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Abstract

Bayesian optimization has become a standard technique for hyperparameter optimiza-
tion of machine learning algorithms. We consider the setting where previous optimization
runs are available, and we wish to use their results to warm-start a new optimization run.
We develop a new ensemble model for Bayesian optimization that can incorporate the re-
sults of past optimization runs, while avoiding the poor scaling that comes with putting all
results into a single Gaussian process model. Our experiments show that the ensemble can
substantially reduce optimization time compared to standard Gaussian process models and
improves over the current state-of-the-art model for warm-starting Bayesian optimization.

1. Introduction

Bayesian optimization is a technique for solving black-box optimization problems with ex-
pensive function evaluations which has been successfully applied to optimizing the hyper-
parameters of machine learning algorithms, where a function evaluation involves training
the model (Snoek et al., 2012). Given a small initial set of function evaluations, Bayesian
optimization proceeds by fitting a surrogate model to those observations, typically a Gaus-
sian process (GP), and then optimizing an acquisition function that balances exploration
and exploitation in determining what point to evaluate next.

The “black-box” nature of the optimization assumes that nothing is known about the
problem besides the observed function values, but there are settings in which ancillary
information is available in the form of prior optimizations. Such prior optimization can be
a result of re-optimizations of a production machine learning model, which is constantly
re-trained as new data become available. The optimal hyperparameters may change as the
data changes, so they should be frequently re-optimized. Another setting for continuous
re-optimizations is machine learning services, where the underlying model stays the same,
but is constantly working on different data.

Suppose we have access to the outcomes of previous optimization runs of the same
model on different data, or of similar models. If we can identify similar runs we can use
their results to guide and speed up the optimization process (i.e., require less function
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evaluations). Re-using the results from past optimization runs can result in reduced time
for hyperparameter optimization and thus faster development cycles, reduced CPU usage,
or may enable hyperparameter optimization at all for models with very long training times.

To facilitate meta-learning in Bayesian optimization we specify several design goals that
allow the reuse of existing infrastructure and minimize the additional resources required
to deploy warm-starting. First, we may have a large number of potentially related past
optimization runs, and so we need a method that is able to handle both a large number of
observations in total across all tasks and a large number of tasks. Second, we need to be able
to easily update the surrogate model after adding a new observation on the current target
task. Third, the model needs to be directly pluggable into existing Bayesian optimization
machinery so that we can reuse established techniques for acquisition function optimization,
parallelization, and handling of uncertainty in the target function. Finally, the method needs
to be easily adaptable to different hyperparameter spaces or tasks. In particular, it should
not depend on task-specific hyperparameter settings, and also not depend on numerical task
descriptors which have to be defined by experts. Several Bayesian optimization methods
have been developed to borrow strength across runs—we describe these in Appendix A and
compare them to these stated design goals.

The contribution of this paper is an ensemble method for warm-starting Bayesian opti-
mization using past runs, called the ranking-weighted Gaussian process ensemble (RGPE).
The method fits a GP to the outcome of each prior optimization run and combines all base
GPs into a single GP. RGPE neither requires the existence of meta-features nor depends
on specific hyperparameter settings, allowing it to be applied to a broad set of optimiza-
tion problems. We evaluate its performance on a large collection of SVM hyperparameter
optimization benchmark problems and provide further experiments in Appendix C. Our
method outperforms its closest competitor and is able to improve over the current opti-
mization method for a computer vision platform at Facebook.

2. Background and Problem Setup

The goal of Bayesian optimization is to find a minimizer x∗ of a black-box function in a
bounded space by iteratively querying the function at input configurations x1,x2, . . . ,xn
and observing the corresponding outputs y1, y2, . . . , yn. In each iteration we first fit a
probabilistic model f on observations D = {(xj , yj)}nj=1 made so far. We then use an
acquisition function α(x) to select a promising configuration to evaluate next, balancing
exploration and exploitation.

