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Motivation
Most optimization algorithms have parameters

– E.g. IBM ILOG CPLEX: 
• Preprocessing, balance of branching vs. cutting, type of cuts, etc. 
• 76 parameters, mostly categorical

Use machine learning to predict algorithm runtime, given
– parameter configuration used
– characteristics of the instance being solved

Use these predictions for general algorithm configuration
– E.g. optimize CPLEX parameters for given benchmark set
– Two new methods for general algorithm configuration
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Related work
General algorithm configuration

– Racing algorithms, F-Race [Birattari et al., GECCO‘02-present]

– Iterated Local Search, ParamILS [Hutter et al., AAAI’07 & JAIR ‘09]

– Genetic algorithms, GGA [Ansotegui et al, CP’09]

Model-based optimization of algorithm parameters
– Sequential Parameter Optimization [Bartz-Beielstein et al., '05-present]

• SPO toolbox: interactive tools for parameter optimization

– Our own previous work
• SPO+: fully automated & more robust [Hutter et al., GECCO’09]

• TB-SPO: reduced computational overheads [Hutter et al., LION 2010]

– Here: extend to general algorithm configuration
• Sets of problem instances
• Many, categorical parameters
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Outline

1. ROAR

2. SMAC

3. Experimental Evaluation
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A key component of ROAR and SMAC

Compare a configuration θ vs. the current incumbent, θ*:

• Racing approach:
– Few runs for poor θ
– Many runs for good θ

• once confident enough: update θ* ← θ

• Agressively rejects poor configurations θ
– Very often after a single run
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ROAR: a simple method for algorithm configuration

Main ROAR loop:
• Select a configuration θ uniformly at random
• Compare θ to current θ* (online, one θ at a time)

– Using aggressive racing  from previous slide
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Outline

1. ROAR

2. SMAC
Sequential Model-based
Algorithm Configuration

3. Experimental Evaluation
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SMAC in a Nutshell

Construct a model to predict algorithm performance
– Supervised machine learning
– Gaussian processes (aka kriging)
– Random forest model f : Θ → R

Use that model to select promising configurations

Compare each selected configuration to incumbent
– Using same aggressive racing as ROAR
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param2 > 3.5

Predictions for a new parameter configuration

Hutter et al: Sequential Model-Based Optimization for General Algorithm Configuration 10

param3 ∈ {red} param3 ∈ {blue, green}

param2 ≤ 3.5

3.7 1.65 …

E.g. θn+1 = (true, 4.7, red)
– Walk down tree, return mean runtime stored in leaf  ⇒ 1.65



Random Forests: sets of regression trees

Training
– Subsample the data T times (with repetitions)
– For each subsample, fit a regression tree

Prediction
– Predict with each of the T trees
– Return empirical mean and variance across these T predictions
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Predictions For Different Instances
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Runtime data now also includes instance features:
– Configuration θi , runtime ri, and instance features xi = (xi,1, …, xi,m)

Fit a model g: Θ× Rm → R
– Predict runtime for previously unseen combinations (θn+1 ,xn+1 )

…
feat2 ≤ 3.5 feat2 > 3.5

feat7 ≤ 17 feat7 > 17

param3 ∈ {blue, green} param3 ∈ {red}

3.7

2 1



Visualization of Runtime Across 
Instances and Parameter Configurations

Performance of configuration θ across instances: 
– Average of θ’s predicted row
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True log10 runtime Predicted log10 runtime
Darker is faster



Summary of SMAC Approach

Construct model to predict algorithm performance
– Random forest model g : Θ × Rm→ R
– Marginal predictions f : Θ → R

Use that model to select promising configurations
– Standard “expected improvement (EI)” criterion 

• combines predicted mean and uncertainty

– Find configuration with highest EI: optimization by local search

Compare each selected configuration to incumbent θ*
– Using same aggressive racing as ROAR
– Save all run data → use to construct models in next iteration
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Experimental Evaluation: Setup

Compared SMAC, ROAR, FocusedILS, and GGA
– On 17 small configuration scenarios:

• Local search and tree search SAT solvers SAPS and SPEAR

• Leading commercial MIP solver CPLEX

– For each configurator and each scenario
• 25 configuration runs with 5-hour time budget each
• Evaluate final configuration of each run on independent test set

Over a year of CPU time
– Will be available as a reproducable experiment package in HAL
– HAL: see Chris Nell’s talk tomorrow @ 17:20
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y-axis: test performance (runtime, smaller is better)
R=ROAR, F=FocusedILS, G=GGA

y-axis: test performance (runtime, smaller is better)
S=SMAC,                                

Experimental Evaluation: Results

• Improvement (means over 25 runs)
– 0.93× − 2.25× (vs FocusedILS), 1.01× − 2.76× (vs GGA)

• Significant (never significantly worse)
– 11/17 (vs FocusedILS), 13/17 (vs GGA) 

• But: SMAC’s performance depends on instance features
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Conclusion

Generalized model-based parameter optimization:
– Sets of benchmark instances
– Many, categorical parameters

Two new procedures for general algorithm configuration
– Random Online Aggressive Racing (ROAR)

• Simple yet surprisingly effective

– Sequential Model-based Algorithm Configuration (SMAC)
• State-of-the-art configuration procedure
• Improvements over FocusedILS and GGA
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Future Work

Improve algorithm configuration further
– Cut off poor runs early (like adaptive capping in ParamILS)

• Handle “censored” data in the models

– Combine model-free and model-based methods

Use SMAC’s models to gain scientific insights
– Importance of each parameter
– Interaction of parameters and instance features

Use SMAC’s models for per-instance algorithm configuration
– Compute instance features
– Pick configuration predicted to be best
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