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Most algorithms have parameters

» Decisions that are left open during algorithm design

— numerical parameters (e.g., real-valued thresholds)
— categorical parameters (e.g., which heuristic to use)

» Set to maximize empirical performance
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Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

» State of the art for mixed integer programming (MIP)
» Large user base
— Over 1300 corporations and over 1000 universities

> 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

» “Experiment with them”

— Perform manual optimization in 63-dimensional space

— Complex, unintuitive interactions between parameters

— Humans are not good at that

~~ developed the first automated tools for this type of problem
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Automated Algorithm Configuration

Automate the setting of algorithm parameters
» Eliminate most tedious part of algorithm design and end use
» Save development time

» Improve performance

» First to consider the general problem,
in particular many categorical parameters
— E.g. 50/63 CPLEX parameters are categorical
~~ Algorithm configuration
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Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

» Empirical analysis of configuration scenarios

» Two fundamentally different solution approaches

— 15t and 2"d approach

to configure algorithms with many categorical parameters
» Demonstrated practical relevance of algorithm configuration

— CPLEX: up to 23-fold speedup
— SAT solver: 500-fold speedup for software verification



Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration

4. Conclusions



Outline

1. Problem Definition & Intuition



Algorithm Configuration as Function
Optimization

Deterministic algorithm with continuous parameters
— “Blackbox function” f: R" — R
— Can query function at arbitrary points 8 € R"
Find min f(0)
OcR"



Algorithm Configuration as Function
Optimization

Deterministic algorithm with continuous parameters

— “Blackbox function” f: R" — R
— Can query function at arbitrary points 8 € R"

Find min f(0)
OcR"

Randomized algorithm with continuous parameters

— For each #: distribution Dy

— Optimize statistical parameter 7 (e.g., expected value)



Algorithm Configuration as Function
Optimization

Deterministic algorithm with continuous parameters
— “Blackbox function” f: R" — R
— Can query function at arbitrary points 8 € R"
Find min f(0)
OcR"

Randomized algorithm with continuous parameters

— For each #: distribution Dy
— Optimize statistical parameter 7 (e.g., expected value)

— Can sample from distribution Dg at arbitrary points 8 € ©
Find min 7(Dg)
OcR"
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Algorithm Configuration: General Case

Difference to “standard” blackbox optimization

» Categorical parameters

» Distribution of costs
— across multiple repeated runs for randomized algorithms
— across problem instances

» Can terminate unsuccessful runs early
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Simple manual approach for configuration

Start with some parameter configuration

repeat
Modify a single parameter

if results on benchmark set improve then
| keep new configuration

until no more improvement possible (or “good enough”)

~+ Manually-executed local search
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The ParamlILS Framework

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration 6
Perform subsidiary local search on 6
While tuning time left:

0 =0

Perform on 6

Perform subsidiary local search on 6

Based on acceptance criterion,
keep 6 or revert to 0 := ¢’

| With probability prestarr randomly pick new 6

~ Performs biased random walk over local optima

13
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Instantiations of ParamILS Framework

How to evaluate each configuration?

> BasiclLS(N): perform fixed number of N runs to evaluate a
configuration 6

— Blocking: use same N (instance, seed) pairs for each 0

» FocusedILS: adaptive choice of N(0)
— small N(8) for poor configurations 6
— large N(8) only for good 6
— typically outperforms BasiclLS

14



Empirical Comparison to Previous
Configuration Procedure

CALIBRA system [Adenso-Diaz & Laguna, '06]
» Based on fractional factorial designs
» Limited to continuous parameters

» Limited to 5 parameters

15



Empirical Comparison to Previous
Configuration Procedure

CALIBRA system [Adenso-Diaz & Laguna, '06]

» Based on fractional factorial designs
» Limited to continuous parameters

» Limited to 5 parameters

Empirical comparison

» FocusedILS typically did better, never worse

» More importantly, much more general

15
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Adaptive Choice of Cutoff Time

» Evaluation of poor configurations takes especially long
» Can terminate evaluations early

» Incumbent solution provides bound
» Can stop evaluation once bound is reached

» Results

— Provably never hurts
— Sometimes substantial speedups (factor 10)

16
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2. Model-Free Search for Algorithm Configuration

“Real-World” Applications of ParamILS
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Configuration of ILOG CPLEX

> Recall: 63 parameters, 1.78 x 1038 possible configurations
» Ran FocusedILS for 2 days on 10 machines

» Compared against default

“A great deal of algorithmic development effort has been
devoted to establishing default ILOG CPLEX parameter
settings that achieve good performance on a wide variety of
MIP models.” [CPLEX 10.0 user manual, page 247]

Auto-tuned
[
o
Auto-tuned
=
o

_ .
107" 10 1 ..
1079 : 1079 :
102 10" 10° 10 10° 10° 10° 107 10" 10° 10° 10° 10° 10
Default Default

Combinatorial auctions: 7-fold speedup Mixed integer knapsack: 23-fold speedup
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Configuration of SAT Solver for Verification

SAT (propositional satisfiability problem)

— Prototypical N'P-hard problem

— Interesting theoretically and in practical applications

Formal verification

— Bounded model checking
— Software verification

— Recent progress based on SAT solvers

Spear, tree search solver for industrial SAT instances

— 26 parameters, 8.34 x 107 configurations
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SPEAR, optimized for IBM-BMC
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Configuration of SAT Solver for Verification