In general yj may be a noisy estimate of the function value, and the noise standard devi-
ation may also be known. We estimate the underlying function with GP regression, yielding
a posterior f(x|D) that has mean µ(x) and variance σ2(x), which are known analytically
(Rasmussen and Williams, 2006). These quantities depend on the GP kernel, which has
several hyperparameters that are inferred when the model is fit. The GP posterior at a col-
lection of points [f(x1|D), . . . , f(xn|D)] has a multivariate normal distribution with mean
and covariance matrix denoted as µ(x1, . . . ,xn) and Σ(x1, . . . ,xn).

In our experiments in Section 4 and Appendix C.2 we use the expected improvement
(EI) acquisition function (Jones et al., 1998), a common choice because it can be computed
in closed form and optimized with gradient-based methods. Let f(xbest) be the value of the
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best point observed so far: f(xbest) = minj=1,...,n f(xj). The EI is

α(x|D) = Ey∼f(x|D) [max(0, f(xbest)− y)] = σ(x)zΦ(z) + σ(x)φ(z),

with z = f(xbest)−µ(x)
σ(x) . A thorough introduction to Bayesian optimization is given by Shahri-

ari et al. (2016).
We suppose that t − 1 runs of Bayesian optimization have been completed. Let Di ={

(xij , y
i
j)
}ni

j=1
be the function evaluations made for past optimization runs i. We fit a GP

model to the observations of each past run i and refer to these models as base models.
They have posterior f i(x|Di), with mean and variance µi(x) and σ2i (x) respectively. They
remain fixed throughout the optimization, inasmuch as we do not obtain new observations
for them. The current optimization problem we are trying to solve is run t. We fit a GP
to observations from run t and call it the target model. The target model is refit after each
new function evaluation. We overload notation and define D = {D1, . . . ,Dt}. Our goal is
to minimize the target function using the base models and the target model.

3. Ranking-Weighted Gaussian Process Ensemble

Our strategy here is to estimate the target function as a weighted combination of the
predictions of each base model and the target model itself:

f̄(x|D) =

t∑
i=1

wif
i(x|Di).

A model of this form is preferred for several practical reasons. First, this ensemble model
remains a GP, and in particular

f̄(x|D) ∼ N

(
t∑
i=1

wiµi(x),
t∑
i=1

w2
i σ

2
i (x)

)
.

This means that all of the usual computational machinery for Bayesian optimization with
GPs remains valid, such as a closed-form expression for EI and the ability to draw joint sam-
ples for parallel optimization. Additionally, each base model remains unchanged throughout
the optimization and can be loaded directly from the previous runs. The fitting cost is only
the cost of fitting the target model and inferring the weights wi. Finally, predictions are
made independently for each GP and we obtain O(tn2 + n3) complexity and a linear slow-
down relative to no warm-starting. Following Yogatama and Mann (2014), we standardize
each model prior to inclusion in the ensemble.

Our approach for computing the ensemble weights wi follows the agnostic Bayesian
ensemble of Lacoste et al. (2014), which weights predictors according to estimates of their
generalization performance. Given a desired loss function, each predictor in the ensemble is
weighted according to the probability that it is the best predictor in the ensemble. We use
a ranking loss to compute weights, and so call this method the ranking-weighted Gaussian
process ensemble (RGPE).

We now discuss our loss function and approach for estimating generalization of each
model. Practical details regarding EI optimization can be found in Appendix B.2.
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3.1. Computing Ensemble Weights

Our goal in Bayesian optimization is to find the minimum function value. A model will be
useful for optimization if it is able to correctly order observations according to their function
value. For meta-learning, we wish to assess the ability of model i to generalize to the target
function, and so construct a loss function that measures the degree to which each model is
able to correctly rank the target observations Dt. Given nt > 1 target function evaluations,
we define the loss as the number of misranked pairs:

L(f,Dt) =

nt∑
j=1

nt∑
k=1

1((f(xtj) < f(xtk))⊕ (ytj < ytk)), (1)

where ⊕ is the exclusive-or operator.
For base models, this measures their ability to generalize to the target function. For

the target model, this is an estimate of in-sample error and does not accurately reflect
generalization. We estimate generalization in the target model using cross-validation, in
practice with leave-one-out models. Let f t−j indicate the target model with observation
(xtj , y

t
j) left out. The loss for the target model is then computed by using f t−j in (1) in

the place of f . The leave-one-out model is constructed by removing data point j from the
GP; kernel hyperparameters are not re-estimated. Fig. 2 provides an illustration of how
misrankings are computed, showing the inner sum of (1).

