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Abstract. State-of-the-art mixed integer programming (MIP) solvers are highly
parameterized. For heterogeneous and a priori unknown instance distributions, no
single parameter configuration generally achieves consistently strong performance,
and hence it is useful to select from a portfolio of different configurations. HYDRA

is a recent method for using automated algorithm configuration to derive multiple
configurations of a single parameterized algorithm for use with portfolio-based
selection. This paper shows that, leveraging two key innovations, HYDRA can
achieve strong performance for MIP. First, we describe a new algorithm selec-
tion approach based on classification with a non-uniform loss function, which
significantly improves the performance of algorithm selection for MIP (and SAT).
Second, by modifying HYDRA’s method for selecting candidate configurations,
we obtain better performance as a function of training time.

1 Introduction

Mixed integer programming (MIP) is a general approach for representing constrained
optimization problems with integer-valued and continuous variables. Because MIP serves
as a unifying framework for NP-complete problems and combines the expressive power
of integrality constraints with the efficiency of continuous optimization, it is widely used
both in academia and industry. MIP used to be studied mainly in operations research,
but has recently become an important tool in AI, with applications ranging from auction
theory [19] to computational sustainability [8]. Furthermore, several recent advances in
MIP solving have been achieved with AI techniques [7, 13].

One key advantage of the MIP representation is that highly optimized solvers can
be developed in a problem-independent way. IBM ILOG’s CPLEX solver1 is particu-
larly well known for achieving strong practical performance; it is used by over 1 300
corporations (including one-third of the Global 500) and researchers at more than 1 000
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universities [16]. Here, we propose improvements to CPLEX that have the potential to
directly impact this massive user base.

State-of-the-art MIP solvers typically expose many parameters to end users; for
example, CPLEX 12.1 comes with a 221-page parameter reference manual describing
135 parameters. The CPLEX manual warns that “integer programming problems are more
sensitive to specific parameter settings, so you may need to experiment with them.” How
should such solver parameters be set by a user aiming to solve a given set of instances?
Obviously—despite the advice to “experiment”—effective manual exploration of such a
huge space is infeasible; instead, an automated approach is needed.

Conceptually, the most straightforward option is to search the space of algorithm
parameters to find a (single) configuration that minimizes a given performance metric
(e.g., average runtime). Indeed, CPLEX itself includes a self-tuning tool that takes this
approach. A variety of problem-independent algorithm configuration procedures have
also been proposed in the AI community, including I/F-Race [3], ParamILS [15, 14],
and GGA [2]. Of these, only PARAMILS has been demonstrated to be able to effectively
configure CPLEX on a variety of MIP benchmarks, with speedups up to several orders
of magnitude, and overall performance substantially better than that of the CPLEX
self-tuning tool [13].

While automated algorithm configuration is often very effective, particularly when
optimizing performance on homogeneous sets of benchmark instances, it is no panacea.
In fact, it is characteristic of NP-hard problems that no single solver performs well on
all inputs (see, e.g., [30]); a procedure that performs well on one part of an instance
distribution often performs poorly on another. An alternative approach is to choose a
portfolio of different algorithms (or parameter configurations), and to select between
them on a per-instance basis. This algorithm selection problem [24] can be solved by
gathering cheaply computable features from the problem instance and then evaluating
a learned model to select the best algorithm [20, 9, 6]. The well-known SATZILLA [30]
method uses a regression model to predict the runtime of each algorithm and selects
the algorithm predicted to perform best. Its performance in recent SAT competitions
illustrates the potential of portfolio-based selection: it is the best known method for
solving many types of SAT instances, and almost always outperforms all of its constituent
algorithms.

Portfolio-based algorithm selection also has a crucial drawback: it requires a strong
and sufficiently uncorrelated portfolio of solvers. While the literature has produced many
different approaches for solving SAT, there are few strong MIP solvers, and the ones that
do exist have similar architectures. However, algorithm configuration and portfolio-based
algorithm selection can be combined to yield automatic portfolio construction methods
applicable to domains in which only a single, highly-parameterized algorithm exists.

