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Implemented Metafeatures

To evaluate our approach in a realistic setting we imple-
mented 46 metafeatures from the literature listed in Table 1.!
These metafeatures are computed only for the training set.
While most of them can be computed for a whole dataset,
some of them (e.g., skewness) are defined for each attribute
of a dataset. In this case, we compute the metafeature for
each attribute of the dataset and use the mean, standard de-
viation, minimum and maximum of the resulting vector as
proposed in Reif, Shafait, and Dengel (2012b).

Since previous empirical results suggested that land-
marking metafeatures are superior to other metafea-
tures (Pfahringer, Bensusan, and Giraud-Carrier 2000; Reif,
Shafait, and Dengel 2011; 2012a), we experimented with us-
ing only the landmarking features used in the first experi-
ment of Pfahringer, Bensusan, and Giraud-Carrier (2000).
We also experimented with the subsets of metafeatures used
in previous works on collaborative SMBO (Bardenet et al.
2013; Yogatama and Mann 2014). The exact subset are:

e Pfahringer: number of features, number of numeric fea-
tures, number of categorical features, number of classes,
class probability max, landmark lda, landmark naive
bayes, landmark decision tree

e Bardenet(Experiment 1): number of classes, log number
of features, log inverse dataset ratio, pca 95percent

e Bardenet(Experiment 2): number of classes, log number
of features, log inverse dataset ratio, pca kurtosis first pc,
pca skewness first pc

e Yogatama: log number of features, log number of in-
stances, number of classes

Datasets and Preprocessing

The 57 datasets from the OpenML project website (Van-
schoren et al. 2013) that we used are listed in Figure 1.
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IThese are the same metafeatures as listed in Table 1 in the main
paper. In contrast to the main paper, Table 1 contains additional
information on the metafeatures values.

Additional Experimental Results

In this section we provide additional results for the SVM
benchmark.

Warmstarting Spearmint for Optimizing SVMs

For space constraints, only part of this experiment was
shown in the main paper. Here, we give the full results.

Figure 2 (top) shows how Spearmint (Snoek, Larochelle,
and Adams 2012) compares to the other state-of-the-art
SMBO frameworks for optimizing the hyperparameters of
a SVM. The plot on left-hand side shows that Spearmint
captured the relationship between hyperparameters and re-
sponse values in its model, converging to the optimum very
fast. In contrast, the plots in the middle and on the right-
hand side show cases where Spearmint performs worse than
every other model (which actually happened only on 3 out
57 datasets).

Figure 2 (bottom) shows how meta-learning can improve
the vanilla Spearmint method. For the dataset on the left,
both version of meta-learning work well and slightly im-
prove Spearmint. The middle dataset shows how meta-
learning can help Spearmint on datasets where it performs
badly, advancing it from being worse to being best. In con-
trast, for the dataset on the right, meta-learning only yielded
small improvements (a comparison to the right top plot in
Figure 2 shows that neither variant of Spearmint performed
better than random search in this case).

To complete the above analysis, Figure 3 (top) quantifies
on how many datasets MI-Spearmint based on the learned
distance performed statistically significant better than its
competitors according to the two-sided t-test. The lower plot
of Figure 3 shows the statistically significant losses. Both of
these quantities are plotted over time, as the function evalua-
tion budget increases. We observe that MI-Spearmint started
off much better than all other methods. Given larger func-
tion evaluation budgets, using its Spearmint part, it even
increased the performance advantage over random search,
TPE, and SMAC. Compared to Spearmint, MI-Spearmint
started off significantly better in 70% of the datasets, but
these differences leveled off over time. There was very little
difference between the two MI-Spearmint variants (based on
the L, and the learned distance). We can conclude that given
a large enough budget vanilla Spearmint already yields good
hyperparameter configurations, making it hard to improve



Metafeature

class-entropy
class-probability-max
class-probability-mean
class-probability-min
class-probability-std
dataset-ratio
inverse-dataset-ratio
kurtosis-max

kurtosis-mean

kurtosis-min

kurtosis-std

landmark-1NN
landmark-decision-node-learner
landmark-decision-tree
landmark-lda
landmark-naive-bayes
landmark-random-node-learner
log-dataset-ratio
log-inverse-dataset-ratio
log-number-of-features
log-number-of-instances
number-of-Instances-with-missing-values
number-of-categorical-features
number-of-classes
number-of-features
number-of-features-with-missing-values
number-of-instances
number-of-missing-values
number-of-numeric-features
pca-95percent
pca-kurtosis-first-pc
pca-skewness-first-pc
percentage-of-Instances-with-missing-values
percentage-of-features-with-missing-values
percentage-of-missing-values
ratio-categorical-to-numerical
ratio-numerical-to-categorical
skewness-max