Ranking loss is more appropriate for estimating optimization performance than other
choices such as squared error or model log-likelihood because the actual values of the predic-
tions do not matter for optimization—we only need to identify the location of the optimum.
Figure 2 (bottom right) illustrates why the squared error is not an appropriate loss function
for our purpose.

We weight each model with the probability that it is the model in the ensemble with
the lowest ranking loss. The posterior for f i at the target observations is a multivariate
normal with mean µi(x

t
1, . . . ,x

t
nt

) and covariance Σi(x
t
1, . . . ,x

t
nt

). We draw samples from
this posterior at the configurations evaluated so far and then obtain posterior samples of the
ranking loss by evaluating (1) on the GP samples. We draw S such samples: `i,s ∼ L(f i,Dt)
for s = 1, . . . , S and i = 1, . . . , t. Weight for model i is then computed as

wi =
1

S

S∑
s=1

1

(
i = arg min

i′
`i′,s

)
. (2)

If the argmin is not unique, the weight is given to the target model if it is part of the tie,
otherwise the tie is broken randomly. By using samples from the posterior distributions we
take the overall uncertainty of the base and target models into account when calculating
the weights, which is not done by any other ensemble method for Bayesian optimization.

3.2. Preventing Weight Dilution

One challenge within this type of ensemble is preventing weight dilution by a large number of
noisy models. Suppose a GP has high variance at the points in Dt and so is able to produce
arbitrary rankings of the points. This model is clearly not useful for making predictions,
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and if better models are present in the ensemble it will have a low probability of being the
argmin in Equation (2). However, if we have a very large number of such models in the
ensemble, the chance of any one of them producing the correct ranking in a sample goes to
1 as the number of noisy models increases.

We prevent weight dilution by discarding models that are substantially worse than the
target model. Model i is discarded from the ensemble if the median of its loss samples `i,s
is greater than the 95th percentile of the target loss samples `t,s. In addition to preventing
weight dilution, this strategy has computational benefits in that it results in fewer GP
predictions for each ensemble model prediction. The choice of the 95th percentile for the
exclusion threshold could be considered a hyperparameter of the method, however, early
experiments showed no sensitivity to the exact hyperparameter value.

This thresholding strategy is very flexible in comparison to other ensemble strategies.
Models are only removed from the ensemble if they actually perform worse than the tar-
get model, while TST-R (Wistuba et al. (2016b), see Appendix A) removes models if they
perform badly as evaluated on the observed function evaluations without taking the perfor-
mance of the target model into account. Other methods based on stacking require additional
tuning of a regularization hyperparameter to set the weight of a base model to zero at all.

4. Experiments

We provide a comprehensive study of RGPE’s performance using a large set of hyperpa-
rameter optimization problems for support vector machines (SVM). Further experiments
using a synthetic benchmark function and the computer vision platform at Facebook can
be found in Appendix C. All GPs in these experiments used GPy and the ARD Matérn
5/2 kernel (GPy, since 2012). Kernel hyperparameters were set to their posterior means,
inferred via MCMC with the NUTS sampler (Hoffman and Gelman, 2014).

Our main experimental validation of RGPE uses a large set of hyperparameter optimiza-
tion benchmark problems from Wistuba et al. (2015b), which was also used by Wistuba
et al. (2016b). They did hyperparameter searches for an SVM on a diverse set of 50 datasets,
with sizes ranging from 35 to 250000 training examples, and from 2 to 7000 features. For
each dataset, test-set accuracy was measured on a grid of six parameters: three binary
parameters indicating a linear, polynomial, or RBF kernel; the penalty parameter C; the
degree of the polynomial kernel (0 if unused); and the RBF kernel bandwidth (0 if unused).
The grid search resulted in 288 points for each dataset. Note that this is a harder problem
than the common 2-dimensional RBF SVM problem. The goal is to optimize the hyper-
parameters over this grid of 288 points for each problem, while treating the remaining 49
problems as past runs for meta-learning.

