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Abstract. Most state-of-the-art algorithms for large-scale optimization problems
expose free parameters, giving rise to combinatorial spaces of possible configu-
rations. Typically, these spaces are hard for humans to understand. In this work,
we study a model-based approach for identifying a small set of both algorithm
parameters and instance features that suffices for predicting empirical algorithm
performance well. Our empirical analyses on a wide variety of hard combinatorial
problem benchmarks (spanning SAT, MIP, and TSP) show that—for parameter
configurations sampled uniformly at random—very good performance predictions
can typically be obtained based on just two key parameters, and that similarly,
few instance features and algorithm parameters suffice to predict the most salient
algorithm performance characteristics in the combined configuration/feature space.
We also use these models to identify settings of these key parameters that are
predicted to achieve the best overall performance, both on average across instances
and in an instance-specific way. This serves as a further way of evaluating model
quality and also provides a tool for further understanding the parameter space. We
provide software for carrying out this analysis on arbitrary problem domains and
hope that it will help algorithm developers gain insights into the key parameters of
their algorithms, the key features of their instances, and their interactions.

1 Introduction
State-of-the-art algorithms for hard combinatorial optimization problems tend to expose
a set of parameters to users to allow customization for peak performance in different
application domains. As these parameters can be instantiated independently, they give
rise to combinatorial spaces of possible parameter configurations that are hard for humans
to handle, both in terms of finding good configurations and in terms of understanding
the impact of each parameter. As an example, consider the most widely used mixed
integer programming (MIP) software, IBM ILOG CPLEX, and the manual effort involved
in exploring its 76 optimization parameters [1].

By now, substantial progress has been made in addressing the first sense in which
large parameter spaces are hard for users to deal with. Specifically, it has been convinc-
ingly demonstrated that methods for automated algorithm configuration [2, 3, 4, 5, 6, 7]
are able to find configurations that substantially improve the state of the art for various
hard combinatorial problems (e.g., SAT-based formal verification [8], mixed integer
programming [1], timetabling [9], and AI planning [10]). However, much less work has
been done towards the goal of explaining to algorithm designers which parameters are
important and what values for these important parameters lead to good performance.



Notable exceptions in the literature include experimental design based on linear mod-
els [11, 12], an entropy-based measure [2], and visualization methods for interactive
parameter exploration, such as contour plots [13]. However, to the best of our knowledge,
none of these methods has so far been applied to study the configuration spaces of
state-of-the-art highly parametric solvers; their applicability is unclear, due to the high
dimensionality of these spaces and the prominence of discrete parameters (which, e.g.,
linear models cannot handle gracefully).

In the following, we show how a generic, model-independent method can be used to:

– identify key parameters of highly parametric algorithms for solving SAT, MIP, and
TSP;

– identify key instance features of the underlying problem instances;
– demonstrate interaction effects between the two; and
– identify values of these parameters that are predicted to yield good performance,

both unconditionally and conditioned on instance features.

Specifically, we gather performance data by randomly sampling both parameter settings
and problem instances for a given algorithm. We then perform forward selection, iter-
atively fitting regression models with access to increasing numbers of parameters and
features, in order to identify parameters and instance features that suffice to achieve
predictive performance comparable to that of a model fit on the full set of parameters and
instance features. Our experiments show that these sets of sufficient parameters and/or
instance features are typically very small—often containing only two elements—even
when the candidate sets of parameters and features are very large. To understand what
values these key parameters should take, we find performance-optimizing settings given
our models, both unconditionally and conditioning on our small sets of instance features.
We demonstrate that parameter configurations that set as few as two key parameters
based on the model (and all other parameters at random) often substantially outperform
entirely random configurations (sometimes by up to orders of magnitude), serving as
further validation for the importance of these parameters. Our qualitative results still
hold for models fit on training datasets containing as few as 1 000 data points, facili-
tating the use of our approach in practice. We conclude that our approach can be used
out-of-the-box by algorithm designers wanting to understand key parameters, instance
features, and their interactions. To facilitate this, our software (and data) is available at
http://www.cs.ubc.ca/labs/beta/Projects/EPMs.

