
Raiders of the Lost Architecture:
Kernels for Bayesian Optimization in Conditional

Parameter Spaces

Kevin Swersky
University of Toronto

kswersky@cs.toronto.edu

David Duvenaud
University of Cambridge
dkd23@cam.ac.uk

Jasper Snoek
Harvard University

jsnoek@seas.harvard.edu

Frank Hutter
Freiburg University

fh@informatik.uni-freiburg.de

Michael A. Osborne
University of Oxford

mosb@robots.ox.ac.uk

Abstract

In practical Bayesian optimization, we must often search over structures with dif-
fering numbers of parameters. For instance, we may wish to search over neural
network architectures with an unknown number of layers. To relate performance
data gathered for different architectures, we define a new kernel for conditional
parameter spaces that explicitly includes information about which parameters are
relevant in a given structure. We show that this kernel improves model quality and
Bayesian optimization results over several simpler baseline kernels.

1 Introduction
Bayesian optimization (BO) is an efficient approach for solving blackbox optimizationproblems
of the formargminx∈X f(x) (see [1] for a detailed overview), wheref is expensive to evaluate.
It employs a prior distributionp(f) over functions that is updated as new information onf be-
comes available. The most common choice of prior distribution are Gaussian processes (GPs [2]),
as they are powerful and flexible models for which the marginal and conditional distributions can
be computed efficiently.1 However, some problem domains remain challenging to model well with
GPs, and the efficiency and effectiveness of Bayesian optimization suffers as a result. In this pa-
per, we tackle the common problem of input dimensions that are only relevant if other inputs take
certain values [6, 5]. This is a general problem in algorithmconfiguration [6] that occurs in many
machine learning contexts, such as, e.g., in deep neural networks [7]; flexible computer vision ar-
chitectures [8]; and the combined selection and hyperparameter optimization of machine learning
algorithms [9]. We detail the case of deep neural networks below.

Bayesian optimization has recently been applied successfully to deep neural networks [10, 5] to
optimize high level model parameters and optimization parameters, which we will refer to collec-
tively ashyperparameters. Deep neural networks represent the state-of-the-art on multiple machine
learning benchmarks such as object recognition [11], speech recognition [12], natural language pro-
cessing [13] and more. They are multi-layered models by definition, and each layer is typically
parameterized by a unique set of hyperparameters, such as regularization parameters and the layer
capacity or number of hidden units. Thus adding additional layers introduces additional hyperpa-
rameters to be optimized. The result is a complex hierarchical conditional parameter space, which
is difficult to search over. Historically, practitioners have simply built a separate model for each

1There are prominent exceptions to this rule, though. In particular, tree-based models, such as random
forests, can be a better choice if there are many data points (andGPs thus become computationally inefficient), if
the input dimensionality is high, if the noise is not normally distributed, or if there are non-stationarities [3, 4, 5].

1

type of architecture or used non-GP models [5], or assumed a fixed architecture [10]. If there is any
relation between networks with different architectures, separately modelling each is wasteful.

GPs with standard kernels fail to model the performance of architectures with such conditional hy-
perparameters. To remedy this, the contribution of this paper is the introduction of a kernel that
allows observed information to be shared across architectures when this is appropriate. We demon-
strate the effectiveness of this kernel on aGP regression task and a Bayesian optimization task using
a feed-forward classification neural network.

2 A Kernel for Conditional Parameter Spaces
GPs employ a positive-definite kernel functionk : X × X → R to model the covariance between
function values. TypicalGPmodels cannot, however, model the covariance between function values
whose inputs have different (possibly overlapping) sets ofrelevant variables.

In this section, we construct a kernel between points in a space that may have dimensions which
are irrelevant under known conditions (further details areavailable in [14]). As an explicit example,
we consider a deep neural network: if we set the network depthto 2 we know that the 3rd layer’s
hyperparameters do not have any effect (as there is no 3rd layer).

Formally, we aim to do inference about some functionf with domainX . X =
∏D

i=1
Xi is aD-

dimensional input space, where each individual dimension is bounded real, that is,Xi = [li, ui] ⊂ R
(with lower and upper boundsli andui, respectively). We define functionsδi : X → {true, false},
for i ∈ {1, . . . , D}. δi(x) stipulates the relevance of theith featurexi to f(x).