Two such approaches have been proposed in the literature. HYDRA [28] is an iterative
procedure. It begins by identifying a single configuration with the best overall perfor-
mance, and then iteratively adds algorithms to the portfolio by applying an algorithm
configurator with a customized, dynamic performance metric. At runtime, algorithms
are selected from the portfolio as in SATZILLA. ISAC [17] first divides instance sets into
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clusters based on instance features using the G-means clustering algorithm, then applies
an algorithm configurator to find a good configuration for each cluster. At runtime,
ISAC computes the distance in feature space to each cluster centroid and selects the
configuration for the closest cluster. We note two theoretical reasons to prefer HYDRA to
ISAC. First, ISAC’s clustering is solely based on distance in feature space, completely
ignoring the importance of each feature to runtime. Thus, ISAC’s performance can
change dramatically if additional features are added (even if they are uninformative).
Second, no amount of training time allows ISAC to recover from a misleading initial
clustering or an algorithm configuration run that yields poor results. In contrast, HYDRA

can recover from poor algorithm configuration runs in later iterations.

In this work, we show that HYDRA can be used to build strong portfolios of CPLEX
configurations, dramatically improving CPLEX’s performance for a variety of MIP
benchmarks, as compared to ISAC, algorithm configuration alone, and CPLEX’s default
configuration. This achievement leverages two modifications to the original HYDRA ap-
proach, presented in Section 2. Section 3 describes the features and CPLEX parameters
we identified for use with HYDRA, along with the benchmark sets upon which we evalu-
ated it. Section 4 evaluates HYDRA-MIP and presents evidence that our improvements to
HYDRA are also useful beyond MIP. Section 5 concludes and describes future work.

2 Improvements to Hydra

It is difficult to directly apply the original HYDRA method to the MIP domain, for two
reasons. First, the data sets we face in MIP tend to be highly heterogeneous; preliminary
prediction experiments (not reported here for brevity) showed that HYDRA’s linear
regression models were not robust for such heterogeneous inputs, sometimes yielding
extreme mispredictions of more than ten orders of magnitude. Second, individual HYDRA

iterations can take days to run—even on a large computer cluster—making it difficult
for the method to converge within a reasonable amount of time. (We say that HYDRA

has converged when substantial increases in running time stop leading to significant
performance gains.)

In this section, we describe improvements to HYDRA that address both of these issues.
First, we modify the model-building method used by the algorithm selector, using a
classification procedure based on decision forests with a non-uniform loss function.
Second, we modify HYDRA to add multiple solvers in each iteration and to reduce the
cost of evaluating these candidate solvers, speeding up convergence. We denote the
original method as HydraLR,1 (“LR” stands for linear regression and “1” indicates the
number of configurations added to the portfolio per iteration), the new method including
only our first improvement as HydraDF,1 (“DF” stands for decision forests), and the
full new method as HydraDF,k.
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2.1 Decision forests for algorithm selection

There are many existing techniques for algorithm selection, based on either regres-
sion [30, 26] or classification[10, 9, 25, 23]. SATZILLA [30] uses linear basis function
regression to predict the runtime of each of a set of K algorithms, and picks the one
with the best predicted performance. Although this approach has led to state-of-the-art
performance for SAT, it does not directly minimize the cost of running the portfolio
on a set of instances, but rather minimizes the prediction error separately in each of K
predictive models. This has the advantage of penalizing costly errors (picking a slow
algorithm over a fast one) more than less costly ones (picking a fast algorithm over a
slightly faster one), but cannot be expected to perform well when training data is sparse.
Stern et al [26] applied the recent Bayesian recommender system Matchbox to algorithm
selection; similar to SATZILLA, this approach is cost-sensitive and uses a regression
model that predicts the performance of each algorithm. CPHYDRA[23] uses case-based
reasoning to determine a schedule of constraint satisfaction solvers (instead of picking a
single solver). Its k-nearest neighbor approach is simple and effective, but determines
similarity solely based on instance features (ignoring instance hardness). Finally, ISAC
uses a cost-agnostic clustering approach for algorithm selection. Our new selection
procedure uses an explicit cost-sensitive loss function—punishing misclassifications in
direct proportion to their impact on portfolio performance—without predicting runtime.
Such an approach has never before been applied to algorithm selection: all existing clas-
sification approaches use a simple 0–1 loss function that penalizes all misclassification
equally (e.g., [25, 9, 10]). Specifically, this paper describes a cost-sensitive classification
approach based on decision forests (DFs). Particularly for heterogeneous benchmark
sets, DFs offer the promise of effectively partitioning the feature space into qualitatively
different parts. In contrast to clustering methods, DFs take runtime into account when
determining that partitioning.