2 Methods

Ultimately, our forward selection methods aim to identify a set of the kmax most
important algorithm parameters and mmax most important instance features (where
kmax and mmax are user-defined), as well as the best values for these parameters (both
on average across instances and on a per-instance basis). Our approach for solving
this problem relies on predictive models, learned from given algorithm performance
data for various problem instances and parameter configurations. We identify important
parameters and features by analyzing which inputs suffice to achieve high predictive
accuracy in the model, and identify good parameter values by optimizing performance
based on model predictions.



2.1 Empirical Performance Models
Empirical Performance Models (EPMs) are statistical models that describe the perfor-
mance of an algorithm as a function of its inputs. In the context of this paper, these inputs
comprise both features of the problem instance to be solved and the algorithm’s free
parameters. We describe a problem instance by a vector of m features z = [z1, . . . , zm]T,
drawn from a given feature space F . These features must be computable by an auto-
mated, domain-specific procedure that efficiently extracts features for any given problem
instance (typically, in low-order polynomial time w.r.t. the size of the given problem
instance). We describe the configuration space of a parameterized algorithm with k pa-
rameters θ1, . . . , θk and respective domains Θ1, . . . , Θk by a subset of the cross-product
of parameter domains:Θ ⊆ Θ1 × · · · ×Θk. The elements ofΘ are complete instanti-
ations of the algorithm’s k parameters, and we refer to them as configurations. Taken
together, the configuration and the feature space define the input space I := Θ ×F .

EPMs for predicting the “empirical hardness” of instances have their origin over
a decade ago [14, 15, 16, 17] and have been the preferred core reasoning tool of early
state-of-the-art methods for the algorithm selection problem (which aim to select the
best algorithm for a given problem, dependent on its features [18, 19, 20]), in particular
of early iterations of the SATzilla algorithm selector for SAT [21]. Since then, these
predictive models have been extended to model the dependency of performance on
(often categorical) algorithm parameters, to make probabilistic predictions, and to work
effectively with large amounts of training data [22, 11, 12, 23].

In very recent work, we comprehensively studied EPMs based on a variety of
modeling techniques that have been used for performance prediction over the years, in-
cluding ridge regression [17], neural networks [24], Gaussian processes [22], regression
trees [25], and random forests [23]. Overall, we found random forests and approxi-
mate Gaussian processes to perform best. Random forests (and also regression trees)
were particularly strong for very heterogeneous benchmark sets, since their tree-based
mechanism automatically groups similar inputs together and does not allow widely
different inputs to interfere with the predictions for a given group. Another benefit of the
tree-based methods is apparent from the fact that hundreds of training data points could
be shown to suffice to yield competitive performance predictions in joint input spaces
induced by as many as 76 algorithm parameters and 138 instance features [23]. This
strong performance suggests that the functions being modeled must be relatively simple,
for example, by depending at most very weakly on most inputs. In this paper, we ask
whether this is the case, and to the extent that this is so, aim to identify the key inputs.

2.2 Forward Selection
There are many possible approaches for identifying important input dimensions of a
model. For example, one can measure the model coefficients w in ridge regression (large
coefficients mean that small changes in a feature value have a large effect on predictions,
see, e.g., [26]) or the length scales λ in Gaussian process regression (small length
scales mean that small changes in a feature value have a large effect on predictions, see,
e.g., [27]). In random forests, to measure the importance of input dimension i, Breiman
suggested perturbing the values in the i-th column of the out-of-bag (or validation) data
and measuring the resulting loss in predictive accuracy [28].

All of these methods run into trouble when input dimensions are highly correlated.
While this does not occur with randomly sampled parameter configurations, it does occur



Algorithm 1: Forward Selection
In line 10, learn refers to an arbitrary regression method that fits a function f to given
training data. Note that input dimensions 1, . . . , k are parameters, k + 1, . . . , k +m are
features.

