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Abstract—Ensembles of classifiers are among the best per-
forming classifiers available in many data mining applications.
However, most ensembles developed specifically for the dynamic
data stream setting rely on only one type of base-level classifier,
most often Hoeffding Trees. In this paper, we study the use of
heterogeneous ensembles, comprised of fundamentally different
model types. Heterogeneous ensembles have proven successful
in the classical batch data setting, however they do not easily
transfer to the data stream setting. We therefore introduce the
Online Performance Estimation framework, which can be used
in data stream ensembles to weight the votes of (heterogeneous)
ensemble members differently across the stream. Experiments
over a wide range of data streams show performance that is
competitive with state of the art ensemble techniques, including
Online Bagging and Leveraging Bagging. All experimental results
from this work are easily reproducible and publicly available on
OpenML for further analysis.

I. INTRODUCTION

Real-time analysis of data streams has become a key area
of data mining research [1]. The research community has
developed a large number of machine learning algorithms
capable of modelling general trends in stream data and make
accurate predictions for future observations. In many applica-
tions, ensembles of classifiers are the most accurate classifiers
available. Rather than building one model, a variety of models
are generated that all vote for a certain class label.

One way to vastly improve the performance of ensembles
is to build heterogeneous ensembles, consisting of models
generated by very different techniques, rather than homoge-
neous ensembles, in which all models are generated by the
same technique. One technique to build such a heterogeneous
ensemble is Stacking [2], which has been extensively analysed
in classical batch data mining applications. As the underlying
techniques upon which Stacking relies can not be trivially
transferred to the data stream setting, there are few successful
heterogeneous ensemble techniques in the data stream setting.
Most approaches rely on meta-learning [3], [4]. This requires
the extraction of computationally expensive meta-features, yet
it yields marginal improvements.

In this work we introduce a more elegant technique
that natively allows heterogeneous model combination in the
data stream setting. It weights the votes of the ensemble
members based on their performance on recent observations.
It is inspired by Online Boosting [5] and Accuracy
Weighted Ensembles [6], which rely on a similar tech-
nique, but are both fundamentally different. Moreover, al-
though both ensemble techniques slightly improve the accuracy

of their base-classifiers, neither are considered competitive
with state of the art techniques [5].

Our contributions are the following. We define Online
Performance Estimation, a framework that provides dynamic
weighting of the votes of individual ensemble members across
the stream. Utilizing this framework, we introduce a new
ensemble technique that combines heterogeneous models. We
conduct an extensive empirical study, covering 62 data streams,
that shows that this technique is competitive with state of the
art ensembles, and superior to meta-learning approaches.

II. RELATED WORK

It has been recognized that data stream mining differs
significantly from conventional batch data mining [1], [7],
[8], [9]. In the conventional batch setting, a finite amount of
stationary data is provided and the goal is to build a model
that fits the data as well as possible. When working with data
streams, we should expect an infinite amount of data, where
observations come in one by one and are being processed in
that order. Furthermore, the nature of the data can change over
time, a notion known as concept drift. Classifiers should be
able to detect when a learned model becomes obsolete and
update it.

Common Approaches. Some batch classifiers can be
trivially adapted to a data stream setting. Examples are
k Nearest Neighbour [10], Stochastic Gradient
Descent [11] and SPegasos (short for: Stochastic Pri-
mal Estimated sub-GrAdient SOlver for SVM) [12]. Both
Stochastic Gradient Descent and SPegasos are
gradient descent methods, capable of learning a variety of
linear models, such as Support Vector Machines and Logistic
Regression.

Other classifiers have been created specifically to oper-
ate on data streams. Most notably, the Hoeffding Tree
induction algorithm [13] inspects every example only once,
and stores per-leaf statistics to calculate the information gain
on which the split criterion is determined. The Hoeffding
bound states that the true mean of a random variable of a
given range will not differ from the estimated mean by more
than a certain value, and this provides statistical evidence
that a certain split is superior over others. As Hoeffding
Trees seem to work very well in practice, many vari-
ants have been proposed, such as Random Hoeffding
Trees, Adaptive Hoeffding Trees and Hoeffding
Option Trees [14].



Finally, a commonly used technique to adapt traditional
batch classifiers to the stream setting is training them on a
window of w recent examples: after w new examples have
been observed, a new model is built. This approach has the
advantage that old examples are ignored, providing natural
protection against concept drift. A disadvantage is that it rarely
operates on the most recently data. Read et al. [1] compare
the performance of these batch-incremental classifiers with
common data stream classifiers, and conclude that the over-
all performance is equivalent, although the batch-incremental
classifiers generally use more resources (time and memory).