We constructed cost-sensitive DFs as collections of T cost-sensitive decision trees [27].
Following [4], given n training data points with k features each, for each tree we con-
struct a bootstrap sample of n training data points sampled uniformly at random with
repetitions; during tree construction, we sample a random subset of log2(k) + 1 features
at each internal node to be considered for splitting the data at that node. Predictions are
based on majority votes across all T trees. For a set of m algorithms {s1, . . . , sm}, an
n× k matrix holding the values of k features for each of n training instances, and an
n×m matrix P holding the performance of the m algorithms on the n instances, we
construct our selector based on m · (m− 1)/2 pairwise cost-sensitive decision forests,
determining the labels and costs as follows. For any pair of algorithms (i, j), we train a
cost-sensitive decision forest DF (i, j) on the following weighted training data: we label
an instance q as i if P (q, i) is better than P (q, j), and as j otherwise; the weight for that
instance is |P (q, i) − P (q, j)|. For test instances, we apply each DF (i, j) to vote for
either i or j and select the algorithm with the most votes as the best algorithm for that
instance. Ties are broken by only counting the votes from those decision forests that
involve algorithms which received equal votes; further ties are broken randomly.
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We made one further change to the mechanism gleaned from SATZILLA. Originally,
a subset of candidate solvers was chosen by determining the subset for which portfolio
performance is maximized, taking into account model mispredictions. Likewise, a similar
procedure was used to determine presolver policies. These internal optimizations were
performed based on the same instance set used to train the models. However, this can
be problematic if the model overfits the training data; therefore, in this work, we use
10-fold cross validation instead.

2.2 Speeding up convergence

HYDRA uses an automated algorithm configurator as a subroutine, which is called in every
iteration to find a configuration that augments the current portfolio as well as possible.
Since algorithm configuration is a hard problem, configuration procedures are incomplete
and typically randomized. Because a single run of a randomized configuration procedure
might not yield a high-performing parameter configuration, it is common practice to
perform multiple runs in parallel and to use the configuration that performs best on the
training set [12, 14, 28, 13].

Here, we make two modifications to HYDRA to speed up its convergence. First, in
each iteration, we add k promising configurations to the portfolio, rather than just the
single best. If algorithm configuration runs were inexpensive, this modification to HYDRA

would not help: additional configurations could always be found in later iterations, if
they indeed complemented the portfolio at that point. However, when each iteration must
repeatedly solve many difficult MIP instances, it may be impossible to perform more
than a small number of HYDRA iterations within any reasonable amount of time, even
when using a computer cluster. In such a case, when many good (and rather different)
configurations are found in an iteration, it can be wasteful to retain only one of these.

Our second change to HYDRA concerns the way that the ‘best’ configurations returned
by different algorithm configuration runs are identified. HydraDF,1 determines the ‘best’
of the configurations found in a number of independent configurator runs by evaluating
each configuration on the full training set and selecting the one with best performance.
This evaluation phase can be very costly: e.g., if we use a cutoff time of 300 seconds per
run during training and have 1 000 instances, then computing the training performance of
each candidate configuration can take nearly four CPU days. Therefore, in HydraDF,k,
we select the configuration for which the configuration procedure’s internal estimate
of the average performance improvement over the existing portfolio is largest. This
alternative is computationally cheap: it does not require any evaluations of configurations
beyond those already performed by the configurator. However, it is also potentially risky:
different configurator runs typically use the training instances in a different order and
evaluate configurations using different numbers of instances. It is thus possible that
the configurator’s internal estimate of improvement for a parameter configuration is
high, but that it turns out to not help for instances the configurator has not yet used.
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Fortunately, adding k parameter configurations to the portfolio in each iteration mitigates
this problem: if each of the k selected configurations has independent probability p of
yielding a poor configuration, the probability of all k configurations being poor is only
pk.

3 MIP: Features, Data Sets, and Parameters

While the improvements to HYDRA presented above were motivated by MIP, they can
nevertheless be applied to any domain. In this section, we describe all domain-specific
elements of HYDRA-MIP: the MIP instance features upon which our models depend,
the CPLEX parameters we configured, and the data sets upon which we evaluated our
methods.

