
Automating the Configuration of Algorithms
for Solving Hard Computational Problems

Ph.D. Thesis Defence

Frank Hutter

Supervisory committee:

Prof. Holger Hoos (supervisor)
Prof. Kevin Leyton-Brown (co-supervisor)
Prof. Kevin Murphy (co-supervisor)
Prof. Alan Mackworth

University Examiners:

Prof. Michael Friedlander (CS)
Prof. Lutz Lampe (ECE)

External Examiner: Prof. ?

Chair: Prof. John Nelson (Forestry)

Parameters in Algorithms

Most algorithms have parameters

I Decisions that are left open during algorithm design

– numerical parameters (e.g., real-valued thresholds)
– categorical parameters (e.g., which heuristic to use)

I Set to maximize empirical performance

2

Parameters in Algorithms

Most algorithms have parameters

I Decisions that are left open during algorithm design

– numerical parameters (e.g., real-valued thresholds)
– categorical parameters (e.g., which heuristic to use)

I Set to maximize empirical performance

2

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)

I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that
 developed the first automated tools for this type of problem

3

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)
I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that
 developed the first automated tools for this type of problem

3

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)
I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that
 developed the first automated tools for this type of problem

3

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)
I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that
 developed the first automated tools for this type of problem

3

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)
I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that
 developed the first automated tools for this type of problem

3

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)
I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters

– Humans are not good at that
 developed the first automated tools for this type of problem

3

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)
I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that

 developed the first automated tools for this type of problem

3

Real-world example for parameterized algorithms:

commercial optimization tool CPLEX

I State of the art for mixed integer programming (MIP)
I Large user base

– Over 1 300 corporations and over 1 000 universities

I 63 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [CPLEX 10.0 user manual, page 130]

I “Experiment with them”

– Perform manual optimization in 63-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that
 developed the first automated tools for this type of problem

3

Automated Algorithm Configuration

Automate the setting of algorithm parameters
I Eliminate most tedious part of algorithm design and end use

I Save development time

I Improve performance

I First to consider the general problem,
in particular many categorical parameters

– E.g. 50/63 CPLEX parameters are categorical
 Algorithm configuration

4

Automated Algorithm Configuration

Automate the setting of algorithm parameters
I Eliminate most tedious part of algorithm design and end use

I Save development time

I Improve performance

I First to consider the general problem,
in particular many categorical parameters

– E.g. 50/63 CPLEX parameters are categorical
 Algorithm configuration

4

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup
– SAT solver: 500-fold speedup for software verification

5

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup
– SAT solver: 500-fold speedup for software verification

5

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup
– SAT solver: 500-fold speedup for software verification

5

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup
– SAT solver: 500-fold speedup for software verification

5

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup
– SAT solver: 500-fold speedup for software verification

5

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup

– SAT solver: 500-fold speedup for software verification

5

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

I Two fundamentally different solution approaches

– 1st and 2nd approach
to configure algorithms with many categorical parameters

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup
– SAT solver: 500-fold speedup for software verification

5

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration

4. Conclusions

6

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration

4. Conclusions

7

Algorithm Configuration as Function
Optimization

Deterministic algorithm with continuous parameters

– “Blackbox function” f : Rn → R

– Can query function at arbitrary points θ ∈ Rn

Find min
θ∈Rn

f (θ)

Randomized algorithm with continuous parameters

– For each θ: distribution Dθ

– Optimize statistical parameter τ (e.g., expected value)

– Can sample from distribution Dθ at arbitrary points θ ∈ Θ
Find min

θ∈Rn
τ(Dθ)

8

Algorithm Configuration as Function
Optimization

Deterministic algorithm with continuous parameters

– “Blackbox function” f : Rn → R

– Can query function at arbitrary points θ ∈ Rn

Find min
θ∈Rn

f (θ)

Randomized algorithm with continuous parameters

– For each θ: distribution Dθ

– Optimize statistical parameter τ (e.g., expected value)