Input :Training data Dtrain = 〈(x1, y1), . . . , (xn, yn)〉; validation data
Dvalid = 〈(xn+1, yn+1), . . . , (xn+n′ , yn+n′)〉; number of parameters, k;
number of features, m; desired number K ≤ d = k +m of key inputs; bound on
number of key parameters, kmax ≥ 0; bound on number of key features,
mmax ≥ 0, such that kmax +mmax ≥ K

Output :Subset of K feature indices S ⊆ {1, . . . , d}
1 I ← {1, . . . , d} ;
2 S ← ∅ ;
3 for j = 1, . . . ,K do
4 Iallowed ← I \ S;
5 if |S ∩ {1, . . . , k}| ≥ kmax then Iallowed ← Iallowed \ {1, . . . , k};
6 if |S ∩ {k + 1, . . . , k +m}| ≥ mmax then Iallowed ← Iallowed \ {k + 1, . . . , k +m};
7 forall the i ∈ Iallowed do
8 S ← S ∪ {i};
9 forall the (xj , yj) ∈ Dtrain do xS

j ← xj restricted to input dimensions in S;
10 f ← learn(〈(xS

1 , y1), . . . , (x
S
n, yn)〉);

11 err(i)←
√∑

(xj ,yj)∈Dvalid
(f(xj)− yj)2;

12 S ← S \ {i};

13 î← random element of argmini err(i); // typo in original: it said argmaxi instead of argmini.

14 S ← S ∪ {̂i};
15 return S;

with instance features, which cannot be freely sampled. Our goal is to build models that
yield good predictions but yet depend on as few input dimensions as possible; to achieve
this goal, it is not sufficient to merely find important parameters, but we need to find a
set of important parameters that are as uncorrelated as possible.

Forward selection is a generic, model-independent tool that can be used to solve this
problem [17, 29].1 Specifically, this method identifies sets of model inputs that are jointly
sufficient to achieve good predictive accuracy; our variant of it is defined in Algorithm 1.
After initializing the complete input set I and the subset of important inputs S in lines
1–2, the outer for-loop incrementally adds one input at a time to S. The forall-loop over
inputs i not yet contained in S (and not violating the constraint of adding at most kmax

parameters and mmax features) uses validation data to compute err(i), the root mean
squared error (RMSE) for a model containing i and the inputs already in S. It then adds
the input resulting in lowest RMSE to S. Because inputs are added one at a time, highly
correlated inputs will only be added if they provide large marginal value to the model.

Note that we simply call procedure learn with a subset of input dimensions, regardless
of whether they are numerical or categorical (for models that require a so-called “1-in-K

1 A further advantage of forward selection is that it can be used in combination with arbitrary
modeling techniques. Although here, we focus on using our best-performing model, random
forests, we also provide summary results for other model types.



encoding” to handle categorical parameters, this means we introduce/drop all K binary
columns representing a K-ary categorical input at once). Also note that, while here, we
use prediction RMSE on the validation set to assess the value of adding input i, forward
selection can also be used with any other objective function.2

Having selected a set S of inputs via forward selection, we quantify their relative
importance following the same process used by Leyton-Brown et al. to determine the
importance of instance features [17], which is originally due to [31]: we simply drop one
input from S at a time and measure the increase in predictive RMSE. After computing
this increase for each feature, we normalize by dividing by the maximal RMSE increase
and multiplying by 100.

We note that forward selection can be computationally costly due to its need for
repeated model learning: for example, to select 5 out of 200 inputs via forward selection
requires the construction and validation of 200+199+198+197+196=990 models. In our
experiments, this process required up to a day of CPU time.

2.3 Selecting Values for Important Parameters
Given a model f that takes k parameters and m instance features as input and predicts
a performance value, we identify the best values for the k parameters by optimizing
predictive performance according to the model. Specifically, we predict the performance
of the partial parameter configuration x (instantiating k parameter values) on a problem
instance with m selected instance features z as f([xT, zT]T). Likewise, we predict its
average performance across n instances with selected instance features z1, . . . , zn as∑n

j=1
1
n · f([x

T, zT
j ]

T).

