Efficient Benchmarking of Hyperparameter Optimizers via Surrogates

Katharina Eggensperger and Frank Hutter
University of Freiburg
{eggenspk, th} @cs.uni-freiburg.de

Holger H. Hoos and Kevin Leyton-Brown
University of British Columbia
{hoos, kevinlb} @cs.ubc.ca

Abstract

Hyperparameter optimization is crucial for achieving peak per-
formance with many machine learning algorithms; however,
the evaluation of new optimization techniques on real-world
hyperparameter optimization problems can be very expen-
sive. Therefore, experiments are often performed using cheap
synthetic test functions with characteristics rather different
from those of real benchmarks of interest. In this work, we
introduce another option: cheap-to-evaluate surrogates of real
hyperparameter optimization benchmarks that share the same
hyperparameter spaces and feature similar response surfaces.
Specifically, we train regression models on data describing a
machine learning algorithm’s performance depending on its
hyperparameter setting, and then cheaply evaluate hyperpa-
rameter optimization methods using the model’s performance
predictions in lieu of running the real algorithm. We evalu-
ated a wide range of regression techniques, both in terms of
how well they predict the performance of new hyperparameter
settings and in terms of the quality of surrogate benchmarks
obtained. We found that tree-based models capture the per-
formance of several machine learning algorithms well and
yield surrogate benchmarks that closely resemble real-world
benchmarks, while being much easier to use and orders of
magnitude cheaper to evaluate.

Introduction

The performance of many machine learning methods de-
pends crucially on hyperparameter settings and thus on the
method used to set these hyperparameters. Recently, sequen-
tial model-based Bayesian optimization methods have been
shown to outperform more traditional methods for this prob-
lem (such as grid search and random search) and to rival—
and in some cases surpass—human domain experts in find-
ing good hyperparameter settings (Snoek, Larochelle, and
Adams 2012; Thornton et al. 2013; Bergstra, Yamins, and
Cox 2013). Similar successes have been achieved by gen-
eral algorithm configuration methods on a wide range of
problems, such as tuning combinatorial problem solvers for
Boolean satisfiability (Hutter et al. 2007) and mixed integer
programming (Hutter et al. 2009). Here, however, we focus
on the special case of hyperparameter optimization.

One obstacle to further progress in hyperparameter op-
timization is a paucity of reproducible experiments and

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

empirical studies. The hyperparameter optimization library
HPOIib (Eggensperger et al. 2013) represents a first step to-
wards alleviating this problem, by offering a unified interface
to different optimizers and benchmarks that makes it easier
to reuse previous benchmarks and to systematically compare
different approaches.

However, experiments with interesting real-world hyper-
parameter optimization benchmarks often remain infeasible
in many cases. The first (mundane, but often significant) ob-
stacle is to get someone else’s research code working on
one’s own system—including resolving dependencies and
acquiring required software licenses—and to use the appropri-
ate input data. Furthermore, some code requires specialized
hardware; most notably, general-purpose graphics process-
ing units (GPGPUs) have become a standard requirement
for the effective training of modern deep learning architec-
tures (Krizhevsky, Sutskever, and Hinton 2012). Finally, the
computational expense of comprehensive hyperparameter
optimization experiments can be prohibitive for research
groups lacking access to large compute clusters. These prob-
lems represent a considerable barrier to the sound evalua-
tion of new hyperparameter optimization algorithms on the
most challenging and interesting hyperparameter optimiza-
tion benchmarks, such as deep belief networks (Bergstra et
al. 2011), convolutional neural networks (Snoek, Larochelle,
and Adams 2012; Bergstra, Yamins, and Cox 2013), and com-
bined model selection and hyperparameter optimization in
machine learning frameworks (Thornton et al. 2013).

Given this large overhead for studying complex hyper-
parameter optimization benchmarks, researchers have used
simple synthetic test functions, such as the Branin function,
to compare hyperparameter optimization algorithms (Snoek,
Larochelle, and Adams 2012). While such functions are
cheap to evaluate, they are not representative of real hyperpa-
rameter optimization problems. In contrast to the response
surfaces of the latter, these synthetic test functions are smooth
and often have unrealistic shapes. Furthermore, they only in-
volve real-valued parameters and hence do not incorporate
the categorical and conditional parameters typical of many
real hyperparameter optimization benchmarks.

In the special case of small, finite hyperparameter spaces, a
much better alternative is simply to record the performance of
every hyperparameter configuration, thereby speeding up fu-
ture evaluations via table lookup. This table-based surrogate

can be trivially transported to any new system, without what-
ever complicating factors were involved in running the origi-
nal algorithm (setup, special hardware requirements, licens-
ing, computational cost, etc.). In fact, several researchers have
already applied this approach to simplify experiments (Bar-
denet et al. 2013; Snoek, Larochelle, and Adams 2012;
Birattari et al. 2002).