Each optimization run was initialized with three randomly selected points, after which
it proceeded sequentially for a total of 20 function evaluations. For meta-learning methods,
we fit base models for each of the 49 other problems on a random sample of 50 points. Opti-
mization was repeated 20 times for each of the 50 problems, for a total of 1000 optimization
runs. Each optimization run used a different random initialization of three samples for the
target model, and a different random sample of 50 function evaluations for the base models.
Five methods were evaluated on this problem: random search, standard Bayesian optimiza-
tion with a GP fit only to observations made on the target task (GP), the proposed RGPE
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Figure 1: Optimization performance on the SVM hyperparameter optimization bench-
marks, evaluated over 20 runs for each of 50 problems. (Left) Simple regret
averaged over runs, with bars showing standard error. (Middle) The average
rank of each method, ranked by simple regret (lower is better). (Right) The
number of non-zero weights in the RGPE ensemble (out of 49).

and TST-R (Wistuba et al., 2016b) as it is the method closest to ours, with bandwidth
hyperparameters set to ρ = 0.1 and ρ = 0.9 (Wistuba, 2016).

Figure 1 shows the results of these experiments. The left panel shows that warm-starting
provided RGPE with a significant, early drop in regret compared to GP, which it was able
to sustain throughout the optimization. TST-R with ρ = 0.9 had the quickest initial drop in
regret, however by iteration 7 it was passed by RGPE, and by iteration 15 it was passed even
by GP. We also compared the performance of the methods by computing at each iteration
the average rank of each method, ranked by simple regret and averaged over optimization
runs. Ranks were averaged in the case of ties. Figure 1 shows that from iteration 5 and
on, RGPE outperformed the other methods and had the lowest rank. TST-R initially
outperformed GP, but by iteration 8 GP achieved a lower average rank than TST-R with
ρ = 0.9, and was close to TST-R with ρ = 0.1 by iteration 20.

The right panel of Figure 1 shows the number of non-zero weights in the RGPE. There
were 50 models in the ensemble (49 base models and the target model), but on average less
than half of them were ever used. Computationally, this means that instead of a RGPE
function evaluation requiring 50 GP evaluations, it actually required many fewer—only
about ten by the end of the optimization.

5. Conclusion

Our goal in developing RGPE was to have a meta-learning method that avoids the O(t3n3)
scaling of putting all observations into a single GP, while maintaining the nice distributional
properties of a GP. This allows RGPE to be directly substituted for a GP in a Bayesian
optimization system. Closed-form acquisition functions and parallelization methods that
have been developed for GPs can be used directly with RGPE. Our experiments showed that
RGPE performed better than the alternative ensemble approach, and that it is a scalable
and effective method for warm-starting GP-based Bayesian optimization.
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Appendix A. Related Work

Borrowing strength from past runs is a form of meta-learning, and in the context of Bayesian
optimization is often called transfer learning. A key requirement is to determine which past
runs are similar to the current task. Currently, there are five techniques in the literature:
1) a single model which learns task similarities, 2) an initial design learned from previous
optimization runs, 3) changing the acquisition function to include past models, 4) learning
an adaption of each base task to the current task, and 5) learning a separate model for each
base task and combining those.

Several past methods have used manually defined meta-features to measure task simi-
larity (Brazdil et al., 1994) and then adapted GP-based Bayesian optimization (Bardenet
et al., 2013; Yogatama and Mann, 2014; Schilling et al., 2016). Besides the drawback of re-
quiring additional hand-designed features, these methods share the issue that meta-features
are non-adaptive throughout the optimization process and do not make use of the new ob-
servations (Leite et al., 2012; Wistuba et al., 2018). Another approach is to learn the task
similarity without the use of meta-features in order to fit a joint model. Swersky et al.
(2013) use a multitask GP to jointly model all past runs and the current task. Multitask
GPs suffer from the same poor scaling as putting all observations into a single GP, and
cannot be used for the problem of Section 4. Furthermore, Swersky et al. (2013) sample a
t × t lower triangular matrix describing task correlations, which prohibits a large number
of past runs.