– Can sample from distribution Dθ at arbitrary points θ ∈ Θ
Find min

θ∈Rn
τ(Dθ)

8

Algorithm Configuration as Function
Optimization

Deterministic algorithm with continuous parameters

– “Blackbox function” f : Rn → R

– Can query function at arbitrary points θ ∈ Rn

Find min
θ∈Rn

f (θ)

Randomized algorithm with continuous parameters

– For each θ: distribution Dθ

– Optimize statistical parameter τ (e.g., expected value)

– Can sample from distribution Dθ at arbitrary points θ ∈ Θ
Find min

θ∈Rn
τ(Dθ)

8

Algorithm Configuration: General Case

Difference to “standard” blackbox optimization

I Categorical parameters

I Distribution of costs

– across multiple repeated runs for randomized algorithms
– across problem instances

I Can terminate unsuccessful runs early

9

Algorithm Configuration: General Case

Difference to “standard” blackbox optimization

I Categorical parameters
I Distribution of costs

– across multiple repeated runs for randomized algorithms
– across problem instances

I Can terminate unsuccessful runs early

9

Algorithm Configuration: General Case

Difference to “standard” blackbox optimization

I Categorical parameters
I Distribution of costs

– across multiple repeated runs for randomized algorithms
– across problem instances

I Can terminate unsuccessful runs early

9

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration
ParamILS: Iterated Local Search in Configuration Space
“Real-World” Applications of ParamILS

3. Model-Based Search for Algorithm Configuration

4. Conclusions

10

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration
ParamILS: Iterated Local Search in Configuration Space
“Real-World” Applications of ParamILS

3. Model-Based Search for Algorithm Configuration

4. Conclusions

11

Simple manual approach for configuration

Start with some parameter configuration

repeat
Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

12

Simple manual approach for configuration

Start with some parameter configuration

repeat

Modify a single parameter

if results on benchmark set improve then
keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

12

Simple manual approach for configuration

Start with some parameter configuration

repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

12

Simple manual approach for configuration

Start with some parameter configuration
repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

12

Simple manual approach for configuration

Start with some parameter configuration
repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

12

The ParamILS Framework

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ
Perform subsidiary local search on θ

While tuning time left:
|| θ′ := θ
|| Perform perturbation on θ
|| Perform subsidiary local search on θ
|||| Based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b With probability prestart randomly pick new θ

 Performs biased random walk over local optima

13

The ParamILS Framework

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ
Perform subsidiary local search on θ
While tuning time left:
|| θ′ := θ
|| Perform perturbation on θ
|| Perform subsidiary local search on θ

|||| Based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b With probability prestart randomly pick new θ

 Performs biased random walk over local optima

13

The ParamILS Framework

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ
Perform subsidiary local search on θ
While tuning time left:
|| θ′ := θ
|| Perform perturbation on θ
|| Perform subsidiary local search on θ
|||| Based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b With probability prestart randomly pick new θ

 Performs biased random walk over local optima

13

The ParamILS Framework

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ
Perform subsidiary local search on θ
While tuning time left:
|| θ′ := θ
|| Perform perturbation on θ
|| Perform subsidiary local search on θ
|||| Based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b With probability prestart randomly pick new θ

 Performs biased random walk over local optima

13

Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Blocking: use same N (instance, seed) pairs for each θ

I FocusedILS: adaptive choice of N(θ)

– small N(θ) for poor configurations θ
– large N(θ) only for good θ
– typically outperforms BasicILS

14

Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Blocking: use same N (instance, seed) pairs for each θ

I FocusedILS: adaptive choice of N(θ)

– small N(θ) for poor configurations θ
– large N(θ) only for good θ

– typically outperforms BasicILS

14

Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Blocking: use same N (instance, seed) pairs for each θ

I FocusedILS: adaptive choice of N(θ)

– small N(θ) for poor configurations θ
– large N(θ) only for good θ
– typically outperforms BasicILS

