions drawn on smaller budgets by eventually relying on
results with the highest fidelity only.

To optimize EI (lines 5-6), we sample Ns points from l′(x),
which is the same KDE as l(x) but with all bandwidths
multiplied by a factor bw to encourage more exploration
around the promising configurations. We observed that
this improves convergence especially in the late stages of
the optimization, when the model on the biggest budget is
queried frequently but updated rarely.

In order to keep the theoretical guarantees of HB, we also
sample a constant fraction ρ of the configurations uniformly
at random (line 1). Besides global exploration, this guar-
antees that after m · (smax + 1) SH runs, our method has
(on average) evaluated ρ ·m · (smax + 1) random config-
urations on bmax. As every SH run consumes a budget of
at most (smax + 1) · bmax, in the same time random search
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evaluates (ρ−1 · (smax + 1))-times as many configuration
on the largest budget. This means, that in the worst case
(when the lower fidelities are misleading), BOHB is at most
this factor times slower than RS, but it is still guaranteed to
converge eventually. The same argument holds for HB, but
in practice both HB and BOHB substantially outperform RS
in our experiments.

No optimizer is free of hyperparameters itself, and their
effects have to be studied carefully. We therefore include a
detailed empirical analysis of BOHB’s hyperparameters in
Appendix G that shows each hyperparameter’s effect when
all others are fixed to their default values (these are also
listed there). We find that BOHB is quite insensitive to its
hyperparameters, with the default working robustly across
different scenarios.

4.2. Parallelization

Modern optimizers must be able to take advantage of par-
allel resources effectively and efficiently. BOHB achieves
that by inheriting properties from both TPE and HB. The
parallelism in TPE is achieved by limiting the number of
samples to optimize EI, purposefully not optimizing it fully
to obtain diversity. This ensures that consecutive sugges-
tions by the model are diverse enough to yield near-linear
speedups when evaluationed in parallel. On the other hand,
HB can be parallelized by (a) starting different iterations
at the same time (a parallel for loop in Alg. 1), and (b)
evaluating configurations concurrently within each SH run.

Our parallelization strategy of BOHB is as follows. We
start with the first SH run that sequential HB would perform
(the most aggressive one, starting from the lowest budget),
sampling configurations with the strategy outlined in Algo-
rithm 2 until either (a) all workers are busy, or (b) enough
configurations have been sampled for this SH run. In case
(a), we simply wait for a worker to free up and then sample
a new configuration. In case (b), we start the next SH run
in parallel, sampling the configurations to run for it also

Algorithm 2: Pseudocode for sampling in BOHB
input :observations D, fraction of random runs ρ,

percentile q, number of samples Ns,
minimum number of points Nmin to build a
model, and bandwidth factor bw

output :next configuration to evaluate
1 if rand() < ρ then return random configuration
2 b = argmax {Db : |Db| ≥ Nmin + 2}
3 if b = ∅ then return random configuration
4 fit KDEs according to Eqs. (2) and (3)
5 draw Ns samples according to l′(x) (see text)
6 return sample with highest ratio l(x)/g(x)
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Figure 2. Performance of our method with different number of
parallel workers on the letter surrogate benchmark (see Sec. 5) for
128 iterations. The speedup for two and four workers is close to
linear, for more workers it becomes sublinear. For example, the
speedup to achieve a regret of 10−2 for one vs. 32 workers is ca.
2000s/130s ≈ 15. We plot the mean and twice the standard error
of the mean over 128 runs.

according to Algorithm 2; observations D (and therefore
the resulting models) are shared across all SH runs. BOHB
is an anytime algorithm that at each point in time keeps
track of the configuration that achieved the best validation
performance; it can also be given a maximum budget of SH
runs.

We note that SH has also been parallelized in (so far un-
published) independent work (Li et al., 2018). Next to
parallelizing SH runs (by filling the next free worker with
the ready-to-be-executed run with the largest budget), that
work mentioned that HB can trivially be parallelized by
running its SH runs in parallel. In contrast to this approach
of parallelizing HB by having separate pools of workers for
each SH run, we rather join all workers into a single pool,
and whenever a worker becomes available preferentially
execute waiting runs with smaller budgets. New SH runs
are only started when the SH runs currently executed are not
waiting for a worker to free up. This strategy (a) allows us to
achieve better speedups by using all workers in the most ag-
gressive (and often most effective) bracket first, and (b) also
takes full advantage of models built on smaller budgets. Fig-
ure 2 demonstrates that our method of parallelization can
effectively exploit many parallel workers.