Orthogonal to optimization is learning the initial design based on past observations,
which can be done both with (Feurer et al., 2015) and without (Wistuba et al., 2015a)
meta-features. Using an adapted initial design is complementary to our strategy and would
benefit our proposed method as well. It does, however, introduce a new hyperparameter,
the size of the initial design.

Another approach to handling meta-data in Bayesian optimization is to adapt the ac-
quisition function (Wistuba et al., 2016a, 2018). We do not consider it here because the use
of a modified acquisition function would not allow us to directly use established techniques
for Bayesian optimization, such as parallelization via Monte Carlo integration and proper
handling of uncertainty.

A number of papers propose to learn an adaptation of each past optimization run to
the current run. Schilling et al. (2016) learn a joint model for each past run and the target
task using meta-features as similarity descriptors. Shilton et al. (2017) model the difference
between the past run and the target task with a GP, which is then used to adjust the
past run observations for inclusion in the current model. Such approaches are not scalable
as they require re-fitting a model for each meta-task in each iteration of the optimization
process. Poloczek et al. (2016) and Golovin et al. (2017) take a similar approach for an
ordered set of past runs. Rather than fitting a GP to each run separately, a GP is fit to the
residuals of each run relative to the predictions of the previous model in the stack. This
essentially uses the outcomes of previous runs as a prior for the next run. However, this
method assumes an ordering to the runs, which would not be the case for meta-learning
from a collection of unrelated problems.

The computationally least demanding strategy is fitting a separate model to each past
optimization run and then learning a combination of those, which is known as transfer
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stacking (Pardoe and Stone, 2010). Wistuba et al. (2016b) develop the two-stage transfer
surrogate model with rankings (TST-R), which uses a Nadaraya-Watson kernel weighting to
linearly combine the predictions from each GP by defining a distance metric across tasks.
In particular, they consider the pairwise preferences of all observations for the current
task, which is a strategy known as relative landmarking (Leite et al., 2012). The distance
between the past task and the current task is taken as the proportion of discordant pairs
when the past model is evaluated on configurations tested on the current task (Wistuba,
2016). Weights for each model are then computed using a quadratic kernel with bandwidth
parameter ρ, which serves as a threshold for the similarity required to borrow strength
from any prior task. The bandwidth ρ must be chosen by the user. The kernel is used to
combine mean predictions of past models with the mean prediction of the current model,
but variances are not combined—the combined model is given the variance of the current
model and variances of past models are ignored. This means that the TST-R model is no
longer a GP, and in particular does not have a valid posterior from which joint samples
can be drawn. Furthermore, the TST-R assigns a constant weight to the target model,
therefore the actual weight of the target model in the ensemble depends on the magnitude
of the weights of the base models. Due to the high similarity to our proposed model we use
it for comparison in our experiments of Section 4 and Appendix C.

In the related field of algorithm configuration (Hutter et al., 2009), Lindauer and Hutter
(2018) use stochastic gradient descent to learn a weighted combination of random forests for
runtime prediction, with each random forest being fitted on a previous algorithm configura-
tion run. They consider a setting in which only a few auxiliary tasks are available, but the
number of observations per task is on the order of several hundreds, far beyond what a GP
can handle. While the usage of a simple stacking approach is appealing, it introduces a new
model selection problem to find a stacking regressor. Without proper tuning, obtaining a
sparse solution (sparse in terms of taking only a small subset of related tasks into account)
is not possible. Furthermore, minimizing the least squares error is not necessarily a good
criterion when our goal is to obtain a good model for Bayesian optimization.

A drawback which both methods share is that they do not take the uncertainty of the
base models into account.