3.1 Features of MIP Instances

We constructed a large set of 139 MIP features, drawing on 97 existing features [21, 11,
17] and also including 42 new probing features. Specifically, existing work used features
based on problem size, graph representations, proportion of different variable types
(e.g., discrete vs continuous), constraint types, coefficients of the objective function,
the linear constraint matrix and the right hand side of the constraints. We extended
those features by adding more descriptive statistics when applicable, such as medians,
variation coefficients, and interquantile distances of vector-based features. For the first
time, we also introduce a set of MIP probing features based on short runs of CPLEX
using default settings. These contain 20 single probing features and 22 vector-based
features. The single probing features are as follows. Presolving features (6 in total) are
CPU times for presolving and relaxation, # of constraints, variables, nonzero entries in
the constraint matrix, and clique table inequalities after presolving. Probing cut usage
features (8 in total) are the number of each of 7 different cut types, and total cuts applied.
Probing result features (6 in total) are MIP gap achieved, # of nodes visited), # of feasible
solutions found, # of iterations completed, # of times CPLEX found a new incumbent by
primal heuristics, and # of solutions or incumbents found. Our 22 vector-based features
contain descriptive statistics (averages, medians, variation coefficients, and interquantile
distances, i.e., q90-q10) for the following 6 quantities reported by CPLEX over time: (a)
improvement of objective function; (b) number of integer-infeasible variables at current
node; (c) improvement of best integer solution; (d) improvement of upper bound; (e)
improvement of gap; (f) nodes left to be explored (average and variation coefficient
only).
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3.2 CPLEX Parameters

Out of CPLEX 12.1’s 135 parameters, we selected a subset of 74 parameters to be
optimized. These are the same parameters considerd in [13], minus two parameters
governing the time spent for probing and solution polishing. (These led to problems when
the captime used during parameter optimization was different from that used at test time.)
We were careful to keep all parameters fixed that change the problem formulation (e.g.,
parameters such as the optimality gap below which a solution is considered optimal). The
74 parameters we selected affect all aspects of CPLEX. They include 12 preprocessing
parameters; 17 MIP strategy parameters; 11 parameters controlling how aggressively to
use which types of cuts; 8 MIP “limits” parameters; 10 simplex parameters; 6 barrier
optimization parameters ; and 10 further parameters. Most parameters have an “automatic”
option as one of their values. We allowed this value, but also included other values (all
other values for categorical parameters, and a range of values for numerical parameters).
Exploiting the fact that 4 parameters were conditional on others taking certain values,
they gave rise to 4.75 · 1045 distinct parameter configurations.

3.3 MIP Benchmark Sets

Our goal was to obtain a MIP solver that works well on heterogenous data. Thus,
we selected four heterogeneous sets of MIP benchmark instances, composed of many
well studied MIP instances. They range from a relatively simple combination of two
homogenous subsets (CL∪REG) to heterogenous sets using instances from many sources
(e.g., MIX). While previous work in automated portfolio construction for MIP [17] has
only considered very easy instances (ISAC(new) with a mean CPLEX default runtime
below 4 seconds), our three new benchmarks sets are much more realistic, with CPLEX
default runtimes ranging from seconds to hours.

CL∪REG is a mixture of two homogeneous subset, CL and REG. CL instances come
from computational sustainability; they are based on real data used for the construction of
a wildlife corridor for endangered grizzly bears in the Northern Rockies [8] and encoded
as mixed integer linear programming (MILP) problems. We randomly selected 1000 CL
instances from the set used in [13], 500 for training and 500 for testing. REG instances are
MILP-encoded instances of the winner determination problem in combinatorial auctions.
We generated 500 training and 500 test instances using the regions generator from
the Combinatorial Auction Test Suite [22], with the number of bids selected uniformly at
random from between 750 and 1250, and a fixed bids/goods ratio of 3.91 (following [21]).

CL∪REG∪RCW is the union of CL∪REG and another set of MILP-encoded instances
from computational sustainability, RCW. These instances model the spread of the en-
dangered red-cockaded woodpecker, conditional on decisions about certain parcels of
land to be protected. We generated 990 RCW instances (10 random instances for each
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combination of 9 maps and 11 budgets), using the generator from [1] with the same
parameter setting, except a smaller sample size of 5. We split these instances 50:50 into
training and test sets.

ISAC(new) is a subset of the MIP data set from [17]; we could not use the entire set,
since the authors had irretrievably lost their test set. We thus divided their 276 training
instances into a new training set of 184 and a test set of 92 instances. Due to the small
size of the data set, we did this in a stratified fashion, first ordering the instances based
on CPLEX default runtime and then picking every third instance for the test set.

