
Automated Configuration of
Mixed Integer Programming Solvers

Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{hutter,hoos,kevinlb}@cs.ubc.ca

Abstract. State-of-the-art solvers for mixed integer programming (MIP) prob-
lems are highly parameterized, and finding parameter settings that achieve high
performance for specific types of MIP instances is challenging. We study the appli-
cation of an automated algorithm configuration procedure to different MIP solvers,
instance types and optimization objectives. We show that this fully-automated
process yields substantial improvements to the performance of three MIP solvers:
CPLEX, GUROBI, and LPSOLVE. Although our method can be used “out of the
box” without any domain knowledge specific to MIP, we show that it outperforms
the CPLEX special-purpose automated tuning tool.

1 Introduction
Current state-of-the-art mixed integer programming (MIP) solvers are highly parameter-
ized. Their parameters give users control over a wide range of design choices, including:
which preprocessing techniques to apply; what balance to strike between branching
and cutting; which types of cuts to apply; and the details of the underlying linear (or
quadratic) programming solver. Solver developers typically take great care to identify
default parameter settings that are robust and achieve good performance across a variety
of problem types. However, the best combinations of parameter settings differ across
problem types, which is of course the reason that such design choices are exposed as
parameters in the first place. Thus, when a user is interested only in good performance
for a given family of problem instances—as is the case in many application situations—it
is often possible to substantially outperform the default configuration of the solver.

When the number of parameters is large, finding a solver configuration that leads to
good empirical performance is a challenging optimization problem. (For example, this is
the case for CPLEX: in version 12, its 221-page parameter reference manual describes
135 parameters that affect the search process.) MIP solvers exist precisely because
humans are not good at solving high-dimensional optimization problems. Nevertheless,
parameter optimization is usually performed manually. Doing so is tedious and laborious,
requires considerable expertise, and often leads to results far from optimal.

There has been recent interest in automating the process of parameter optimization
for MIP. The idea is to require the user to only specify a set of problem instances of
interest and a performance metric, and then to trade machine time for human time
to automatically identify a parameter configuration that achieves good performance.
Notably, IBM ILOG CPLEX—the most widely used commercial MIP solver—introduced
an automated tuning tool in version 11. In our own recent work, we proposed several
methods for the automated configuration of various complex algorithms [20, 19, 18, 15].



While we mostly focused on solvers for propositional satisfiability (based on both local
and tree search), we also conducted preliminary experiments that showed the promise of
our methods for MIP. Specifically, we studied the automated configuration of CPLEX
10.1.1, considering 5 types of MIP instances [19].

The main contribution of this paper is a thorough study of the applicability of
one of our black-box techniques to the MIP domain. We go beyond previous work by
configuring three different MIP solvers (GUROBI, LPSOLVE, and the most recent CPLEX
version 12.1); by considering a wider range of instance distributions; by considering
multiple configuration objectives (notably, performing the first study on automatically
minimizing the optimality gap); and by comparing our method to CPLEX’s automated
tuning tool. We show that our approach consistently sped up all three MIP solvers and
also clearly outperformed the CPLEX tuning tool. For example, for a set of real-life
instances from computational sustainability, our approach sped up CPLEX by a factor
of 52 while the tuning tool returned the CPLEX defaults. For GUROBI, speedups were
consistent but small (up to a factor of 2.3), and for LPSOLVE we obtained speedups up to
a factor of 153.

The remainder of this paper is organized as follows. In the next section, we describe
automated algorithm configuration, including existing tools and applications. Then, we
describe the MIP solvers we chose to study (Section 3) and discuss the setup of our
experiments (Section 4). Next, we report results for optimizing both the runtime of the
MIP solvers (Section 5) and the optimality gap they achieve within a fixed time (Section
6). We then compare our approach to the CPLEX tuning tool (Section 7) and conclude
with some general observations and an outlook on future work (Section 8).

2 Automated Algorithm Configuration
Whether manual or automated, effective algorithm configuration is central to the de-
velopment of state-of-the-art algorithms. This is particularly true when dealing with
NP-hard problems, where the runtimes of weak and strong algorithms on the same prob-
lem instances regularly differ by orders of magnitude. Existing theoretical techniques
are typically not powerful enough to determine whether one parameter configuration
will outperform another, and therefore algorithm designers have to rely on empirical
approaches.

2.1 The Algorithm Configuration Problem

The algorithm configuration problem we consider in this work involves an algorithm to
be configured (a target algorithm) with a set of parameters that affect its performance,
a set of problem instances of interest (e.g., 100 vehicle routing problems), and a per-
formance metric to be optimized (e.g., average runtime; optimality gap). The target
algorithm’s parameters can be numerical (e.g., level of a real-valued threshold); ordinal
(e.g., low, medium, high); categorical (e.g., choice of heuristic), Boolean (e.g., algorithm
component active/inactive); and even conditional (e.g., a threshold that affects the al-
gorithm’s behaviour only when a particular heuristic is chosen). In some cases, a value
for one parameter can be incompatible with a value for another parameter; for example,
some types of preprocessing are incompatible with the use of certain data structures.
Thus, some parts of parameter configuration space are forbidden; they can be described
succinctly in the form of forbidden partial instantiations of parameters (i.e., constraints).



Fig. 1. A configuration procedure (short: configurator) executes the target algorithm with specified
parameter settings on one or more problem instances, observes algorithm performance, and uses
this information to decide which subsequent target algorithm runs to perform. A configuration
scenario includes the target algorithm to be configured and a collection of instances.

