
Parallel Algorithm Configuration

Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{hutter,hoos,kevinlb}@cs.ubc.ca

Abstract. State-of-the-art algorithms for solving hard computational problems of-
ten expose many parameters whose settings critically affect empirical performance.
Manually exploring the resulting combinatorial space of parameter settings is of-
ten tedious and unsatisfactory. Automated approaches for finding good parameter
settings are becoming increasingly prominent and have recently lead to substan-
tial improvements in the state of the art for solving a variety of computationally
challenging problems. However, running such automated algorithm configuration
procedures is typically very costly, involving many thousands of invocations of the
algorithm to be configured. Here, we study the extent to which parallel computing
can come to the rescue. We compare straightforward parallelization by multiple in-
dependent runs with a more sophisticated method of parallelizing the model-based
configuration procedure SMAC. Empirical results for configuring the MIP solver
CPLEX demonstrate that near-optimal speedups can be obtained with up to 16
parallel workers, and that 64 workers can still accomplish challenging configu-
ration tasks that previously took 2 days in 1–2 hours. Overall, we show that our
methods make effective use of large-scale parallel resources and thus substantially
expand the practical applicability of algorithm configuration methods.

1 Introduction

Heuristic algorithms are often surprisingly effective at solving hard combinatorial prob-
lems. However, heuristics that work well for one family of problem instances can perform
poorly on another. Recognizing this, algorithm designers tend to parameterize some
of these design choices so that an end user can select heuristics that work well in the
solver’s eventual domain of application. The way these parameters are chosen often
makes the difference between whether a problem ends up being “easy” or “hard”, with
differences in runtime frequently spanning multiple orders of magnitude.

Traditionally, the problem of finding good parameter settings was left entirely to the
end user (and/or the algorithm designer) and was solved through manual experiments.
Lately, automated tools have become available to solve this algorithm configuration (AC)
problem, making it possible to explore large and complex parameter spaces (involving
up to more than seventy parameters with numerical, categorical, ordinal and conditional
values; e.g., [1, 2, 3]). Procedures for automated algorithm configuration have advanced
steadily over the past few years, and now can usually outperform default settings de-
termined by human experts even in very large and challenging configuration scenarios.
However, automated algorithm configuration is computationally expensive: AC proce-
dures involve repeatedly running the algorithm to be configured (the so-called target
algorithm) with different parameter settings, and hence consume orders of magnitude
more computing time than a single run of the target algorithm.



Substantial amounts of computing time are now readily available, in the form of pow-
erful, multi-core consumer machines, large compute clusters and on-demand commodity
computing resources, such as Amazon’s Elastic Compute Cloud (EC2). Nevertheless,
the computational cost of AC procedures remains a challenge—particularly because the
wall-clock time required for automated algorithm configuration can quickly become a
limiting factor in real-world applications and academic studies. As ongoing increases in
the amount of computing power per cost unit are now almost exclusively achieved by
means of parallelization, the effective use of parallel computing resources becomes an
important issue in the use and design of AC procedures.

Most AC procedures are inherently sequential in that they iteratively perform target
algorithm runs, learn something about which parameters work well, and then perform
new runs taking this information into account. Nevertheless, there are significant oppor-
tunities for parallelization, in two different senses. First, because all state-of-the-art AC
procedures are randomized, the entire procedure can be run multiple times in parallel,
followed by selection of the best configuration thus obtained. Second, a finer-grained
form of parallelism can be used, with a centralized process distributing sets of target
algorithm runs over different processor cores. Indeed, the literature on algorithm config-
uration already contains examples of both the first [1, 4, 2, 3] and second [4, 5] forms of
parallelization.

Here, we present a thorough investigation of parallelizing automated algorithm con-
figuration. We explore the efficacy of parallelization by means of multiple independent
runs for two state-of-the-art algorithm configuration procedures, PARAMILS [4] and
SMAC [6], investigating both how to make the best use of wall-clock time (what if
parallel resources were free?) and CPU time (what if one had to pay for each CPU
hour?). We present a method for introducing fine-grained parallelism into model-based
AC procedures and apply it to SMAC. We evaluate the performance of the resulting
distributed AC procedure, D-SMAC, as in contrast to and in combination with paral-
lelization by means of multiple independent runs. Overall, we found that D-SMAC
outperformed independent parallel runs and achieved near-perfect speedups when using
up to 16 parallel worker processes. Using 64 parallel workers, we still obtained 21-fold
to 52-fold speedups and were thus able to solve AC problems that previously took 2 days
in 1-2 hours.

2 Methods for Parallelizing Algorithm Configuration

In this section, we describe two methods for parallelizing algorithm configuration:
performing multiple independent runs and distributing target algorithms runs in the
model-based configuration procedure SMAC.

2.1 Multiple Independent Runs

Any randomized algorithm with sufficiently large variation in runtime can usefully be
parallelized by a simple and surprisingly powerful method: performing multiple indepen-
dent runs (see, e.g., [7, 8, 9]). In particular, it has been shown that the runtime of certain
classes of local search procedures closely follows an exponential distribution [10], imply-
ing that optimal speedups can be achieved by using additional processor cores. Likewise,



some complete search procedures have been shown to exhibit heavy-tailed runtime
distributions, in which case multiple independent runs (or, equivalently, random restarts)
can yield parallelization speedups greater than the number of parallel processes [8].