5. Experiments
We now comprehensively evaluate BOHB’s empirical per-
formance in a wide range of tasks, including a high-
dimensional toy function, as well as optimizing the hy-
perparameters of support vector machines, feed-forward
neural networks, Bayesian neural networks, deep reinforce-
ment learning agents and convolutional neural networks.
Code for BOHB and our benchmarks is publicly available
at https://github.com/automl/HpBandSter

To compare against TPE, we used the Hyperopt package

https://github.com/automl/HpBandSter
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(Bergstra et al., 2011), and for all GP-BO methods we used
the RoBO python package (Klein et al., 2017b). In all exper-
iments we set η = 3 for HB and BOHB as recommended by
Li et al. (2017). If not stated otherwise, for all methods we
report the mean performance and the standard error of the
mean of the best observed configuration so far (incumbent)
at a given budget.

5.1. Artificial Toy Function: Stochastic Counting Ones

In this experiment we investigated BOHB’s behavior in
high-dimensional mixed continuous / categorical configu-
ration spaces. Since GP-BO methods do not work well on
such configuration spaces (Eggensperger et al., 2013) we
do not include them in this experiment. However, we do
use SMAC (Hutter et al., 2011), since its random forest
is known to perform well in high-dimensional categorical
spaces (Eggensperger et al., 2013).

Given a set of Ncat categorical variables xi ∈ {0, 1} and
Ncont continuous variables xj ∈ [0, 1], we defined a variant
of the counting ones problem as follows: We sum the values
of all categoricals xi and add the sample means of Bernoulli
distributions with parameters xj given by the continuous
variables. The number of samples used to estimate the mean
represents the budget. Figure 3 shows the result of 512
independent runs of various optimizers in a 16-dimensional
space with Ncat = Ncont = 8 parameters. We plot the
normalized immediate regret of the noise free function, i.e.
|f(xinc) − d|/d where d = Ncat +Ncont and xinc is the
incumbent at a specific time step.

Random search worked very poorly on this benchmark and
was quickly dominated by SMAC and TPE. Even though
HB worked better in the beginning, SMAC and TPE clearly
outperformed it after having obtained a sufficiently informa-
tive model. BOHB worked as well as HB in the beginning
and then quickly started to perform better.

We obtained similar results for other dimensionalities (see
Figures 8 and 9 in the supplementary material), but the pic-
ture is not always as clear. In higher dimensions, SMAC
seems to outperform TPE, hinting at the limitations of TPE’s
KDE compared to SMAC’s random forest. As BOHB still
evaluates configurations on small budgets even in late stages
of the optimization, convergence can be slowed down com-
pared to SMAC and TPE. A formal description of the prob-
lem, the budgets, and a more detailed discussion of the
results can be found in Appendix H.

5.2. Comprehensive Experiments on Surrogate
Benchmarks

For the next experiments we constructed a set of surrogate
benchmarks based on offline data following Eggensperger
et al. (2015). Optimizing a surrogate instead of the real
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Figure 3. Results for the counting ones problem in 16 dimensional
space with 8 categorical and 8 continuous hyperparameters. In
higher dimensional spaces RS-based methods need exponentially
more samples to find good solutions.

objective function is substantially cheaper, which allows us
to afford many independent runs for each optimizer and to
draw statistically more meaningful conclusions. A more de-
tailed discussion of how we generated these surrogates can
be found in Appendix I in the supplementary material. To
better compare the convergence towards the true optimum,
we again computed the immediate regret of the incumbent.

5.2.1. SUPPORT VECTOR MACHINE ON MNIST

To compare against GP-BO, we used the support vector
machine on MNIST surrogate from Klein et al. (2017a).
This surrogate imitates the hyperparameter optimization
of a support vector machine with a RBF kernel with two
hyperparameters: the regularization parameter C and the
kernel parameter γ. The budget is given by the number of
training datapoints, where the minimum budget is 1/512 of
the training data and the maximum budget is the full training
data. For further details, we refer to Klein et al. (2017a).

Figure 4 compares BOHB to various BO methods, such as
Fabolas (Klein et al., 2017a), multi-task Bayesian optimiza-
tion (MTBO) (Swersky et al., 2013), GP-BO with expected
improvement (Snoek et al., 2012; Klein et al., 2017b), RS
and HB. We follow the evaluation protocol of Klein et al.
(2017a) and plot the performance of each configuration
when retrained using the full dataset. Both BOHB and HB
identified the best configuration within their first iterations,
making them competitive to Fabolas and MTBO. We note
that this is despite the fact that GP-BO methods usually
work particularly well on such low-dimensional continu-
ous problems (Eggensperger et al., 2013). A more detailed
discussion of the results can be found in Appendix I.