We refer to instances of this algorithm configuration problem as configuration
scenarios, and we address these using automatic methods that we call configuration
procedures; this is illustrated in Figure 1. Observe that we treat algorithm configuration
as a black-box optimization problem: a configuration procedure executes the target
algorithm on a problem instance and receives feedback about the algorithm’s performance
without any access to the algorithm’s internal state. (Because the CPLEX tuning tool is
proprietary, we do not know whether it operates similarly.)

2.2 Configuration Procedures and Existing Applications

A variety of black-box, automated configuration procedures have been proposed in the
CP and AI literatures. There are two major families: model-based approaches that learn a
response surface over the parameter space, and model-free approaches that do not. Much
existing work is restricted to scenarios having only relatively small numbers of numerical
(often continuous) parameters, both in the model-based [7, 13, 17] and model-free [6, 1]
literatures. Some relatively recent model-free approaches permit both larger numbers
of parameters and categorical domains, in particular Composer [12], F-Race [9, 8],
GGA [3], and our own ParamILS [20, 19]. As mentioned above, the automated tuning
tool introduced in CPLEX version 11 can also be seen as a special-purpose algorithm
configuration procedure; we believe it to be model free.

Blackbox configuration procedures have been applied to optimize a variety of para-
metric algorithms. Gratch and Chien [12] successfully applied the Composer system
to optimize the five parameters of LR-26, an algorithm for scheduling communication
between a collection of ground-based antennas and spacecraft in deep space. Adenso-
Diaz and Laguna [1] demonstrated that their Calibra system was able to optimize the
parameters of six unrelated metaheuristic algorithms, matching or surpassing the per-
formance achieved manually by their developers. F-Race and its extensions have been
used to optimize numerous algorithms, including iterated local search for the quadratic
assignment problem, ant colony optimization for the travelling salesperson problem, and
the best-performing algorithm submitted to the 2003 timetabling competition [8].

Our group successfully used various versions of PARAMILS to configure algorithms
for a wide variety of problem domains. So far, the focus of that work has been on the
configuration of solvers for the propositional satisfiability problem (SAT); we optimized
both tree search [16] and local search solvers [21], in both cases substantially advancing



the state of the art for the types of instances studied. We also successfully configured
algorithms for the most probable explanation problem in Bayesian networks, global
continuous optimization, protein folding, and algorithm configuration itself (for details,
see Ref. 15).

2.3 Configuration Procedure Used: FOCUSEDILS

The configuration procedure used in this work is an instantiation of the PARAMILS
framework [20, 19]. However, we do not mean to argue for the use of PARAMILS in
particular, but rather aim to provide a lower bound on the performance improvements
that can be achieved by applying general-purpose automated configuration tools to MIP
solvers; future tools may achieve even better performance.

PARAMILS performs an iterated local search (ILS) in parameter configuration
space; configurations are evaluated by running the target algorithm with them. The
search is initialized at the best out of ten random parameter configurations and the
target algorithm’s default configuration. Next, PARAMILS performs a first-improvement
local search that ends in a local optimum. It then iterates three phases: (1) a random
perturbation to escape the local optimum; (2) another local search phase resulting in a
new local optimum; and (3) an acceptance criterion that typically accepts the new local
optimum if it is better than the previous one. The PARAMILS instantiation we used
here is FOCUSEDILS version 2.4, which aggressively rejects poor configurations and
focuses its efforts on the evaluation of good configurations. Specifically, it starts with
performing only a single target algorithm run for each configuration considered, and
performs additional runs for good configurations as the search progresses. This process
guarantees that—given enough time and a training set that is perfectly representative of
unseen test instances—FOCUSEDILS will identify the best configuration in the given
design space [20, 19]. (Further details of PARAMILS and FOCUSEDILS can be found in
our previous publications [20, 19].)

In practice, we are typically forced to work with finite sets of benchmark instances,
and performance on a small training set is often not very representative for performance
on other, unseen instances of similar origin. PARAMILS (and any other configuration
tool) can only optimize performance on the training set it is given; it cannot guarantee
that this leads to improved performance on a separate set of test instances. In particular,
with very small training sets, a so-called over-tuning effect can occur: given more time,
automated configuration tools find configurations with better training but worse test
performance [8, 20].

Since target algorithm runs with some parameter configurations may take a very long
(potentially infinite) time, PARAMILS requires the user to specify a so-called captime
κmax, the maximal amount of time after which PARAMILS will terminate a run of
the target algorithm as unsuccessful. FOCUSEDILS version 2.4 also supports adaptive
capping, a speedup technique that sets the captimes κ ≤ κmax for individual target
algorithm runs, thus permitting substantial savings in computation time.

FOCUSEDILS is a randomized algorithm that tends to be quite sensitive to the
ordering of its training benchmark instances. For challenging configuration tasks some
of its runs often perform much better than others. For this reason, in previous work we
adopted the strategy to perform 10 independent parallel runs of FOCUSEDILS and use
the result of the run with best training performance [16, 19]. This is sound since no
knowledge of the test set is required in order to make the selection; the only drawback



Algorithm Parameter type # parameters of this type # values considered Total # configurations
Boolean 6 (7) 2

CPLEX Categorical 45 (43) 3–7 1.90 · 1047

MILP (MIQCP) Integer 18 5–7 (3.40 · 1045)
Continuous 7 5–8

Boolean 4 2

GUROBI
Categorical 16 3–5

3.84 · 1014
Integer 3 5

Continuous 2 5

LPSOLVE
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Table 1. Target algorithms and characteristics of their parameter configuration spaces. For details,
see http://www.cs.ubc.ca/labs/beta/Projects/MIP-Config/.

is a 10-fold increase in overall computation time. If none of the 10 FOCUSEDILS
runs encounters any successful algorithm run, then our procedure returns the algorithm
default.