» Ran FocusedILS for 2 days on 10 machines

» Compared to manually-engineered default

— 1 week of performance tuning
— competitive with the state of the art
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SPEAR, original default (s) SPEAR, original default (s)
IBM Bounded Model Checking: Software verification: 500-fold speedup

4.5-fold speedup ~ won 2007 SMT competition
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Other Fielded Applications of ParamiILS

» SAPS, local search for SAT
~~ 8-fold and 130-fold speedup

» SAT4J, tree search for SAT
~~ 11-fold speedup

» GLS™ for Most Probable Explanation (MPE) problem
~~ > 360-fold speedup

» Applications by others
— Protein folding [Thatchuk, Shmygelska & Hoos '07]
— Time-tabling [Fawcett, Hoos & Chiarandini '09]
— Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown '09]
~> demonstrates versatility & maturity
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Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration
» So far: discussed local search approach

» Now: alternative choice, based on predictive models

— Model-based optimization was less well developed
~~ emphasis on methodological improvements

» In then end: state-of-the-art configuration tool
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Model-Based Deterministic Blackbox
Optimization (BBO)

EGO algorithm [Jones, Schonlau & Welch '98]

1. Get response values at initial design points
2. Fit a model to the data

3. Use model to pick most promising next design point
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Model-Based Deterministic Blackbox
Optimization (BBO)

EGO algorithm [Jones, Schonlau & Welch '98]

1. Get response values at initial design points

Fit a model to the data

Use model to pick most promising next design point
Repeat 2. and 3. until time is up
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Model-Based Deterministic Blackbox
Optimization (BBO)

EGO algorithm [Jones, Schonlau & Welch '98]

1.

e

response y

o

DACE mean prediction
DACE mean +/- 2'stddev]

True function
Function evaluations
El (scaled)

First step

04 06
parameter x

08

Get response values at initial design points
Fit a model to the data
Use model to pick most promising next design point
Repeat 2. and 3. until time is up
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Stochastic Blackbox Optimization (BBO):
State of the Art

Extensions of EGO algorithm for stochastic case

— Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]

— Sequential Kriging Optimization (SKO)
[Huang, Allen, Notz & Zeng, '06]
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Stochastic Blackbox Optimization (BBO):
State of the Art

Extensions of EGO algorithm for stochastic case

— Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]

— Sequential Kriging Optimization (SKO)
[Huang, Allen, Notz & Zeng, '06]

Application domain for stochastic BBO

» Randomized algorithms with continuous parameters

» Optimization for single instances

Empirical Evaluation

» SPO more robust
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— Increase N(8) similarly as in FocusedILS
— Improved robustness

[I: Better Models

» Compared various probabilistic models
— Model SPO uses
— Approximate Gaussian process (GP)
— Random forest (RF)

» New models much better
— Resulting configuration procedure: ActiveConfigurator
— Improved state of the art for model-based stochastic BBO
— Randomized algorithm with continuous parameters
— Optimization for single instances
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Beyond Stochastic Blackbox Optimization
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Extension |: Categorical Parameters

Models that can handle categorical inputs

» Random forests: out of the box

» Extended (approximate) Gaussian processes
— new kernel based on weighted Hamming distance

Application domain

» Algorithms with categorical parameters

» Single instances

Empirical evaluation

» ActiveConfigurator outperformed FocusedILS
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Extension |l: Multiple Instances

Models incorporating multiple instances
» Can still learn probabilistic models of algorithm performance

» Model inputs:
> algorithm parameters

> instance features
General algorithm configuration
» Algorithms with categorical parameters

» Multiple instances

Empirical evaluation
» ActiveConfigurator never worse than FocusedILS

» Overall: model-based approaches very promising

31



Outline

4. Conclusions

32



Conclusions

Algorithm configuration

» Is a high-dimensional optimization problem

— Can be solved by automated approaches
— Sometimes much better than by human experts

33



Conclusions

Algorithm configuration

» Is a high-dimensional optimization problem

— Can be solved by automated approaches
— Sometimes much better than by human experts

» Can cut development time & improve results

33



Conclusions

Algorithm configuration

» Is a high-dimensional optimization problem

— Can be solved by automated approaches
— Sometimes much better than by human experts

» Can cut development time & improve results

Scaling to very complex problems allows us to
» Build very flexible algorithm frameworks
» Apply automated tool to instantiate framework

~> Generate custom algorithms for different problem types

33



Conclusions

Algorithm configuration

» Is a high-dimensional optimization problem

— Can be solved by automated approaches
— Sometimes much better than by human experts

» Can cut development time & improve results

Scaling to very complex problems allows us to
» Build very flexible algorithm frameworks
» Apply automated tool to instantiate framework
~> Generate custom algorithms for different problem types
Blackbox approaches
» Very general

» Can be used to optimize your parameters
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Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

» Empirical analysis of configuration scenarios

[Ready for submission]
» Two fundamentally different solution approaches

— Model-free Iterated Local Search approach [AAAI'07]
— Improved & Extended Sequential Model-Based Optimization
[GECCO'09; EMAA'09]
» Demonstrated practical relevance of algorithm configuration

— CPLEX: up to 23-fold speedup [JAIR'09]
— SPEAR: 500-fold speedup for software verification [FMCAD'07]

34
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Important Directions for the Next Few Years

» Improve configuration procedures from practical point of view

— Mixed categorical /numerical optimization
— Make easier to use off the shelf

» More sophisticated model-based methods

— Use model to select most informative instance
— Use model to select best cutoff time
— Per-instance setting of parameters

» Explore other fields of applications
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