MIX subsets of the sets studied in [13]. It includes all instances from MASS (100
instances), MIK (120 instances), CLS (100 instances), and a subset of CL (120 instances)
and REG200 (120 instances). (Please see [13] for the description of each underlying
set.) We preserved the training-test split from [13], resulting in 280 training and 280 test
instances.

4 Experimental Results

In this section, we examined HYDRA-MIP’s performance on our MIP datasets. We began
by describing the experimental setup, and then evaluated each of our improvements to
HydraLR,1.

4.1 Experimental setup

For algorithm configuration we used PARAMILS version 2.3.4 with its default instantiation
of FOCUSEDILS with adaptive capping [14]. We always executed 25 parallel configuration
runs with different random seeds with a 2-day cutoff. (Running times were always
measured using CPU time.) During configuration, the captime for each CPLEX run was
set to 300 seconds, and the performance metric was penalized average runtime (PAR-10,
where PAR-k of a set of r runs is the mean over the r runtimes, counting timed-out
runs as having taken k times the cutoff time). For testing, we used a cutoff time of
3 600 seconds. In our feature computation, we used a 5-second cutoff for computing
probing features. We omitted these probing features (only) for the very easy ISAC(new)
benchmark set. We used the Matlab version R2010a implementation of cost-sensitive
decision trees; our decision forests consisted of 99 such trees. All of our experiments
were carried out on a cluster of 55 dual 3.2GHz Intel Xeon PCs with 2MB cache and
2GB RAM, running OpenSuSE Linux 11.1.

In our experiments, the total running time for the various HYDRA procedures was
often dominated by the time required for running the configurator and therefore turned
out to be roughly proportional to the number of HYDRA iterations performed. Each
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DataSet Model Train (cross valid.) Test SF: LR/DF (Test)
Time PAR (Solved) Time PAR (Solved) Time PAR

CL LR 39.7 39.7 (100%) 39.4 39.4 (100%)
1.00× 1.00×∪REG DF 39.7 39.7 (100%) 39.3 39.3 (100%)

CL∪ LR 105.1 105.1 (100%) 102.6 102.6 (100%)
1.04× 1.04×

REG∪RCW DF 98.8 98.8 (100%) 98.8 98.8 (100%)
LR 2.68 2.68 (100%) 2.36 2.36 (100%)

1.18× 1.18×
ISAC(new) DF 2.19 2.19 (100%) 2.00 2.00 (100%)

LR 52 52 (100%) 56 172 (99.6%)
1.17× 1.05×

MIX DF 48 48 (100%) 48 164 (99.6%)

Table 1. MIPzilla performance (average runtime and PAR in seconds, and percentage solved),
varying predictive models. Column SF gives the speedup factor achieved by cost-sensitive decision
forests (DF) over linear regression (LR) on the test set.

iteration required 50 CPU days for algorithm configuration, as well as validation time to
(1) select the best configuration in each iteration (only for HydraLR,1 and HydraDF,1);
and (2) gather performance data for the selected configurations. Since HydraDF,4 selects
4 solvers in each iteration, it has to gather performance data for 3 additional solvers per
iteration (using the same captime as used at test time, 3 600 seconds), which roughly
offsets its savings due to ignoring the validation step. Using the format (HydraDF,1,
HydraDF,4), the overall runtime requirements in CPU days were as follows: (366,356)
for CL∪REG; (485, 422) for CL∪REG∪RCW; (256,263) for ISAC(new); and (274,269)
for MIX. Thus, the computational cost for each iteration of HydraLR,1 and HydraDF,1
was similar.

4.2 Algorithm selection with decision forests

To assess the impact of our improved algorithm selection procedure, we evaluated it
in the context of SATZILLA-style portfolios of different CPLEX configurations, dubbed
MIPzilla. As component solvers, we always used the CPLEX default plus CPLEX
configurations optimized for the various subsets of our four benchmarks. Specifically,
for ISAC(new) we used the six configurations found by GGA in [17]. For CL∪REG,
CL∪REG∪RCW, and MIX we used one configuration optimized for each of the bench-
mark instance sets that were combined to create the distribution (e.g., CL and REG for
CL∪REG). We took all such optimized configurations from [13], and manually optimized
the remaining configurations using PARAMILS.