Multiple independent runs have also been used routinely in algorithm configuration
(although we are not aware of any existing study that characterizes the runtime distribu-
tions of these procedures). In our research on PARAMILS, we have adopted the policy of
performing 10 to 25 parallel independent runs, returning the configuration found by the
run with best training performance [1, 4, 2, 3], which can be formalized as follows:

Definition 1 (k-fold independent parallel version of configurator C) The k-fold in-
dependent parallel version of configurator C, denoted k × C, is the configurator that
executes k runs of C in parallel, and whose incumbent at each time t is the incumbent of
the run with the best training performance at time t.

For a given time budget, PARAMILS may not be able to evaluate target algorithm
performance on all given training instances. In previous work, in such cases, we would
sometimes measure training performance on the entire training set at the end of each of
the independent configuration runs, selecting the final configuration based on those data.
To keep computational costs manageable, we did not do this in the work described here.
Also in previous work, we have observed that PARAMILS runs occasionally stagnate
at rather poor configurations, and that in such cases k×PARAMILS can dramatically
improve performance. However, to the best of our knowledge, this effect has never been
quantified for PARAMILS, nor for any other AC procedure.

2.2 D-SMAC: SMAC with Distributed Target Algorithm Runs

Any state-of-the-art AC procedure could in principle be parallelized by distributing target
algorithm runs over multiple cores. However, we are only aware of two examples from
the literature describing AC solvers that implement such fine-grained parallelism. The
first is the genetic algorithm GGA [5]; however, GGA always uses eight local workers,
regardless of machine architecture, and is unable to distribute runs on a cluster. Second,
in our own PARAMILS variant BASICILS [4], target algorithm runs were distributed over
a cluster with 110 CPUs [11]. This, however, took advantage of the fact that BASICILS
performs a large number of runs for every configuration considered, and the same fact
explains why our standard PARAMILS variant FOCUSEDILS typically outperforms BASIC-
ILS. 1 To the best of our knowledge, the effect of the number of parallel processes on
overall performance has not been studied for any of these configurators.

Here, we present a general and principled method for adding fine-grained paralleliza-
tion to SMAC, a recent model-based AC procedure [6]. SMAC is the focus of our current
work, because (1) it achieves state-of-the-art performance for AC [6] and (2) its explicit
model of algorithm performance promises to be useful beyond merely finding good
configurations (e.g., for selecting informative problem instances or for gaining deeper
insights into the impact of parameter settings on target algorithm performance).

SMAC operates in 4 phases (see Algorithm 1). First, it initializes its data and in-
cumbent configuration θinc—the best configuration seen thus far—using algorithm runs

1 The latest implementation of iterated F-Race [12] also supports parallelization of target algo-
rithm runs, but this feature has not (yet) been described in the literature.



Algorithm 1: Sequential Model-Based Algorithm Configuration (SMAC)
R keeps track of all performed target algorithm runs and their performances (i.e., SMAC’s
training data);M is SMAC’s model; and ~Θnew is a list of promising configurations.

Input :Target algorithm with parameter configuration spaceΘ; instance set Π; cost
metric ĉ

Output :Optimized (incumbent) parameter configuration, θinc

1 [R, θinc]← Initialize(Θ, Π)
2 repeat
3 M← FitModel(R)
4 ~Θnew ← SelectConfigurations(M, θinc,Θ)
5 [R,θinc]← Intensify( ~Θnew, θinc, R, Π , ĉ)
6 until total time budget for configuration exhausted
7 return θinc

from an initial design. Then it iterates between learning a new model, selecting new
configurations based on that model and performing additional runs to compare these
selected configurations against the incumbent.

The selection of new configurations is performed by optimizing a desirability function
d(θ) defined in terms of the model’s predictive distribution for θ. This desirability
function serves to address the exploration/exploitation tradeoff between learning about
new, unknown parts of the parameter space and intensifying the search locally in the
best known region. Having found an incumbent with training performance fmin, SMAC
uses a classic desirability function measuring the expected positive improvement over
fmin, E[I(θ)] = E[max{0, fmin− f(θ)}]. Many other desirability functions have been
defined, such as the probability of improvement P[I(θ) > 0] [13], generalizations of
expected improvement E[Ig(θ)] for g > 1 [14], and the optimistic confidence bound
(−µθ + λσθ) for λ > 0 [13, 15].2 High values of all of these desirability functions
reward low predictive mean (to encourage minimization of the performance metric) and
high predictive variance (to encourage exploration of new regions).

Several methods have been proposed for identifying multiple desirable inputs to
be evaluated in parallel. Ginsbourger et al. [16] introduced the multipoints expected
improvement criterion, as well as the “constant liar approach”: greedily select one new
input θ, using expected improvement, hallucinate that its response equals the current
model’s predictive mean µθ, refit the model, and iterate. Jones [13] demonstrated that
maximizing the optimistic confidence bound (−µθ + λσθ) with different values of λ
yields a diverse set of points whose parallel evaluation is useful.