Unfortunately, table lookup is limited to small, finite hy-
perparameter spaces. Here, we generalize the idea of such
surrogates to arbitrary, potentially high-dimensional hyperpa-
rameter spaces (including, e.g., real-valued, categorical, and
conditional hyperparameters). As with table lookup, we first
evaluate many hyperparameter configurations in an expensive
offline phase. Departing from this paradigm, we then use the
resulting performance data to train a regression model that
approximates future evaluations via model predictions. As
before, we obtain a surrogate of algorithm performance that
is cheap to evaluate and trivially portable. Since these model-
based surrogates offer only approximate representations of
performance, it is crucial to investigate the quality of their
predictions, as we do in this work.!

We are not the first to propose the use of learned surrogate
models that stand in for computationally complex functions.
In the field of meta-learning (Brazdil et al. 2008), regres-
sion models have been extensively used to predict the per-
formance of algorithms across various datasets based on
dataset features (Guerra, Prudéncio, and Ludermir 2008;
Reif et al. 2014). The statistics literature on the design and
analysis of computer experiments (DACE) (Sacks et al. 1989;
Santner, Williams, and Notz 2003; Gorissen et al. 2010) uses
similar surrogate models to guide a sequential experimental
design strategy aiming to achieve either an overall strong
model fit or to identify the minimum of a function. Surrogate
models are also at the core of the sequential model-based
Bayesian optimization framework (Brochu, Cora, and de Fre-
itas 2010; Hutter, Hoos, and Leyton-Brown 2011) (SMBO,
the framework underlying all hyperparameter optimizers we
study here). While all of these lines of work incrementally
construct surrogate models of a function in order to inform
an active learning criterion that determines new inputs to
evaluate, our work differs in its goal: to obtain surrogate
benchmarks rather than to identify good points in the space.

Surrogate benchmarks are useful in several different senses.
First, like synthetic test functions and table lookups, they can
be used for extensive debugging and unit testing. Second,
since the large computational expense of running hyperpa-
rameter optimizers is typically dominated by the cost of eval-
uating algorithm performance under different selected hyper-
parameters, our benchmarks can also substantially reduce the
time required for running a hyperparameter optimizer, facil-
itating whitebox tests. This functionality is gained even if
the surrogate model fits algorithm performance quite poorly
(e.g., due to a lack of sufficient training data). Third, sur-
rogate benchmarks that closely resemble real benchmarks
can also facilitate the evaluation of new features inside the
hyperparameter optimizer, or even the meta-optimization of

!This paper is an extended and improved version of a paper
presented at an ECAI workshop (Eggensperger et al. 2014).

a hyperparameter optimizer’s own hyperparameters (which
can also be done without using surrogates, but is typically
extremely expensive (Hutter et al. 2009)).

Background: Hyperparameter Optimization

The construction of machine learning models typically gives
rise to two optimization problems: internal optimization
(such as selecting a neural network’s likelihood-maximizing
weights) and hyperparameter optimization (such as setting a
neural network’s structural and regularization parameters). In
this work we consider the latter. Let Ay, . . ., A, denote the hy-
perparameters of a given machine learning algorithm, and let
A1,..., A, denote their respective domains. The algorithm’s
hyperparameter space is then defined as A = Ay x -+ X A,,.
When trained with hyperparameters A € A on data Dy, the
algorithm’s loss (e.g., misclassification rate) on data Dy,iq
is L(X, Dyain, Dyaiia)- Using k-fold cross-validation, the opti-
mization problem is then to minimize the expression

o

k
1 i i
F) =23 £ D, D). (1)
=1

A hyperparameter \,, can be continuous, integer-valued or
categorical. For example, the learning rate for a neural net-
work is continuous; the number of neurons is integer-valued,;
and the choice between various preprocessing methods is cat-
egorical. Hyperparameters can also be conditional, meaning
that their values only matter if another hyperparameter takes
a certain value. For example, the hyperparameter ‘“number
of principal components” only needs to be instantiated when
the hyperparameter “preprocessing method” is PCA.

Evaluating f(A) for a given A € A is often computa-
tionally costly; thus, many techniques have been developed
to find good configurations A without performing many
function evaluations. The methods most commonly used
in practice are manual search and grid search, but recently,
it was shown that even simple random search can yield
much better results (Balaprakash, Birattari, and Stiitzle 2007;
Bergstra and Bengio 2012).