Ensembles. Ensemble techniques train multiple classifiers
on a set of weighted training examples, and these weights
can vary for different classifiers. In order to classify test
examples, all individual models produce a prediction, also
called a vote, and the final prediction is made according to
a predefined voting schema, e.g., the class with the most
votes is selected. Bagging [15] exploits the instability of
classifiers by training them on different bootstrap replicates:
resamplings (with replacement) of the training set. Effectively,
the training sets for various classifiers differ by the weights
of their training examples. Online Bagging [5] operates
on data streams by drawing the weight of each example from
a Poisson distribution, which converges to the behavior of
the classical Bagging algorithm if the number of examples
is large. Boosting [16] is a technique that sequentially trains
multiple classifiers, in which more weight is given to exam-
ples that were misclassified by earlier classifiers. Online
Boosting [5] applies this technique on data streams by
assigning more weight to training examples that were mis-
classified by previously trained classifiers in the ensemble.
The Accuracy Weighted Ensemble [6] works well in
combination with batch-incremental classifiers. It maintains
multiple recent models trained on different batches of the
data stream, and weights the votes of each model based
on the expected predictive accuracy. Stacking [2] combines
heterogeneous models in the classical batch setting. It weights
the votes of the individual models based on a cross-validation
procedure. As cross-validation procedures are not suitable for
the data stream setting, no online version of Stacking exists.
To the best of our knowledge, the only case of heterogeneous
ensembles in the data stream setting is [17]. A combination
of feature selection and heterogeneous ensembles is proposed;
ensemble members that performed poorly can be replaced.

Concept drift. Some of the aforementioned methods nat-
urally deal with concept drift. For instance, k Nearest
Neighbour maintains a number of w recent examples,
substituting each example after w new examples have
been observed. Change detectors, such as Drift Detection
Method (DDM) [18] and Adaptive Sliding Window Algorithm
(ADWIN) [19] are stand-alone techniques that detect concept
drift and can be used in combination with any stream classifier.
Both rely on the assumption that classifiers improve (or at
least maintain) their accuracy when trained on more data.
When the accuracy of a classifier drops in respect to a
reference window, this could mean that the learned concept
is outdated, and a new classifier should be built. The main
difference between DDM and ADWIN is the way they select
the reference window. Furthermore, classifiers can have built-
in drift detectors. For instance, Ultra Fast Forest of
Trees [20] are Hoeffding Trees with a built-in change

detector for every node. When an earlier made split turns out
to be obsolete, a new split can be generated.

Evaluation. As data from streams is non-stationary, the
well-known cross-validation procedure for estimating model
performance is not suitable. A commonly accepted estimation
procedure is the Prequential Method [9], in which each
example is first used to test the current model, and afterwards
(either directly or after a delay) becomes available for training.

Meta-Learning. Meta-learning aims to learn which learn-
ing techniques work well on what data. A common task, known
as the Algorithm Selection Problem, is to determine which
classifier performs best on a given dataset. We can predict this
by training a meta-model on data describing the performance
of different methods on different datasets, characterized by
meta-features [21]. Meta-learning approaches on data streams
often train multiple classifiers on all available training data.
A meta-model decides for each new data point which of
the base-learners will make a prediction. The authors of [4]
dynamically choose between two regression techniques using
meta-knowledge obtained earlier in the stream. The authors
of [3] select the best classifier among multiple classifiers,
based on meta-knowledge from previously processed data
streams. Finally, [22] uses meta-learning on time series with
recurrent concepts: when concept drift is detected, a meta-
learning algorithm decides whether a model trained previously
on the same stream could be reused, or whether the data is so
different from before that a new model must be trained.

III. METHODS

Traditional Machine Learning problems consist of a num-
ber of examples that are observed in arbitrary order. Each
example e = (x, l(x)) is a tuple of p predictive attributes
x = (x1, . . . , xp) and a target attribute l(x). A data set is an
(unordered) set of such examples. The goal is to approximate
a labelling function l : x → l(x). In the data stream setting
the examples are observed in a given order, therefore each data
stream S is a sequence of examples S = (e1, e2, e3, . . . , en),
where n is possibly infinite. Consequently, Si refers to the ith
example in data stream S. The set of predictive attributes of
that example is denoted by PS i, likewise l(PS i) maps to the
corresponding label. Furthermore, the labelling function that
needs to be learned can change over time due to concept drift.