In Table 1, we presented performance results for MIPzilla on our four MIP
benchmark sets, contrasting the original linear regression (LR) models with our new
cost-sensitive decision forests (DF). Overall, MIPzilla was never worse with DF than
with LR, and sometimes substantially better. For relatively simple data sets, such as
CL∪REG and CL∪REG∪RCW, the difference between the models was quite small. For
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DataSet Model Train (cross valid.) Test SF: LR/DF (Test)
Time PAR (Solved) Time PAR (Solved) Time PAR

LR 172 332 (99.5%) 177 458 (99.1%)
1.08× 1.13×

RAND DF 147 308 (99.5%) 164 405 (99.3%)
LR 518 2224 (94.7%) 549 2858 (92.9%)

1.16× 1.26×
HAND DF 363 1327 (97.0%) 475 2268 (94.4%)

LR 459 2195 (94.6%) 545 3085 (92.1%)
1.12× 1.34×

INDU DF 382 1635 (96.1%) 487 2300 (94.4%)

Table 2. SATZILLA performance (average runtime and PAR in seconds, and percentage solved),
varying predictive models. Column SF gives the speedup factor achieved by cost-sensitive decision
forests (DF) over linear regression (LR) on the test set.

more heterogeneous data sets, MIPzilla performed much better with DF than with LR:
e.g., 18% and 17% better in terms of final portfolio runtime in the case of ISAC(new)
and MIX. Overall, our new cost-sensitive classification-based algorithm selection was
clearly preferable to the previous mechanism based on linear regression. In further
experiments, we also evaluated alternate approaches based on random regression forests
(trained separately for each algorithm as in the linear regression approach), decision
forests without costs, and support vector machines (SVMs) both with and without costs.
We found that the cost-sensitive variants always outperformed the cost-free ones. In these
more extensive experiments, we observed that cost-sensitive DF always performed very
well and linear regression performed inconsistently, with especially poor performance
on heterogenous data sets.

Our improvements to the algorithm selection procedure, although motivated by
the application to MIP, were in fact problem independent. We therefore conducted
an additional experiment to evaluate the effectiveness of SATZILLA based on our new
cost-sensitive decision forests, compared to the original version using linear regression
models. We used the same data used for building SATzilla2009 [29]. The number
of training/test instances were 1211/806 (RAND category with 17 candidate solvers),
672/447 (HAND category with 13 candidate solvers) and 570/379 (INDU category with
10 candidate solvers). Table 2 shows that by using our new cost-sensitive decision forest,
we improved SATZILLA’s performance 29% (in average over three categories) in terms
of PAR over the previous (competition-winning) version of SATZILLA; for the important
industrial category, we observed PAR improvements of 34%. Because there exists
no highly parameterized SAT solver with strong performance across problem classes
(analogous to CPLEX for MIP), we did not investigate HYDRA for SAT. 2 However, we
noted that this paper’s findings suggest that there is merit in constructing such highly
parameterized solvers for SAT and other NP-hard problems.

2 The closest to a SAT equivalent of what CPLEX is for MIP would be MiniSAT [5], but it
does not expose many parameters and does not perform well for random instances. The highly
parameterized SATenstein solver [18] cannot be expected to perform well across the board
for SAT; in particular, local search is not the best method for highly structured instances.
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DataSet Solver Train (cross valid.) Test
Time PAR (Solved) Time PAR (Solved)

Default 424 1687 (96.7%) 424 1493 (96.7%)
CL ParamILS 145 339 (99.4%) 134 296 (99.5%)

∪REG HydraDF,1 64 97 (99.9%) 63 63 (100%)
HydraDF,4 42 42 (100%) 48 48 (100%)
MIPzilla 40 40 (100%) 39 39 (100%)
Oracle 33 33 (100%) 33 33 (100%)

(MIPzilla)
CL Default 405 1532 (96.5%) 406 1424 (96.9%)

∪REG ParamILS 148 148 (100%) 151 151 (100%)
∪RCW HydraDF,1 89 89 (100%) 95 95 (100%)

HydraDF,4 106 106 (100%) 112 112 (100%)
MIPzilla 99 99 (100%) 99 99 (100%)
Oracle 89 89 (100%) 89 89 (100%)

(MIPzilla)
Default 3.98 3.98 (100%) 3.77 3.77 (100%)

ISAC ParamILS 2.06 2.06 (100%) 2.13 2.13 (100%)
(new) HydraLR,1 1.67 1.67 (100%) 1.52 1.52 (100%)