3 MIP Solvers
We now discuss the three MIP solvers we chose to study and their respective parameter
configuration spaces. Table 1 gives an overview.

IBM ILOG CPLEX is the most-widely used commercial optimization tool for solv-
ing MIPs. As stated on the CPLEX website (http://www.ilog.com/products/
cplex/), currently over 1 300 corporations and government agencies use CPLEX, along
with researchers at over 1 000 universities. CPLEX is massively parameterized and end
users often have to experiment with these parameters:

“Integer programming problems are more sensitive to specific parameter settings,
so you may need to experiment with them.” (ILOG CPLEX 12.1 user manual,
page 235)

Thus, the automated configuration of CPLEX is very promising and has the potential to
directly impact a large user base.

We used CPLEX 12.1 (the most recent version) and defined its parameter configura-
tion space as follows. Using the CPLEX 12 “parameters reference manual”, we identified
76 parameters that can be modified in order to optimize performance. We were careful to
keep all parameters fixed that change the problem formulation (e.g., parameters such as
the optimality gap below which a solution is considered optimal). The 76 parameters we
selected affect all aspects of CPLEX. They include 12 preprocessing parameters (mostly
categorical); 17 MIP strategy parameters (mostly categorical); 11 categorical parameters
deciding how aggressively to use which types of cuts; 9 numerical MIP “limits” parame-
ters; 10 simplex parameters (half of them categorical); 6 barrier optimization parameters
(mostly categorical); and 11 further parameters. Most parameters have an “automatic”
option as one of their values. We allowed this value, but also included other values (all
other values for categorical parameters, and a range of values for numerical parameters).
Exploiting the fact that 4 parameters were conditional on others taking certain values,
these 76 parameters gave rise to 1.90 · 1047 distinct parameter configurations. For mixed
integer quadratically-constrained problems (MIQCP), there were some additional pa-
rameters (1 binary and 1 categorical parameter with 3 values). However, 3 categorical
parameters with 4, 6, and 7 values were no longer applicable, and for one categorical



parameter with 4 values only 2 values remained. This led to a total of 3.40 ·1045 possible
configurations.

GUROBI is a recent commercial MIP solver that is competitive with CPLEX on some
types of MIP instances [23]. We used version 2.0.1 and defined its configuration space
as follows. Using the online description of GUROBI’s parameters,1 we identified 26
parameters for configuration. These consisted of 12 mostly-categorical parameters that
determine how aggressively to use each type of cuts, 7 mostly-categorical simplex
parameters, 3 MIP parameters, and 4 other mostly-Boolean parameters. After disallowing
some problematic parts of configuration space (see Section 4.2), we considered 25 of
these 26 parameters, which led to a configuration space of size 3.84 · 1014.

LPSOLVE is one of the most prominent open-source MIP solvers. We determined 52 pa-
rameters based on the information at http://lpsolve.sourceforge.net/. These
parameters are rather different from those of GUROBI and CPLEX: 7 parameters are
categorical, and the rest are Boolean switches indicating whether various solver modules
should be employed. 17 parameters concern presolving; 9 concern pivoting; 14 concern
the branch & bound strategy; and 12 concern other functions. After disallowing prob-
lematic parts of configuration space (see Section 4.2), we considered 47 of these 52
parameters. Taking into account one conditional parameter, these gave rise to 1.22 · 1015

distinct parameter configurations.

4 Experimental Setup
We now describe our experimental setup: benchmark sets, how we identified problematic
parts in the configuration spaces of GUROBI and LPSOLVE, and our computational
environment.

4.1 Benchmark Sets

We collected a wide range of MIP benchmarks from public benchmark libraries and
other researchers, and split each of them 50:50 into disjoint training and test sets; we
detail these in the following.

MJA This set comprises 343 machine-job assignment instances encoded as mixed
integer quadratically constrained programming (MIQCP) problems [2]. We obtained
it from the Berkeley Computational Optimization Lab (BCOL).2 On average, these
instances contain 2 769 variables and 2 255 constraints (with standard deviations 2 133
and 1 592, respectively).

MIK This set comprises 120 mixed-integer knapsack instances encoded as mixed
integer linear programming (MILP) problems [4]; we also obtained it from BCOL.
On average, these instances contain 384 variables and 151 constraints (with standard
deviations 309 and 127, respectively).

CLS This set of 100 MILP-encoded capacitated lot-sizing instances [5] was also
obtained from BCOL. Each instance contains 181 variables and 180 constraints.

1
http://www.gurobi.com/html/doc/refman/node378.html#sec:Parameters

2
http://www.ieor.berkeley.edu/˜atamturk/bcol/, where this set is called conic.sch.



REGIONS100 This set comprises 2 000 instances of the combinatorial auction winner
determination problem, encoded as MILP instances. We generated them using the
regions generator from the Combinatorial Auction Test Suite [22], with parameters
goods=100 and bids=500. On average, the resulting MILP instances contain 501 variables
and 193 inequalities (with standard deviations 1.7 and 2.5, respectively).

REGIONS200 This set contains 2 000 instances similar to those in REGIONS100 but
larger; we created it with the same generator using goods=200 and bids=1 000. On
average, the resulting MILP instances contain 1 002 variables and 385 inequalities (with
standard deviations 1.7 and 3.4, respectively).

MASS This set comprises 100 integer programming instances modelling multi-activity
shift scheduling [10]. On average, the resulting MILP instances contain 81 994 variables
and 24 637 inequalities (with standard deviations 9 725 and 5 391, respectively).