14

Empirical Comparison to Previous
Configuration Procedure

CALIBRA system [Adenso-Diaz & Laguna, ’06]

I Based on fractional factorial designs

I Limited to continuous parameters

I Limited to 5 parameters

Empirical comparison

I FocusedILS typically did better, never worse

I More importantly, much more general

15

Empirical Comparison to Previous
Configuration Procedure

CALIBRA system [Adenso-Diaz & Laguna, ’06]

I Based on fractional factorial designs

I Limited to continuous parameters

I Limited to 5 parameters

Empirical comparison

I FocusedILS typically did better, never worse

I More importantly, much more general

15

Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long

I Can terminate evaluations early
I Incumbent solution provides bound
I Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups (factor 10)

16

Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long
I Can terminate evaluations early

I Incumbent solution provides bound
I Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups (factor 10)

16

Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long
I Can terminate evaluations early

I Incumbent solution provides bound
I Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups (factor 10)

16

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration
ParamILS: Iterated Local Search in Configuration Space
“Real-World” Applications of ParamILS

3. Model-Based Search for Algorithm Configuration

4. Conclusions

17

Configuration of ILOG CPLEX

I Recall: 63 parameters, 1.78× 1038 possible configurations

I Ran FocusedILS for 2 days on 10 machines

I Compared against default

“A great deal of algorithmic development effort has been
devoted to establishing default ILOG CPLEX parameter
settings that achieve good performance on a wide variety of
MIP models.” [CPLEX 10.0 user manual, page 247]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Combinatorial auctions: 7-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Mixed integer knapsack: 23-fold speedup

18

Configuration of ILOG CPLEX

I Recall: 63 parameters, 1.78× 1038 possible configurations

I Ran FocusedILS for 2 days on 10 machines

I Compared against default

“A great deal of algorithmic development effort has been
devoted to establishing default ILOG CPLEX parameter
settings that achieve good performance on a wide variety of
MIP models.” [CPLEX 10.0 user manual, page 247]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Combinatorial auctions: 7-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Mixed integer knapsack: 23-fold speedup

18

Configuration of ILOG CPLEX

I Recall: 63 parameters, 1.78× 1038 possible configurations

I Ran FocusedILS for 2 days on 10 machines

I Compared against default

“A great deal of algorithmic development effort has been
devoted to establishing default ILOG CPLEX parameter
settings that achieve good performance on a wide variety of
MIP models.” [CPLEX 10.0 user manual, page 247]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Combinatorial auctions: 7-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Mixed integer knapsack: 23-fold speedup

18

Configuration of ILOG CPLEX

I Recall: 63 parameters, 1.78× 1038 possible configurations

I Ran FocusedILS for 2 days on 10 machines

I Compared against default

“A great deal of algorithmic development effort has been
devoted to establishing default ILOG CPLEX parameter
settings that achieve good performance on a wide variety of
MIP models.” [CPLEX 10.0 user manual, page 247]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Combinatorial auctions: 7-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Default

A
ut

o−
tu

ne
d

Mixed integer knapsack: 23-fold speedup
18

Configuration of SAT Solver for Verification

SAT (propositional satisfiability problem)

– Prototypical NP-hard problem

– Interesting theoretically and in practical applications

Formal verification

– Bounded model checking

– Software verification

– Recent progress based on SAT solvers

Spear, tree search solver for industrial SAT instances

– 26 parameters, 8.34× 1017 configurations

19

Configuration of SAT Solver for Verification

SAT (propositional satisfiability problem)

– Prototypical NP-hard problem

– Interesting theoretically and in practical applications

Formal verification

– Bounded model checking

– Software verification

– Recent progress based on SAT solvers

Spear, tree search solver for industrial SAT instances

– 26 parameters, 8.34× 1017 configurations

19

Configuration of SAT Solver for Verification

SAT (propositional satisfiability problem)