Bayesian optimization has been done with models that scale better with the number of
observations, such as random forest (Hutter et al., 2011), parzen estimators (Bergstra et al.,
2011) and neural networks (Snoek et al., 2015; Springenberg et al., 2016). These models
come with challenges of their own, such as poor uncertainty extrapolation with limited
observations and hyperparameter sensitivity. There are also extensions of GPs for large
datasets, most notably sparse GPs (Csató and Opper, 2002). Sparse GPs can also have
poor uncertainty extrapolation (Bauer et al., 2016; Wang et al., 2018) and do not easily
produce joint samples. GPs remain the standard model for practical Bayesian optimization,
especially since all methods to jointly model several tasks require the definition of meta-
features or expensive calculation of task similarities.

Finally, in the setting of algorithm selection, Leite et al. (2012) introduced active testing
which uses relative landmarking (pairwise ranking of all observations so far) to decide which
algorithm configuration, from a finite set of choices, to run next. For each algorithm that
was not run on the target dataset, they do a table lookup to determine whether and by
how much that algorithm has improved over the current best observed algorithm on each
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meta-dataset, and weight its improvement by a task similarity measure computed using
the pairwise ranking of all observations so far. In a Bayesian optimization framework, this
can be seen as first computing the probability of improvement criterion for each potential
configuration and then weighting those by task similarity. Active testing cannot be directly
applied here since it requires a finite set of configurations and requires that each of those
was executed on every past dataset.

Appendix B. Further methodological details

B.1. Illustration of the Ranking Loss

Figure 2 provides an illustration of the ranking loss.
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Figure 2: Illustration of the ranking loss. (Top left) The target model with four observa-
tions. (Top right) A posterior draw from a base model has one misranking, at
x = 0.8. (Bottom left) A posterior draw from the leave-one-out target model
misranks x = 0.2. (Bottom right) two base models which are clearly not helpful
for optimization together with the target model, but which have the same mean
squared error regressing the observations, and have a lower mean squared error
than the model which was used to sample the function in the top right plot.
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B.2. Optimization with the Gaussian Process Ensemble

The RGPE retains the distributional properties of a GP, and can therefore be used with
standard acquisition functions for Bayesian optimization. More specifically, instead of µ we
use µ̄(x) =

∑t
i=1wiµi(x), and instead of σ we use σ̄2(x) =

∑t
i=1w

2
i σ

2
i (x), to compute EI.

In many applications of Bayesian optimization we have the ability to run multiple func-
tion evaluations in parallel. We use the technique of Snoek et al. (2012) to parallelize EI by
integrating over the posterior for the outcomes at pending function evaluations. Suppose
we have b pending evaluations at points x1, . . . ,xb, and a worker is available to evaluate an
additional point. This point is chosen as the one that maximizes EI when integrated over
the pending outcomes y1, . . . , yb:

α̂(x) =

∫
Rb

α
(
x|D ∪ {(xj , yj)}bj=1

)
p(y|x1, . . . ,xb, f̄ ,D)dy.

In practice, this is done using a Monte Carlo approximation. We jointly sample “fantasies”
y from the posterior at {x1, . . . ,xb}, and then add these simulated observations to the GP
and compute EI with the conditioned model. EI is averaged over several such fantasies. For
RGPE, we sample from each model in the ensemble independently and condition each model
on its sample to obtain the conditioned ensemble. We used 30 samples in our experiments
here.

If observations are noisy or if there is uncertainty in base models at the current best,
fbest may be a random variable. This can occur when the locations of the observations
in the base models do not overlap with those of the target model. Typical approaches for
computing expected improvement with noisy observations can be used with the RGPE; we
follow the strategy of Letham et al. (2017) and integrate over uncertainty in fbest in the
same way that we integrate over pending outcomes for parallelization.

Appendix C. Additional Experiments

C.1. Synthetic Function

We use a modification of the Alpine 1 function (Jamil and Yang, 2013) as a synthetic test
case for warm-starting:

f(x, s) = x sin(x+ π + s) +
x

10
,

where s is a shift parameter that is used for generating similar datasets. We used s = 0 as
the target function, and then created five base functions with varying degrees of similarity
for meta-learning: s = kπ

12 , k = 1, . . . , 5. The target and base functions are shown in Figure
3.