In our distributed version of SMAC we follow this latter approach (slighly deviating
from it by sampling λ uniformly at random from an exponential distribution with mean
1 instead of using a fixed set of values for λ), since it also allows for the selection
step to be parallelized: each of k workers can sample a value for λ and then optimize
(−µθ + λσθ) independently. Surprisingly, although we originally chose it in order to
facilitate parallelization, in our experiments we found that this modified desirability
function sometimes substantially improved SMAC’s performance and never substantially

2 For maximization problems, this desirability function is (µθ + λσθ) and is called the upper
confidence bound (UCB).



Algorithm 2: Distributed Sequential Model-Based Algorithm Configuration
(D-SMAC)
Q is a queue of target algoritm runs to be executed; A is a set of runs currently assigned to
workers; R keeps track of all executed runs and their performances (i.e., SMAC’s training
data); M is SMAC’s model, and ~Θnew is a list of promising configurations. Initialize
performs

√
k runs for the default configuration and one run each for other configurations

from a Latin Hypercube Design.
Input :Target algorithm with parameter configuration spaceΘ; instance set Π; cost

metric ĉ; number of workers, k
Output :Optimized (incumbent) parameter configuration, θinc

1 Q← Initialize(Θ, Π , 2k)
2 A← ∅; Move first k runs from Q to A and start the workers
3 repeat
4 Wait for workers to finish, move the finished runs from A to R

5 ~Θnew ← {θ | R received at least one new run with θ}
6 [Q,θinc]← Intensify( ~Θnew, θinc, Q, R, Π , ĉ)
7 Move first k runs from Q to A and start the workers
8 if |Q| < k then
9 M← FitModel(R)

10 ~Θnew ← SelectConfigurations(M, θinc,Θ, k − |Q|)
11 [Q,θinc]← Intensify( ~Θnew, θinc, Q, R, Π , ĉ)

12 until total time budget for configuration exhausted
13 return θinc

degraded it compared to the expected improvement criterion we used previously (see
Table 2 in Section 4).

The simplest way to parallelize SMAC would be to maintain the structure of Algo-
rithm 1, but to execute each major component in parallel, synchronizing afterwards. The
initialization can be parallelized easily, as it consists of randomly chosen target algorithm
runs. Model fitting also parallelizes, as SMAC uses random forest models: each tree can
be learned independently, and even subtrees of a single tree are independent. Gathering
k desirable and diverse configurations can be parallelized as described above, and one
can also parallelize the comparison of these configurations against the incumbent. We
experimented with this approach, but found that when running on a compute cluster, it
suffered from high communication overhead: learning the model requires the full input
data, and optimizing the desirability function requires the model. Furthermore, the model
learning phase is unlikely to parallelize perfectly, since a constant fraction of the time
for building a regression tree is spent at the root of the tree. While we can still parallelize
perfectly across trees, we typically only use 10 trees in practice and are interested in
scaling to much larger numbers of parallel processes.

The parallelized version of SMAC we present here (dubbed D-SMAC) is therefore
based on a different approach, slightly changing the structure of SMAC to bypass the
chokepoint wherein more workers are available than can meaningfully be used to learn
the model. Algorithm 2 illustrates the new control flow. The important difference is
that D-SMAC maintains a queue of algorithm runs that is replenished whenever its



current state drops below the number of runs than can be handled in one iteration by the
parallel processes available. The intensification step—which compares challengers to the
incumbent—now merely queues up runs rather than executing them. The benefit is that a
master process can learn the model and select desirable new configurations while worker
processes are performing target algorithm runs (typically the most expensive operation
in SMAC). The master could also execute target runs or parallelize model learning and
selecting configurations as necessary, to further balance load with the workers. In our
current implementation, we simply use a separate processor for SMAC’s master thread;
since the model overhead was low in our experiments, these master threads spent most
of their time idling, and we started several master processes on a single CPU.3

We employed a lightweight solution for distributing runs on compute clusters. The
D-SMAC master writes command line call strings for target algorithm runs to designated
files on a shared file system. Worker jobs submitted via the respective cluster’s queueing
software (in our case, Torque) listen on the designated files, carry out the requested target
run, and write the resulting performance to designated output files to be read by the
master. On the cluster we used, we found the overhead for this job dispatch mechanism
to be comparable to starting jobs on the local machine. Larger-scale deployment of
D-SMAC would benefit from the use of an experimental framework such as HAL [17]
or EDACC [18].

3 Experimental Setup

Our configuration experiments in this paper focus on the optimization of the solution
quality that the mixed integer solver CPLEX can achieve in a fixed runtime. Specifically,
we employed the five solution quality AC scenarios introduced in [2], as well as one addi-
tional scenario described below. All of these AC scenarios use a lexicographic objective
function that first minimizes the number of instances for which no feasible solution was
found, and then breaks ties by the average optimality gap. To use this objective function
in SMAC and D-SMAC (whose modelling step requires scalar objective functions), we
counted the “optimality gap” of runs that did not find a feasible solution as 1010%. For a
configuration scenario with test instance set S and fixed time limit per CPLEX run L,
we defined the test performance of a configuration run R as the average optimality gap
CPLEX achieved on S in runs with time limit L when using the incumbent parameter
configuration of R.

Throughout our experiments, in order to study the test performance of k × C, the k-
fold independent parallel version of AC procedure C, we employed a bootstrap analysis.
Given a large population P of independent runs of C, we evaluated k × C by repeatedly
drawing k runs of C from P (with repetitions) and computing the test performance of
the best of the k runs (best in terms of training performance). This process yielded a
bootstrap distribution of test performance; we plot the median of this distribution at each
time step, show boxplots for the final state and carry out a Mann-Whitney U-test for
differences across different configurators (or different parallelization options).

3 The model overhead grows with the number of data points, meaning that for long enough
configuration runs it could become a chokepoint. In such settings, the master could delegate
model learning to a slave, and update its model whenever the slave completed this work.



