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In a Nutshell

may be suboptimal due to interactions between them

— But correlation with intermediate budgets is much higher

—  We use BOHB (Bayesian Optimization Hyperband) [Falkner et al.
2018] to incrementally increase budgets during optimization

— We optimize a joint 17-dimensional architecture and hyperparameter
space and achieve competitive results for just 3 hours of training

. Optimizing hyperparameters and neural network architectures separately

. Performance after short and long training budgets only correlates weakly .
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» Use probabilistic model p(f|D) to model function f
based on data points in D
» Exploration — Exploitation trade-off by means of
acquisition functiona : X - R
* lterate:
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» Tree Parzen Estimator (TPE) models densities

* Multi-armed bandit strategy

Evaluations

* Repeatedly calls SuccessiveHalving

+ Allocates more resources to the best performing
configurations on lower budgets (by default best third)
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over the input space by means of kernel density

estimators (KDE), instead of modeling f
Evaluations

« BOHB samples from a learned probabilistic model instead of randomly

« It uses a multivariate KDE to better model interactions between parameters
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Frank Hutter

Related Work

Many recent works on neural architecture search, but all of them use
two-step optimization (first architecture, then hyperparameters). E.qg.:

Sequential model-based optimization [Liu et al. 2017]:
learn surrogate model and sample more efficient architectures

« Reinforcement Learning [Zoph et al. 2018]: Train a controller RNN with PPO to
sample string encoding of the architecture

Neuro-evolution [Liu et al. 2018a]: mutate population of models and add to the
population the best offsprings (w.r.t. validation error)

« Gradient-based [Liu et al. 2018b]: parameterize network architecture by creating
mixed operations and optimize using gradient descent

Original Bayesian optimization NAS papers already used joint optimization:

« Bayesian optimization [Bergstra et al. 2013, Domhan et al. 2015, Mendoza et al.
2016]: achieved state-of-the-art on several datasets using tree-based models

Search Space
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Regularization:

- ShakeDrop (if 2 branc

- CutOut

- MixUp

Baseline: Multiple-branch ResNet.

- Shake-Shake (if > 2 branches)
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» Architectural Hyperparameters:

Filters,. Number of filters for the first convolution
ResBlocks;: Number of residual blocks for main b

lock |

ResBranches;: Number of residual branches for each

residual block in main block j

WidenFactorj: Determines the number of filters after

main block j

 Other Hyperparameters:

Learning Rate, Batch Size, L, regularization,
Momentum, CutOut Length, MixUp a,
ShakeDrop death rate

Results

Limited budgets (training time): 400s, 1200s, 1h and 3h

Experiments

wallclock time [s]
« 256 evaluations on the full budget of 3h (32 GPU days)
« Exploration-exploitation trade-off:
» explored sufficiently

« covered good regions of the space

the search space when trained for 3h
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» Better results than manually constructed architectures that are part of

« Optimizing jointly architecture and hyperparameters beneficial
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Spearman rank correlation between budgets performances

fANOVA — quantifies global importance of all parameters

» Conclusion: strong interaction between architectural choices,
hyperparameters and the training time
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» Conclusion: short runs ranking # long runs ranking

importance 2.9%
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Analysis

1200s 1h 3h

importance 7.1% importance 12.8%
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