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1. Introduction
Experienced human experts in deep learning commonly rely on a large “bag of tricks” to
determine model hyperparameters (Bengio, 2012), as well as learning rates for stochastic
gradient descent (SGD) (LeCun et al., 1998; Bottou, 2012). Using this acquired knowledge
they can often tell after a few SGD iterations whether the training procedure will converge
to a model with competitive performance or not. To save time, they then prematurely
terminate runs expected to perform poorly. Automating this manual trick would be valuable
for speeding up both structure search (Bergstra et al., 2011, 2013; Swersky et al., 2013) and
hyperparameter optimization (Snoek et al., 2012; Eggensperger et al., 2013), which are
currently often prohibitively expensive (Krizhevsky et al., 2012).

We take a first step towards this goal by studying methods for extrapolating from
the first part of a learning curve to its remainder. Preliminary results indicate that such
predictions can be quite accurate and enable the early termination of poor runs.

2. Learning Curves of Deep Neural Networks
To create learning curves for a broad range of network structures and hyperparameters, we
heavily parameterized the Caffe deep neural network software (Jia, 2013); we considered a
total of 81 hyperparameters: 9 network parameters (e.g. learning rate and learning rate
schedule, momentum and the number of fully connected layers) and 12 parameters for each
of up to 6 layers (e.g. width, weight initialization, and dropout rate). We performed 5 runs
of each of the structure search & hyperparameter optimization methods SMAC (Hutter
et al., 2011) and TPE (Bergstra et al., 2011) to optimize performance on the CIFAR10
image classification dataset (Krizhevsky and Hinton, 2009).1 Figure 1 (left) shows SMAC’s
and TPE’s performance over time. Combined, they evaluated 800 instantiations of Caffe,
and we recorded the learning curve of each of them. Caffe terminated learning curves once
they did not make progress for 25 epochs or exceeded 285 epochs. Figure 1 (middle) shows
a random sample of 100 curves.

3. Extrapolation of Learning Curves
Let y1:n denote the observed part of the learning curve for the first n steps. Our basic
approach is to fit parametric models M to y1:n and use them to infer ym, with m > n.

From a broad range of parametric models we selected ten that match the shape of
learning curves. These are typically increasing, saturating functions, for example functions
from the power law or the sigmoidal family.

We first considered averaging predictions of these models via the Bayesian model av-
eraging (BMA) framework (Hoeting et al., 1999). However, in practice BMA often over-
confidently selected single imperfect models, suggesting that the true learning curves are
not perfectly captured by any single one of these models. To increase representative
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Figure 1: Left: best performance found by hyperparameter optimization over time. Middle: rep-
resentative sample of learning curves encountered by optimizers. Right: simulation of
hyperparameter optimization with early stopping based on extrapolation.

power, we instead linearly combined the k = 10 selected models into a single model:
fcomb(x) =

∑k
i=1wifi(x|θi) + ε, with ε ∼ N (0, σ2),

∑k
i=1wi = 1 and ∀wi, wi ≥ 0.

Let ξ denote our model’s parameters (w1, . . . , wk,θ1, . . . ,θk, σ
2). To capture model

uncertainty, we used MCMC2 to draw samples ξ(1), . . . , ξ(S) from P (ξ | y1:n) = P (y1:n |
ξ)P (ξ)/P (y1:n), with a uniform weight prior and priors capturing monotonically increasing

curves for each model. We then predicted ym as: P (ym | y1:n) = 1
S

∑S
s=1 P (ym | ξ(s)).

4. Experiments

Figure 2: Extrapolations of two learning
curves, based on observing 10
(left) and 40 (right) epochs. We
plot 100 randomly selected poste-
rior samples semi-transparently.

Figure 2 (top) shows a typical learning curve and
our extrapolations based on observing 10 and
40 epochs. Figure 2 (bottom) shows the same
for a somewhat unusual learning curve. Overall,
predictions became more certain and more ac-
curate when based on more epochs. On average,
the RMSEs for predictions of final performance
based on 10, 40, and 60 observed epochs were
0.25, 0.19, and 0.11 respectively.

However, overall, since our prior of monoton-
ically increasing performance only imperfectly
captured the flattening towards the end of many
learning curves, our models tended to overes-
timate final performance: 0.11%, 0.30% and
0.59% of the true final performances laid above, within, and below our model’s 90% predic-
tive confidence interval, respectively. We accepted this since overpredictions are much less
harmful for early stopping than underpredictions.

Figure 1 (right) shows a preliminary experiment to simulate the use of extrapolation-
based early stopping in hyperparameter optimization. For this, we simulated optimization
trajectories that visit the 800 learning curves from above, terminating a learning experiment
once its extrapolated performance at the cutoff point is predicted to be worse than the best
seen so far with 99% probability. This simulation resulted in a 2.7-fold reduction of overall
runtime. Note that in actual hyperparameter optimization runs, we would also have to
predict the return value for stopped runs and poor predictions could mislead the optimizer;
we plan to study this in future work.

1. We preprocessed images by extracting k-means features extracted as described by Coates et al. (2011)
and also done by Gens and Domingos (2012) and Swersky et al. (2013)).

2. Specifically, we sampled 100 000 parameter instantiations for each model, using the sampler em-
cee (Foreman-Mackey et al., 2013) with a burn-in of 500, a chain length of 1500 and 100 parallel chains.
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