CORLAT This set comprises 2 000 MILP instances based on real data used for the
construction of a wildlife corridor for grizzly bears in the Northern Rockies region
(the instances were described by Gomes et al. [11] and made available to us by Bistra
Dilkina). All instances had 466 variables; on average they had 486 constraints (with
standard deviation 25.2).

4.2 Avoiding Problematic Parts of Parameter Configuration Space

Occasionally, we encountered problems running GUROBI and LPSOLVE with certain
combinations of parameters on particular problem instances. These problems included
segmentation faults as well as several more subtle failure modes, in which incorrect
results could be returned by a solver. (CPLEX did not show these problems on any of
the instances studied here.) To deal with them, we took the following measures in our
experimental protocol. First, we established reference solutions for all MIP instances
using CPLEX 11.2 and GUROBI, both run with their default parameter configurations for
up to one CPU hour per instance.3 (For some instances, neither of the two solvers could
find a solution within this time; for those instances, we skipped the correctness check
described in the following.)

In order to identify problematic parts of a given configuration space, we ran 10
PARAMILS runs (with a time limit of 5 hours each) until one of them encountered a
target algorithm run that either produced an incorrect result (as compared to our reference
solution for the respective MIP instance), or a segmentation fault. We call the parameter
configuration θ of such a run problematic. Starting from this problematic configuration θ,
we then identified what we call a minimal problematic configuration θmin. In particular,
we iteratively changed the value of one of θ’s parameters to its respective default value,
and repeated the algorithm run with the same instance, captime, and random seed. If
the run still had problems with the modified parameter value, we kept the parameter at
its default value, and otherwise changed it back to the value it took in θ. Iterating this
process converges to a problematic configuration θmin that is minimal in the following
sense: setting any single non-default parameter value of θmin to its default value resolves
the problem in the current target algorithm run.

Using PARAMILS’s mechanism of forbidden partial parameter instantiations, we
then forbade any parameter configurations that included the partial configuration defined

3 These reference solutions were established before we had access to CPLEX 12.1.



by θmin’s non-default parameter values. (When all non-default values for a parameter
became problematic, we did not consider that parameter for configuration, clamping it
to its default value.) We repeated this process until no problematic configuration was
found in the PARAMILS runs: 4 times for GUROBI and 14 times for LPSOLVE. Thereby,
for GUROBI we removed one problematic parameter and disallowed two further partial
configurations, reducing the size of the configuration space from 1.32 ·1015 to 3.84 ·1014.
For LPSOLVE, we removed 5 problematic binary flags and disallowed 8 further partial
configurations, reducing the size of the configuration space from 8.83 ·1016 to 1.22 ·1015.
Details on forbidden parameters and partial configurations, as well as supporting material,
can be found at http://www.cs.ubc.ca/labs/beta/Projects/MIP-Config/.

While that first stage resulted in concise bug reports we sent to GUROBI and LPSOLVE,
it is not essential to algorithm configuration. Even after that stage, in the experiments
reported here, target algorithm runs occasionally disagreed with the reference solution or
produced segmentation faults. We considered the empirical cost of those runs to be∞,
thereby driving the local search process underlying PARAMILS away from problematic
parameter configurations. This allowed PARAMILS to gracefully handle target algorithm
failures that we had not observed in our preliminary experiments. We could have used the
same approach without explicitly identifying and forbidding problematic configurations.

4.3 Computational Environment
We carried out the configuration of LPSOLVE on the 840-node Westgrid Glacier cluster,
each with two 3.06 GHz Intel Xeon 32-bit processors and 2–4GB RAM. All other
configuration experiments, as well as all evaluation, was performed on a cluster of 55
dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE Linux
10.1; runtimes were measured as CPU time on these reference machines.

5 Minimization of Runtime Required to Prove Optimality
In our first set of experiments, we studied the extent to which automated configuration
can improve the time performance of CPLEX, GUROBI, and LPSOLVE for solving
the seven types of instances discussed in Section 4.1. This led to 3 · 6 + 1 = 19
configuration scenarios (the quadratically constrained MJA instances could only be
solved with CPLEX).

For each configuration scenario, we allowed a total configuration time budget of 2
CPU days for each of our 10 PARAMILS runs, with a captime of κmax = 300 seconds
for each MIP solver run. In order to penalize timeouts, during configuration we used
the penalized average runtime criterion (dubbed “PAR-10” in our previous work [19]),
counting each timeout as 10 · κmax. For evaluation, we report timeouts separately.

For each configuration scenario, we compared the performance of the parameter
configuration identified using PARAMILS against the default configuration, using a test
set of instances disjoint from the training set used during configuration. We note that
this default configuration is typically determined using substantial time and effort; for
example, the CPLEX 12.1 user manual states (on p. 478):

“A great deal of algorithmic development effort has been devoted to establishing
default ILOG CPLEX parameter settings that achieve good performance on a
wide variety of MIP models.”