Parameter type # parameters of this type # values considered Total # configurations
Boolean 6 (7) 2

Categorical 45 (43) 3–7
1.90 · 1047

Integer 18 5–7
Continuous 7 5–8

Benchmark Description
# instances Default performance

training test % infeasible mean opt. gap when feasible
MIK Mixed integer knapsack [19] 60 60 0% 0.142%
CLS Capacitated lot-sizing [20] 50 50 0% 0.273%

REGIONS200 Combinatorial winner determination [21] 1000 1000 0% 1.87%
CORLAT Wildlife corridor [22] 1000 1000 28% 4.43%

MASS Multi-activity shift scheduling [23] 50 50 64% 1.91%
RCW Spread of red-cockaded woodpecker [24] 1000 1000 0% 49%

Table 1. Overview of CPLEX parameters and MIP benchmark sets used.

To carry out a robust bootstrap analysis of k × C, a population of roughly 3 · k
runs of C is required. Since we wanted to evaluate the benefit of up to 64 independent
runs, we had to run each configurator 200 times on each configuration scenario. As a
result, we carried out over 5000 configuration runs, more than in all of our previously
published works on AC combined. Note that each individual configuration run involved
thousands of target algorithm runs. In total, the experiments for this paper (including
offline validation) took roughly 20 CPU years.

To fit within this time budget, we kept the original, relatively small configuration
budget for the five AC scenarios taken from [2]: five hours per AC run and ten seconds
per CPLEX run. Since the machines we used4 are a (surprisingly constant) factor of
just above 2 times faster than the machines used in [2], we divided both the runtime for
configuration runs and for individual CPLEX runs by 2 to keep the characteristics of the
AC scenarios as similar as possible to previously published work.

For the same reason, we used exactly the same parameter configuration space of
CPLEX 12.1, and the same mixed integer problems (MIPs) as in the original scenarios
from [2]. Briefly, we considered 76 parameters that directly affect the performance of
CPLEX. We carefully kept all parameters fixed that change the problem formulation
(e.g., numerical precision parameters). The 76 parameters we selected affect all aspects
of CPLEX. They include 12 preprocessing parameters; 17 MIP strategy parameters; 11
cut parameters; 9 MIP limits parameters; 10 simplex parameters; 6 barrier optimization
parameters; and 11 further parameters. Table 1 gives an overview of these parameters
and of the MIP benchmarks we used; full details can be found in [2].

To study whether our findings for the short configuration runs above translate to
longer runs of the most recent CPLEX version (12.3) on more challenging benchmark
sets, we also carried out experiments on a new configuration scenario. The MIP instances
in this scenario come from the domain of computational sustainability; they model the
spread of the endangered red-cockaded woodpecker (RCW), conditional on decisions
about certain parcels of land to be protected. We generated 2000 instances using the
generator from [24] (using the five hardest of their eleven maps). CPLEX 12.3’s default
configuration could solve 7% of these instances in two minutes and 75% in one hour.

4 All of our experiments were carried out on the Westgrid Orcinus cluster (http://www.westgrid.
ca/), comprising 384 nodes with two Intel X5650 six-core 2.66 GHz processors each.



Scenario Unit Median test performance Median test performance
PILS SMAC d-SMAC(1) 25×PILS 25×SMAC 25×d-SMAC(1)

CLS [0.1%] 2.36 2.43 2.00 1.38 1.41 1.35
CORLAT [108%] 17.6 3.17 2.95 4.20 0.82 0.72

MIK [0.01%] 6.56 6.59 2.78 0.44 2.08 0.73
Regions200 [1%] 1.69 1.8 1.83 0.85 1.16 1.14

MASS [109%] 6.40 3.68 3.47 4.00 2.36 2.29

Table 2. Statistics for baseline comparison of configuration procedures. We show median test
performances achieved by the base AC procedures (left), and their k-fold parallel independent
run versions with k = 25 (recall that test performance is the average optimality gap across test
instances, counting runs with infeasible solutions as a gap of 1010%). We bold-faced entries
for configurators that are not significantly worse than the best configurator for the respective
configuration space, based on a Mann-Whitney U test.

The objective in our RCW configuration scenario was to minimize the optimality gap
CPLEX could achieve within two minutes, and the AC budget was two days.

Throughout our experiments, we accounted for the inherent runtime overheads for
building and using models, but we did not count the constant overhead of starting jobs
(either as part of the per-run budget or of the configuration budget), since this can be
reduced to almost zero in a production system. We computed the wall clock time for
each iteration of D-SMAC as the maximum of the master’s model learning time and the
maximum of the CPU times of the parallel algorithm runs it executed in parallel.

4 Experiments

We studied the parallelization speedups obtained by using multiple independent runs and
by using fine-grained parallelism in D-SMAC. As a side result, we were able to show for
the first time that SMAC (in its sequential version) achieves state-of-the-art performance
for optimizing a measure of solution quality that can be obtained in a fixed time (rather
than minimizing the runtime required to solve a problem).

4.1 Multiple Independent Runs

First, we assessed the baseline performance of the three sequential AC procedures we
used: PARAMILS, SMAC, and D-SMAC(1). PARAMILS has been shown to achieve state-
of-the-art performance for the five configuration scenarios we study here [2], and Table 2
demonstrates that SMAC and D-SMAC(1) perform competitively, making all procedures
natural candidates for parallelization. The right part of Table 2 compares the performance
of the multiple independent run versions 25×PARAMILS, 25×SMAC, and 25×D-SMAC,
showing that PARAMILS benefitted more from multiple runs than the two SMAC versions.
The raw data (not shown) explains this: the variance of PARAMILS’s performance was
higher than for either SMAC version.