5.2.2. FEED-FORWARD NEURAL NETWORKS ON
OPENML DATASETS

We optimized six hyperparameters that control the training
procedure (initial learning rate, batch size, dropout, exponen-
tial decay factor for learning rate) and the architecture (num-
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Figure 4. Comparison on the SVM on MNIST surrogates as de-
scribed in Klein et al. (2017a). BOHB and HB work comparably
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Figure 5. Optimizing six hyperparameter of a feed-forward neural
network on featurized datasets; results are based on surrogate
benchmarks. Results for the other 5 datasets are qualitatively
similar and are shown in Figure 2 in the supplementary material.

ber of layers, units per layer) of a feed forward neural net-
work for six different datasets gathered from OpenML (Van-
schoren et al., 2014): Adult (Kohavi, 1996), Higgs (Baldi
et al., 2014), Letter (Frey & Slate, 1991), MNIST (LeCun
et al., 2001), Optdigits (Dheeru & Karra Taniskidou, 2017),
and Poker (Cattral et al., 2002). A detailed description of all
hyperparameter ranges and training budgets can be found in
Appendix I.

We ran random search (RS), TPE, HB, GP-BO, Hyperband
with LC-Net (HB-LCNet, see Klein et al. (2017c)) and
BOHB on all six datasets and summarize the results for one
of them in Figure 5. Figures for the other datasets are shown
in Appendix E.

We note that HB initially performed much better than the
vanilla BO methods and achieved a roughly three-fold
speedup over RS. However, for large enough budgets TPE
and GP-BO caught up in all cases, and in the end found
better configurations than HB and RS. HB and BOHB
started out identically, but BOHB achieved the same final
performance as HB 100 times faster, while at the same
time yielding a final result that was better than that of
the other BO methods. All model-based methods substan-

tially outperformed RS at the end of their budget, whereas
HB approached the same performance. Interestingly, the
speedups that TPE and GP-BO achieved over RS are com-
parable to the speedups that BOHB achieved over HB. Fi-
nally, HB-LCNet performed somewhat better than HB alone,
but consistently worse than BOHB, even when tuning HB-
LCNet. We only compare to HB-LCNet on this benchmark,
since it is the only one that includes full learning curves
(for which the parametric functions in HB-LCNet were de-
signed). Also, HB-LCNet requires access to performance
values for all budgets, which we do not obtain when, e.g.,
using data subset sizes as a budget, and we thus expect
HB-LCNet to perform poorly in the other cases.

5.3. Bayesian Neural Networks

For this experiment we optimized the hyperparameters and
the architecture of a two-layer fully connected Bayesian
neural network trained with Markov Chain Monte-Carlo
(MCMC) sampling. We used stochastic gradient Hamilto-
nian Monte-Carlo sampling (SGHMC) (Chen et al., 2014)
with scale adaption (Springenberg et al., 2016) to sample
the parameter vector of the network. Note that to the best of
our knowledge this is the first application of hyperparameter
optimization for Bayesian neural networks.

As tunable hyperparameters, we exposed the step length,
the length of the burn-in period, the number of units in each
layer, and the decay parameter of the momentum variable. A
detailed description of the configuration space can be found
in Appendix J. We used the Bayesian neural network im-
plementation provided in the RoBO python package (Klein
et al., 2017b) as described by Springenberg et al. (2016).

We considered two UCI (Dheeru & Karra Taniskidou, 2017)
regression datasets, Boston housing and protein structure
as described by Hernández-Lobato & Adams (2015) and
report the negative log-likelihood of the validation data. For
BOHB and HB, we set the minimum budget to 500 MCMC
steps and the maximum budget to 10000 steps. RS and TPE
evaluated each configuration on the maximum budget. For
each hyperparameter optimization method, we performed
50 independent runs to obtain statistically significant results.

As Figure 6 shows, HB initially performed better than TPE,
but TPE caught up given enough time. BOHB converged
faster than both HB and TPE and even found a better con-
figuration than the baselines on the Boston housing dataset.