Table 2 describes our configuration results. For each of the benchmark sets, our approach
improved CPLEX’s performance. Specifically, we achieved speedups ranging from 2-



Algorithm Scenario
% test instances unsolved in 24h mean runtime for solved [CPU s] Speedup
default PARAMILS default PARAMILS factor

MJA 0% 0% 3.40 1.72 1.98×
MIK 0% 0% 4.87 1.61 3.03×

REGIONS100 0% 0% 0.74 0.35 2.13×
CPLEX REGIONS200 0% 0% 59.8 11.6 5.16×

CLS 0% 0% 47.7 12.1 3.94×
MASS 0% 0% 524.9 213.7 2.46×

CORLAT 0% 0% 850.9 16.3 52.3×
MIK 0% 0% 2.70 2.26 1.20×

REGIONS100 0% 0% 2.17 1.27 1.71×

GUROBI
REGIONS200 0% 0% 56.6 40.2 1.41×

CLS 0% 0% 58.9 47.2 1.25×
MASS 0% 0% 493 281 1.75×

CORLAT 0.3% 0.2% 103.7 44.5 2.33×
MIK 63% 63% 21 670 21 670 1×

REGIONS100 0% 0% 9.52 1.71 5.56×

LPSOLVE
REGIONS200 12% 0% 19 000 124 153×

CLS 86% 42% 39 300 1 440 27.4×
MASS 83% 83% 8 661 8 661 1×

CORLAT 50% 8% 7 916 229 34.6×
Table 2. Results for minimizing the runtime required to find an optimal solution and prove its
optimality. All results are for test sets disjoint from the training sets used for the automated
configuration. We report the percentage of timeouts after 24 CPU hours as well as the mean
runtime for those instances that were solved by both approaches. Bold-faced entries indicate better
performance of the configurations found by PARAMILS than for the default configuration. (To
reduce the computational burden, results for LPSOLVE on REGIONS200 and CORLAT are only
based on 100 test instances sampled uniformly at random from the 1000 available ones.)

fold to 52-fold. For GUROBI, the speedups were also consistent, but less pronounced
(1.2-fold to 2.3-fold). For the open-source solver LPSOLVE, the speedups were most
substantial, but there were also 2 cases in which PARAMILS did not improve over
LPSOLVE’s default, namely the MIK and MASS benchmarks. This occurred because,
within the maximum captime of κmax = 300s we used during configuration, none of
the thousands of LPSOLVE runs performed by PARAMILS solved a single benchmark
instance for either of the two benchmark sets. For the other benchmarks, speedups were
very substantial, reaching up to a factor of 153 (on REGIONS200).

Figure 2 shows the speedups for 4 configuration scenarios. Figures 2(a) to (c) show
the scenario with the largest speedup for each of the solvers. In all cases, PARAMILS’s
configurations scaled better to hard instances than the algorithm defaults, which in some
cases timed out on the hardest instances. PARAMILS’s worst performance was for the
2 LPSOLVE scenarios for which it simply returned the default configuration; in Figure
2(d), we show results for the more interesting second-worst case, the configuration of
GUROBI on MIK. Observe that here, performance was actually rather good for most
instances, and that the poor speedup in test performance was due to a single hard test
instance. Better generalization performance would be achieved if more training instances
were available.

6 Minimization of Optimality Gap
Sometimes, we are interested in minimizing a criterion other than mean runtime. Algo-
rithm configuration procedures such as PARAMILS can in principle deal with various
optimization objectives; in our own previous work, for example, we have optimized
median runlength, average speedup over an existing algorithm, and average solution
quality [20, 15]. In the MIP domain, constraints on the time available for solving a given



10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fi
g
. 
fo

u
n
d
 b

y
 P

a
ra

m
IL

S
 [
C

P
U

 s
]

 

 

Train

Test

(a) CPLEX, CORLAT. Speedup factors:
train 48.4×, test 52.3×.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fi
g
. 
fo

u
n
d
 b

y
 P

a
ra

m
IL

S
 [
C

P
U

 s
]

 

 

Train

Train−timeout

Test

Test−timeout

(b) GUROBI, CORLAT. Speedup factors:
train 2.24×, test 2.33×

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o

n
fi
g

. 
fo

u
n

d
 b

y
 P

a
ra

m
IL

S
 [

C
P

U
 s

]

 

 

Train

Train−timeout

Test

Test−timeout

(c) LPSOLVE, REGIONS200. Speedup fac-
tors: train 162×, test 153×.

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Default [CPU s]

C
o
n
fi
g
. 
fo

u
n
d
 b

y
 P

a
ra

m
IL

S
 [
C

P
U

 s
]

 

 

Train

Test

(d) GUROBI, MIK. Speedup factors: train
2.17×, test 1.20×.

Fig. 2. Results for configuration of MIP solvers to reduce the time for finding an optimal solution
and proving its optimality. The dashed blue line indicates the captime (κmax = 300s) used during
configuration.

MIP instance might preclude running the solver to completion, and in such cases, we
may be interested in minimizing the optimality gap (also known as MIP gap) achieved
within a fixed amount of time, T .

To investigate the efficacy of our automated configuration approach in this context,
we applied it to CPLEX, GUROBI and LPSOLVE on the 5 benchmark distributions with
the longest average runtimes, with the objective of minimizing the average relative
optimality gap achieved within T = 10 CPU seconds. To deal with runs that did not find
feasible solutions, we used a lexicographic objective function that counts the fraction
of instances for which feasible solutions were found and breaks ties based on the mean
relative gap for those instances. For each of the 15 configuration scenarios, we performed
10 PARAMILS runs, each with a time budget of 5 CPU hours.