– Prototypical NP-hard problem

– Interesting theoretically and in practical applications

Formal verification

– Bounded model checking

– Software verification

– Recent progress based on SAT solvers

Spear, tree search solver for industrial SAT instances

– 26 parameters, 8.34× 1017 configurations

19

Configuration of SAT Solver for Verification

I Ran FocusedILS for 2 days on 10 machines

I Compared to manually-engineered default

– 1 week of performance tuning
– competitive with the state of the art

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Bounded Model Checking:
4.5-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
 won 2007 SMT competition

20

Configuration of SAT Solver for Verification

I Ran FocusedILS for 2 days on 10 machines
I Compared to manually-engineered default

– 1 week of performance tuning
– competitive with the state of the art

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Bounded Model Checking:
4.5-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
 won 2007 SMT competition

20

Configuration of SAT Solver for Verification

I Ran FocusedILS for 2 days on 10 machines
I Compared to manually-engineered default

– 1 week of performance tuning
– competitive with the state of the art

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Bounded Model Checking:
4.5-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
 won 2007 SMT competition

20

Configuration of SAT Solver for Verification

I Ran FocusedILS for 2 days on 10 machines
I Compared to manually-engineered default

– 1 week of performance tuning
– competitive with the state of the art

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Bounded Model Checking:
4.5-fold speedup

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
 won 2007 SMT competition

20

Other Fielded Applications of ParamILS

I SAPS, local search for SAT

 8-fold and 130-fold speedup

I SAT4J, tree search for SAT

 11-fold speedup

I GLS+ for Most Probable Explanation (MPE) problem

 > 360-fold speedup

I Applications by others

– Protein folding [Thatchuk, Shmygelska & Hoos ’07]

– Time-tabling [Fawcett, Hoos & Chiarandini ’09]

– Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown ’09]

 demonstrates versatility & maturity

21

Other Fielded Applications of ParamILS

I SAPS, local search for SAT

 8-fold and 130-fold speedup

I SAT4J, tree search for SAT

 11-fold speedup

I GLS+ for Most Probable Explanation (MPE) problem

 > 360-fold speedup

I Applications by others

– Protein folding [Thatchuk, Shmygelska & Hoos ’07]

– Time-tabling [Fawcett, Hoos & Chiarandini ’09]

– Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown ’09]

 demonstrates versatility & maturity

21

Other Fielded Applications of ParamILS

I SAPS, local search for SAT

 8-fold and 130-fold speedup

I SAT4J, tree search for SAT

 11-fold speedup

I GLS+ for Most Probable Explanation (MPE) problem

 > 360-fold speedup

I Applications by others

– Protein folding [Thatchuk, Shmygelska & Hoos ’07]

– Time-tabling [Fawcett, Hoos & Chiarandini ’09]

– Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown ’09]

 demonstrates versatility & maturity

21

Other Fielded Applications of ParamILS

I SAPS, local search for SAT

 8-fold and 130-fold speedup

I SAT4J, tree search for SAT

 11-fold speedup

I GLS+ for Most Probable Explanation (MPE) problem

 > 360-fold speedup

I Applications by others

– Protein folding [Thatchuk, Shmygelska & Hoos ’07]

– Time-tabling [Fawcett, Hoos & Chiarandini ’09]

– Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown ’09]

 demonstrates versatility & maturity

21

Other Fielded Applications of ParamILS

I SAPS, local search for SAT

 8-fold and 130-fold speedup

I SAT4J, tree search for SAT

 11-fold speedup

I GLS+ for Most Probable Explanation (MPE) problem

 > 360-fold speedup

I Applications by others

– Protein folding [Thatchuk, Shmygelska & Hoos ’07]

– Time-tabling [Fawcett, Hoos & Chiarandini ’09]

– Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown ’09]

 demonstrates versatility & maturity

21

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration
State of the Art
Improvements for Stochastic Blackbox Optimization
Beyond Stochastic Blackbox Optimization

4. Conclusions

22

Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration
I So far: discussed local search approach
I Now: alternative choice, based on predictive models