The ensemble method that we propose consists of funda-
mentally different base-classifiers; Section IV describes which
classifiers we use. These are trained using all available train-
ing examples. At various points in the stream, we need to
determine the weights of the ensemble members. As such, we
are repeatedly dealing with the algorithm selection problem as
we pass over the stream. Hence, meta-learning and ensemble
techniques are closely related in the data stream setting. In
order to address the online algorithm selection problem, we
propose Online Performance Estimation.

A. Online Performance Estimation

When applying an ensemble, the most relevant variables
are which base-classifiers (members) to use and how to weight
their individual votes. The Online Performance Estimation
framework addresses the latter question. In most common ap-
proaches all base-classifiers are given the same weight (e.g., as



done in Bagging) or their predictions are otherwise combined
to optimise the overall performance of the ensemble (e.g., as
done in Stacking). An important property of the data stream
setting has not been taken into account: due to the possible
occurrence of concept drift it is likely that in most cases recent
examples are more relevant than older ones. Moreover, due to
the fact that there is a temporal component in both the training
and test set, we can actually measure how ensemble members
have performed on recent examples, and accordingly adjust
their weight in the voting. In order to estimate the performance
of a classifier on recent data, we calculate:

P (l′, c, w, L) =

c∑
i=min(1,c−w)

L(l′(PS i), l(PS i))

w
(1)

where l′ is the learned labelling function of an ensemble
member, c is the index of the last seen training example and
w is the number of training examples over which we want
to estimate the performance of ensemble members. Finally, L
is a loss function that compares the labels predicted by the
ensemble member to the true labels. The most simple version
is a zero/one loss function, which returns 1 when the pre-
dicted label is correct and 0 otherwise. More complicated loss
functions can also be incorporated. Finally, the performance
estimates for the ensemble members can be converted into
a weight for their votes, at various points over the stream.
For instance, the best performing members at that point could
receive the highest weights.

Note that in order to apply Performance Estimation over
a window of w examples, the meta-algorithm needs to store
the most recent w examples in memory. However, under the
assumption that parameter w is fixed a priori and that we only
need to update the ensemble weights at predefined intervals
(e.g., a fixed interval of length α), any ensemble technique
can trivially be adapted to update its member’s weights under
this framework, without having to revisit data points more
than once. The choice of weighting function and ensemble
technique can give rise to different algorithms, of which we
will discuss several below.

B. BLAST

BLAST (short for best last) is an ensemble embodying
Online Performance Estimation. For every set of α test exam-
ples, it selects one of its members to be the active classifier.
The weight of the vote of the active classifier will be 1,
while the weights of all other members are 0. The active
classifier is selected using Online Performance Estimation:
the classifier that performed best over the set of w previous
trainings examples is selected as the active classifier, hence the
name. Formally,

AC = argmax
mi∈M

P (mi, c, w,E) (2)

where M is the set of models generated by the ensemble
members, c is the index of the current example, w is a
parameter to be set by the user (the window size over which
we do the performance estimation) and E is a zero/one loss
function, giving a penalty of 1 to all misclassified examples.

The Online Performance Estimation framework contains
some parameters to be determined by the user. As for the
interval that the active classifier remains the same, a value of
α = 1 seems optimal, as the decision on what active classifier
to use is always based on the performance evaluations on
the most recent data. The optimal value for w is harder to
determine. Setting this value too high will result in selecting
the active classifier over possibly outdated data. Setting it too
low will result in selecting the active classifier based on an
unrepresentative sample. Furthermore, a loss function needs
to be selected. In our experiments we have explicitly selected
a zero/one loss function, as openly available data streams
typically lack information about the costs of various types
of misclassifications. However, when the appropriate domain
knowledge is available, different loss functions can be chosen.

Note that BLAST is not the first ensemble technique
to utilize Online Performance Estimation. For example, the
Accuracy Weighted Ensemble and the Heterogeneous
Ensemble technique from [17] replace outdated models based
on measurable performance. The main contribution of BLAST
is that it solely relies on Online Performance Estimation.
Without introducing additional techniques or pre-processing
steps we are able to measure the utility of Online Perfor-
mance Estimation for Data Stream Ensembles. Furthermore,
rather than replacing ensemble members, BLAST temporarily
lowers the weight of poorly performing members. This saves
resources that are otherwise used for training new members.