Algorithm Scenario
% test instances for which no feas. sol. was found mean gap when feasible Gap reduction
default PARAMILS default PARAMILS factor

MIK 0% 0% 0.15% 0.02% 8.65×
CLS 0% 0% 0.27% 0.15% 1.77×

CPLEX REGIONS200 0% 0% 1.90% 1.10% 1.73×
CORLAT 28% 1% 4.43% 1.22% 2.81×

MASS 88% 86% 1.91% 1.52% 1.26×
MIK 0% 0% 0.02% 0.01% 2.16×
CLS 0% 0% 0.53% 0.44% 1.20×

GUROBI REGIONS200 0% 0% 3.17% 2.52% 1.26×
CORLAT 14% 5% 3.22% 2.87% 1.12×

MASS 68% 68% 76.4% 52.2% 1.46×
MIK 0% 0% 652% 14.3% 45.7×
CLS 0% 0% 29.6% 7.39% 4.01×

LPSOLVE REGIONS200 0% 0% 10.8% 6.60% 1.64×
CORLAT 68% 13% 4.19% 3.42% 1.20×

MASS 100% 100% - - -

Table 3. Results for configuration of MIP solvers to reduce the relative optimality gap reached
within 10 CPU seconds. We report the percentage of test instances for which no feasible solution
was found within 10 seconds and the mean relative gap for the remaining test instances. Bold face
indicates the better configuration (recall that our lexicographic objective function cares first about
the number of instances with feasible solutions, and then considers the mean gap among feasible
instances only to break ties).

Table 3 shows the results of this experiment. For all but one of the 15 configuration
scenarios, the automatically-found parameter configurations performed substantially
better than the algorithm defaults. In 4 cases, feasible solutions were found for more
instances, and in 14 scenarios the relative gaps were smaller (sometimes substantially so;
consider, e.g., the 45-fold reduction for LPSOLVE, and note that the gap is not bounded
by 100%). For the one configuration scenario where we did not achieve an improvement,
LPSOLVE on MASS, the default configuration of LPSOLVE could not find a feasible
solution for any of the training instances in the available 10 seconds, and the same turned
out to be the case for the thousands of configurations considered by PARAMILS.

7 Comparison to CPLEX Tuning Tool
The CPLEX tuning tool is a built-in CPLEX function available in versions 11 and above.4

It allows the user to minimize CPLEX’s runtime on a given set of instances. As in our
approach, the user specifies a per-run captime, the default for which is κmax = 10 000
seconds, and an overall time budget. The user can further decide whether to minimize
mean or maximal runtime across the set of instances. (We note that the mean is usually
dominated by the runtimes of the hardest instances.) By default, the objective for tuning
is to minimize mean runtime, and the time budget is set to infinity, allowing the CPLEX
tuning tool to perform all the runs it deems necessary.

Since CPLEX is proprietary, we do not know the inner workings of the tuning tool;
however, we can make some inferences from its outputs. In our experiments, it always
started by running the default parameter configuration on each instance in the benchmark
set. Then, it tested a set of named parameter configurations, such as ‘no cuts’, ‘easy’,
and ‘more gomory cuts’. Which configurations it tested depended on the benchmark set.

4 Incidentally, our first work on the configuration of CPLEX predates the CPLEX tuning tool. This
work, involving Hutter, Hoos, Leyton-Brown, and Stützle, was presented and published as a
technical report at a doctoral symposium in Sept. 2007 [14]. At that time, no other mechanism
for automatically configuring CPLEX was available; CPLEX 11 was released Nov. 2007.



PARAMILS differs from the CPLEX tuning tool in at least three crucial ways. First,
it searches in the vast space of all possible configurations, while the CPLEX tuning tool
focuses on a small set of handpicked candidates. Second, PARAMILS is a randomized
procedure that can be run for any amount of time, and that can find different solutions
when multiple copies are run in parallel; it reports better configurations as it finds
them. The CPLEX tuning tool is deterministic and runs for a fixed amount of time
(dependent on the instance set given) unless the time budget intervenes earlier; it does
not return a configuration until it terminates. Third, because PARAMILS does not rely
on domain-specific knowledge, it can be applied out of the box to the configuration
of other MIP solvers and, indeed, arbitrary parameterized algorithms. In contrast, the
few configurations in the CPLEX tuning tool appear to have been selected based on
substantial domain insights, and the fact that different parameter configurations are
tried for different types of instances leads us to believe that it relies upon MIP-specific
instance characteristics. While in principle this could be an advantage, in its current form
it appears to be rather restrictive.

We compared the performance of the configurations found by the CPLEX tuning
tool to that of configurations found by PARAMILS. For this comparison, we used the
tuning tool’s default settings to optimize mean runtime on the same training sets used for
PARAMILS, and tested performance on the same test sets (disjoint from the training sets).
We ran both configuration approaches with a time limit of 2 CPU days. In most cases,
the CPLEX tuning tool finished before that time limit was reached and—in contrast to
PARAMILS—could not use the remaining time in order to further improve performance.
As before, we used 10 independent parallel runs of PARAMILS, at each time step
reporting the performance of the one with best training performance.

First, we discuss the performance of the CPLEX tuning tool, summarized in Table 4.
We note that in two cases (REGIONS200 and CORLAT), it reached the time limit of 2
CPU days and returned the algorithm defaults in both cases. Out of the remaining 5 cases,
it returned the default configuration in 1 (CLS), yielded a configuration with slightly
worse performance than the default in 1 (REGIONS100), and moderately improved
performance in the remaining 3 (up to a factor of 1.37). The 3 non-default configurations
it returned only differed in the following few parameters from the default: ‘easy’ (perform
only 1 cutting plane pass, apply the periodic heuristic every 50 nodes, and branch based
on pseudo-reduced costs); ‘long test1’ (use aggressive probing and aggressive settings
for 8 types of cuts); and ‘branch dir’ (at each node, select the up branch first).

