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+ Very flexible frameworks
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Automated parameter optimization can help

» High-dimensional optimization problem

» Automate ~~ saves time & improves results
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Parameter Optimization Methods

» Numerical parameters

— See Blackbox optimization workshop (this GECCO)
— Algorithm parameters: CALIBRA [Adenso-Diaz & Laguna, '06]

» Few categorical parameters: racing algorithms
[Birattari, Stiitzle, Paquete & Varrentrapp, '02]

» Many categorical parameters
— Genetic algorithms [Terashima-Marin, Ross & Valenzuela-Réndon, '99]
— Iterated Local Search
[Hutter, Hoos, Leyton-Brown & Stiitzle, '07-'09]
~» Dozens of parameters (e.g., CPLEX with 63 parameters)

~ For many problems: SAT, MIP, time-tabling, protein folding,
MPE, ...
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Parameter Optimization Methods

Model-free Parameter Optimization
» Numerical parameters: see BBOB workshop (this GECCO)

» Few categorical parameters: racing algorithms
[Birattari, Stiitzle, Paquete & Varrentrapp, '02]

» Many categorical parameters
[e.g., Terashima-Marin, Ross & Valenzuela-Réndon, '99, Hutter, Hoos,
Leyton-Brown & Stiitzle, '07-'09]

Model-based Parameter Optimization

» Methods

— Fractional factorial designs [e.g., Ridge & Kudenko, '07]
— Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]

» Can use model for more than optimization

— Importance of each parameter
— Interaction between parameters
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SMBO: Introduction

Get response values at initial design points

Fit a model to the data
Use model to pick most promising next design point (based
on expected improvement criterion)

4. Repeat 2. and 3. until time is up
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Dealing with Noise: SKO vs SPO

» Method | (used in SKO) [Huang, Allen, Notz & Zeng, '06.]
— Fit standard GP assuming Gaussian observation noise
— Can only fit the mean of the responses
» Method Il (Used in SPO) [Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]
— Compute statistic of empirical distribution of responses at each
design point
— Fit noise-free GP to that

----- GP mean prediction - - -~ DACE mean prediction
GP mean +/- 2°stddey DACE mean +/- 2*stddev|
True function
O Function evaluations

True function
Function evaluations

response y
response y
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parameter x

Method I: noisy fit of original response Method Il: noise-free fit of cost statistic
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— Evolutionary strategy for global optimization
— State-of-the-art (see BBOB workshop this GECCO)
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Components of SPO: initial design

» Fixed number of initial design points (250) and repeats (2)
— Size of initial design studied before [Bartz-Beielstein & Preuss, '06]
» Here: studied which 250 design points to use

— Sampled uniformly at random

— Random Latin Hypercube

— lterated Hypercube Sampling [Beachkofski & Grandhi, '02]
— SPO’s standard LHD

» Result: no significant difference

— Initial design not very important
— Using cheap random LHD from here on
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Components of SPO: Transformations

» Compute empirical cost statistics &(0) first
» Then transform cost statistics: log(&(6))
» Data: solution cost of CMA-ES on sphere
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Components of SPO: Transformations

» Compute empirical cost statistics &(0) first
» Then transform cost statistics: log(&(6))
» Data: solution cost of CMA-ES on sphere

— Training: 250 - 2 data points as above
— Test: 250 new points, sampled uniformly at random
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Note: In newer experiments, SKO with log models was competitive
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4. Components of SPO: Sequential Experimental Design
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Components of SPO:
expected improvement criterion

User wants to optimize some objective ¢

» We transform c¢ to improve the model
» But that doesn’t change the user’s objective

~» Have to adapt expected improvement criterion to handle
un-transformed objective

Fix for log-transform: new expected improvement criterion

> Want to optimize lexp(f) = max{0, fmi» — exp[f(0)]}

» There is a closed-form solution (see paper)

» However: no significant improvement in our experiments

15
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Components of SPO: choosing the incumbent

parameter setting in presence of noise

Some algorithm runs can be lucky

~ need extra mechanism to ensure incumbent is really good

~ SPO increases number of repeats over time

SPQO’s mechanism in a nutshell

» Compute cost statistic &(¢) for each configuration ¢

» 0inc < configuration with lowest ¢(6)

» Perform up to R runs for 6;,c to ensure it is good
— Increase R over time

» But what if it doesn't perform well?

— Then a different incumbent is picked in the next iteration
— That might also turn out not to be good...
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Components of SPO: choosing the incumbent

parameter setting in presence of noise
Simple fix
» lteratively perform runs for single most promising 0,e,

» Compare against current incumbent 6},
» Once 0,e, has as many runs as 0;,.: make it new 6;,¢

» Maintain invariant: 8;,c has the most runs of all

» Substantially improves robustness — new SPO variant: SPO™
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Summary of Study of SPO components &
Definition of SPO*

Model Quality

» Initial design not very important
~ use simple random LHD in SPO™

» Log-transforms sometimes improve model quality a lot
~ use them in SPOY (for positive functions)

Sequential Experimental Design

» Expected improvement criterion
~~ New one that's better in theory but not in practice
~+ Use original one in SPO*
» New mechanism for increasing #runs & selecting incumbent

~~ substantially improves robustness
~+ Use it in SPOT

18
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> 4 continuous parameters
> Here: min. search steps for single problem instance

» Results known for CALIBRA & ParamlLS [Hutter et al, AAAI'07]
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Comparison to State of the Art
for tuning SAPS
» SAPS

» Stochastic local search algorithm for SAT
> 4 continuous parameters
> Here: min. search steps for single problem instance

» Results known for CALIBRA & ParamlLS [Hutter et al, AAAI'07]

’ L Spoos Procedure SAPS median run-time/10°
25 SAPS default 85.5

& CALIBRA(100) 107+1.1
e’ BasicILS(100) 10.9 £ 0.6
5 FocusedILS 10.6 £ 0.5
g SP0 0.3 18.3+£13.7
1 SPO 0.4 104+0.7
SPO* 10.0+0.4

05 .

number of algorithm runs k

Comparison to SPO variants,
with varying budget

With budget of 20000 runs of SAPS
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Conclusions

» SMBO can help design algorithms

» More principled, saves development time
» Can exploit full potential of flexible algorithms

» Our contribution

» Insights: what makes a popular SMBO algorithm, SPO, work
» Improved version, SPO™, often performs better than SPO
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Ongoing & Future Work

Ongoing Extensions of Model-Based Framework

» Use of different models in SPO™ framework
» Dealing with categorical parameters
» Optimization for Sets/Distributions of Instances

Use of models for scientific understanding

» Interactions of instance features and parameter values

» Can help understand and hopefully improve algorithms
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