3 Algorithm Performance Data
In this section, we discuss the algorithm performance data we used in order to evaluate our
approach. We employ data from three different combinatorial problems: propositional
satisfiability (SAT), mixed integer programming (MIP), and the traveling salesman
problem (TSP). All our code and data is available online: instances and their features
(and feature computation code & binaries), parameter specification files and wrappers
for the algorithms, as well as the actual runtime data upon which our analysis is based.

3.1 Algorithms and their Configuration Spaces
We employ peformance data from three algorithms: CPLEX for MIP, SPEAR for SAT, and
LK-H for TSP. The parameter configuration spaces of these algorithms are summarized
in Table 1.

IBM ILOG CPLEX [32] is the most-widely used commercial optimization tool for
solving MIPs; it is used by over 1 300 corporations (including a third of the Global 500)
and researchers at more than 1 000 universities. We used the same configuration space
with 76 parameters as in previous work [1], excluding all CPLEX settings that change
the problem formulation (e.g., the optimality gap below which a solution is considered
optimal). Overall, we consider 12 preprocessing parameters (mostly categorical); 17
MIP strategy parameters (mostly categorical); 11 categorical parameters deciding how
aggressively to use which types of cuts; 9 real-valued MIP “limit” parameters; 10

2 In fact, it also applies to classification algorithms and has, e.g., been used to derive classifiers
for predicting the solubility of SAT instances based on 1–2 features [30].



Algorithm Parameter type # parameters of this type # values considered Total # configurations

Boolean 6 2
CPLEX Categorical 45 3–7 1.90 × 1047

Integer 18 5–7
Continuous 7 5–8

Categorical 10 2–20
SPEAR Integer 4 5–8 8.34 × 1017

Continuous 12 3–6

Boolean 5 2
LK-H Categorical 8 3–10 6.91 × 1014

Integer 10 3–9

Table 1. Algorithms and their parameter configuration spaces studied in our experiments.

simplex parameters (half of them categorical); 6 barrier optimization parameters (mostly
categorical); and 11 further parameters. In total, and based on our discretization of
continuous parameters, these parameters gave rise to 1.90× 1047 unique configurations.

SPEAR [33] is a state-of-the-art SAT solver for industrial instances. With appropriate
parameter settings, it was shown to be the best available solver for certain types of
SAT-encoded hardware and software verification instances [8] (the same IBM and SWV

instances we use here). It also won the quantifier-free bit-vector arithmetic category of
the 2007 Satisfiability Modulo Theories Competition. We used exactly the same 26-
dimensional parameter configuration space as in previous work [8]. SPEAR’s categorical
parameters mainly control heuristics for variable and value selection, clause sorting,
resolution ordering, and also enable or disable optimizations, such as the pure literal rule.
Its numerical parameters mainly deal with activity, decay, and elimination of variables
and clauses, as well as with the randomized restart interval and percentage of random
choices. In total, and based on our discretization of continuous parameters, SPEAR has
8.34× 1017 different configurations.

LK-H [34] is a state-of-the-art local search solver for TSP based on an efficient
implementation of the Lin-Kernighan heuristic. We used the LK-H code from Styles
et al. [35], who first reported algorithm configuration experiments with LK-H; in their
work, they extended the official LK-H version 2.02 to allow several parameters to scale
with instance size and to make use of a simple dynamic restart mechanism to prevent
stagnation. The modified version has a total of 23 parameters governing all aspects of the
search process, with an emphasis on parameterizing moves. In total, and based on our
discretization of continuous parameters, LK-H has 6.91× 1014 different configurations.

3.2 Benchmark Instances and their Features

We used the same benchmark distributions and features as in previous work [23] and
only describe them on a high level here. For MIP, we used two instance distributions
from computational sustainability (RCW and CORLAT), one from winner determination
in combinatorial auctions (REG), two unions of these (CR := CORLAT ∪ RCW and CRR :=
CORLAT ∪ REG ∪ RCW), and a large and diverse set of publicly available MIP instances
(BIGMIX). We used 121 features to characterize MIP instances, including features de-
scribing problem size, the variable-constraint graph, the constraint matrix, the objective
function values, an LP programming relaxation, various probing features extracted from
short CPLEX runs and timing features measuring the computational expense required for
various groups of features.



