Raiders of the Lost Architecture:
Kernelsfor Bayesian Optimization in Conditional
Parameter Spaces

Kevin Swer sky David Duvenaud Jasper Snoek
University of Toronto University of Cambridge Harvard University
kswer sky@s. t or ont 0. edu dkd23@am ac. uk j snoek@eas. harvard. edu

Frank Hutter Michael A. Osborne
Freiburg University University of Oxford
fh@nformatik. uni -freiburg. de mosb@ obot s. ox. ac. uk
Abstract

In practical Bayesian optimization, we must often seardr structures with dif-
fering numbers of parameters. For instance, we may wishdamhleover neural
network architectures with an unknown number of layers. €late performance
data gathered for different architectures, we define a newekdor conditional
parameter spaces that explicitly includes informationulmhich parameters are
relevantin a given structure. We show that this kernel inpsanodel quality and
Bayesian optimization results over several simpler basdlernels.

1 Introduction

Bayesian optimizationg) is an efficient approach for solving blackbox optimizatjmmoblems
of the formargmin,cx f(x) (see [1] for a detailed overview), wheffeis expensive to evaluate.
It employs a prior distributiorp(f) over functions that is updated as new information fobe-
comes available. The most common choice of prior distridyutire Gaussian processes% [2]),
as they are powerful and flexible models for which the maigana conditional distributions can
be computed efficiently.However, some problem domains remain challenging to moe#lwith
GPs, and the efficiency and effectiveness of Bayesian optimizauffers as a result. In this pa-
per, we tackle the common problem of input dimensions thaaty relevant if other inputs take
certain values [6, 5]. This is a general problem in algorittonfiguration [6] that occurs in many
machine learning contexts, such as, e.g., in deep neunabriet [7]; flexible computer vision ar-
chitectures [8]; and the combined selection and hyperpat@noptimization of machine learning
algorithms [9]. We detail the case of deep neural networksie

Bayesian optimization has recently been applied sucdgsstudeep neural networks [10, 5] to
optimize high level model parameters and optimization petars, which we will refer to collec-
tively ashyperparametersDeep neural networks represent the state-of-the-art dtigteumachine
learning benchmarks such as object recognition [11], $pessognition [12], natural language pro-
cessing [13] and more. They are multi-layered models by fiefin and each layer is typically
parameterized by a unique set of hyperparameters, suclyalsuieation parameters and the layer
capacity or number of hidden units. Thus adding additioagéis introduces additional hyperpa-
rameters to be optimized. The result is a complex hieraatleienditional parameter space, which
is difficult to search over. Historically, practitionersveasimply built a separate model for each

1There are prominent exceptions to this rule, though. Iniqaer, tree-based models, such as random
forests, can be a better choice if there are many data paimtsPs thus become computationally inefficient), if
the input dimensionality is high, if the noise is not normaistributed, or if there are non-stationarities [3, 4, 5].

type of architecture or used na® models [5], or assumed a fixed architecture [10]. If therenis a
relation between networks with different architecturepagately modelling each is wasteful.

GPs with standard kernels fail to model the performance ofiggctures with such conditional hy-
perparameters. To remedy this, the contribution of thisepapthe introduction of a kernel that
allows observed information to be shared across archiesiuhen this is appropriate. We demon-
strate the effectiveness of this kernel oarregression task and a Bayesian optimization task using
a feed-forward classification neural network.

2 A Kerne for Conditional Parameter Spaces

GPs employ a positive-definite kernel functién: X x X — R to model the covariance between
function values. TypicatP models cannot, however, model the covariance betweenifunailues
whose inputs have different (possibly overlapping) setelgfvant variables.

In this section, we construct a kernel between points in aesplaat may have dimensions which
are irrelevant under known conditions (further detailsaualable in [14]). As an explicit example,

we consider a deep neural network: if we set the network dephwe know that the 3rd layer’s

hyperparameters do not have any effect (as there is no 3ed)lay

Formally, we aim to do inference about some functjowith domainx. X = [[2, &; is a D-
dimensional input space, where each individual dimensid@ounded real, thatis; = [l;, u;] C R
(with lower and upper bounds andu;, respectively). We define functions: X — {true false},
fori e {1, ..., D}. é;(z) stipulates the relevance of thih featurex; to f(z).