– Model-based optimization was less well developed
 emphasis on methodological improvements

I In then end: state-of-the-art configuration tool

23

Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration
I So far: discussed local search approach
I Now: alternative choice, based on predictive models

– Model-based optimization was less well developed
 emphasis on methodological improvements

I In then end: state-of-the-art configuration tool

23

Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration
I So far: discussed local search approach
I Now: alternative choice, based on predictive models

– Model-based optimization was less well developed
 emphasis on methodological improvements

I In then end: state-of-the-art configuration tool

23

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration
State of the Art
Improvements for Stochastic Blackbox Optimization
Beyond Stochastic Blackbox Optimization

4. Conclusions

24

Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

.

.

True function

.

.

First step

25

Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

..

True function

Function evaluations

.

First step

25

Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

.

.

.

Function evaluations

.

First step

25

Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

DACE mean prediction

DACE mean +/− 2*stddev

.

Function evaluations

.

First step

25

Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

DACE mean prediction

DACE mean +/− 2*stddev

.

Function evaluations

EI (scaled)

First step

25

Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

DACE mean prediction

DACE mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

First step

25

Model-Based Deterministic Blackbox
Optimization (BBO)
EGO algorithm [Jones, Schonlau & Welch ’98]

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point

4. Repeat 2. and 3. until time is up

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

DACE mean prediction

DACE mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

First step

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

DACE mean prediction

DACE mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

Second step
25

Stochastic Blackbox Optimization (BBO):
State of the Art

Extensions of EGO algorithm for stochastic case

– Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, ’05-’09]

– Sequential Kriging Optimization (SKO)
[Huang, Allen, Notz & Zeng, ’06]

Application domain for stochastic BBO

I Randomized algorithms with continuous parameters

I Optimization for single instances

Empirical Evaluation

I SPO more robust

26

Stochastic Blackbox Optimization (BBO):
State of the Art

Extensions of EGO algorithm for stochastic case

– Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, ’05-’09]

– Sequential Kriging Optimization (SKO)
[Huang, Allen, Notz & Zeng, ’06]

Application domain for stochastic BBO

I Randomized algorithms with continuous parameters

I Optimization for single instances

Empirical Evaluation

I SPO more robust

26

Stochastic Blackbox Optimization (BBO):
State of the Art

Extensions of EGO algorithm for stochastic case

– Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, ’05-’09]

– Sequential Kriging Optimization (SKO)
[Huang, Allen, Notz & Zeng, ’06]

Application domain for stochastic BBO

I Randomized algorithms with continuous parameters

I Optimization for single instances

Empirical Evaluation

I SPO more robust
26

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration
State of the Art
Improvements for Stochastic Blackbox Optimization
Beyond Stochastic Blackbox Optimization

4. Conclusions

27

Improvements for stochastic BBO

I: Studied SPO components

I Improved component: “intensification mechanism”

– Increase N(θ) similarly as in FocusedILS
– Improved robustness

II: Better Models
I Compared various probabilistic models

– Model SPO uses
– Approximate Gaussian process (GP)
– Random forest (RF)

I New models much better

– Resulting configuration procedure: ActiveConfigurator
– Improved state of the art for model-based stochastic BBO
– Randomized algorithm with continuous parameters
– Optimization for single instances

28

Improvements for stochastic BBO

I: Studied SPO components

I Improved component: “intensification mechanism”

– Increase N(θ) similarly as in FocusedILS
– Improved robustness

II: Better Models
I Compared various probabilistic models

– Model SPO uses
– Approximate Gaussian process (GP)
– Random forest (RF)

I New models much better

– Resulting configuration procedure: ActiveConfigurator
– Improved state of the art for model-based stochastic BBO
– Randomized algorithm with continuous parameters
– Optimization for single instances

28

Improvements for stochastic BBO

I: Studied SPO components

I Improved component: “intensification mechanism”