2.1 The problem
As an example, imagine trying to model the performance of a neural network having either one
or two hidden layers, with respect to the regularization parameters for each layer,x1 andx2. If y
represents the performance of a one layer-net with regularization parametersx1 andx2, then the
valuex2 doesn’t matter, since there is no second layer to the network. Below, we’ll write an input
triple as(x1, δ2(x), x2) and assume thatδ1(x) = true; that is, the regularization parameter for the
first layer is always relevant.

In this setting, we want a kernelk to be dependent on which parameters are relevant, and the values
of relevant parameters for both points. For example, consider first-layer parametersx1 andx′

1:

• If we are comparing two points for which the same parameters are relevant, the value of any
unused parameters shouldn’t matter,

k
(

(x1, false, x2), (x
′

1, false, x′

2)
)

= k
(

(x1, false, x′′

2), (x
′

1, false, x′′′

2)
)

, ∀x2, x
′

2, x
′′

2 , x
′′′

2 ; (1)

• The covariance between a point using both parameters and a point using only one should again
only depend on their shared parameters,

k
(

(x1, false, x2), (x
′

1, true, x′

2)
)

= k
(

(x1, false, x′′

2), (x
′

1, true, x′′′

2)
)

, ∀x2, x
′

2, x
′′

2 , x
′′′

2 . (2)

Put another way, in the absence of any other information, this specification encodes our prior igno-
rance about the irrelevant (missing) parameters while still allowing us to model correlations between
relevant parameters.

2.2 Cylindrical Embedding
We can build a kernel with these properties for each possiblyirrelevant input dimensioni by em-
bedding our points into a Euclidean space. Specifically, theembedding we use is

gi(x) =

{

[0, 0]T if δi(x) = false
ωi[sinπρi

xi

ui−li
, cosπρi

xi

ui−li
]T otherwise. (3)

Whereωi ∈ R
+ andρi ∈ [0, 1].

Figure 1 shows a visualization of the embedding of points(x1, δ2(x), x2) intoR3. In this space, we
have the Euclidean distance,

di(x, x
′) = ||gi(x)− gi(x

′)||2 =











0 if δi(x) = δi(x
′) = false

ωi if δi(x) 6= δi(x
′)

ωi

√
2
√

1− cos(πρi
xi−x′

i

ui−li
) if δi(x) = δi(x

′) = true.
(4)

2

g(0, true, u)

g(0, true, l)

g(0, false, ·)
ρπ

ω

g(1, false, ·)

g(1, true, l)

x1

x1

x2

Figure 1: A demonstration of the embedding
giving rise to the pseudo-metric. All points
for which δ2(x) = false are mapped onto a
line varying only alongx1. Points for which
δ2(x) = true are mapped to the surface of a
semicylinder, depending on bothx1 andx2.
This embedding gives a constant distance be-
tween pairs of points which have differing
values ofδ but the same values ofx1.

We can use this to define a covariance over our original space.In particular, we consider the class
of covariances that are functions only of the Euclidean distance∆ between points. There are many
examples of such covariances. Popular examples are the exponentiated quadratic, for whichκ(∆) =
σ2 exp(− 1

2
∆2), or the rational quadratic, for whichκ(∆) = σ2(1+ 1

2α
∆2)−α. We can simply take

(4) in the place of∆, returning a valid covariance that satisfies all desiderataabove.

Explicitly, note that as desired, ifi is irrelevant for bothx andx′, di specifies thatg(x) andg(x′)
should not differ owing to differences betweenxi andx′

i
. Secondly, ifi is relevant for bothx and

x′, the difference betweenf(x) andf(x′) due toxi andx′

i
increases monotonically with increasing

|xi − x′

i
|. The parameterρi controls whether differing in the relevance ofi contributes more or less

to the distance than differing in the value ofxi, shouldi be relevant. Hyperparameterωi defines a
length scale for theith feature.