HydraDF,1 1.2 1.2 (100%) 1.42 1.42 (100%)
HydraDF,4 1.05 1.05 (100%) 1.17 1.17 (100%)
MIPzilla 2.19 2.19 (100%) 2.00 2.00 (100%)
Oracle 1.83 1.83 (100%) 1.81 1.81 (100%)

(MIPzilla)
Default 182 992 (97.5%) 156 387 (99.3%)
ParamILS 139 717 (98.2%) 126 357 (99.3%)

MIX HydraLR,1 74 74 (100%) 90 205 (99.6%)
HydraDF,1 60 60 (100%) 65 181 (99.6%)
HydraDF,4 53 53 (100%) 62 177 (99.6%)
MIPzilla 48 48 (100%) 48 164 (99.6%)
Oracle 34 34 (100%) 39 155 (99.6%)

(MIPzilla)

Table 3. Performance (average runtime and PAR in seconds, and percentage solved) of
HydraDF,4, HydraDF,1 and HydraLR,1 after 5 iterations.

4.3 Evaluating HYDRA-MIP

Next, we evaluated our full HydraDF,4 approach for MIP; on all four MIP benchmarks,
we compared it to HydraDF,1, to the best configuration found by PARAMILS, and to
the CPLEX default. For ISAC(new) and MIX we also assessed HydraLR,1. We did
not do so for CL∪REG and CL∪REG∪RCW because, based on the results in Table 1, we
expected the DF and LR models to perform almost identically. Table 3 presents these
results. First, comparing HydraDF,4 to PARAMILS alone and to the CPLEX default, we
observed that HydraDF,4 achieved dramatically better performance, yielding between
2.52-fold and 8.83-fold speedups over the CPLEX default and between 1.35-fold and
2.79-fold speedups over the configuration optimized with PARAMILS in terms of average
runtime. Note that (due probably to the heterogeneity of the data sets) the built-in CPLEX
self-tuning tool was unable to find any configurations better than the default for any of
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Fig. 1. Performance per iteration for HydraDF,4, HydraDF,1 and HydraLR,1, evaluated on test
data.

our four data sets. Compared to HydraLR,1, HydraDF,4 yielded a 1.3-fold speedup
for ISAC(new) and a 1.5-fold speedup for MIX. HydraDF,4 also typically performed
better than our intermediate procedure HydraDF,1, with speedup factors up to 1.21
(ISAC(new)). However, somewhat surprisingly, it actually performed worse for one
distribution, CL∪REG∪RCW. We analyzed this case further and found that in HydraDF,4,
after iteration three PARAMILS did not find any configurations that would further improve
the portfolio, even with a perfect algorithm selector. This poor PARAMILS performance
could be explained by the fact that HYDRA’s dynamic performance metric only rewarded
configurations that made progress on solving some instances better; almost certainly
starting in a poor region of configuration space, PARAMILS did not find configurations
that made progress on any instances over the already strong portfolio, and thus lacked
guidance towards better regions of configuration space. We believed that this problem
could be addressed by means of better configuration procedures in the future.
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Figure 1 shows the test performance the different HYDRA versions achieved as a
function of their number of iterations, as well as the performance of the MIPzilla
portfolios we built manually. When building these MIPzilla portfolios for CL∪REG,
CL∪REG∪RCW, and MIX, we exploited ground truth knowledge about the constituent
subsets of instances, using a configuration optimized specifically for each of these sub-
sets. As a result, these portfolios yielded very strong performance. Although our various
HYDRA versions did not have access to this ground truth knowledge, they still roughly
matched MIPzilla’s performance (indeed, HydraDF,1 outperformed MIPzilla on
CL∪REG). For ISAC(new), our baseline MIPzilla portfolio used CPLEX configu-
rations obtained by ISAC [17]; all HYDRA versions clearly outperformed MIPzilla
in this case, which suggests that its constituent configurations are suboptimal. For
ISAC(new), we observed that for (only) the first three iterations, HydraLR,1 outper-
formed HydraDF,1. We believed that this occurred because in later iterations the portfo-
lio had stronger solvers, making the predictive models more important. We also observed
that HydraDF,4 consistently converged more quickly than HydraDF,1 and HydraLR,1.
While HydraDF,4 stagnated after three iterations for data set CL∪REG∪RCW (see our
discussion above), it achieved the best performance at every given point in time for the
three other data sets. For ISAC(new), HydraDF,1 did not converge after 5 iterations,
while HydraDF,4 converged after 4 iterations and achieved better performance. For
the other three data sets, HydraDF,4 converged after two iterations. The performance
of HydraDF,4 after the first iteration (i.e., with 4 candidate solvers available to the
portfolio) was already very close to the performance of the best portfolios for MIX and
CL∪REG.