The state of the art in practical optimization of hyper-
parameters is set by Bayesian optimization methods (Hut-
ter, Hoos, and Leyton-Brown 2011; Snoek, Larochelle, and
Adams 2012; Bergstra et al. 2011), which have been success-
fully applied to problems ranging from deep neural networks
to combined model selection and hyperparameter optimiza-
tion (Bergstra et al. 2011; Snoek, Larochelle, and Adams
2012; Thornton et al. 2013; Komer, Bergstra, and Eliasmith
2014; Bergstra, Yamins, and Cox 2013). Bayesian optimiza-
tion methods use a probabilistic model M to describe the
relationship between a hyperparameter configuration A and
its performance f (). They fit this model using previously
gathered data and then use it to select a subsequent config-
uration A, to evaluate, trading off exploitation and explo-
ration in order to find the minimum of f. They then evaluate
f(Anew), update M with the new data (Apew, f(Anew)) and
iterate. Throughout this paper, we will use the following three
Bayesian optimization methods:

— SPEARMINT (Snoek, Larochelle, and Adams 2012) models
pm(f | A) as a Gaussian process (GP). It supports continu-
ous and discrete parameters (albeit only via rounding), but
not conditional parameters.

— Sequential Model-based Algorithm Configuration
(SMAC) (Hutter, Hoos, and Leyton-Brown 2011) models
pm(f | A) as a random forest. When performing cross val-
idation, SMAC only evaluates as many folds as necessary
to show that a configuration is worse than the best one seen
so far. SMAC can handle continuous, categorical, and condi-
tional parameters.

— Tree Parzen Estimator (TPE) (Bergstra et al. 2011) mod-
els pa(f | A) indirectly using tree-structured Parzen density
estimators. TPE can handle continuous, categorical, and con-
ditional parameters.

An empirical evaluation of the three methods on the
HPOIib benchmarks showed that SPEARMINT performed
best on benchmarks with few continuous parameters, and
SMAC performed best on benchmarks with many, categori-
cal, and/or conditional parameters, closely followed by TPE.
SMAC also performed best on benchmarks that relied on
cross validation (Eggensperger et al. 2013).

Methodology

‘We now describe the algorithm performance data we used,
the types of regression models we evaluated, and how we
used them to construct surrogate benchmarks. To avoid con-
fusion, we explicitly state that there are three different types
of models: the base learner (whose hyperparameters are op-
timized), the internal surrogate model of the hyperparameter
optimizer (SMAC, TPE, or Spearmint), and the benchmark
simulator surrogate model.

Data collection

In principle, we could construct surrogate benchmarks using
algorithm performance data gathered by any means, but of
course, we prefer to gather data in a way that leads to the best
surrogates. It is more important for surrogate benchmarks
to exhibit strong predictive quality in some parts of the hy-
perparameter space than in others. Specifically, our ultimate
aim is to ensure that hyperparameter optimizers perform sim-
ilarly on the surrogate benchmark as on the real benchmark.
Since effective optimizers spend most of their time in high-
performance regions of the hyperparameter space, and since
relative differences between the performance of hyperparam-
eter configurations in such high-performance regions tend to
impact which hyperparameter configuration will ultimately
be returned, accuracy in this part of the space is more im-
portant than in regions of poor performance. Training data
should therefore densely sample high-performance regions.
We thus advocate collecting performance data primarily via
runs of existing hyperparameter optimization procedures. As
an additional advantage of this strategy, we can obtain this
costly performance data as a by-product of executing hyperpa-
rameter optimization procedures on the original benchmark.

Of course, it is also important to accurately identify poorly
performing parts of the space: if we only trained on perfor-
mance data for the very best hyperparameter settings, no

Table 1: Overview of regression algorithms we evaluated.
We used random search to optimize hyperparameters and
considered 100 samples over the stated hyperparameters;
we trained the model on 50% of the data, chose the best
configuration based on its performance on the other 50%,

and then trained on all data.

Model Hyperparameter optimization Implementation

Gradient Boosting ~ Random search: max_features, SCIKIT-LEARN
min_samples_leaf, max_depth,
learning._rate,n.estimators

Random Forest Random search: min_samples_split, SCIKIT-LEARN

n_estimators, max_features

SPEARMINT
SCIKIT-LEARN
SCIKIT-LEARN

Gaussian Process MCMC sampling over hyperparameters
SVR Random search: C and gamma

NuSVR Random search: C, gamma and nu

k-nearest-neighbours Random search: n_neighbors SCIKIT-LEARN
SCIKIT-LEARN

SCIKIT-LEARN

Linear Regression ~ None

Ridge Regression Random search: alpha

machine learning model could be expected to infer that per-
formance in the remaining parts of the space is poor. This
would typically lead to overly optimistic predictions of perfor-
mance in poor parts of the space. We therefore also included
performance data gathered by random search. (Alternatively,
one could use grid search, which can also cover the entire
space. We did not adopt this approach, because it cannot deal
effectively with large hyperparameter spaces.) Thus, to gather
the data for a surrogate of benchmark X, we used the data
gathered by empirically evaluating four methods on X: the
three previously mentioned Bayesian optimization methods
as well as random search.