PARAMILS outperformed the tuning tool for 6 of the 7 configuration scenarios,
sometimes substantially so. Specifically, PARAMILS found configurations with up to 5.2
times lower mean runtime when its total time budget was set to exactly the amount of time
t the CPLEX tuning tool ran before terminating (i.e., t/10 for each of the 10 PARAMILS
runs; t varied widely across the scenarios, see Table 4). For the one remaining scenario,
MASS, the configuration it found was slower by a factor of 1/0.68 = 1.47 (which we
attribute to an over-tuning effect to be discussed shortly). With a fixed time budget of
two days for each PARAMILS run, PARAMILS’s performance improved for all seven
domains, reaching a speedup factor of up to 46.

Figure 3 visualizes the anytime test performance of PARAMILS compared to the
default and the configuration found by the CPLEX tuning tool. Typically, PARAMILS
found good configurations quickly and improved further when given more time. The
main exception was configuration scenario MASS (see Figure 3(e)), the one scenario



Scenario
CPLEX tuning tool stats CPLEX mean runtime [CPU s] on test set, with respective configuration

Tuning time t Name of result Default CPLEX tuning tool 10× PARAMILS(t/10) 10× PARAMILS(2 days)
CLS 104 673 ’defaults’ 48.4 48.4 15.1(3.21×) 10.1(4.79×)

REGIONS100 3 117 ’easy’ 0.74 0.86 0.48(1.79×) 0.34(2.53×)
REGIONS200 172 800* ’defaults’ 59.8 59.8* 14.2(4.21×) 11.9(5.03×)

MIK 36 307 ’long test1’ 4.87 3.56 1.46(2.44×) 0.98(3.63×)
MJA 2 266 ’easy’ 3.40 3.18 2.71(1.17×) 1.64(1.94×)

MASS 28 844 ’branch dir’ 524.9 425.8 627.4(0.68×) 478.9(0.89×)
CORLAT 172 800* ’defaults’ 850.9 850.9* 161.1(5.28×) 18.2(46.8×)

Table 4. Comparison of our approach against the CPLEX tuning tool. For each benchmark set,
we report the time t required by the CPLEX tuning tool (it ran out of time after 2 CPU days for
REGIONS200 and CORLAT, marked by ’*’) and the CPLEX name of the configuration it judged
best. We report the mean runtime of the default configuration; the configuration the tuning tool
selected; and the configurations selected using 2 sets of 10 PARAMILS runs, each allowed time
t/10 and 2 days, respectively. For the PARAMILS runs, in parentheses we report the speedup over
the CPLEX tuning tool. Boldface indicates improved performance.

where PARAMILS performed worse than the CPLEX tuning tool in Table 4. Here,
test performance did not improve monotonically: given more time, PARAMILS found
configurations with better training performance but worse test performance. This example
of the over-tuning phenomenon mentioned in Section 2.3 clearly illustrates the problems
arising from benchmark sets that are too small (and too heterogeneous): good results
for 50 (rather variable) training instances are simply not enough to confidently draw
conclusions about the performance on additional unseen test instances. On all other
6 configuration scenarios, training and test sets were similar enough to yield near-
monotonic improvements over time, and large speedups over the CPLEX tuning tool.

8 Conclusions and Future Work
In this study we have demonstrated that by using automated algorithm configuration,
substantial performance improvements can be obtained for three widely used MIP
solvers on a broad range of benchmark sets, in terms of minimizing runtime for proving
optimality (with speedup factors of up to 52), and of minimizing the optimality gap
given a fixed runtime (with gap reduction factors of up to 45). This is particularly
noteworthy considering the effort that has gone into optimizing the default configurations
for commercial MIP solvers, such as CPLEX and GUROBI. Our approach also clearly
outperformed the CPLEX tuning tool. The success of our fully automated approach
depends on the availability of training benchmark sets that are large enough to allow
generalization to unseen test instances. Not surprisingly, when using relatively small
benchmark sets, performance improvements on training instances sometimes do not
fully translate to test instances; we note that this effect can be avoided by using bigger
benchmark sets (in our experience, about 1000 instances are typically sufficient).

In future work, we plan to develop more robust and more efficient configuration
procedures. In particular, here (and in past work) we ran our configurator PARAMILS 10
times per configuration scenario and selected the configuration with best performance
on the training set in order to handle poorly-performing runs. We hope to develop more
robust approaches that do not suffer from large performance differences between in-
dependent runs. Another issue is the choice of captimes. Here, we chose rather large
captimes during training to avoid the risk of poor scaling to harder instances; the down-
side is a potential increase in the time budget required for finding good configurations.



10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e
rf

o
rm

a
n
c
e
 [
C

P
U

 s
]

 

 

Default
CPLEX tuning tool
ParamILS

(a) CORLAT

10
3

10
4

10
5

10
6

0.5

1

1.5

Configuration budget [CPU s]

P
e
rf

o
rm

a
n
c
e
 [
C

P
U

 s
]

 

 

Default
CPLEX tuning tool
ParamILS

(b) REGIONS100

10
4

10
5

10
6

2

4

6

8

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

 

 

Default
CPLEX tuning tool
ParamILS

(c) MIK

10
3

10
4

10
5

10
6

1

2

3

4

5

6

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

 

 

Default
CPLEX tuning tool
ParamILS

(d) MJA

10
4

10
5

10
6

10
2

10
3

Configuration budget [CPU s]

P
e
rf

o
rm

a
n
c
e
 [
C

P
U

 s
]

 

 

Default
CPLEX tuning tool
ParamILS

(e) MASS

10
4

10
5

10
6

20

40

60

80

100

Configuration budget [CPU s]

P
e
rf

o
rm

a
n
c
e
 [
C

P
U

 s
]

 

 

Default
CPLEX tuning tool
ParamILS

(f) CLS
Fig. 3. Comparison of the default configuration and the configurations returned by the CPLEX
tuning tool and by our approach. The x-axis gives the total time budget used for configuration and
the y-axis the performance (CPLEX mean CPU time on the test set) achieved within that budget.
For PARAMILS, we perform 10 runs in parallel and count the total time budget as the sum of their
individual time requirements. The plot for REGIONS200 is qualitatively similar to the one for
REGIONS100, except that the gains of PARAMILS are larger.