C. Meta-Feature Ensemble

Several notable techniques for heterogeneous model com-
bination in the data stream setting rely on meta-learning [3],
[4]. These techniques divide the data stream in windows of
size w. Over each of these windows, a set of meta-features is
calculated, and this is repeated for all previously known data
streams. Using these meta-features and the actual performances
of all classifiers on all windows, a meta-classifier is trained to
predict the best classifier for the next window given the meta-
features of the current window. Any batch classifier can be
used as the meta-classifier. Usually, Random Forest [23]
are used, since these have proven to work well in the context
of algorithm selection [24]. We include this meta-learning
approach in our study for two reasons. First, it can serve as
a very strong baseline to compare against. Second, Online
Performance Estimation can trivially be combined with this
technique, raising some interesting research questions about
its future potential. Section IV-C contains an experiment that
strongly suggests that incorporating Online Performance Esti-
mation increases the predictive performance of meta-learning
techniques.

The performance of this technique highly depends on the
meta-features that are used. We implemented the commonly
used simple, statistical, information theoretic and landmarking
meta-features [21], [24]. Additionally, we use concept drift
detection meta-features, first introduced in [3]. These meta-
features describe the number of times a change detector (e.g.,
ADWIN or DDM) has measured concept drift in the previous
window of w examples. The assumption is that when there
is abrupt concept drift, fast learners (needing few examples to
build adequate models) should be able to more quickly recover
from this and give more accurate predictions [3], [25].



Furthermore, the estimated performance of each ensemble
member can also be added as a meta-feature. We refer to
this new kind of meta-feature as stream-based landmarkers.
Additionally, we include a derived meta-feature ‘best on pre-
vious’ that simply records which base-classifier performed best
on the previous w examples. Finally, for each base-classifier,
we record a binary meta-feature indicating whether there was
a significant difference between that classifier and the best
classifier on that window, measured using McNemar’s test [9].

Note that the meta-classifier is trained on all previously
seen data streams. Therefore, the quality of this method de-
pends on the diversity of these streams. In this work, we do not
train the meta-classifier on historic meta-data from the stream,
as this requires the meta-classifier to retrain after each window,
increasing runtime. Still, this means that potentially useful
meta-information about performance earlier in the stream is
neglected. We aim to explore this in future work.

IV. EXPERIMENTS

In order to establish the utility of Online Performance
Estimation, we conduct experiments using a large set of data
streams. The data streams and results of all experiments are
made publicly available on OpenML [26] for the purposes of
verifiability, reproducibility and generalizability.1

A. Setup

Data streams. The data streams are a combination of real
world data streams (e.g., electricity, 20 newsgroups, IMDB)
and synthetically generated data (e.g., LED, Rotating Hyper-
plane, Bayesian Network Generator) commonly used in data
stream research [1], [3], [7], [10]. Many contain a natural drift
of concept. We estimate the performance of the methods using
the Prequential Method: each observation is used as a
test example first and as a training example afterwards [9].

Meta-classifier. The Meta-Feature Ensemble re-
quires a meta-classifier that is trained on previously seen
data streams. In this work, we use a Random Forest [23]
consisting of 100 trees, as implemented in Weka 3.7.12 [27].
We evaluate the meta-classifier using a method similar to leave
one out: for each data stream to test, we train the meta-
classifier on all other data streams. However, data streams that
are generated by the same data-generator can potentially be
similar, resulting in an optimistic score. Therefore we remove
those from the training set as well, except for data streams
generated by the Bayesian Network Generator, as these can be
considered very different by nature. Furthermore, some data
streams are composed of other data streams. For instance,
Covertype, Pokerhand and Electricity are commonly joined to
form one data stream [1], [3], [8]. Hence, these will also be
removed from each other’s training sets.

Ensembles. The most important property of heterogeneous
ensembles is which base-classifiers are used. This affects both
performance and runtime. Table I lists all classifiers that are
used as base-classifiers in this paper. These are basically all
classifiers that are available in the MOA workbench that can
handle multi-nominal classification problems [7]. For most
parameters the defaults of MOA version 2014.03 are used;
k-NN has a window size of 1,000 and k = 10.

1See http://www.openml.org/

TABLE I. CLASSIFIERS USED IN THE EXPERIMENTS.

