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Parameters in Algorithms

Most algorithms have parameters

I Decisions that are left open during algorithm design

– numerical parameters (e.g., real-valued thresholds)
– categorical parameters (e.g., which heuristic to use)

I Set to maximize empirical performance
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Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)

I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that
 developed the first automated tools for this type of problem
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Automated Algorithm Configuration

Automate the setting of algorithm parameters
I Eliminate most tedious part of algorithm design and end use

I Save development time

I Improve performance

I First to consider the general problem,
in particular many categorical parameters

– E.g. 50/63 CPLEX parameters are categorical
 Algorithm configuration
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Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup
– SAT solver: 500-fold speedup for software verification
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Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration

4. Conclusions
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Algorithm Configuration as Function
Optimization

Deterministic algorithm with continuous parameters

– “Blackbox function” f : Rn → R

– Can query function at arbitrary points θ ∈ Rn

Find min
θ∈Rn

f (θ)

Randomized algorithm with continuous parameters

– For each θ: distribution Dθ

– Optimize statistical parameter τ (e.g., expected value)

– Can sample from distribution Dθ at arbitrary points θ ∈ Θ
Find min

θ∈Rn
τ(Dθ)
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Algorithm Configuration: General Case

Difference to “standard” blackbox optimization

I Categorical parameters

I Distribution of costs

– across multiple repeated runs for randomized algorithms
– across problem instances

I Can terminate unsuccessful runs early
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Simple manual approach for configuration

Start with some parameter configuration

repeat
Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search
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The ParamILS Framework

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ
Perform subsidiary local search on θ

While tuning time left:
|| θ′ := θ
|| Perform perturbation on θ
|| Perform subsidiary local search on θ
|||| Based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b With probability prestart randomly pick new θ

 Performs biased random walk over local optima
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Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Blocking: use same N (instance, seed) pairs for each θ

I FocusedILS: adaptive choice of N(θ)

– small N(θ) for poor configurations θ
– large N(θ) only for good θ
– typically outperforms BasicILS
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Empirical Comparison to Previous
Configuration Procedure

CALIBRA system [Adenso-Diaz & Laguna, ’06]

I Based on fractional factorial designs

I Limited to continuous parameters

I Limited to 5 parameters

Empirical comparison

I FocusedILS typically did better, never worse

I More importantly, much more general
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Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long

I Can terminate evaluations early
I Incumbent solution provides bound
I Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups (factor 10)
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Configuration of ILOG CPLEX

I Recall: 63 parameters, 1.78× 1038 possible configurations

I Ran FocusedILS for 2 days on 10 machines

I Compared against default

“A great deal of algorithmic development effort has been
devoted to establishing default ILOG CPLEX parameter
settings that achieve good performance on a wide variety of
MIP models.” [CPLEX 10.0 user manual, page 247]
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Configuration of SAT Solver for Verification

SAT (propositional satisfiability problem)

– Prototypical NP-hard problem

– Interesting theoretically and in practical applications

Formal verification

– Bounded model checking

– Software verification

– Recent progress based on SAT solvers

Spear, tree search solver for industrial SAT instances

– 26 parameters, 8.34× 1017 configurations

19
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Configuration of SAT Solver for Verification

I Ran FocusedILS for 2 days on 10 machines

I Compared to manually-engineered default

– 1 week of performance tuning
– competitive with the state of the art
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Other Fielded Applications of ParamILS

I SAPS, local search for SAT

 8-fold and 130-fold speedup

I SAT4J, tree search for SAT

 11-fold speedup

I GLS+ for Most Probable Explanation (MPE) problem

 > 360-fold speedup

I Applications by others

– Protein folding [Thatchuk, Shmygelska & Hoos ’07]

– Time-tabling [Fawcett, Hoos & Chiarandini ’09]

– Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown ’09]

 demonstrates versatility & maturity

21
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Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration
I So far: discussed local search approach
I Now: alternative choice, based on predictive models

– Model-based optimization was less well developed
 emphasis on methodological improvements

I In then end: state-of-the-art configuration tool
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Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up
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Stochastic Blackbox Optimization (BBO):
State of the Art

Extensions of EGO algorithm for stochastic case

– Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, ’05-’09]

– Sequential Kriging Optimization (SKO)
[Huang, Allen, Notz & Zeng, ’06]

Application domain for stochastic BBO

I Randomized algorithms with continuous parameters

I Optimization for single instances

Empirical Evaluation

I SPO more robust
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Improvements for stochastic BBO

I: Studied SPO components

I Improved component: “intensification mechanism”

– Increase N(θ) similarly as in FocusedILS
– Improved robustness

II: Better Models
I Compared various probabilistic models

– Model SPO uses
– Approximate Gaussian process (GP)
– Random forest (RF)

I New models much better

– Resulting configuration procedure: ActiveConfigurator
– Improved state of the art for model-based stochastic BBO
– Randomized algorithm with continuous parameters
– Optimization for single instances
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Extension I: Categorical Parameters

Models that can handle categorical inputs

I Random forests: out of the box
I Extended (approximate) Gaussian processes

– new kernel based on weighted Hamming distance

Application domain

I Algorithms with categorical parameters

I Single instances

Empirical evaluation

I ActiveConfigurator outperformed FocusedILS
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Extension II: Multiple Instances

Models incorporating multiple instances
I Can still learn probabilistic models of algorithm performance
I Model inputs:

I algorithm parameters
I instance features

General algorithm configuration
I Algorithms with categorical parameters

I Multiple instances

Empirical evaluation
I ActiveConfigurator never worse than FocusedILS

I Overall: model-based approaches very promising
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Conclusions

Algorithm configuration

I Is a high-dimensional optimization problem

– Can be solved by automated approaches
– Sometimes much better than by human experts

I Can cut development time & improve results

Scaling to very complex problems allows us to

I Build very flexible algorithm frameworks
I Apply automated tool to instantiate framework

 Generate custom algorithms for different problem types

Blackbox approaches

I Very general

I Can be used to optimize your parameters
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Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios
[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach [AAAI’07]

– Improved & Extended Sequential Model-Based Optimization
[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]
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Important Directions for the Next Few Years

I Improve configuration procedures from practical point of view

– Mixed categorical/numerical optimization
– Make easier to use off the shelf

I More sophisticated model-based methods

– Use model to select most informative instance
– Use model to select best cutoff time
– Per-instance setting of parameters

I Explore other fields of applications
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