Table 3 quantifies the speedups gained by multiple independent runs of the AC
procedures. For the two versions of SMAC, speedups were consistent and sometimes
near-perfect with up to 4 independent runs. Due to larger performance variation between



Scenario PARAMILS SMAC D-SMAC(1)
1→4× 4→16× 16→64× 1→4× 4→16× 16→64× 1→4× 4→16× 16→64×

CLS 5.02 2.87 1.66 5.72 2.33 1.50 1.92 2.09 1.75
CORLAT 12.1 4.75 4.22 2.45 2.10 1.15 3.93 2.31 1.00

MIK 8.29 3.10 2.29 3.22 3.45 4.01 2.37 2.91 1.02
Regions200 5.59 3.65 2.94 3.04 1.49 1.76 3.14 3.08 2.39

MASS 4.00 5.78 1.00 1.62 1.44 1.36 2.24 1.49 1.00

Table 3. Speedups achieved by using independent parallel runs of various AC procedures C. We
give the speedups of 4 × C over C, 16 × C over 4 × C, and 64 × C over 16 × C. The speedup
of procedure C1 over procedure C2 is defined as the time allocated to C2 divided by the time C1
required to reach (at least) C2’s final solution quality. We do not report speedups of 16× C and
64 × C over C directly since C often found very poor results in the small configuration budget
allowed, the time to find which is not indicative of a procedure’s ultimate performance.

Wall clock time Combined CPU time spent

PA
R

A
M

IL
S

10
3

10
4

0.8

1

1.2

1.4

1.6

1.8

2

Wall clock time [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n
c
e

 

 

ParamILS

4*ParamILS

16*ParamILS

64*ParamILS

10
2

10
3

10
4

10
5

10
6

0.8

1

1.2

1.4

1.6

1.8

2

Combined CPU time spent [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

ParamILS

4*ParamILS

16*ParamILS

64*ParamILS

S
M

A
C

10
3

10
4

0.8

1

1.2

1.4

1.6

1.8

2

Wall clock time [s]

T
e

s
t 

s
e
t 

p
e

rf
o

rm
a

n
c
e

 

 

SMAC

4*SMAC

16*SMAC

64*SMAC

10
2

10
3

10
4

10
5

10
6

0.8

1

1.2

1.4

1.6

1.8

2

Combined CPU time spent [s]

T
e

s
t 

s
e

t 
p
e

rf
o
rm

a
n

c
e

 

 

SMAC

4*SMAC

16*SMAC

64*SMAC

D
-S

M
A

C
(1

)

10
3

10
4

0.8

1

1.2

1.4

1.6

1.8

2

Wall clock time [s]

T
e

s
t 

s
e
t 

p
e

rf
o

rm
a

n
c
e

 

 

d−SMAC(1)

4*d−SMAC(1)

16*d−SMAC(1)

64*d−SMAC(1)

10
2

10
3

10
4

10
5

10
6

0.8

1

1.2

1.4

1.6

1.8

2

Combined CPU time spent [s]

T
e

s
t 

s
e

t 
p
e

rf
o
rm

a
n

c
e

 

 

d−SMAC(1)

4*d−SMAC(1)

16*d−SMAC(1)

64*d−SMAC(1)

Fig. 1. Evaluation of k-fold parallel independent run versions of PARAMILS, SMAC, and D-
SMAC(1) on benchmark set Regions200. For each configurator C, k*C denotes k×C.

independent runs, the parallelization speedups obtained for PARAMILS were more pro-
nounced: perfect or higher-than-perfect speedups were observed for all scenarios with
up to 4 independent runs, and the speedup factor obtained when moving from 4 to 16
independent parallel runs was still almost 4.

Figures 1 and 2 visualize the speedups achieved for two representative configuration
scenarios. As the left column of Figure 1 shows, for benchmark set Regions200 additional
independent runs yielded consistent speedups in wall clock time for all configurators.
The right column shows that, as the runtime spent in a PARAMILS or D-SMAC(1) run



Wall clock time Combined CPU time spent

PA
R

A
M

IL
S

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3
x 10

9

Wall clock time [s]

T
e
s
t 
s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

ParamILS

4*ParamILS

16*ParamILS

64*ParamILS

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3
x 10

9

Combined CPU time spent [s]

T
e
s
t 
s
e
t 
p

e
rf

o
rm

a
n
c
e

 

 

ParamILS

4*ParamILS

16*ParamILS

64*ParamILS

S
M

A
C

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3
x 10

9

Wall clock time [s]

T
e
s
t 
s
e
t 

p
e

rf
o
rm

a
n
c
e

 

 

SMAC

4*SMAC

16*SMAC

64*SMAC

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3
x 10

9

Combined CPU time spent [s]

T
e

s
t 

s
e

t 
p
e

rf
o
rm

a
n
c
e

 

 

SMAC

4*SMAC

16*SMAC

64*SMAC

D
-S

M
A

C
(1

)

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3
x 10

9

Wall clock time [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

4*d−SMAC(1)

16*d−SMAC(1)

64*d−SMAC(1)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3
x 10

9

Combined CPU time spent [s]

T
e
s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

4*d−SMAC(1)

16*d−SMAC(1)

64*d−SMAC(1)

Fig. 2. Evaluation of k-fold parallel independent run versions of PARAMILS, SMAC, and D-
SMAC(1) on benchmark set CORLAT.

increases for this benchmark set, k×PARAMILS and k×D-SMAC(1) tend to use their
combined CPU time about as well as their respective sequential versions with a k-fold
larger time budget. Figure 2 visualizes the results for benchmark set CORLAT, showing
an interesting effect by which k×PARAMILS and k×SMAC can actually perform worse
in their early phases as k increases. This effect is due to the fact that training performance
can be negatively correlated with progress in the early phase of the search;5 it is clearly
visible as the crossing of lines in Figure 2 (left column). Another interesting effect for
this scenario is that 4×PARAMILS achieved higher-than-perfect speedups (visible as the
crossing of lines for PARAMILS in the right column of Figure 2).