Choice of Regression Models

We considered a broad range of commonly used regression
algorithms as candidates for our surrogate benchmarks.

Table 1 details the regression models and implementations
we used. We considered two different tree-based models,
because random forest (RFs) have been shown to yield high-
quality predictions of algorithm performance data (Hutter et
al. 2014) and because SMAC uses a RF. We also included
SPEARMINT’s Gaussian process (GP) implementation, which
performs MCMC to marginalize over hyperparameters. These
models are quite complementary: Spearmint’s GPs work best
on low-dimensional smooth hyperparameter optimization
problems, while SMAC’s RFs perform particularly well for
non-smooth and high-dimensional problems, such as Auto-
WEKA or structure search in deep learning (Eggensperger
et al. 2013). As a baseline, we also experimented with k-
nearest-neighbours (kNN), linear regression, ridge regression,
and two SVM methods (all as implemented by scikit-learn,
version 0.15.1 (Pedregosa et al. 2011)).

Construction and Use of Surrogate Benchmarks

To construct surrogates for a hyperparameter optimization
benchmark X, we trained each of the previously mentioned
models on the performance data gathered by running all four
of our hyperparameter optimization methods on benchmark

X. The surrogate benchmark X, based on model M is iden-
tical to the original benchmark X, except that evaluations of
the base learner to be optimized in benchmark X are replaced
by a performance prediction? obtained from model M. In
particular, the surrogate’s configuration space (including all
parameter types and domains) and function evaluation budget
are identical to the original benchmark.

Importantly, the wall clock time to run an algorithm on
X 34 is much lower than that required on X, since all evalua-
tions of the base learner underlying X are replaced by cheap
model evaluations. To avoid the repeated cost of training or
loading M, we also allow for storing M in an independent
process and communicating with it via a local socket.

Experiments and Results

We now present an experimental evaluation of the quality of
surrogates constructed by different machine learning methods.
Due to limited space, we provide more detailed results in sup-
plementary material: www.automl.org/benchmarks/aaai2015-
surrogates-supplementary.pdf

Experimental Setup

We experimented with nine benchmarks from the hy-
perparameter optimization benchmark library HPOLIB
(Eggensperger et al. 2013), including three low-dimensional
and six high-dimensional hyperparameter spaces. The low-
dimensional benchmarks were derived from a logistic re-
gression (Snoek, Larochelle, and Adams 2012) with 4 hy-
perparameters on the MNIST dataset (LeCun et al. 1998)
(both with and without 5-fold cross validation) and an active
learning fit of a latent Dirichlet allocation (Hoffman, Blei,
and Bach 2010) with 3 continuous hyperparameters. The
evaluation of a single configuration of the logistic regres-
sion required roughly 1 minute on a single core of an Intel
Xeon E5-2650 v2 CPU, whereas the onlineLDA took up to
10 hours. The high-dimensional benchmarks were derived
from a simple and a deep neural network, HP-NNET and HP-
DBNET (both taken from Bergstra et al. (2011)), each being
used to classify the mrbi and the convex datasets (Larochelle
et al. 2007). For HP-NNET we also included 5-fold cross
validation variants of both datasets. Evaluating a single HP-
NNET configuration required roughly 12 minutes using 2
cores with OpenBlas. To run efficiently, the HP-DBNET re-
quired a GPGPU; on a modern Geforce GTX780 GPU, it
took roughly 15 minutes to evaluate a single configuration.
For each benchmark, we executed 10 runs each of SMAC,
SPEARMINT, TPE and random search (using the Hyperopt
implementation of both random search and TPE). Table 2
provides an overview of this data. For benchmarks that in-
cluded 5-fold cross-validation, the data for TPE, SPEARMINT
and random search repeats every configuration 5 times, once
per fold. In contrast, SMAC natively manages the number
of cross-validation folds considered per configuration, and
hence evaluated only a subset of folds for most configurations.

2Our benchmark algorithms are deterministic, and we thus pre-
dicted means, but in principle we could also sample from the pre-
dictive distribution produced by a regression model to mimic the
behaviour of stochastic algorithms.

Table 2: Properties of our data sets. “One-hot dim.” is the
number of features in our one-hot encoded training data.
hyperparameter One-hot #evals.