Note that so far we only have defined a kernel for dimensioni. To obtain a kernel for the entire
D-dimensional input space, we simply embed each dimension inR

2 using Equation (3) and then
use the embedded input space of size2D within any kernel that is defined in terms of Euclidean
distance. We dub this new kernel thearc kernel. Its parameters,ωi andρi for each dimension, can
be optimized using theGP marginal likelihood, or integrated out using Markov chain Monte Carlo.

3 Experiments
We now show that the arc kernel yields better results than other alternatives. We perform two types
of experiments: first, we study model quality in isolation ina regression task; second, we study the
effect of the arc kernel onBO performance. AllGP models use a Matérn5/2 kernel.

Data. We use two different datasets, both of which are common in thedeep learning literature. The
first is the canonical MNIST digits dataset [15] where the task is to classify handwritten digits. The
second is the CIFAR-10 object recognition dataset [16]. We pre-processed CIFAR-10 by extracting
features according to the pipeline given in [17].

3.1 Model Quality Experiments

Models. Our first experiments concern the quality of the regression models used to form the re-
sponse surface for Bayesian optimization. We generated data by performing 10 independent runs of
Bayesian optimization on MNIST and then treat this as a regression problem. We compare theGP
with arc kernel (ArcGP) to several baselines: the first baseline is a simple linear regression model,
the second is aGP where irrelevant dimensions are simply filled in randomly for each input. We
also compare to the case where each architecture uses its ownseparateGP, as in [5]. The results are
averaged over10-fold train/test splits. Kernel parameters were inferred using slice sampling [18].
As the errors lie between0 and1 with many distributed toward the lower end, it can be beneficial to
take the log of the outputs before modelling them with aGP. We experiment with both the original
and transformed outputs.

Method Original data Log outputs
Separate Linear 0.812± 0.045 0.737± 0.049
SeparateGP 0.546± 0.038 0.446± 0.041
Separate ArcGP 0.535± 0.030 0.440± 0.031
Linear 0.876± 0.043 0.834± 0.047
GP 0.481± 0.031 0.401± 0.028
Arc GP 0.421± 0.033 0.335± 0.028

Table 1:Normalized Mean Squared Error on MNIST Bayesian optimization data

3

0 5 10 15 20
Number of models trained

−4.5
−4.0
−3.5
−3.0
−2.5
−2.0

−1.5
−1.0

Lo
g-

cl
as

si
fic

at
io

n
er

ro
r Arc GP

Baseline

(a) MNIST

10 15 20 25 30 35 40
Number of models trained

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

Cl
as
si
fic

at
io
n
er
ro
r

Arc GP
Baseline

(b) CIFAR-10

0 1 2 3 4 5
Number of layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n
of
 e
va

lu
at
io
ns Arc GP

Baseline

(c) Architectures searched
Figure 2: Bayesian optimization results using the arc kernel.

Results. Table 1 shows that aGP using the arc kernel performs favourably to aGP that ignores the
relevance information of each point. The “separate” categories apply a different model to each layer
and therefore do not take advantage of dependencies betweenlayers. Interestingly, the separate Arc
GP, which is effectively just a standardGP with additional embedding, performs comparably to a
standardGP, suggesting that the embedding doesn’t limit the expressiveness of the model.

3.2 Bayesian Optimization Experiments
In this experiment, we test the ability of Bayesian optimization to tune the hyperparameters of each
layer of a deep neural network. We allow the neural networks for these problems to use up to5
hidden layers (or no hidden layer). We optimize over learning rates, L2 weight constraints, dropout
rates [19], and the number of hidden units per layer leading to a total of up to23 hyperparameters
and6 architectures. On MNIST, most effort is spent improving theerror by a fraction of a per-
cent, therefore we optimize this dataset using the log-classification error. For CIFAR-10, we use
classification error as the objective. We use the Deepnet2 package, and each function evaluation
took approximately1000 to 2000 seconds to run on NVIDIA GTX Titan GPUs. Note that when a
network of depthn is tested, all hyperparameters from layersn+ 1 onward are deemed irrelevant.

Experimental Setup. For Bayesian optimization, we follow the methodology of [10], using slice
sampling and the expected improvement heuristic. In this methodology, the acquisition function
is optimized by first selecting from a pre-determined grid ofpoints lying in [0, 1]23, distributed
according to a Sobol sequence. Our baseline is a standard Gaussian process over this space that is
agnostic to whether particular dimensions are irrelevant for a given point.