4.2 Distributed SMAC

We now evaluate the parallelization speedups obtained by D-SMAC with a varying
number of parallel worker processes. As shown in Table 4, these speedups were greater

5 PARAMILS starts from the default configuration, which finds a feasible solution for 72% of the
instances. The configuration scenario’s objective function heavily penalizes target algorithm
runs that do not find a feasible solution and no configuration is found that finds a feasible
solution for all training instances. Thus, any configuration run that has made enough progress
will have a worse training performance than configuration runs that are still stuck having done
only a few successful runs on the default. The larger we grow k in k×PARAMILS, the more
likely it is that one of the runs will be stuck at the default up to any given time (having seen only
successful runs for the default), making k×PARAMILS’s incumbent the default configuration.



Scenario 1→4× 4→16× 16→64× 1→4× 1→16× 1→64×
CLS 6.22 2.87 2.55 6.22 16.2 41.2

CORLAT 4.04 3.35 1.95 4.04 13.7 27.3
MIK 2.40 4.70 1.56 2.40 11.9 21.3

Regions200 2.61 10.9 1.25 2.61 41.3 52.3
MASS 2.21 3.44 2.41 2.21 9.76 21.5

Table 4. Wall clock speedups over D-SMAC(1) with different numbers of distributed workers
in SMAC. The speedup of procedure C1 over procedure C2 is defined as the time allocated to C2
divided by the time C1 required to reach (at least) C2’s final solution quality. For consistency with
Table 3, we give the speedups of 4× C over C, 16× C over 4× C, and 64× C over 16× C. We
also report the speedups of 16× C over C, and of 64× C over C.

Scenario Unit Bootstrap median of average test set performance
64× d-SMAC(1) 16× d-SMAC(4) 4× d-SMAC(16) d-SMAC(64)

CLS [0.1%] 2.37 1.96 1.76 1.81
CORLAT [108%] 10.9 3.41 1.96 2.26

MIK [0.01%] 8.68 1.2 2.03 2.46
Regions200 [1%] 1.91 1.77 1.58 1.52

MASS [109%] 3.88 4.00 3.39 3.2

Table 5. Performance comparison of various possibilities of allocating 64 cores for a wall clock
time of 560 seconds in D-SMAC. For each combination of independent runs and number of
workers in D-SMAC, we show median test performance; we bold-faced entries for configurators
that were not significantly worse than the best configurator for the respective configuration space,
based on a Mann-Whitney U test.

than those for multiple independent runs, with near-perfect speedups up to 16 workers
and speedup factors between 1.2 and 2.6 for increasing the number of workers by
another factor of 4 to 64. Overall, D-SMAC(64)’s speedups in the time required to find
configurations of the same quality as D-SMAC(1) were between 21 and 52. Figure
3 visualizes the results for three configuration scenarios. The left side of this figure
demonstrates that the substantial speedups D-SMAC achieved with additional workers
were consistent across scenarios and across D-SMAC’s trajectory.6 In particular, speedups
for early phases of the search were much more robust than for parallelization by multiple
independent runs. The right side of Figure 3 demonstrates that D-SMAC(p) used its
combined CPU time almost as well as D-SMAC(1) would, but required a factor p less
wall clock time.

4.3 Multiple Independent Runs of Distributed SMAC

Next, we studied various allocations of a fixed number of N = 64 CPUs to independent
runs of D-SMAC (that is, different variants of k× D-SMAC(p) with constant k × p =
64). Figure 4 shows that 1× D-SMAC(64) tended to perform better than the other

6 The only exception is that D-SMAC(4) performed better than D-SMAC(16) early in the
search for scenario CORLAT. Here, several of the D-SMAC(4) runs started out an order mag-
nitude faster than D-SMAC(1); however, after about 60 seconds of search time D-SMAC(16)
dominated D-SMAC(4) as expected.



Wall clock time Combined CPU time spent

C
L

S

10
1

10
2

10
3

10
4

0.1

0.15

0.2

0.25

Wall clock time [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

10
3

10
4

10
5

0.1

0.15

0.2

0.25

Combined CPU time spent [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

C
O

R
L

A
T

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3
x 10

9

Wall clock time [s]

T
e
s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3
x 10

9

Combined CPU time spent [s]

T
e
s
t 
s
e
t 
p

e
rf

o
rm

a
n
c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

M
A

SS

10
1

10
2

10
3

10
4

2

3

4

5

6

7
x 10

9

Wall clock time [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

10
2

10
3

10
4

10
5

2

3

4

5

6

7
x 10

9

Combined CPU time spent [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

M
IK

10
1

10
2

10
3

10
4

0

0.05

0.1

0.15

Wall clock time [s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

10
2

10
3

10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Combined CPU time spent [s]

T
e
s
t 
s
e
t 
p
e
rf

o
rm

a
n
c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

R
eg

io
ns

20
0

10
1

10
2

10
3

10
4

1

1.2

1.4

1.6

1.8

2

Wall clock time [s]

T
e

s
t 

s
e
t 

p
e

rf
o

rm
a

n
c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

10
3

10
4

10
5

1

1.2

1.4

1.6

1.8

2

Combined CPU time spent [s]