For SAT, we used three sets of SAT-encoded formal verification benchmarks: SWV
and IBM are sets of software and hardware verification instances, and SWV-IBM is their
union. We used 138 features to characterize SAT instances, including features describing
problem size, three graph representations, syntactic features, probing features based on
systematic solvers (capturing unit propagation and clause learning) and local search
solvers, an LP relaxation, survey propagation, and timing features.

For TSP, we used TSPLIB, a diverse set of prominent TSP instances, and computed
64 features, including features based on problem size, cost matrix, minimum spanning
trees, branch & cut probing, local search probing, ruggedness, and node distribution, as
well as timing features.

3.3 Data Acquisition
We gathered a large amount of runtime data for these solvers by executing them with
various configurations and instances. Specifically, for each combination of solver and
instance distribution (CPLEX run on MIP, SPEAR on SAT, and LK-H on TSP instances), we
measured the runtime of each ofM = 1000 randomly-sampled parameter configurations
on each of the P problem instances available for the distribution, with P ranging from
63 to 2 000. The resulting runtime observations can be thought of as a M × P matrix.
Since gathering this runtime matrix meant performing M · P (i.e., between 63 000 and
2 000 000) runs per dataset, we limited each single algorithm run to a cutoff time of
300 CPU seconds on one node of the Westgrid cluster Glacier (each of whose nodes is
equipped with two 3.06 GHz Intel Xeon 32-bit processors and 2–4GB RAM). While
collecting this data required substantial computational resources (between 1.3 CPU
years and 18 CPU years per dataset), we note that this much data was only required
for the thorough empirical analysis of our methods; in practice, our methods are often
surprisingly accurate based on small amounts of training data. For all our experiments,
we partitioned both instances and parameter configurations into training, validation, and
test sets; the training sets (and likewise, the validation and test sets) were formed as
subsamples of training instances and parameter configurations. We used 10 000 training
subsamples throughout our experiments but demonstrate in Section 4.3 that qualitatively
similar results can also be achieved based on subsamples of 1 000 data points.

We note that sampling parameter configurations uniformly at random is not the
only possible way of collecting training data. Uniform sampling has the advantage of
producing unbiased training data, which in turn gives rise to models that can be expected
to perform well on average across the entire configuration space. However, because
algorithm designers typically care more about regions of the configuration space that
yield good performance, in future work, we also aim to study models based on data
generated through a biased sequential sampling approach (as is implemented, e.g., in
model-based algorithm configuration methods, such as SMAC [6]).

4 Experiments

We carried out various computational experiments to identify the quality of models
based on small subsets of features and parameters identified using forward selection,
to quantify which inputs are most important, and to determine good values for the
selected parameters. All our experiments made use of the algorithm performance data
described in Section 3, and consequently, our claims hold on average across the entire
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Fig. 1. Predictive quality of random forest models as a function of the number of allowed parame-
ters/features selected by forward selection for 3 example datasets. The inputless prediction (subset
size zero) is the mean of all data points. The dashed horizontal line in each plot indicates the final
performance of the model using the full set of parameters/features.

configuration space. Whether they also apply to biased samples from the configuration
space (in particular, regions of very strong algorithm performance) is a question for
future work.

4.1 Predictive Performance for Small Subsets of Inputs

First, we demonstrate that forward selection identifies sets of inputs yielding low predic-
tive root mean squared error (RMSE), for predictions in the feature space, the parameter
space, and their joint space. Figure 1 shows the root mean squared error of models fit
with parameter/feature subsets of increasing size. Note in particular the horizontal line,
giving the RMSE of a model based on all inputs, and that the RMSE of subset models
already converges to this performance with few inputs. In the feature space, this has been
observed before [17, 29] and is intuitive, since the features are typically very correlated,
allowing a subset of them to represent the rest. However, the same cannot be said for
the parameter space: in our experimental design, parameter values have been sampled
uniformly at random and are thus independent (i.e., uncorrelated) by design. Thus, this
finding indicates that some parameters influence performance much more than others, to
the point where knowledge of a few parameter values suffices to predict performance
just as well as knowledge of all parameters.