Key Classifier Model type
NB Naive Bayes Bayesian
SGD-Hinge Stochastic Gradient Descent / Hinge SVM
SGD-Log Stochastic Gradient Descent / Log Logistic
SPeg SPegasos / Hinge SVM
k-NN k Nearest Neighbour Lazy
RC Rule Classifier Classification Rules
HT Hoeffding Tree Decision Tree
AT Hoeffding Adaptive Tree Decision Tree
RT Random Hoeffding Tree Decision Tree
OT Hoeffding Option Tree Option Tree
Perc Perceptron Neural Network

Evaluation. We evaluate the performance of the proposed
methods in a way similar to [3], [4]: Base-level accuracy and
Meta-level accuracy. Base-level accuracy is the conventional
predictive accuracy of the techniques on the task of labeling
the test instances of the data streams, i.e., the number of
correct predictions divided by the total number of predictions.
This measure can be used to compare the performance of
the proposed techniques to conventional ensemble techniques.
Meta-level accuracy measures the accuracy obtained on the
task of selecting the best active classifier on a window of
test examples. This can be used to estimate how well the
meta-classifier worked compared to other classifier selection
schemas.

A low meta-level accuracy does not imply a low base-level
accuracy. Meta-level accuracy does not capture the ranking of
the base-classifiers and the individual differences in perfor-
mance between them. For example, when two of the base-
classifiers perform about as well, the meta-classifier suffices
to select either one. However, meta-level accuracy can only be
calculated for ensemble techniques that select a single active
classifier. For these reasons, base-level accuracy always takes
precedence when comparing techniques.

Parameters. Apart from the chosen set of base-classifiers,
two important parameters need to be determined for BLAST
and the Meta-Feature Ensemble, i.e., the window size
over which we do Online Performance Estimation (w) and the
number of examples the active classifier is fixed (α). Even
though it is plausible that an optimal value for α = 1, there
are reasons not to chose this. It is computationally expensive
to revise the weights after every example, especially for the
Meta-Feature Ensemble. Furthermore, for calculating
meta-level accuracy it is beneficial to have α = w, so that
all examples contribute equally to the meta-level task, and are
used exactly once. For both BLAST and the Meta-Feature
Ensemble we set parameters α = w = 1,000. Hence, the past
1,000 example are used to define the weights of the ensemble
members for the following window of 1,000 examples.

Baselines. We compare the results of the defined methods
with the Best Single Classifier. Each heterogeneous ensemble
consists of n base-classifiers. For each of the data streams,
the one that performs best on average over all other data
streams is considered the best single classifier. Although it
seems obvious that the proposed techniques perform better
than this baseline, adopting this technique makes it possible to
analyse the increase of both meta-level accuracy and base-level
accuracy. Secondly, we also compare the obtained base-level
accuracy with state of the art homogeneous ensembles, such as
Leveraging Bagging Hoeffding Trees [8], as well



TABLE II. PERFORMANCES AVERAGED OVER ALL DATA STREAMS.

Technique Meta-level acc. Base-level acc.
Majority Vote Ensemble N/A 0.814
Best Single 0.345 0.821
Online Boosting / HT N/A 0.822
Online Bagging / HT N/A 0.830
Leveraging Bagging / HT N/A 0.838
Meta-Feature Ensemble 0.526 0.848
BLAST 0.642 0.857
Oracle 1.000 0.861

as the Majority Vote Ensemble. The latter is a heterogeneous
ensemble consisting of a set of n given base-classifiers, in
which all base-classifiers vote equally for the class label. Fi-
nally, an interesting measure to compare to is the Oracle meta-
classifier. This is a hypothetical meta-classifier that selects for
every interval of α test-instances the best base-classifier out
of a given set. Note that the base-level score obtained by the
Oracle indicates the maximal achievable score for the other
techniques when using this set of base-classifiers. Therefore,
it also gives a measure of how well the set of base-classifiers
was designed; when the base-level accuracy of the Oracle
is only slightly better than the base-level accuracy of the best
single classifier, this is an indication that the selected set of
base-classifiers was not well chosen.