#dat
#A cond. cat./cont. dim. per run al
onlineLDA 3 - -/3 4 50 1999
Log. Reg. 4 /4 5 100 4000
Log. Reg. 5CV 9 500 20000
HP-NNET convex 25 200 8000
14 4 7117
HP-NNET convex 5CV 29 500 19998
HP-NNET mrbi 25 200 8000
14 4 7117
HP-NNET mrbi 5CV 29 500 20000
HP-DBNET convex 7997
36 27 19/17 82 200
HP-DBNET mrbi 7916

We used a one-hot (aka 1-in-k) encoding to code categorical
parameters and scaled the x values (using the training data)
to be within [0, 1]. For some model types, training with all
the data from Table 2 was computationally infeasible, and so
we subsampled 2 000 data points (uniformly at random?) for
training. This was the case for nuSVR and the GP model. On
this reduced training set, the GP model required 550 minutes,
and the nuSVR 230 minutes respectively, to train on the most
expensive data set (HP-DBNET convex).

We used HPOLIB to run the experiments for all optimizers
with a single format, both for the original hyperparameter
optimization benchmarks and for our surrogates. The version
of the SPEARMINT package we used crashed for about 5%
of all runs due to a numerical problem. In evaluations where
we require entire trajectories, for these crashed SPEARMINT
runs, we imputed the best function value found before the
crash for all evaluations after the crash.

Evaluation of Raw Model Performance

To evaluate the raw predictive performance of the models
listed in Table 1, we computed root mean squared error
(RMSE) and Spearman’s rank correlation coefficient (CC)
between model predictions and the true responses.

Using all data Table 3 presents results for 4 representative
datasets in a 5-fold cross-validation setting, showing that our
tree-based models were best for predicting the performance
of our base learners. The RF model achieved the highest
CC on all 9 datasets, while the GB model tended to yield
the lowest RMSE (details shown in Appendix, Table B.1).
Besides the tree-based models, the GP performed best; KNN
and the linear regression models did not achieve comparable
performance. Based on these results, we decided to focus
the remainder of our study on a subset of models: tree-based
approaches (RFs and GB), GPs, and, as an example of a
popular, yet poorly-performing model, kKNN.

3For a given dataset and fold, all models based on the same
number of data points used the same subsampled data set. We note
that model performance sometimes was quite noisy with respect to
the pseudorandom number seed for this subsampling step. To make
our results more easily reproducible, we used a fixed seed.

Table 3: Regression performance in the cross-validation set-
ting. We report average RMSE and CC for a 5-fold cross
validation for different regression models for 4 out of 9 bench-
mark problem datasets For each entry, bold face indicates the
best performance on this dataset, and underlined values are
not statistically significantly different from the best according
to a paired t-test (p = 0.05). For models marked with an *

we reduced the training data to 2000 data points per fold.

onlineLDA Log.Reg. Log.Reg. SCV HP-DBNET mrbi

Model RMSE cC RMSE CcC RMSE cC RMSE CcC

GB 29.7 099 | 0.061 095 0.028 096 | 0.052 0.92
RF 327 099 | 0068 095 0.029 098 | 0.052 0.92
GPp* 770 094 | 0.114 089 | 0.125 0.88 | 0.081 0.80
SVR 1450 098 | 0.124 0.88 | 0.108 0.89 | 0.093 0.72

NuSVR* 1449 098 | 0.131 0.86 | 0.141 0.86 | 0.089 0.73

KNN 1544 097 | 0.146 0.88| 0.137 0.89 | 0.106 0.62
LinReg. 1987 0.86| 0252 0.66| 0232 078 | 0.094 0.70
Rid.Reg. 198.7 086 | 0252 0.66 | 0.232 0.78 | 0.094 0.70

Leave one optimizer out To evaluate whether our regres-
sion models successfully predicted the performance of a ma-
chine learning algorithm with hyperparameter configurations
selected by some new optimization method we considered a
leave-one-optimizer-out (leave-000) setting, learning from
data drawn from all but one optimizer and measuring perfor-
mance on the held-out data. In our experiments we obtained
qualitatively similar results for this setting to those of Table
3 (shown in supplementary material). Figure 1 shows rep-
resentative scatter plots of true vs. predicted performance
on test data. For the low-dimensional logistic regression ex-
ample (first row of Figure 1) the tree-based models and the
GP model predicted most configurations very well. Higher-
dimensional datasets, such as HP-DBNET mrbi (second row
of Figure 1), gave rise to larger errors, with the GP model
predicting that many good configurations would perform as
poorly as the worst ones.

As RFs and GB performed similarly and RFs are widely
used within SMBO, we focus on RFs for the remaining exper-
iments (but provide further details on GB in the supplemen-
tary material). We compare RFs to GPs, the best-performing
non-tree-based approach.

Evaluation of Surrogate Benchmarks

Having narrowed down the set of machine learning ap-
proaches that deserves consideration, we turn to an evalu-
ation of the quality of the surrogate benchmarks produced by
our regression models. For benchmark X and model M, we
measure the quality of surrogate X, by comparing the per-
formance of various hyperparameter optimizers on that surro-
gate X}, and the real X . More precisely, we used the leave-
one-optimizer-out setting: to benchmark each optimizer, we
used a different surrogate, namely one that does not include
training data from this optimizer.