Figure 2 focuses on what we consider to be the most interesting case, namely perfor-
mance prediction in the joint space of instance features and parameter configurations.
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Fig. 2. Performance predictions by random forest models based on subsets of features and parame-
ters. To generate these heatmaps, we ordered configurations by their average performance across
instances, and instances by their average hardness across configurations; the same ordering (based
on the true heatmap) was used for all heatmaps. All data shown is test data.



The figure qualitatively indicates the performance that can be achieved based on subsets
of inputs of various sizes. We note that in some cases, in particular in the SPEAR scenarios,
predictions of models using all inputs closely resemble the true performance, and that the
predictions of models based on a few inputs tend to capture the salient characteristics of
the full models. Since the instances we study vary widely in hardness, instance features
tend to be more predictive than algorithm parameters, and are thus favoured by forward
selection. This sometimes leads to models that only rely on instance features, yielding
predictions that are constant across parameter configurations; for example, see the pre-
dictions with up to 10 inputs for dataset CPLEX-CORLAT (the second row in Figure 2).
While these models yield low RMSE, they are uninformative about parameter settings;
this observation caused us to modify forward selection as discussed in Section 2.2 to
limit the number of features/parameters selected.

4.2 Relative Importance of Parameters and Features
As already apparent from Figure 1, knowing the values of a few parameters is sufficient
to predict marginal performance across instances similarly well as when knowing all
parameter values. Figure 3 shows which parameters were found to be important in differ-
ent runs of our procedure. Note that the set of selected key parameters was remarkably
robust across runs.

The most extreme case is SPEAR-SWV, for which SPEAR’s variable selection heuristic
(sp-var-dec-heur) was found to be the most important parameter every single time
by a wide margin, followed by its phase selection heuristic (sp-phase-dec-heur). The
importance of the variable selection heuristic for SAT solvers is well known, but it is
surprising that the importance of this choice dominates so clearly. Phase selection is
also widely known to be important for the performance of modern CDCL SAT solvers
like SPEAR. As can be seen from Figure 1 (top middle), predictive models for SPEAR-SWV
based on 2 parameters essentially performed as well as those based on all parameters, as
is also reflected in the very low importance ratings for all but these two parameters.

In the case of both CPLEX-BIGMIX and LK-H-TSPLIB, up to 5 parameters show up as
important, which is not surprising, considering that predictive performance of subset
models with 5 inputs converged to that of models with all inputs (see Figure 1, top left
and right). In the case of CPLEX, the key parameters included two controlling CPLEX’s
cutting strategy (mip limits cutsfactor and mip limits cutpasses, limiting the number
of cuts to add, and the number of cutting plane passes, respectively), two MIP strategy
parameters (mip strategy subalgorithm and mip strategy variableselect, determining
the continuous optimizer used to solve subproblems in a MIP, and variable selection,
respectively), and one parameter determining which kind of reductions to perform during
preprocessing (preprocessing reduce). In the case of LK-H, all top five parameters are
related to moves, parameterizing candidate edges (EXCESS and MAX CANDIDATES,
limiting the maximum alpha-value allowed for any candidate edge, and the maximum
number of candidate edges, respectively), and move types (MOVE TYPE, BACK-
TRACKING, SUBSEQUENT MOVE TYPE, specifying whether to use sequential
k-opt moves, whether to use backtracking moves, and which type to use for moves
following the first one in a sequence of moves).

To demonstrate the model independence of our approach, we repeated the same
analysis based on other empirical performance models (linear regression, neural net-
works, Gaussian processes, and regression trees). Although overall, these models yielded
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Fig. 3. Parameter importance for 3 example datasets. We show boxplots over 10 repeated runs
with different random training/validation/test splits.