skewness-mean

skewness-min

skewness-std

symbols-max

symbols-mean

symbols-min

symbols-std

symbols-sum

Table 1: List of implemented metafeatures

Minimum
0.64
0.04
0.04
0.00
0.00
0.00
1.62
-1.30
-1.30
-3.00
0.00
0.20
0.07
0.20
0.26
0.10
0.07
-7.39
0.48
1.10
4.04
0.00
0.00
2.00
3.00
0.00
57.00
0.00
0.00
0.02
-2.00
-27.07
0.00
0.00
0.00
0.00
0.00
0.00
-0.56
-21.19
0.00
0.00
0.00
0.00
0.00
0.00

Value
Mean
1.92
0.43
0.28
0.19
0.10
0.06
141.90
193.43
24.32
-0.59
48.83
0.79
0.55
0.78
0.79
0.68
0.47
-3.80
3.80
2.92
6.72
96.00
13.25
6.58
33.91
3.54
2126.33
549.49
20.67
0.52
13.38
-0.16
0.14
0.16
0.03
1.35
0.49
5.34
1.27
-0.62
1.60
13.09
3.01
1.44
3.06
71.04

Maximum
4.70
0.90
0.50
0.48
0.35
0.62

1620.00
4812.49
652.23
5.25
1402.86
1.00
0.96
1.00
1.00
0.97
0.91
-0.48
7.39
5.63
9.90
2480.00
240.00
28.00
279.00
34.00
20000.00
22175.00
216.00
1.00
730.92
6.46
1.00
1.00
0.65
33.00
7.00
67.41
14.71
1.59
18.89
429.00
41.38
12.00
107.21
1648.00

Minimum
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Calculation time (s)
Mean
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.61
0.13
0.49
1.39
0.06
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00

Maximum
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.05
0.05
0.05
0.05
8.97
1.34
5.23

70.08
1.05
0.26
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.04
0.00
0.00
0.00
0.00
0.00
0.04
0.04
0.04
0.05
0.00
0.00
0.00
0.00
0.00



Figure 1: List of the 57 datasets used for the experiments from the OpenML project website (Vanschoren et al. 2013).

Dataset name  # Features # Patterns  # Classes

abalone 8 4177 28
anneal.ORIG 38 898 5
arrhythmia 279 452 13
audiology 69 226 24
autos 25 205 6
balance-scale 4 625 3
braziltourism 8 412 7
breast-cancer 9 286 2
breast-w 9 699 2
car 6 1728 4
cmc 9 1473 3
credit-a 15 690 2
credit-g 20 1000 2
cylinder-bands 39 540 2
dermatology 34 366 6
diabetes 8 768 2
ecoli 7 336 8
eucalyptus 19 736 5
glass 9 214 6
haberman 3 306 2
heart-c 13 303 2
heart-h 13 294 2
heart-statlog 13 270 2
hepatitis 19 155 2
ionosphere 34 351 2
iris 4 150 3
kr-vs-kp 36 3196 2
labor 16 57 2
letter 16 20000 26
liver-disorders 6 345 2
lymph 18 148 4
mfeat-factors 216 2000 10

further. However, as already mentioned in the main paper,
meta-learning initialization does substantially improve per-
formance with few function evaluations.
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mfeat-pixel 240 2000 10
mfeat-zernike 47 2000 10
mushroom 22 8124 2
nursery 8 12960 5
optdigits 64 5620 10
page-blocks 10 5473 5
pendigits 16 10992 10
postoperative-patient-data 8 90 3
primary-tumor 17 339 21
satimage 36 6430 6
segment 19 2310 7
sonar 60 208 2
soybean 35 683 19
spambase 57 4601 2
tae 5 151 3
tic-tac-toe 9 958 2
vehicle 18 846 4
vote 16 435 2
vowel 13 990 11
waveform-5000 40 5000 3
yeast 8 1484 10
700 17 101 7
Minimum 3.0 57.0 2.0
Maximum 279.0 20000.0 28.0
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Figure 2: Difference in SVM validation error between the best found hyperparameters at evaluation ¢ and the best value obtained
via a full grid search on three datasets. MI-Spearmint(10, d, X') stands for MI-Spearmint with an initial design of ¢ = 10
configurations suggested by meta-learning using metafeatures X with distance function d.
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Figure 3: Percentage of wins of MI-Spearmint with an initial design of ¢ = 10 configurations suggested by meta-learning using
the learned distance with all metafeatures. The upper plot shows significant wins of MI-Spearmint against each other approach
according to the two-sided t-test while the lower plot shows the statistically significant losses.