2.1 Theproblem

As an example, imagine trying to model the performance of @alenetwork having either one
or two hidden layers, with respect to the regularizatiorapaaters for each layer; andxs. If y
represents the performance of a one layer-net with regaléon parameters; andzx,, then the
valuez, doesn’t matter, since there is no second layer to the netvielow, we'll write an input
triple as(x1, d2(z), z2) and assume thay (z) = true; that is, the regularization parameter for the
first layer is always relevant.

In this setting, we want a kernglto be dependent on which parameters are relevant, and thesval
of relevant parameters for both points. For example, cemdicst-layer parametens, andx:

¢ If we are comparing two points for which the same parameterselevant, the value of any
unused parameters shouldn’t matter,
k((a:l, false z2), (¢, false x’g)) = k((xl, false 2), (27, false x’g”)), Vo, zh, x5, x4 (1)
e The covariance between a point using both parameters andtaugong only one should again
only depend on their shared parameters,
k((xl, false x2), (2}, trug x’g)) = k((xl, false z), (7, true Ig/)), Vo, xh, x5, 25 . (2)
Put another way, in the absence of any other informatios,gpécification encodes our prior igno-
rance about the irrelevant (missing) parameters whilleadliwing us to model correlations between
relevant parameters.

2.2 Cylindrical Embedding

We can build a kernel with these properties for each possit#jevant input dimension by em-
bedding our points into a Euclidean space. Specificallyethbedding we use is

_f o0 if 6;(z) = false
9i(z) _{ wi[sin mp; -, cos mp; 2T otherwise. ®)

uifli

Wherew; € RT andp; € [0, 1].

Figure 1 shows a visualization of the embedding of pafmis d>(x), z2) into R3. In this space, we
have the Euclidean distance,

0 if 6;(z) = d;(z’) = false
di(z,2') = |lgi(@) — i@l = § “ _ ailz) # o) @)
wi\/i\/l — cos(mp; fj_j) if 6;(z) = d;(z') = true

Figure 1: A demonstration of the embedding
giving rise to the pseudo-metric. All points
for which 65 (z) = false are mapped onto a
line varying only alonge; . Points for which
d2(x) = true are mapped to the surface of a
semicylinder, depending on boih andz.
This embedding gives a constant distance be-
tween pairs of points which have differing
values ofd but the same values af; .

9(0,false)

We can use this to define a covariance over our original sgagearticular, we consider the class
of covariances that are functions only of the Euclidearadis¢A between points. There are many
examples of such covariances. Popular examples are theextiated quadratic, for whioch(A) =

o? exp(—3A?), or the rational quadratic, for whioh(A) = ¢2(1 + .= A%)~. We can simply take
(4) in the place ofA, returning a valid covariance that satisfies aﬁ desideabhtave.

Explicitly, note that as desired, ifis irrelevant for bothe andz’, d; specifies thay(z) andg(z’)
should not differ owing to differences betweepandz,. Secondly, ifi is relevant for bottx and
2/, the difference betweefi(z) and f(z’) due toz; andz; increases monotonically with increasing
|z; — «}|. The parametes, controls whether differing in the relevanceiafontributes more or less
to the distance than differing in the valuewf should: be relevant. Hyperparameter defines a
length scale for théth feature.

Note that so far we only have defined a kernel for dimensgiofo obtain a kernel for the entire
D-dimensional input space, we simply embed each dimensid? insing Equation (3) and then
use the embedded input space of siZe within any kernel that is defined in terms of Euclidean
distance. We dub this new kernel taee kernel Its parameters,; andp; for each dimension, can
be optimized using thep marginal likelihood, or integrated out using Markov chaioie Carlo.

3 Experiments

We now show that the arc kernel yields better results thaerathernatives. We perform two types
of experiments: first, we study model quality in isolatiorainegression task; second, we study the
effect of the arc kernel oro performance. AliGp models use a Matérijiz kernel.

Data. We use two different datasets, both of which are common idéeg learning literature. The
first is the canonical MNIST digits dataset [15] where théiado classify handwritten digits. The
second is the CIFAR-10 object recognition dataset [16]. Véegyocessed CIFAR-10 by extracting
features according to the pipeline givenin [17].