Base models were fit to 20 randomly selected points from each base function. Minimiza-
tion of the target function began with three quasirandom points from a scrambled Sobol
sequence, and then proceeded sequentially for a total of 20 function evaluations. The op-
timization was repeated 100 times, each with a different random selection of the points for
the base functions. Five methods were evaluated on this problem: quasirandom points with
no model (Sobol), standard Bayesian optimization with a GP fit only to observations made
on the target task (GP), TST-R with bandwidth ρ = 0.1, TST-R with bandwidth ρ = 0.9,
and RGPE. Figure 3 shows the simple regret averaged over the 100 runs of the simulation.
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Figure 3: (Left) The target function and base functions for the synthetic test problem.
(Center) Optimization performance on the test problem, averaged over 100 runs
with quasirandom initializations. Error bars show standard error of the mean.
Warm-starting provided a clear benefit early on and RGPE quickly converged to
the global optimum. (Right) Average weights on each model in the ensemble,
averaged over runs. Weight wt is of the target model, and w1 and w2 correspond
to the base functions with the smallest shifts from the target. RGPE relied heavily
on the most similar base models.

RGPE used the warm-start provided by the base models to immediately begin sampling
near the global optimum and quickly converge. The base model corresponding to the
smallest shift (s = π

12) received most weight of all base models in the ensemble (w1 in
Figure 3), and the two models with the largest shifts received no weight after iteration
7. Weight on the target model, wt, increased later in the optimization as it gained more
predictive power. TST-R also provided benefit over GP, but its performance depended on
the value of the kernel bandwidth ρ and was not able to reach the preformance of RGPE.

C.2. Optimizing a Computer Vision Platform

Lumos is a computer vision platform at Facebook that is used to train image classification
models for a large variety of tasks and datasets. The final stage of the model is a logistic
regression on top of convolutional neural network (CNN) features, for which hyperparameter
optimization is done with each training. We used RGPE to accelerate the hyperparameter
optimization by borrowing strength from previous runs on different datasets.

We optimized eight image classifiers trained on Lumos, each for a different task and to
a different dataset. We optimized three parameters: learning rate for stochastic gradient
descent, and two regularization parameters. Datasets ranged from ten thousand to two
million images, for the largest of which GP Bayesian optimization required around 2,500
core hours. As base runs, we used the results of nine earlier GP Bayesian optimization
sweeps on different datasets. These sweeps had 30 iterations each, for a total of 270 base
iterations. Each optimization was begun with an initialization of three quasirandom points,
after which it proceeded with two workers asynchronously in parallel for a total of 20 function
evaluations. Figure 4 shows the results of these optimization runs. The true minimum is
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Figure 4: (Left) Optimization performance on the computer vision models, averaged over
eight models (standard error in bars). With warm-starting, eight iterations were
sufficient to achieve lower regret than the GP. (Right) Early on the RGPE bor-
rowed heavily from base models, and later in the optimization began to concen-
trate weight on the target model.

not known for these problems, so regret was measured as a percentage of the best point
found by either method.

As in the SVM benchmark problems, warm-starting provided a substantial boost in
performance starting with the first optimized configuration in iteration 4. By iteration 9
RGPE achieved lower regret than the GP achieved with 20 iterations.

Figure 4 also shows the RGPE target weight throughout the iterations. In early itera-
tions the target model was unable to generalize and so most of the ensemble weight went to
base models. With more iterations, the target model improved and was given more weight,
capturing 50% by iteration 20.

15


	Introduction
	Background and Problem Setup
	Ranking-Weighted Gaussian Process Ensemble
	Computing Ensemble Weights
	Preventing Weight Dilution

	Experiments
	Conclusion
	Related Work
	Further methodological details
	Illustration of the Ranking Loss
	Optimization with the Gaussian Process Ensemble

	Additional Experiments
	Synthetic Function
	Optimizing a Computer Vision Platform