B. Ensemble Performance

In order to assess whether Online Performance Estimation
is a useful technique, we run all techniques over the full
range of data streams. Table II shows the results of the
techniques averaged over all data streams. Note that the meta-
level accuracy can only be measured for techniques that deal
with an algorithm selection problem. The results show that
BLAST performs better than the other techniques, on both
meta-level and base-level accuracy. Another important obser-
vation is that the Majority Vote Ensemble performs
poorly. In many cases it is not able to outperform the Best
Single Classifier. This observation supports the notion
that constructing an ensemble of heterogeneous models is
not a trivial task, and proper techniques for weighting the
individual votes are required. Figure 1 shows the performances
of the techniques per data stream. Preventing to clutter the
figures, we only show the three techniques for which we
can measure meta-level performance. The data streams are
sorted by the meta-level performance of the Best Single
Classifier. It shows that BLAST performs consistently
very well on most tasks. In almost all cases it outperforms
the Meta-Feature Ensemble. This supports the notion
that Online Performance Estimation is very suitable for deter-
mining the best classifier on a part of a data stream.

To assess statistical significance, we use the Friedman test
with post-hoc Nemenyi test to establish the statistical relevance
of our results. These tests are considered the state of the art
when it comes to comparing multiple classifiers [28]. The
Friedman test checks whether there is a statistical difference
between the classifiers; when this is the case the Nemenyi test
can be used to determine which classifiers are significantly
better than others. The results of the Nemenyi test are shown
in Figure 2. It plots the average rank of all methods and the
critical difference. Classifiers that are statistically equivalent
are connected by a black line. For all other cases, there was a
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Fig. 1. Ensemble performances per data stream.

significant difference in performance, in favor of the classifier
with the better average rank.
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Fig. 2. Results of Nemenyi test.

Many of the ensemble techniques are statistically equiv-
alent. We can conclude that BLAST is significantly better
than the Majority Vote Ensemble and the Single
Best Classifier. Furthermore, it shows statistical evi-
dence that BLAST is equivalent with state of the art ensem-
ble methods, such as Leveraging Bagging Hoeffding
Trees. The Meta-Feature Ensemble performs worse.
Although it is equivalent with many other techniques, it is
significantly weaker than the Leveraging Bagging ensemble.
Finally, note that a good average accuracy does not imply
a good average ranking: algorithms can have small wins on
many data sets and big losses on others. While averaged
over all data streams BLAST obtains a higher base-level ac-
curacy than Leveraging Bagging Hoeffding Trees
(see Table II), the latter obtains a better average rank.

C. Meta-Feature Importance

We will attempt to establish how useful the features ob-
tained by Online Performance Estimation are. We do this
by running the Meta-Feature Ensemble with various
sets of meta-features. One set contains only traditional meta-
features, (i.e., similar to [3]); the other both traditional meta-
features and stream-based landmarkers. As the stream-based
landmarkers are calculated using Online Performance Estima-
tion, this shows the effect of Online Performance Estimation
on the set of meta-features. Table III shows the results.



TABLE III. EFFECT OF STREAM-BASED LANDMARKERS.

Technique Meta-level acc. Base-level acc.
Best Single 0.345 0.821
Meta-Features / no SLM 0.306 0.815
Meta-Features / SLM 0.526 0.848
Oracle 1.000 0.861

The results show an increase in performance when stream-
based landmarkers are used. Without stream-based landmark-
ers, the Meta-Feature Ensemble is outperformed by the
Best Single Classifier. When using stream-based
landmarkers, both base-level and meta-level accuracy clearly
increase. This supports the hypothesis that Online Performance
Estimation is useful in the context of online classifier selection.

V. CONCLUSIONS

We have introduced the Online Performance Estimation
framework, which can be used in data stream ensembles to
weight the votes of ensemble members, in particular when
using fundamentally different model types. We applied this
approach to build a simple novel ensemble technique, BLAST,
to evaluate its performance. Based on an extensive empirical
evaluation we observe that BLAST is statistically equivalent to
current state of the art ensembles. It also outperforms the meta-
learning attempts to combine various models, even though the
underlying framework is significantly more elegant and does
not require a database of earlier evaluations on data streams.

The experiments also suggest that Online Performance
Estimation can be successfully leveraged to improve meta-
learning approaches. Incorporating the obtained estimations
in the Meta-Feature Ensemble clearly improves its
performance. Moreover, our experiments show that the
Meta-Feature Ensemble relies highly on the novel
meta-features derived from Online Performance Estimation.

Utilizing the Online Performance Estimation framework
opens up a whole new line of data stream research. In this
work we fixed the set of classifiers, whereas future work will
explore which types of models and classifiers generally work
well together. Rather than creating even more data stream
classifiers, combining the current existing classifiers using
Online Performance Estimation can elegantly lead to improved
results. We believe that by exploring these possibilities we can
further push the state of the art in data stream ensembles.
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