3.1 Modd Quality Experiments

Models. Our first experiments concern the quality of the regressiodets used to form the re-
sponse surface for Bayesian optimization. We generatedygberforming 10 independent runs of
Bayesian optimization on MNIST and then treat this as a s=joa problem. We compare tkee
with arc kernel (ArcgP) to several baselines: the first baseline is a simple linegnession model,
the second is &P where irrelevant dimensions are simply filled in randomly éach input. We
also compare to the case where each architecture uses itseparatesp, as in [5]. The results are
averaged ovet(0-fold train/test splits. Kernel parameters were inferrsthg slice sampling [18].
As the errors lie betweehand1 with many distributed toward the lower end, it can be benaiftoi
take the log of the outputs before modelling them withra We experiment with both the original
and transformed outputs.

Method Original data Log outputs
Separate Linear| 0.8124+0.045 0.737 £ 0.049
Separatesp 0.546 £ 0.038 0.446 £ 0.041
Separate ArGp 0.535 4+ 0.030 0.440 £ 0.031
Linear 0.876 £0.043 0.834 £ 0.047
GP 0.481+0.031 0.401+0.028
Arc GP 0.421 +0.033 0.335+0.028

Table 1:Normalized Mean Squared Error on MNIST Bayesian optimizatiata

|
g

o

o

0.55

uk) g
aseline 80.45, — Baseline

HE Arc GP
I Baseline

rror
|
-
n
o
t]

|
N
=)

%2}
c
S
o ©
s 9] % 0.4
g] £0.40 z
S 20.35 %503
E_30 || g
0 \ = =
8 £0.30 §02
3—3-5] §o.25 5
3749 %“H"{’*ﬁw» 020 §0'1
43 5 10 15 20 013515 20 25 30 35 40 0.0=g o g
Number of models trained Number of models trained Number of layers
(@) MNIST (b) CIFAR-10 (c) Architectures searched

Figure 2: Bayesian optimization results using the arc Kerne

Results. Table 1 shows that@p using the arc kernel performs favourably teathat ignores the
relevance information of each point. The “separate” caieg@pply a different model to each layer
and therefore do not take advantage of dependencies belayezs. Interestingly, the separate Arc
GP, which is effectively just a standa@P with additional embedding, performs comparably to a
standards P, suggesting that the embedding doesn’t limit the expressiss of the model.

3.2 Bayesian Optimization Experiments

In this experiment, we test the ability of Bayesian optintimato tune the hyperparameters of each
layer of a deep neural network. We allow the neural netwooksHese problems to use up o
hidden layers (or no hidden layer). We optimize over leagmates, L2 weight constraints, dropout
rates [19], and the number of hidden units per layer leadiraytotal of up ta23 hyperparameters
and6 architectures. On MNIST, most effort is spent improving #reor by a fraction of a per-
cent, therefore we optimize this dataset using the logsiflaation error. For CIFAR-10, we use
classification error as the objective. We use the Deéppetkage, and each function evaluation
took approximatelyl 000 to 2000 seconds to run on NVIDIA GTX Titan GPUs. Note that when a
network of depthn is tested, all hyperparameters from layers 1 onward are deemed irrelevant.

Experimental Setup. For Bayesian optimization, we follow the methodology of|[sing slice
sampling and the expected improvement heuristic. In thithatology, the acquisition function
is optimized by first selecting from a pre-determined gridpofnts lying in [0, 1]23, distributed
according to a Sobol sequence. Our baseline is a standasbi@ayprocess over this space that is
agnostic to whether particular dimensions are irrelevanafgiven point.

Results. Figure 2 shows that on these datasets, using the arc kernsistently reaches good
solutions faster than the naive baseline, or it finds a bettettion. In the case of MNIST, the best
discovered model achieved19% test error using0000 training examples. By comparison, [20]
achieved!.28% test error using a similar model a6d000 training examples. Similarly, our best
model for CIFAR-10 achieve®ll.1% test error using5000 training examples arD0 features. For
comparison, a support vector machine usiigo features with the same feature pipeline 46600
training examples achieve?.1% error. Figure 2c shows the proportion of function evaluagio
spent on each architecture size for the CIFAR-10 experimehiterestingly, the baseline tends
to favour smaller models while ap using the arc kernel distributes it's efforts amongst deepe
architectures that tend to yield better results.