T
e

s
t 

s
e

t 
p
e

rf
o
rm

a
n

c
e

 

 

d−SMAC(1)

d−SMAC(4)

d−SMAC(16)

d−SMAC(64)

Fig. 3. Parallelization benefits for D-SMAC with different numbers of workers. (Plots in the left
and right columns are based on different bootstrap samples.)

combinations across all domains and time budgets. Table 5 shows that, given the same
time budget of 10 CPU hours (or 562.5 wall seconds on 64 processors), 1× D-SMAC(64)
statistically significantly outperformed all other combinations we tested in 2 of 5 cases,
and tied for best on the remaining 3 cases. These results demonstrate that performing a
small number of parallel independent runs of D-SMAC(p) can be useful, but that using
all available processors in D-SMAC(p) tends to yield the best performance. While these
results do not preclude the possibility that for even higher degrees of parallelization
multiple independent runs of D-SMAC might be more beneficial, they do provide
evidence that D-SMAC’s fine-grained parallelization strategy is effective.



10
1

10
2

10
3

10
4

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Wall clock time [CPU s]

T
e
s
t 
s
e
t 
p
e
rf

o
rm

a
n
c
e

 

 

64*d−SMAC(1)

16*d−SMAC(4)

4*d−SMAC(16)

d−SMAC(64)

(a) CLS

10
1

10
2

10
3

10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Wall clock time [CPU s]

T
e
s
t 
s
e
t 
p
e
rf

o
rm

a
n
c
e

 

 

64*d−SMAC(1)

16*d−SMAC(4)

4*d−SMAC(16)

d−SMAC(64)

(b) MIK

10
1

10
2

10
3

10
4

3

4

5

6

7

x 10
9

Wall clock time [CPU s]

T
e
s
t 
s
e
t 
p
e
rf

o
rm

a
n
c
e

 

 

64*d−SMAC(1)

16*d−SMAC(4)

4*d−SMAC(16)

d−SMAC(64)

(c) MASS

10
1

10
2

10
3

10
4

0.5

1

1.5

2

2.5

3

x 10
9

Wall clock time [CPU s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

64*d−SMAC(1)

16*d−SMAC(4)

4*d−SMAC(16)

d−SMAC(64)

(d) CORLAT

10
1

10
2

10
3

10
4

1.2

1.4

1.6

1.8

2

Wall clock time [CPU s]

T
e

s
t 

s
e

t 
p

e
rf

o
rm

a
n

c
e

 

 

64*d−SMAC(1)

16*d−SMAC(4)

4*d−SMAC(16)

d−SMAC(64)

(e) Regions200

Fig. 4. Comparison of different ways of using 64 cores in d-SMAC.

64*d1 16*d4 4*d16 d64

0.1

0.15

0.2

0.25

0.3

0.35

CLS
64*d1 16*d4 4*d16 d64

0

0.5

1

1.5

2

2.5

3

x 10
9

CORLAT
64*d1 16*d4 4*d16 d64

0

0.05

0.1

0.15

MIK
64*d1 16*d4 4*d16 d64

0.8

1

1.2

1.4

1.6

1.8

2

Regions200
64*d1 16*d4 4*d16 d64

0

2

4

6

8

x 10
9

MASS

Fig. 5. Performance comparison of various possibilities of allocating 64 cores in d-SMAC; k*dp
denotes k independent runs of D-SMAC(p), with k ∗ p = 64. For each combination of k and p,
we show boxplots of test set performance, using the same data as underlying Figure 4.

4.4 Evaluation On a Hard Instance Distribution

Finally, we investigated whether similar speedups could be obtained for configuration
on more challenging benchmark sets, comparing the performance of PARAMILS, SMAC,
D-SMAC(1), and D-SMAC(64) for configuration scenario RCW. We performed 200
runs of PARAMILS and SMAC with a configuration budget of 2 days each, as well as 25
runs of D-SMAC(64) with a budget of three wall clock hours (for a combined budget
of 8 CPU days). Figure 6 shows median test performance for each of these procedures.



10
2

10
3

10
4

10
5

40

42

44

46

48

50

52

54

Wall clock time [CPU s]

T
e
s
t 
s
e
t 
p
e
rf

o
rm

a
n
c
e

 

 

ParamILS

SMAC

d−SMAC(1)

d−SMAC(64)

(a) Base performance

10
2

10
3

10
4

10
5

40

42

44

46

48

50

52

54

Wall clock time [CPU s]

T
e
s
t 
s
e
t 
p
e
rf

o
rm

a
n
c
e

 

 

25*ParamILS

25*SMAC

25*d−SMAC(1)

25*d−SMAC(64)

(b) Best of 25 independent runs

Fig. 6. Comparison of PARAMILS, SMAC, and D-SMAC(64) for configuration on the challeng-
ing instance set RCW. We plot median performance across 25 configuration runs on the left, and
performance of the run with best training performance on the right.

While the SMAC variants did not yield noticeable improvements over the CPLEX default
configuration in its time budget, PARAMILS found somewhat better configurations. D-
SMAC(64) already improved over the default configuration after roughly 20 wall clock
minutes, required less than one wall clock hour to find a configuration as good as the one
PARAMILS found after 2 days, and consistently improved afterwards. We also studied
the performance of 25×PARAMILS, 25×SMAC, 25×D-SMAC(1), and 25×D-SMAC(64)
for this benchmark set. Multiple independent runs improved the performance of all
configurators. 25×D-SMAC(64) performed best, requiring roughly two hours to achieve
the performance 25×PARAMILS and 25×D-SMAC(1) achieved in two days. It also
matched D-SMAC(64)’s final performance in roughly a quarter of the time and found
substantially better configurations afterwards. While a single run of D-SMAC (1600)
might have yielded even better performance (we did not try, for lack of computing
resources), this result shows that even AC procedures that implement large-scale fine-
grained parallelism can benefit from performing multiple independent runs.