Dataset CPLEX-BIGMIX SPEAR-SWV LK-H-TSPLIB

1st selected cplex prob time (10.1) Pre featuretime (35.9) tour const heu avg (0.0)
2nd selected obj coef per constr2 std (7.7) nclausesOrig (100.0) cluster distance std (0.8)
3rd selected vcg constr weight0 avg (30.2) sp-var-dec-heur (32.6) EXCESS (10.0)
4th selected mip limits cutsfactor (8.3) VCG CLAUSE entropy (34.5) bc no1s q25 (100.0)
5th selected mip strategy subalgorithm (100.0) sp-phase-dec-heur (27.6) BACKTRACKING (0.0)

Table 2. Key inputs, in the order in which they were selected, along with their omission cost from
this set.

weaker predictions, the results were qualitatively similar: for SPEAR, all models reliably
identified the same two parameters as most important, and for the other datasets, there
was an overlap of at least three of the top five ranked parameters. Since random forests
yielded the best predictive performance, we focus on them in the remainder of this paper.

As an aside, we note that the fact that a few parameters dominate importance is in
line with similar findings in the machine learning literature on the importance of hyper-
parameters, which has informed the analysis of a simple hyperparameter optimization
algorithm [36] and the design of a Bayesian optimization variant for optimizing functions
with high extrinsic but low intrinsic dimensionality [37]. In future work, we plan to
exploit this insight to design better automated algorithm configuration procedures.

Next, we demonstrate how we can study the joint importance of instance features and
algorithm parameters. Since foward selection by itself chose mostly instance features,
for this analysis we constrained it to select 3 features and 2 parameters. Table 2 lists
the features and parameters identified for our 3 example datasets, in the order forward
selection picked them. Since most instance features are strongly correlated with each
other, it is important to measure and understand our importance metric in the context of
the specific subset of inputs it is computed for. For example, consider the set of important
features for dataset CPLEX-BIGMIX (Table 2, left). While the single most important feature
in this case was cplex prob time (a timing feature measuring how long CPLEX probing
takes), in the context of the other four features, its importance was relatively small; on
the other hand, the input selected 5th, mip strategy subalgorithm (CPLEX’s MIP strategy
parameter from above) was the most important input in the context of the other 4. We
also note that all algorithm parameters that were selected as important in this context
of instance features (mip limits cutsfactor and mip strategy subalgorithm for CPLEX;
sp-var-dec-heur and sp-phase-dec-heur for SPEAR; and EXCESS and BACKTRACKING
for LK-H) were already selected and labeled important when considering only parameters.
This finding increases our confidence in the robustness of this analysis.



Dataset 1st selected param 2nd selected param

CPLEX-BIGMIX mip limits cutsfactor = 8 mip strategy subalgorithm = 2
CPLEX-CORLAT mip strategy subalgorithm = 2 preprocessing reduce = 3
CPLEX-REG mip strategy subalgorithm = 2 mip strategy variableselect = 4
CPLEX-RCW preprocessing reduce = 3 mip strategy lbheur = no
CPLEX-CR mip strategy subalgorithm = 0 preprocessing reduce = 1
CPLEX-CRR preprocessing coeffreduce = 2 mip strategy subalgorithm = 2

SPEAR-IBM sp-var-dec-heur = 2 sp-resolution = 0
SPEAR-SWV sp-var-dec-heur = 2 sp-phase-dec-heur = 0
SPEAR-SWV-IBM sp-var-dec-heur = 2 sp-use-pure-literal-rule = 0

LK-H-TSPLIB EXCESS = -1 BACKTRACKING = NO

Table 3. Key parameters and their best fixed values as judged by an empirical performance model
based on 3 features and 2 parameters.