– Increase N(θ) similarly as in FocusedILS
– Improved robustness

II: Better Models
I Compared various probabilistic models

– Model SPO uses
– Approximate Gaussian process (GP)
– Random forest (RF)

I New models much better

– Resulting configuration procedure: ActiveConfigurator
– Improved state of the art for model-based stochastic BBO

– Randomized algorithm with continuous parameters
– Optimization for single instances

28

Improvements for stochastic BBO

I: Studied SPO components

I Improved component: “intensification mechanism”

– Increase N(θ) similarly as in FocusedILS
– Improved robustness

II: Better Models
I Compared various probabilistic models

– Model SPO uses
– Approximate Gaussian process (GP)
– Random forest (RF)

I New models much better

– Resulting configuration procedure: ActiveConfigurator
– Improved state of the art for model-based stochastic BBO
– Randomized algorithm with continuous parameters
– Optimization for single instances

28

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration
State of the Art
Improvements for Stochastic Blackbox Optimization
Beyond Stochastic Blackbox Optimization

4. Conclusions

29

Extension I: Categorical Parameters

Models that can handle categorical inputs

I Random forests: out of the box
I Extended (approximate) Gaussian processes

– new kernel based on weighted Hamming distance

Application domain

I Algorithms with categorical parameters

I Single instances

Empirical evaluation

I ActiveConfigurator outperformed FocusedILS

30

Extension I: Categorical Parameters

Models that can handle categorical inputs

I Random forests: out of the box
I Extended (approximate) Gaussian processes

– new kernel based on weighted Hamming distance

Application domain

I Algorithms with categorical parameters

I Single instances

Empirical evaluation

I ActiveConfigurator outperformed FocusedILS

30

Extension I: Categorical Parameters

Models that can handle categorical inputs

I Random forests: out of the box
I Extended (approximate) Gaussian processes

– new kernel based on weighted Hamming distance

Application domain

I Algorithms with categorical parameters

I Single instances

Empirical evaluation

I ActiveConfigurator outperformed FocusedILS

30

Extension II: Multiple Instances

Models incorporating multiple instances
I Can still learn probabilistic models of algorithm performance
I Model inputs:

I algorithm parameters
I instance features

General algorithm configuration
I Algorithms with categorical parameters

I Multiple instances

Empirical evaluation
I ActiveConfigurator never worse than FocusedILS

I Overall: model-based approaches very promising

31

Extension II: Multiple Instances

Models incorporating multiple instances
I Can still learn probabilistic models of algorithm performance
I Model inputs:

I algorithm parameters
I instance features

General algorithm configuration
I Algorithms with categorical parameters

I Multiple instances

Empirical evaluation
I ActiveConfigurator never worse than FocusedILS

I Overall: model-based approaches very promising

31

Extension II: Multiple Instances

Models incorporating multiple instances
I Can still learn probabilistic models of algorithm performance
I Model inputs:

I algorithm parameters
I instance features

General algorithm configuration
I Algorithms with categorical parameters

I Multiple instances

Empirical evaluation
I ActiveConfigurator never worse than FocusedILS

I Overall: model-based approaches very promising

31

Outline

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration

4. Conclusions

32

Conclusions

Algorithm configuration

I Is a high-dimensional optimization problem

– Can be solved by automated approaches
– Sometimes much better than by human experts

I Can cut development time & improve results

Scaling to very complex problems allows us to

I Build very flexible algorithm frameworks
I Apply automated tool to instantiate framework

 Generate custom algorithms for different problem types

Blackbox approaches

I Very general

I Can be used to optimize your parameters

33

Conclusions

Algorithm configuration

I Is a high-dimensional optimization problem

– Can be solved by automated approaches
– Sometimes much better than by human experts

I Can cut development time & improve results

Scaling to very complex problems allows us to

I Build very flexible algorithm frameworks
I Apply automated tool to instantiate framework

