AClib: a Benchmark Library
for Algorithm Configuration

Frank Hutter, Manuel Lopez-lbanez,
Chris Fawcett, Marius Lindauer,
Holger Hoos, Kevin Leyton-Brown, and Thomas Stutzle

18 February 2014

Motivation

 Most heuristic algorithms have free parameters
— E.g. IBM ILOG CPLEX: 76 parameters

* Preprocessing, underlying LP solver & its parameters, types of cuts, ...

* Algorithm configuration aims to
find good parameter settings automatically
— Eliminates most tedious part of algorithm design and end use
— Saves development time & improves performance

— Produces more reproducible research

Mainstream Adoption of AC Methods

Many different types of algorithms

— Tree search, local search, metaheuristics, machine learning, ...

Large improvements to solvers for
many hard combinatorial problems

— SAT, MIP, TSP, ASP, time-tabling, Al planning, ...
— Competition winners for all of these rely on configuration tools

Increasingly popular (citation numbers from Google scholar)

ParamILS [Hutter et al. '09] Iterated F- Race [Blrattarl et al., 10]

e . il l I | — [I
201 2012 2013

GGA [Ansotegui et al, '09] SMAC [Hutter et al., “11]

Benefits of an AC Benchmark Library

e Comparability & reproducibility
— Easy access to broad range of standard benchmarks
— Reduced effort for empirical evaluation
— More meaningful results

e Standardization of interfaces
— Simplifies use of AC procedures
— Speeds up development

The Algorithm Configuration Problem

Definition
— Given:
e Runnable algorithm A with configuration space & = @1 x --- X O,

e Distribution D over problem instances I1
e Performance metric m : ® x II — R

— Find:

0" € argming g Ervp|[m(0,)]

Motivation @

Customize versatile algorithms
for different application domains

— Fully automated improvements

— Optimize speed, accuracy,

memory, energy consumption, ... very Ia_rge >pace @
of configurations

The Algorithm Configuration Process

Parameter domains
& starting values

Configurator

Calls with
different
parameter
settings

Configuration scenario

Target
algorithm

Solves

Problem
mstances

Returns solution cost

Methods for Algorithm Configuration

Work on numerical parameter optimization (e.g., BBOB)

— Evolutionary algorithms community, e.g., CMA-ES [Hansen et al, '95-present]
— Statistics & machine learning community, e.g., EGO [Jones et al, ‘98],

SPO [Bartz-Beielstein et al, ’05-present]
Early work on categorical parameters
— Composer [Gratch et al, '92 & '93]
— Multi-TAC [Minton, '93]

— F-Race [Birattari et al, ‘02]

General algorithm configuration methods
— lterated Local Search, ParamlLS [Hutter et al., '07 & '09]
— Genetic algorithm, GGA [2Ansotegui et al, '09]
— Iterated F-Race [Birattari et al., ‘07-present]
— Model-based Algorithm Configuration, SMAC [Hutter et al., '09-present]

Algo. Configuration vs. Blackbox Optimization

Parameter types
— Continuous, integer, ordinal
— Categorical: finite domain, unordered, e.g., {a,b,c}
— Conditional: only active for some instantiations of other parameters

Optimization across a distribution of problem instances

9* - arg minQE@ ﬂ71'va[771(97 W)]

— Stochastic Optimization
— Instances often differ widely in hardness

Budget: CPU/wall time vs. # function evaluations
— Overheads of configurator count!
— Can exploit that fast function evaluations are cheaper
— Can save time by cutting off slow runs early

AClib: Components

e Configuration scenarios

#Scenarios

Problem Solvers Runtime Quality #Parameters
SAT 16 different solvers 75 0 2-270
MIP CPLEX 4 4 76
ASP Clasp 3 0 85

Al Planning LPG & Fast Downward 20 0 45 — 66
Time-tabling CTT l l T—18
TSP ACOTSP, ACOTSP-VAR 0 2 11 -28
bTSP MOACO 0 | 16
Machine Learning AutoWEKA 0 21 768

* For convenience, we also include configuration procedures
— So far: ParamlILS, SMAC, and lterated F-Race

AClib: Design Criteria

 Variety
— Problems: decision & optimization problems, machine learning
— Algorithm types: tree search, local search, machine learning
— Number of parameters: 2 - 768
— Parameter types: continuous / discrete / conditional
— Objectives: runtime to optimality / solution quality
— Degree of homogeneity of instances

e Assessing different configurator components
— Search: which configuration to try next?
— Racing/intensification: how many runs, which instances?

— Capping: when to cut of a run?

10

AClib: Resolves Technical Challenges

 Unified way to wrap target algorithms
— Built-in control of CPU time & memory
— Reliable measurements of CPU & wall time

* No more need to rely on target algorithm’s time measurements
e Consistent use of wall time / CPU time

e |dentical invocations of a target algorithm
— Callstrings are independent of the configurator

— Otherwise systematic biases possible,
leading to incomparable results in the literature

11

AClib: Contribute

e Contributing a benchmark scenario
— Algorithm & its parameter description
— Instances, Features, training/test split
— CPU time & memory limits
— Algoritm wrapper

e Generates a call string given an instantiation of parameters
e Parses the algorithm result

e Contributing a configuration procedure
— Accept scenarios in AClib format

— Basically:
call target algorithm on the command line and get results back

12

Future Work

For you: use AClib ;-) www.aclib.net

Ontology of algorithm configuration scenarios

Large-scale evaluation

— Which configurator performs best on which types of problems?

Algorithm Configuration Evaluation

— Planned as AAAI 2015 workshop (together with Yuri Malitsky)
— Submit configuration scenarios! (same format as in AClib)

— Submit configurators!

13

	AClib: a Benchmark Library �for Algorithm Configuration��
	Motivation
	Mainstream Adoption of AC Methods
	Benefits of an AC Benchmark Library
	The Algorithm Configuration Problem
	The Algorithm Configuration Process
	Methods for Algorithm Configuration
	Algo. Configuration vs. Blackbox Optimization
	AClib: Components
	AClib: Design Criteria
	AClib: Resolves Technical Challenges
	AClib: Contribute
	Future Work