Table 4 presents the results of an empirical evaluation
using the real benchmarks (left block) versus the surrogate
benchmarks based on RFs (middle block) and GPs (right

Logistic Regression 5CV, leave-TPE-out
RF GB GP kNN

HP-DBNET mrbi, leave-SMAC-out
RF GB GP kNN

Figure 1: True test performance (z axis) vs. regression model
predictions (y axis). We report results for the logistic regres-
sion 5SCV and HP-DBNET mrbi datasets The models were
trained on leave-ooo and tested on the left out data. All plots
in one row have the same axes, showing error rates ranging
from O to 1 (Log.Reg. 5CV) and from 0.4 to 1.1 (HP-DBNET
mrbi). Each marker represents the performance of one con-
figuration, vertical lines (and colors) indicate 1/3 best and
worst true performance, respectively. Configurations on the
diagonal were predicted perfectly, configurations below the
diagonal were predicted to perform better than they really
did, configurations above the diagonal worse.

block).* Comparing the performance blocks shows that the
RF-based surrogate benchmarks yielded results similar to
those obtained on the real benchmarks, and that the GP-based
surrogate benchmarks gave rise to more different results. For
example, for the logistic regression benchmark (with and
without cross-validation), the GP surrogate predicted some
configurations to have (nonsensical) negative loss, and indeed
SMAC found these configurations when executed on the GP-
based surrogate benchmark. Other results on the GP-based
surrogate, such as SPEARMINT’s and TPE’s performances on
the HP-NNET convex benchmark were also too good. In con-
trast, RFs never predict values higher or lower than contained
in the training data, which led them to avoid such errors. In
4 out of 9 benchmarks the best optimizer achieved the same
best result as on the real benchmark, in 3 cases the best opti-
mizer on the RF-based surrogate was not significantly worse
than the best one on the real benchmark.

Figure 2 studies two benchmarks in more detail, evaluating
the performance of various hyperparameter optimizers over
time when run on the real benchmark versus the RF-based
and GP-based surrogates. The top row shows results on the
low-dimensional logistic regression benchmark, a case where

“We note that, to enable efficient end-to-end experiments with
surrogate benchmarks, the optimizers solely used the surrogate
benchmark; no runs of the actual base learner were performed.
In order to evaluate the quality of a surrogate model, we could
also run the base learner to validate the actual performance of the
configurations found when optimizing the surrogate; we report first
results for this in the supplemental material.

Results obtained on real benchmark

Results obtained on RF-based surrogate

Results obtained on GP-based surrogate

SMAC Spearmint TPE SMAC Spearmint TPE SMAC Spearmint TPE

Experiment #evals Valid. loss Valid. loss Valid. loss Valid. loss Valid. loss Valid. loss Valid. loss Valid. loss Valid. loss
Log.Reg. 100 | 0.08+0.00 | 0.07+0.00 | 0.08+0.00 0.1040.02 | 0.084+0.00 | 0.084+0.01 -0.06+0.09 | 0.07+0.00 | 0.08+0.04
onlineLDA 50 | 1266.4+4.4 | 1264.3+4.9 | 1263.7+3.0 1268.24+2.0 | 1265.6+3.6 | 1266.1+2.0 1273.0+7.6 | 1263.4+4.5 | 1268.5+5.3
HP-NNET convex 0.1940.01 0.20£0.01 | 0.19+£0.01 0.2140.01 0.21£0.00 | 0.21£0.01 0.1440.03 | 0.1440.05 | 0.1240.05
HP-NNET mrbi 200 0.494+0.01 | 0.514+0.03 | 0.484+0.01 0.5140.03 | 0.5440.04 | 0.4940.01 0.47+0.02 | 0.524+0.07 | 0.4740.01
HP-DBNET convex 0.1540.01 0.23£0.10 | 0.15+0.01 0.184+0.00 | 0.2040.06 | 0.1840.00 0.114+0.02 | 0.1240.05 | 0.1640.02
HP-DBNET mrbi 0.474+0.02 | 0.5940.08 | 0.4740.02 0.52£0.02 | 0.63£0.05 | 0.50+0.01 0.4540.06 | 0.624+0.06 | 0.4140.05
Log.Reg 5CV 0.084+0.00 | 0.084+0.00 | 0.0940.01 0.08£0.00 | 0.08+0.00 | 0.09£0.01 -0.04+0.07 | 0.084+0.00 | 0.07+0.01
HP-NNET convex 5CV 500 | 0.19+0.01 0.23£0.05 | 0.21£0.01 0.224+0.01 | 0.2440.04 | 0.2240.01 0.1740.01 0.154+0.05 | 0.184+0.02
HP-NNET mrbi 5CV 0.48+0.01 0.55£0.03 | 0.51£0.02 0.5140.01 0.59£0.06 | 0.51£0.02 0.38+0.05 | 0.57£0.06 | 0.4940.01

Table 4: Losses obtained for all optimizers and benchmarks. We report results for the real benchmarks (left), RF-based surrogate
benchmarks (middle), and GP-based surrogate benchmarks (right), where all surrogate models were learned from leave-ooo data.
We report means and standard deviations across 10 runs of each optimizer. For each benchmark, bold face indicates the best mean
loss, and underlined values are not statistically significantly different from the best according to an unpaired ¢-test (p = 0.05).