4 Conclusion

We introduced the arc kernel for conditional parameter epditat facilitates modelling the perfor-
mance of deep neural network architectures by enablingthersy of information across architec-
tures where useful. Empirical results show that this keimprovescp model quality andsp-based
Bayesian optimization results over several simpler basdternels. Allowing information to be
shared across architectures improves the efficiency of Say@ptimization and removes the need
to manually search for good architectures. The resultingetsoperform favourably compared to
established benchmarks by domain experts.

5 Acknowledgements
The authors would like to thank Ryan P. Adams for helpful désions.

2https://github.com/nitishsrivastava/deepnet

References

[1] Eric Brochu, Tyson Brochu, and Nando de Freitas. A Bagmsnteractive optimization ap-
proach to procedural animation design. AGM SIGGRAPH/Eurographics Symposium on
Computer Animatioy2010.

[2] Carl E. Rasmussen and Christopher K.I. Williams. Gaus$irocesses for Machine Learning.
The MIT Press, Cambridge, MA, US2006.

[3] Matthew A. Taddy, Robert B. Gramacy, and Nicholas G. BolsDynamic trees for learning
and designJournal of the American Statistical Associatjd®6(493):109-123, 2011.

[4] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Browng8ential model-based optimization
for general algorithm configuration. Proc. of LION-5 pages 507-523, 2011.

[5] James Bergstra, Rémi Bardenet, Yoshua Bengio, B{&zg, et al. Algorithms for hyper-
parameter optimization. IAdvances in Neural Information Processing Systet041.

[6] Frank Hutter.Automated Configuration of Algorithms for Solving Hard Cat@tional Prob-
lems PhD thesis, University of British Columbia, Departmentafmputer Science, Vancou-
ver, Canada, October 2009.

[7] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.a8tflearning algorithm for deep
belief nets.Neural Computation18(7):1527-1554, July 2006.

[8] James Bergstra, Daniel Yamins, and David Cox. Makingi@e of model search: Hyperpa-
rameter optimization in hundreds of dimensions for visicch#ectures.

[9] Chris Thornton, Frank Hutter, Holger H. Hoos, and Keviayton-Brown. Auto-WEKA:
Combined selection and hyperparameter optimization akdiaation algorithms. IiProc. of
KDD13, pages 847-855, 2013.

[10] Jasper Snoek, Hugo Larochelle, and Ryan Prescott AdBrastical Bayesian optimization of
machine learning algorithms. Kadvances in Neural Information Processing Systeig2.

[11] Alex Krizhevsky, llya Sutskever, and Geoff Hinton. Igenet classification with deep convo-
lutional neural networks. IAdvances in Neural Information Processing Systeti42.

[12] Geoffrey E. Hinton, Li Deng, Dong Yu, George E. Dahl, Adbdahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick NguyEara N. Sainath, and Brian Kings-
bury. Deep neural networks for acoustic modeling in speecbgnition: The shared views of
four research groupsEEE Signal Process. Magr9(6):82-97, 2012.

[13] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cecky, and Sanjeev Khudanpur. Re-
current neural network based language modelnterspeechpages 1045-1048, 2010.

[14] Frank Hutter and Michael A. Osborne. A kernel for hiefsical parameter spaces, 2013.
arXiv:1310.5738.

[15] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haff Gradient-based learning applied
to document recognition. IRroc. of the IEEEpages 2278-2324, 1998.

[16] Alex Krizhevsky. Learning multiple layers of featursem tiny images. Technical report,
Department of Computer Science, University of TorpA@D9.

[17] Adam Coates, Honglak Lee, and Andrew Y Ng. An analysisiofjle-layer networks in
unsupervised feature learningrtificial Intelligence and Statistic2011.

[18] lain Murray and Ryan P. Adams. Slice sampling covargmgperparameters of latent Gaussian
models. InAdvances in Neural Information Processing Syste2i40.

[19] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevwghklya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by preventing co-adaptabf feature detectorsarXiv
preprint arXiv:1207.05802012.

[20] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rokr§us. Regularization of neural
networks using dropconnect. International Conference on Machine Learnjr&p13.