4.3 Selecting Values for Key Parameters

Next, we used our subset models to identify which values the key parameters identified
by forward selection should be set to. For each dataset, we used the same subset models
of 3 features and 2 parameters as above; Table 3 lists the best predicted values for these
2 parameters. The main purpose of this experiment was to demonstrate that this analysis
can be done automatically, and we thus only summarize the results at a high level; we
see them as a starting point that can inform domain experts about empirical properties of
their algorithm in a particular application context and trigger further in-depth studies. At
a high level, we note that CPLEX’s parameter mip strategy subalgorithm (determining
the continuous optimizer used to solve subproblems in a MIP) was important for most
instance sets, the most prominent values being 2 (use CPLEX’s dual simplex optimizer)
and 0 (use CPLEX’s auto-choice, which also defaults to the dual simplex optimizer).
Another important choice was to set preprocessing reduce to 3 (use both primal and dual
reductions) or 1 (use only primal reductions), depending on the instance set. For SPEAR,
the parameter determining the variable selection heuristic (sp-var-dec-heur) was the most
important one in all 3 cases, with an optimal value of 2 (select variables based on their
activity level, breaking ties by selecting the more frequent variable). For good average
performance of LK-H on TSPLIB, the most important choices were to set EXCESS to -1
(use an instance-dependent setting of the reciprocal problem dimension), and to not use
backtracking moves.

We also measured the performance of parameter configurations that actually set
these parameters to the values predicted to be best by the model, both on average across
instances and in an instance-specific way. This serves as a further way of evaluating model
quality and also facilitates deeper understanding of the parameter space. Specifically, we
consider parameter configurations that instantiate the selected parameters according to
the model and assign all other parameter to randomly sampled values; we compare the
performance of these configurations to that of configurations that instantiate all values
at random. Figure 4 visualizes the result of this comparison for two datasets, showing
that the model indeed selected values that lead to high performance: by just controlling
two parameters, improvements of orders of magnitude could be achieved for some
instances. Of course, this only compares to random configurations; in contrast to our
work on algorithm configuration, here, our goal was to gain a better understanding of an
algorithms’ parameter space rather than to improve over its manually engineered default
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Fig. 4. Performance of random configurations vs configurations setting almost all parameters at
random, but setting 2 key parameters based on an empirical performance model with 3 features
and 2 parameters.
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Fig. 5. Log10 speedups over random configurations by setting almost all parameters at random,
except 2 key parameters, values for which (fixed best, and best per instance) are selected by an
empirical performance model with 3 features and 2 parameters. The boxplots show the distribution
of log10 speedups across all problem instances; note that, e.g., a log10 speedup of 0, -1, and 1
mean identical performance, a 10-fold slowdown, and a 10-fold speedup, respectively. The dashed
green lines indicate where two configurations performed the same, points above the line indicate
speedups. Top: based on models trained on 10 000 data points; bottom: based on models trained
on 1 000 data points.

parameter settings.3 However, we nevertheless believe that the speedups achieved by
setting only the identified parameters to good values demonstrate the importance of these
parameters. While Figure 4 only covers 2 datasets, Figure 5 (top) summarizes results for
a wide range of datasets. Figure 5 (bottom) demonstrates that predictive performance
does not degrade much when using sparser training data (here: 1 000 instead of 10 000
training data points); this is important for facilitating the use of our approach in practice.

3 In fact, in many cases, the best setting of the key parameters were their default values.



5 Conclusions

In this work, we have demonstrated how forward selection can be used to analyze
algorithm performance data gathered using randomly sampled parameter configurations
on a large set of problem instances. This analysis identified small sets of key algorithm
parameters and instance features, based on which the performance of these algorithms
could be predicted with surprisingly high accuracy. Using this fully automated analysis
technique, we found that for high-performance solvers for some of the most widely
studied NP-hard combinatorial problems, namely SAT, MIP and TSP, only very few
key parameters (often just two of dozens) largely determine algorithm performance.
Automatically constructed performance models, in our case based on random forests,
were of sufficient quality to reliably identify good values for these key parameters,
both on average across instances and dependent on key instance features. We believe
that our rather simple importance analysis approach can be of great value to algorithm
designers seeking to identify key algorithm parameters, instance features, and their
interaction. We also note that the finding that the performance of these highly parametric
algorithms mostly depends on a few key parameters has broad implications on the design
of algorithms for NP-hard problems, such as the ones considered here, and of future
algorithm configuration procedures.

In future work, we aim to reduce the computational cost of identifying key param-
eters; to automatically identify the relative performance obtained with their possible
values; and to study which parameters are important in high-performing regions of an
algorithm’s configuration space.
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