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Introduction

Ensembles of classifiers are among the strongest classifiers in most data
mining applications. Bagging ensembles exploit the instability of
base-classifiers by training them on different bootstrap replicates. It has been
shown that Bagging instable classifiers, such as decision trees, yield generally
good results, whereas bagging stable classifiers, such as Naive Bayes, makes
little difference. However, recent work suggests that this assumption does not
apply to the Data Stream Setting.

OpenML and Data Streams

• Networked science [3]: broadcasting data (and questions) fosters
spontaneous discoveries.

• Full support for Data Stream Experiments.

• Process an example at a time, and inspect it only once.

• Use a limited amount of memory and time.

• MOA plugin [1] available, for sharing Algorithms and Experiments.

Bagging

Bagging [4] is a technique that trains various models on different samples of
the data and combines the predictions.

Algorithm Selection on Data Streams

Continuation of the Meta-Learning Experiment presented in [2].
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Experimental Results

The experiment contains two classifiers (Naive Bayes and k-NN, with k = 10)
and two Bagging Schema’s (Online Bagging and Leveraging Bagging). The
images show the results of both schema’s on Naive Bayes.
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Statistical Tests

Two statistical test were performed:

• T-Test found no significant differences.

• Wilcoxon Signed-Ranks test found significant difference in many cases.

Table 1: Wilcoxon Signed-Ranks Test results, 95% confidence.

Classifier Online Bag. Lev. Bag.
Naive Bayes no yes
k-NN yes yes

Table 2: T-Test results, 95% confidence.

Classifier Online Bag. Lev. Bag.
Naive Bayes no no
k-NN no no

Conclusions

A possible explanation can be found in the fact that the Wilcoxon
Signed-Ranks Test bases its conclusion on the signs of a classifier; it only
considers whether one schema was better, equal or worse on a given data
stream. The T-Test bases its conclusion on actual scores. The fact that the
Wilcoxon test found statistical evidence that bagging actually improves the
performance of stable classifiers in the data stream setting, but the T-Test
not, leads to the belief that improvements can be obtained, but these are very
limited. More research is required to give a decisive answer to the question
whether Bagging Stable Classifiers works on Data Streams.
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