5 Conclusion

Parallel computing is key to reducing the substantial amount of time required by au-
tomatic algorithm configuration methods. Here, we presented the first comparative
study of the two fundamental approaches for parallelizing automated configuration
procedures—multiple independent runs and fine-grained parallelization—investigating
how effective each of them is in isolation and to which extent they complement each
other. We showed that the generic multiple independent runs parallelization approach
is suprisingly effective when applied to the state-of-the-art configuration procedures
PARAMILS and SMAC. We also introduced D-SMAC, a fine-grained parallelization of the
state-of-the-art model-based algorithm configuration procedure SMAC, and showed that
it achieves even better parallelization efficiencies, with speedups up to around 50 when
using 64 parallel worker processes on a cluster of standard quad-core machines. Overall,
we showed that using 64 parallel workers can reduce the wall clock time necessary
for a range of challenging algorithm configuration tasks from 2 days to 1-2 hours. We
believe that reductions of this magnitude substantially expand the practical applicability
of existing algorithm configuration procedures and further facilitate their integration into
the algorithm design process.



References
[1] F. Hutter, D. Babić, H. H. Hoos, and A. J. Hu. Boosting verification by automatic tuning of decision

procedures. In Proc. of FMCAD’07, pages 27–34. IEEE Computer Society, 2007.
[2] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer program-

ming solvers. In Proc. of CPAIOR-10, pages 186–202, 2010.
[3] C. Fawcett, M. Helmert, H. H. Hoos, E. Karpas, G. Röger, and J. Seipp. FD-Autotune: Domain-

specific configuration using fast-downward. In Proc. of ICAPS-PAL 2011, 2011. (8 pages).
[4] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm con-

figuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.
[5] C. Ansotegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the automatic

configuration of solvers. In Proc. of CP-09, pages 142–157, 2009.
[6] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general

algorithm configuration. In Proc. of LION-5, volume 6683 of LNCS, pages 507–523, 2011.
[7] H. H. Hoos and T. Stützle. Local search algorithms for SAT: An empirical evaluation. Journal of

Automated Reasoning, 24(4):421–481, 2000.
[8] C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and

constraint satisfaction problems. Journal of Algorithms, 24(1), 2000.
[9] C.C. Ribeiro, I. Rosseti, and R. Vallejos. On the use of run time distributions to evaluate and

compare stochastic local search algorithms. In Proc. of SLS-09, pages 16–30, 2009.
[10] H. H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic local search

algorithms for SAT. Artificial Intelligence, 112(1–2):213–232, 1999.
[11] F. Hutter. Automated Configuration of Algorithms for Solving Hard Computational Problems. PhD

thesis, University Of British Columbia, Department of Computer Science, Vancouver, Canada,
October 2009.

[12] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package, iterated
race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Uni-
versité Libre de Bruxelles, Belgium, 2011.

[13] D. R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of
Global Optimization, 21(4):345–383, 2001.

[14] M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimization
of computer models. In N. Flournoy, W.F. Rosenberger, and W.K. Wong, editors, New Develop-
ments and Applications in Experimental Design, volume 34, pages 11–25. Institute of Mathemati-
cal Statistics, Hayward, California, 1998.

[15] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. In Proc. of ICML-10, 2010.

[16] D. Ginsbourger, R. Le Riche, and L. Carraro. Computational Intelligence in Expensive Opti-
mization Problems, chapter Kriging Is Well-Suited to Parallelize Optimization, pages 131–162.
Springer, Berlin, Germany, 2010.

[17] C. Nell, C. Fawcett, H. Hoos, and K. Leyton-Brown. HAL: A framework for the automated analy-
sis and design of high-performance algorithms. In Proc. of LION-5, volume 6683 of LNCS, pages
600–615, 2011.

[18] A. Balint, D. Gall, G. Kapler, R. Retz, D. Diepold, and S. Gerber. EDACC - an advanced platform
for the experiment design, administration and analysis of empirical algorithms. In Proc. of LION-5,
volume 6683 of LNCS, pages 586–599, 2011.

[19] A. Atamtürk. On the facets of the mixed–integer knapsack polyhedron. Mathematical Program-
ming, 98:145–175, 2003.

[20] A. Atamtürk and J. C. Muñoz. A study of the lot-sizing polytope. Mathematical Programming,
99:443–465, 2004.

[21] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial
auction algorithms. In Proc. of EC’00, pages 66–76, 2000.

[22] C.P. Gomes, Willem-Jan van Hoeve, and Ashish Sabharwal. Connections in networks: A hybrid
approach. In Proc. of CPAIOR-08, pages 303–307, 2008.

[23] M. Cote, B. Gendron, and L. Rousseau. Grammar-based integer programing models for multi-
activity shift scheduling. Technical Report CIRRELT-2010-01, Centre interuniversitaire de
recherche sur les réseaux d’entreprise, la logistique et le transport, 2010.

[24] K. Ahmadizadeh, C.P. Dilkina, B.and Gomes, and A. Sabharwal. An empirical study of optimiza-
tion for maximizing diffusion in networks. In Proc. of CP-10, 2010.