 Generate custom algorithms for different problem types

Blackbox approaches

I Very general

I Can be used to optimize your parameters

33

Conclusions

Algorithm configuration

I Is a high-dimensional optimization problem

– Can be solved by automated approaches
– Sometimes much better than by human experts

I Can cut development time & improve results

Scaling to very complex problems allows us to

I Build very flexible algorithm frameworks
I Apply automated tool to instantiate framework

 Generate custom algorithms for different problem types

Blackbox approaches

I Very general

I Can be used to optimize your parameters

33

Conclusions

Algorithm configuration

I Is a high-dimensional optimization problem

– Can be solved by automated approaches
– Sometimes much better than by human experts

I Can cut development time & improve results

Scaling to very complex problems allows us to

I Build very flexible algorithm frameworks
I Apply automated tool to instantiate framework

 Generate custom algorithms for different problem types

Blackbox approaches

I Very general

I Can be used to optimize your parameters

33

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios
[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach [AAAI’07]

– Improved & Extended Sequential Model-Based Optimization
[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]

34

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach [AAAI’07]

– Improved & Extended Sequential Model-Based Optimization
[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]

34

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach [AAAI’07]

– Improved & Extended Sequential Model-Based Optimization
[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]

34

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach

[AAAI’07]

– Improved & Extended Sequential Model-Based Optimization
[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]

34

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach

[AAAI’07]

– Improved & Extended Sequential Model-Based Optimization

[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]

34

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach

[AAAI’07]

– Improved & Extended Sequential Model-Based Optimization

[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]

34

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios

[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach

[AAAI’07]

– Improved & Extended Sequential Model-Based Optimization

[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup

[JAIR’09]

– SPEAR: 500-fold speedup for software verification

[FMCAD’07]

34

Main Contribution of this thesis

Comprehensive study of the algorithm configuration problem

I Empirical analysis of configuration scenarios
[Ready for submission]

I Two fundamentally different solution approaches

– Model-free Iterated Local Search approach [AAAI’07]

– Improved & Extended Sequential Model-Based Optimization
[GECCO’09; EMAA’09]

I Demonstrated practical relevance of algorithm configuration

– CPLEX: up to 23-fold speedup [JAIR’09]

– SPEAR: 500-fold speedup for software verification [FMCAD’07]

34

Important Directions for the Next Few Years

I Improve configuration procedures from practical point of view

– Mixed categorical/numerical optimization
– Make easier to use off the shelf

I More sophisticated model-based methods

– Use model to select most informative instance
– Use model to select best cutoff time
– Per-instance setting of parameters

I Explore other fields of applications

35

Important Directions for the Next Few Years

I Improve configuration procedures from practical point of view

– Mixed categorical/numerical optimization
– Make easier to use off the shelf

I More sophisticated model-based methods

– Use model to select most informative instance
– Use model to select best cutoff time
– Per-instance setting of parameters

I Explore other fields of applications

35

Important Directions for the Next Few Years

I Improve configuration procedures from practical point of view

– Mixed categorical/numerical optimization
– Make easier to use off the shelf

I More sophisticated model-based methods

– Use model to select most informative instance
– Use model to select best cutoff time
– Per-instance setting of parameters

I Explore other fields of applications

35

Thanks to

I Supervisory committee

– Holger Hoos (supervisor)
– Kevin Leyton-Brown (co-supervisor)
– Kevin Murphy (co-supervisor)
– Alan Mackworth

I Further collaborators

– Domagoj Babić
– Thomas Bartz-Beielstein
– Youssef Hamadi
– Alan Hu
– Thomas Stützle
– Dave Tompkins
– Lin Xu

I LCI and BETA lab faculty and students

36

	Model-Free Search for Algorithm Configuration
	ParamILS: Iterated Local Search in Configuration Space
	``Real-World'' Applications of ParamILS

	Model-Based Search for Algorithm Configuration
	State of the Art
	Improvements for Stochastic Blackbox Optimization
	Beyond Stochastic Blackbox Optimization

	Conclusions