True Benchmark

RF Surrogate Benchmark

GP Surrogate Benchmark

Logistic Regression (leave-000)

Iy
o

Iy
o

-l e
= SMAC REAL

= SPEARMINT REAL

== SMAC RandomForest
= SPEARMINT RandomForest

== SMAC GaussianProcess
= SPEARMINT GaussianProcess

ke ke
[(9] (9]
> > > 3
g \ g 2 N
ﬁ 0.8 =+ TPE REAL 6 0.8 - ++ TPE RandomForest -S 0.8 1+ TPE GaussianProcess
© © ©
506 50.6 50.6
I £ £
[() ()
_E 0.4 _S 0.4 _S 0.4
® ® ®
202 20.2 2.2
© © ©
> > >
%0.0 %o0.0 % 0.0
o o o
10° 10" 10° 10° 10" 102 10° 10" 102
#Function evaluations #Function evaluations #Function evaluations
HP-DBNET convex (leave-000)
- 0.5 0.5 0.5

= SMAC REAL
== SPEARMINT REAL
=+ TPE REAL

o
>
o
S

o
W
o o
N %)

=]
=
o
=

Best validation error achieved

o

Best validation error achieve
o
N

4

== SMAC RandomForest
== SPEARMINT RandomForest
* TPE RandomForest

= SMAC GaussianProcess
== SPEARMINT GaussianProcess
*+ TPE GaussianProcess

o
~

o
w

o
¥

°
o

Best validation error achieved

H.
o2
C

10"
#Function evaluations

s
o2
d

10

10!

#Function evaluations

o
-
==

C

107
#Function evaluations

10 10

Figure 2: Best performance found by different optimizers over time. We plot median and quartile of best performance across 10
runs of each optimizer over time on the real benchmark (left column) and on surrogates trained on leave-ooo data. Analogous
results for all benchmarks are given in Figure B.3 in the supplementary material.

all models performed reasonably well except that the GP sur-
rogate underpredicted the error for some configurations that
SMAC found in the end. The second row shows the results
for our highest dimensional benchmark: HP-DBNET convex,
for which the GP-based surrogate (right figure) yielded quali-
tatively quite different performance than the real benchmark
(left figure). In contrast, the RF-based surrogate yielded per-
formance much closer to that of the real benchmark.

Crucially, the hyperparameter optimization experiments
on our surrogate models were much faster than on the real
benchmarks. For example, as previously mentioned, a sin-
gle function evaluation on the real onlineLDA benchmark
required up to 10 hours; a surrogate evaluation required less

than a second. The hyperparameter optimizer did add a small
overhead, leading to costs of 50-60 seconds for a complete
hyperparameter optimization experiment on the surrogate
benchmarks with TPE or SMAC, as compared to about 340
hours for the real benchmark; a roughly 20 000-fold speedup.
Even for SPEARMINT—which added considerably larger
overhead than TPE and SMAC due to its MCMC steps—we
achieved a 330-fold speedup for an entire hyperparameter
optimization experiment.

Conclusion and Future Work

To tackle the high computational cost and overhead of per-
forming hyperparameter optimization benchmarking, we pro-

posed surrogate benchmarks that behave similarly to the
actual benchmarks they are derived from, but are far cheaper
and simpler to use. The key idea is to collect (configuration,
performance) pairs from the actual benchmark and to learn
a regression model that can predict the performance of a
new configuration and therefore stand in for the expensive-
to-evaluate algorithm. These surrogates reduce algorithm
overhead to a minimum, allowing for extensive runs and
analyses of new hyperparameter optimization techniques.
We empirically demonstrated that we can obtain surrogate
benchmarks that closely resemble the real benchmarks they
were derived from. Surrogates of low-dimensional bench-
marks were almost perfect, while those for high-dimensional
benchmarks still yielded acceptable performance. Our fi-
nal surrogate benchmarks are freely available online at
www.automl.org/benchmarks.html. Surrogate benchmarks
can greatly speed up the development and evaluation of new
hyperparameter optimization methods, but we caution that
new methods should ultimately be evaluated on (at least
some) real benchmarks.