We therefore plan to investigate strategies for automating the choice of captimes during
configuration. We also plan to study why certain parameter configurations work better
than others. The algorithm configuration approach we have used here, PARAMILS, can
identify very good (possibly optimal) configurations, but it does not yield information
on the importance of each parameter, interactions between parameters, or the interac-
tion between parameters and characteristics of the problem instances at hand. Partly to
address those issues, we are actively developing an alternative algorithm configuration
approach that is based on response surface models [17, 18, 15].

Acknowledgements
We thank the authors of the MIP benchmark instances we used for making them available, in
particular Louis-Martin Rousseau and Bistra Dilkina, who provided the previously unpublished
instance sets MASS and CORLAT, respectively. We also thank IBM and Gurobi Optimization for
making a full version of their MIP solvers freely available for academic purposes; and Westgrid for
support in using their compute cluster. FH gratefully acknowledges support from a postdoctoral
research fellowship by the Canadian Bureau for International Education. HH and KLB gratefully
acknowledge support from NSERC through their respective discovery grants, and from the
MITACS NCE for seed project funding.

References
[1] Adenso-Diaz, B. and Laguna, M. (2006). Fine-tuning of algorithms using fractional experi-

mental design and local search. Operations Research, 54(1):99–114.



[2] Aktürk, S. M., Atamtürk, A., and Gürel, S. (2007). A strong conic quadratic reformulation for
machine-job assignment with controllable processing times. Research Report BCOL.07.01,
University of California-Berkeley.

[3] Ansotegui, C., Sellmann, M., and Tierney, K. (2009). A gender-based genetic algorithm for
the automatic configuration of solvers. In Proc. of CP-09, pages 142–157.

[4] Atamtürk, A. (2003). On the facets of the mixed–integer knapsack polyhedron. Mathematical
Programming, 98:145–175.

[5] Atamtürk, A. and Muñoz, J. C. (2004). A study of the lot-sizing polytope. Mathematical
Programming, 99:443–465.

[6] Audet, C. and Orban, D. (2006). Finding optimal algorithmic parameters using the mesh
adaptive direct search algorithm. SIAM Journal on Optimization, 17(3):642–664.

[7] Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary Computation: The New
Experimentalism. Natural Computing Series. Springer Verlag, Berlin.

[8] Birattari, M. (2004). The Problem of Tuning Metaheuristics as Seen from a Machine Learning
Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium.

[9] Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for
configuring metaheuristics. In Proc. of GECCO-02, pages 11–18.

[10] Cote, M., Gendron, B., and Rousseau, L. (2010). Grammar-based integer programing models
for multi-activity shift scheduling. Technical Report CIRRELT-2010-01, Centre interuniversi-
taire de recherche sur les réseaux d’entreprise, la logistique et le transport.

[11] Gomes, C. P., van Hoeve, W.-J., and Sabharwal, A. (2008). Connections in networks: A
hybrid approach. In Proc. of CPAIOR-08, pages 303–307.

[12] Gratch, J. and Chien, S. A. (1996). Adaptive problem-solving for large-scale scheduling
problems: A case study. JAIR, 4:365–396.

[13] Huang, D., Allen, T. T., Notz, W. I., and Zeng, N. (2006). Global optimization of stochastic
black-box systems via sequential kriging meta-models. Journal of Global Optimization,
34(3):441–466.

[14] Hutter, F. (2007). On the potential of automatic algorithm configuration. In SLS-DS2007:
Doctoral Symposium on Engineering Stochastic Local Search Algorithms, pages 36–40. Tech-
nical report TR/IRIDIA/2007-014, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

[15] Hutter, F. (2009). Automated Configuration of Algorithms for Solving Hard Computational
Problems. PhD thesis, University Of British Columbia, Department of Computer Science,
Vancouver, Canada.

[16] Hutter, F., Babić, D., Hoos, H. H., and Hu, A. J. (2007a). Boosting Verification by Automatic
Tuning of Decision Procedures. In Proc. of FMCAD’07, pages 27–34, Washington, DC, USA.
IEEE Computer Society.

[17] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Murphy, K. P. (2009a). An experimental
investigation of model-based parameter optimisation: SPO and beyond. In Proc. of GECCO-09,
pages 271–278.

[18] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Murphy, K. P. (2010). Time-bounded
sequential parameter optimization. In Proc. of LION-4, LNCS. Springer Verlag. To appear.

[19] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009b). ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–306.

[20] Hutter, F., Hoos, H. H., and Stützle, T. (2007b). Automatic algorithm configuration based on
local search. In Proc. of AAAI-07, pages 1152–1157.

[21] KhudaBukhsh, A., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2009). SATenstein: Auto-
matically building local search SAT solvers from components. In Proc. of IJCAI-09, pages
517–524.

[22] Leyton-Brown, K., Pearson, M., and Shoham, Y. (2000). Towards a universal test suite for
combinatorial auction algorithms. In Proc. of EC’00, pages 66–76, New York, NY, USA. ACM.

[23] Mittelmann, H. (2010). Mixed integer linear programming benchmark (serial codes). http:
//plato.asu.edu/ftp/milpf.html. Version last visited on January 26, 2010.