Results. Figure 2 shows that on these datasets, using the arc kernel consistently reaches good
solutions faster than the naive baseline, or it finds a bettersolution. In the case of MNIST, the best
discovered model achieved1.19% test error using50000 training examples. By comparison, [20]
achieved1.28% test error using a similar model and60000 training examples. Similarly, our best
model for CIFAR-10 achieved21.1% test error using45000 training examples and400 features. For
comparison, a support vector machine using1600 features with the same feature pipeline and50000
training examples achieves22.1% error. Figure 2c shows the proportion of function evaluations
spent on each architecture size for the CIFAR-10 experiments. Interestingly, the baseline tends
to favour smaller models while aGP using the arc kernel distributes it’s efforts amongst deeper
architectures that tend to yield better results.

4 Conclusion
We introduced the arc kernel for conditional parameter spaces that facilitates modelling the perfor-
mance of deep neural network architectures by enabling the sharing of information across architec-
tures where useful. Empirical results show that this kernelimprovesGPmodel quality andGP-based
Bayesian optimization results over several simpler baseline kernels. Allowing information to be
shared across architectures improves the efficiency of Bayesian optimization and removes the need
to manually search for good architectures. The resulting models perform favourably compared to
established benchmarks by domain experts.

5 Acknowledgements

The authors would like to thank Ryan P. Adams for helpful discussions.

2https://github.com/nitishsrivastava/deepnet

4

References

[1] Eric Brochu, Tyson Brochu, and Nando de Freitas. A Bayesian interactive optimization ap-
proach to procedural animation design. InACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2010.

[2] Carl E. Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, Cambridge, MA, USA, 2006.

[3] Matthew A. Taddy, Robert B. Gramacy, and Nicholas G. Polson. Dynamic trees for learning
and design.Journal of the American Statistical Association, 106(493):109–123, 2011.

[4] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. InProc. of LION-5, pages 507–523, 2011.

[5] James Bergstra, Rémi Bardenet, Yoshua Bengio, BalázsKégl, et al. Algorithms for hyper-
parameter optimization. InAdvances in Neural Information Processing Systems, 2011.

[6] Frank Hutter.Automated Configuration of Algorithms for Solving Hard Computational Prob-
lems. PhD thesis, University of British Columbia, Department ofComputer Science, Vancou-
ver, Canada, October 2009.

[7] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets.Neural Computation, 18(7):1527–1554, July 2006.

[8] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures.

[9] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-WEKA:
Combined selection and hyperparameter optimization of classification algorithms. InProc. of
KDD’13, pages 847–855, 2013.

[10] Jasper Snoek, Hugo Larochelle, and Ryan Prescott Adams. Practical Bayesian optimization of
machine learning algorithms. InAdvances in Neural Information Processing Systems, 2012.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convo-
lutional neural networks. InAdvances in Neural Information Processing Systems. 2012.

[12] Geoffrey E. Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,Tara N. Sainath, and Brian Kings-
bury. Deep neural networks for acoustic modeling in speech recognition: The shared views of
four research groups.IEEE Signal Process. Mag., 29(6):82–97, 2012.

[13] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-
current neural network based language model. InInterspeech, pages 1045–1048, 2010.

[14] Frank Hutter and Michael A. Osborne. A kernel for hierarchical parameter spaces, 2013.
arXiv:1310.5738.

[15] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. InProc. of the IEEE, pages 2278–2324, 1998.

[16] Alex Krizhevsky. Learning multiple layers of featuresfrom tiny images. Technical report,
Department of Computer Science, University of Toronto, 2009.

[17] Adam Coates, Honglak Lee, and Andrew Y Ng. An analysis ofsingle-layer networks in
unsupervised feature learning.Artificial Intelligence and Statistics, 2011.

[18] Iain Murray and Ryan P. Adams. Slice sampling covariance hyperparameters of latent Gaussian
models. InAdvances in Neural Information Processing Systems, 2010.

[19] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors.arXiv
preprint arXiv:1207.0580, 2012.

[20] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. InInternational Conference on Machine Learning, 2013.

5