4.4 Comparing to ISAC

We spent a tremendous amount of effort attempting to compare HydraDF,4 with
ISAC [17], since ISAC is also a method for automatic portfolio construction and was
previously applied to a distribution of MIP instances. ISAC’s authors supplied us with
their their training instances and the CPLEX configurations their method identified, but
are generally unable to make their code available to other researchers and, as mentioned
previously, were unable to recover their test data. We therefore compared HydraDF,4’s
and ISAC’s relative speedups over the CPLEX default (thereby controlling for different
machine architectures) on their training data. We note that HydraDF,4 was given only
2/3 as much training data as ISAC (due to the need to recover a test set from [17]’s
original training set); the methods were evaluated using only the original ISAC training
set; the data set is very small, and hence high-variance; and all instances were quite easy
even for the CPLEX default. In the end, HydraDF,4 achieved a 3.6-fold speedup over
the CPLEX default, as compared to the 2.1-fold speedup reported in [17].

As shown in Figure 1, all versions of HYDRA performed much better than a MIPzilla
portfolio built from the configurations obtained from ISAC’s authors for the ISAC(new)
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dataset. In fact, even a perfect oracle of these configurations only achieved an average
runtime of 1.82 seconds, which is a factor of 1.67 slower than HydraDF,4.

5 Conclusion

In this paper, we showed how to extend HYDRA to achieve strong performance for hetero-
geneous MIP distributions, outperforming CPLEX’s default, PARAMILS alone, ISAC and
the original HYDRA approach. This was done using a cost-sensitive classification model
for algorithm selection (which also lead to performance improvements in SATZILLA),
along with improvements to HYDRA’s convergence speed. In future work, we plan to
investigate more robust selection criteria for adding multiple solvers in each iteration of
HydraDF,k that consider both performance improvement and performance correlation.
Thus, we may be able to avoid the stagnation we observed on CL∪REG∪RCW. We expect
that HydraDF,k can be further strengthened by using improved algorithm configurators,
such as model-based procedures. Overall, the availability of effective procedures for
constructing portfolio-based algorithm selectors, such as our new HYDRA, should encour-
age the development of highly parametrized algorithms for other prominent NP-hard
problems in AI, such as planning and CSP.
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15. F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on local
search. In AAAI, pages 1152–1157, 2007.

16. IBM. IBM ILOG CPLEX Optimizer – Data Sheet. Available online: ftp://public.dhe.
ibm.com/common/ssi/ecm/en/wsd14044usen/WSD14044USEN.PDF, 2011.

17. S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC - instance specific algorithm
configuration. In ECAI, 2010.

18. A. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown. SATenstein: Automatically
building local search SAT solvers from components. pages 517–524, 2009.

19. D. Lehmann, R. Müller, and T. Sandholm. The winner determination problem. In Combinato-
rial Auctions, chapter 12, pages 297–318. 2006.

20. K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham. A portfolio
approach to algorithm selection. In IJCAI, pages 1542–1543, 2003.

21. K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM, 56(4):1–52, 2009.

22. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial
auction algorithms. In ACM-EC, pages 66–76, 2000.

23. E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. Using case-based
reasoning in an algorithm portfolio for constraint solving. In Irish Conference on Artificial
Intelligence and Cognitive Science, 2008.

24. J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.
25. H. Samulowitz and R. Memisevic. Learning to solve QBF. In AAAI, pages 255–260, 2007.
26. D. Stern, R. Herbrich, T. Graepel, H. Samulowitz, L. Pulina, and A. Tacchella. Collaborative

expert portfolio management. In AAAI, pages 210–216, 2010.
27. K. M. Ting. An instance-weighting method to induce cost-sensitive trees. IEEE Trans. Knowl.

Data Eng., 14(3):659–665, 2002.
28. L. Xu, H. H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for

portfolio-based selection. In AAAI, pages 210–216, 2010.
29. L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla2009: an Automatic Algorithm

Portfolio for SAT. Solver description, SAT competition 2009, 2009.
30. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm

selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, June 2008.

15