In future work, we intend to study the use of surrogates
for general algorithm configuration. Also, hyperparameter
optimization and algorithm configuration methods have con-
figuration options themselves, and we hope that good surro-
gate benchmarks will enable an efficient meta-optimization
of these options.

Acknowledgements

This work was supported by the German Research Founda-
tion (DFG) under Emmy Noether grant HU 1900/2-1.

References

Balaprakash, P.; Birattari, M.; and Stiitzle, T. 2007. Improve-
ment strategies for the f-race algorithm: Sampling design and
iterative refinement. In Hybrid Metaheuristics. 108—122.

Bardenet, R.; Brendel, M.; Kégl, B.; and Sebag, M. 2013. Col-
laborative hyperparameter tuning. In Proc. of ICML’13.

Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. JMLR 13:281-305.

Bergstra, J.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011. Algo-
rithms for hyper-parameter optimization. In Proc. of NIPS’11.

Bergstra, J.; Yamins, D.; and Cox, D. 2013. Making a science
of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures. In Proc. of ICML’13, 115—
123.

Birattari, M.; Stiitzle, T.; Paquete, L.; and Varrentrapp, K. 2002.
A racing algorithm for configuring metaheuristics. In Proc. of
GECCO’02, 11-18.

Brazdil, P.; Giraud-Carrier, C.; Soares, C.; and Vilalta, R. 2008.
Metalearning: Applications to Data Mining. Springer.

Brochu, E.; Cora, V.; and de Freitas, N. 2010. A tutorial on
Bayesian optimization of expensive cost functions, with appli-
cation to active user modeling and hierarchical reinforcement
learning. CoRR abs/1012.2599.

Eggensperger, K.; Feurer, M.; Hutter, F.; Bergstra, J.; Snoek, J.;
Hoos, H. H.; and Leyton-Brown, K. 2013. Towards an empiri-
cal foundation for assessing Bayesian optimization of hyperpa-
rameters. In NIPS workshop on Bayesian Optimization.

Eggensperger, K.; Hutter, F.; Hoos, H. H.; and Leyton-Brown,
K. 2014. Surrogate benchmarks for hyperparameter optimiza-
tion. In ECAI workshop on Metalearning and Algorithm Selec-
tion.

Gorissen, D.; Couckuyt, I.; Demeester, P.; Dhaene, T.; and
Crombecq, K. 2010. A surrogate modeling and adaptive sam-
pling toolbox for computer based design. JMLR 11:2051-2055.

Guerra, S.; Prudéncio, R.; and Ludermir, T. 2008. Predicting
the performance of learning algorithms using support vector

machines as meta-regressors. In Proc. of ICANN’08, volume
5163, 523-532.

Hoffman, M.; Blei, D.; and Bach, F. 2010. Online learning for
latent dirichlet allocation. In Proc. of NIPS’10, 856-864.

Hutter, F.; Babi¢, D.; Hoos, H. H.; and Hu, A. 2007. Boost-
ing verification by automatic tuning of decision procedures. In
Proc. of FMCAD’07, 27-34.

Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stiitzle, T. 2009.
ParamILS: an automatic algorithm configuration framework.
JAIR 36(1):267-306.

Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm runtime prediction: Methods and evaluation. AlJ
206(0):79 — 111.

Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Sequential
model-based optimization for general algorithm configuration.
In Proc. of LION-5, 507-523.

Komer, B.; Bergstra, J.; and Eliasmith, C. 2014. Hyperopt-
sklearn: Automatic hyperparameter configuration for scikit-
learn. In ICML workshop on AutoML.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. 2012. Ima-
genet classification with deep convolutional neural networks. In
Proc. of NIPS’12, 1097-1105.

Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; and Ben-
gio, Y. 2007. An empirical evaluation of deep architectures on
problems with many factors of variation. In Proc. of ICML’07,
473-480.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proc. of the IEEE 86(11):2278-2324.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-learn:
Machine learning in Python. JMLR 12:2825-2830.

Reif, M.; Shafait, F.; Goldstein, M.; Breuel, T.; and Dengel,
A. 2014. Automatic classifier selection for non-experts. PAA
17(1):83-96.

Sacks, J.; Welch, W.; Welch, T.; and Wynn, H. 1989. De-
sign and analysis of computer experiments. Statistical Science
4(4):409-423.

Santner, T.; Williams, B.; and Notz, W. 2003. The design and
analysis of computer experiments. Springer.

Snoek, J.; Larochelle, H.; and Adams, R. 2012. Practical
Bayesian optimization of machine learning algorithms. In
Proc. of NIPS’12, 2960-2968.

Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K.
2013. Auto-WEKA: Combined selection and hyperparameter

optimization of classification algorithms. In Proc. of KDD’13,
847-855.