5.4. Reinforcement Learning

Next, we optimized eight hyperparameters of proximal pol-
icy optimization (PPO) (Schulman et al., 2017) to learn
the cartpole swing-up task. For PPO, we used the imple-
mentation from the TensorForce framework developed by
Schaarschmidt et al. (2017) and we used the implementation



BOHB: Robust and Efficient Hyperparameter Optimization at Scale

104 105 106

4

6

8

3

5

7

9

MCMC steps

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d
Boston Housing

RS

TPE

HB

BOHB

Figure 6. Optimization of 5 hyperparameters of a Bayesian neural
network trained with SGHMC. BOHB quickly outperforms both
TPE and HB.

101 102 103 104 105
102

103

104

time [s]

ep
oc

hs
un

til
co

nv
er

ge
nc

e

Cartpole

RS

TPE

HB

BOHB

Figure 7. Hyperparameter optimization of 8 hyperparameters of
PPO on the cartpole task. BOHB starts as well as HB but converges
to a much better configuration.

from OpenAI Gym (Brockman et al., 2016) for the cartpole
environment. The configuration space for this experiment
can be found in Appendix K.

To find a configuration that not only converges quickly but
also works robustly, for each function evaluation we ran a
configuration for nine individual trials with a different seed
for the random number generator. We returned the average
number of episodes until PPO has converged to the opti-
mum, defining convergence to mean that the reinforcement
learning agent achieved the highest possible reward for 20
consecutive episodes. For each hyperparameter configura-
tion we stopped training after the agent has either converged
or ran for a maximum of 3000 episodes. The minimum
budget for BOHB and HB was one trial and the maximum
budget were nine trials, and all other methods used a fixed
number of nine trials. As in the previous benchmark, for
each hyperparameter optimization method we performed 50
independent runs.

Figure 7 shows that HB and BOHB worked equally well in
the beginning, but BOHB converged to better configurations
in the end. Apparently, the budget for this benchmark was
not sufficient for TPE to find the same configuration.

5.5. Convolutional Neural Networks on CIFAR-10

For a final evaluation, we optimized the hyperparameters of
a medium-sized residual network (depth 20 and basewidth of
64; roughly 8.5M parameters) with Shake-Shake (Gastaldi,
2017) and Cutout (DeVries & Taylor, 2017) regularization.
To perform hyperparameter optimization, we split off 5 000
training images as a validation set. As hyperparameters,
we optimized learning rate, momentum, weight decay, and
batch size.

We ran BOHB with budgets of 22, 66, 200, and 600 epochs,
using 19 parallel workers. Each worker used 2 NVIDIA
TI 1080 GPUs for parallel training, which resulted in runs
with the longest budget taking approximately 7 hours (on 2
GPUs). The complete BOHB run of 16 iterations required a
total of 33 GPU days (corresponding to a cost of less than
3 full function evaluations on each of the 19 workers) and
achieved a test error of 2.78% ± 0.09% (which is better
than the error Gastaldi (2017) obtained with a slightly larger
network). While we note that the performance numbers
from different papers are not directly comparable due to the
use of different optimization and regularization approaches,
it is still instructive to compare this result to others in the
literature. Our result is better than that of last year’s state-of-
the-art neural architecture search by reinforcement learning
(3.65% (Zoph & Le, 2017)) and the recent paper on progres-
sive neural architecture search (3.41% (Liu et al., 2017)),
but it does not quite reach the state-of-the-art performance
of 2.4% and 2.1% reported in recent arXiv papers on re-
inforcement learning (Zoph et al., 2017) and evolutionary
search (Real et al., 2018). However, since these approaches
used 60 to 95 times more compute resources (2 000 and
3 150 GPU days, respectively!), as well as networks with
3-4 times more parameters, we believe that our results are a
strong indication of the practical usefulness of BOHB for
resource-constrained optimization.

6. Conclusions
We introduced BOHB, a simple yet effective method for
hyperparameter optimization satisfying the desiderata out-
lined above: it is robust, flexible, scalable (to both high di-
mensions and parallel resources), and achieves both strong
anytime performance and strong final performance. We
thoroughly evaluated its performance on a diverse set of
benchmarks and demonstrated its improved performance
compared to a wide range of other state-of-the-art ap-
proaches. Our easy-to-use open-source implementation
(available under https://github.com/automl/HpBandSter)
should allow the community to effectively use our method
on new problems. To further improve BOHB, we will con-
sider an automatic adaptation of the budgets used to alleviate
the problem of misspecification by the user while maintain-
ing the versatility and robustness of the current version.

https://github.com/automl/HpBandSter
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