
Journal of Artificial Intelligence Research 32 (2008) 565-606 Submitted 11/07; published 06/08

SATzilla: Portfolio-based Algorithm Selection for SAT

Lin Xu xulin730@cs.ubc.ca

Frank Hutter hutter@cs.ubc.ca

Holger H. Hoos hoos@cs.ubc.ca

Kevin Leyton-Brown kevinlb@cs.ubc.ca

Department of Computer Science
University of British Columbia
201-2366 Main Mall, BC V6T 1Z4, CANADA

Abstract

It has been widely observed that there is no single “dominant” SAT solver; instead, different
solvers perform best on different instances. Rather than following the traditional approach
of choosing the best solver for a given class of instances, we advocate making this deci-
sion online on a per-instance basis. Building on previous work, we describe SATzilla, an
automated approach for constructing per-instance algorithm portfolios for SAT that use so-
called empirical hardness models to choose among their constituent solvers. This approach
takes as input a distribution of problem instances and a set of component solvers, and con-
structs a portfolio optimizing a given objective function (such as mean runtime, percent of
instances solved, or score in a competition). The excellent performance of SATzilla was
independently verified in the 2007 SAT Competition, where our SATzilla07 solvers won
three gold, one silver and one bronze medal. In this article, we go well beyond SATzilla07
by making the portfolio construction scalable and completely automated, and improving
it by integrating local search solvers as candidate solvers, by predicting performance score
instead of runtime, and by using hierarchical hardness models that take into account dif-
ferent types of SAT instances. We demonstrate the effectiveness of these new techniques in
extensive experimental results on data sets including instances from the most recent SAT
competition.

1. Introduction

The propositional satisfiability problem (SAT) is one of the most fundamental problems
in computer science. Indeed, entire conferences and journals are devoted to the study of
this problem, and it has a long history in AI. SAT is interesting both for its own sake
and because instances of other problems in NP can be encoded into SAT and solved by
SAT solvers. This approach has proven effective for tackling many real-world applications,
including planning, scheduling, graph colouring, bounded model checking, and formal veri-
fication (examples have been described by Kautz & Selman, 1996, 1999; Crawford & Baker,
1994; van Gelder, 2002; Biere, Cimatti, Clarke, Fujita, & Zhu, 1999; Stephan, Brayton, &
Sangiovanni-Vencentelli, 1996).

The conceptual simplicity of SAT facilitates algorithm development, and considerable
research and engineering efforts over the past decades have led to sophisticated algorithms
with highly-optimized implementations. In fact, SAT is probably the NP-complete decision
problem for which the largest amount of research effort has been expended for the develop-

c©2008 AI Access Foundation. All rights reserved.

Xu, Hutter, Hoos & Leyton-Brown

ment and study of algorithms. Today’s high-performance SAT solvers include tree-search
algorithms (see, e.g., Davis, Logemann, & Loveland, 1962; Zhang, Madigan, Moskewicz, &
Malik, 2001; Zhang, 2002; Kullmann, 2002; Dubois & Dequen, 2001; Heule, Zwieten, Du-
four, & Maaren, 2004; Eén & Sörensson, 2003), local search algorithms (see, e.g., Selman,
Levesque, & Mitchell, 1992; Selman, Kautz, & Cohen, 1994; Hutter, Tompkins, & Hoos,
2002; Hoos, 2002; Li & Huang, 2005; Ishtaiwi, Thornton, Anbulagan, Sattar, & Pham,
2006; Hoos & Stützle, 2005), and resolution-based approaches (see, e.g., Davis & Putnam,
1960; Dechter & Rish, 1994; Bacchus, 2002b, 2002a; Bacchus & Winter, 2003; Subbarayan
& Pradhan, 2005).

Most of these SAT algorithms are highly complex, and thus have largely resisted theo-
retical average-case analysis. Instead, empirical studies are often the only practical means
for assessing and comparing their performance. In one prominent and ongoing example, the
SAT community holds an annual SAT competition (http://www.satcompetition.org; see,
e.g., Le Berre & Simon, 2004). This competition is intended to provide an objective assess-
ment of SAT algorithms, and thus to track the state of the art in SAT solving, to assess and
promote new solvers, and to identify new challenging benchmarks. Solvers are judged based
on their empirical performance on three categories of instances, each of which is further di-
vided into satisfiable, unsatisfiable and mixed instances, with both speed and robustness
taken into account. The competition serves as an annual showcase for the state of the art
in SAT solving; more than 30 solvers were entered in 2007.

1.1 The Algorithm Selection Problem

One way in which evaluations like the SAT competition are useful is that they allow practi-
tioners to determine which algorithm performs best for instances relevant to their problem
domain. However, choosing a single algorithm on the basis of competition performance is
not always a good approach—indeed, it is often the case that one solver is better than oth-
ers at solving some problem instances from a given class, but dramatically worse on other
instances. Thus, practitioners with hard SAT problems to solve face a potentially difficult
“algorithm selection problem” (Rice, 1976): which algorithm(s) should be run in order to
minimize some performance objective, such as expected runtime?

The most widely-adopted solution to such algorithm selection problems is to measure
every candidate solver’s runtime on a representative set of problem instances, and then to
use only the algorithm that offered the best (e.g., average or median) performance. We call
this the “winner-take-all” approach. Its use has resulted in the neglect of many algorithms
that are not competitive on average but that nevertheless offer very good performance on
particular instances.

The ideal solution to the algorithm selection problem, on the other hand, would be to
consult an oracle that knows the amount of time that each algorithm would take to solve a
given problem instance, and then to select the algorithm with the best performance. Unfor-
tunately, computationally cheap, perfect oracles of this nature are not available for SAT or
any other NP-complete problem; we cannot precisely determine an arbitrary algorithm’s
runtime on an arbitrary instance without actually running it. Nevertheless, our approach to
algorithm selection is based on the idea of building an approximate runtime predictor, which
can be seen as a heuristic approximation to a perfect oracle. Specifically, we use machine

566

SATzilla: Portfolio-based Algorithm Selection for SAT

learning techniques to build an empirical hardness model, a computationally inexpensive
predictor of an algorithm’s runtime on a given problem instance based on features of the
instance and the algorithm’s past performance (Nudelman, Leyton-Brown, Hoos, Devkar,
& Shoham, 2004a; Leyton-Brown, Nudelman, & Shoham, 2002). By modeling several al-
gorithms and, at runtime, choosing the algorithm predicted to have the best performance,
empirical hardness models can serve as the basis for an algorithm portfolio that solves the
algorithm selection problem automatically (Leyton-Brown, Nudelman, Andrew, McFadden,
& Shoham, 2003b, 2003a).1

In this work we show, for what we believe to be the first time, that empirical hardness
models can be used to build an algorithm portfolio that achieves state-of-the-art perfor-
mance in a broad, practical domain. That is, we evaluated our algorithm not under id-
iosyncratic conditions and on narrowly-selected data, but rather in a large, independently-
conducted competition, confronting a wide range of high-performance algorithms and a
large set of independently-chosen interesting data. Specifically, we describe and analyze
SATzilla, a portfolio-based SAT solver that utilizes empirical hardness models for per-
instance algorithm selection.

1.2 Algorithm Portfolios

The term “algorithm portfolio” was introduced by Huberman, Lukose, and Hogg (1997)
to describe the strategy of running several algorithms in parallel, potentially with different
algorithms being assigned different amounts of CPU time. This approach was also studied
by Gomes and Selman (2001). Several authors have since used the term in a broader way
that encompasses any strategy that leverages multiple “black-box” algorithms to solve a
single problem instance. Under this view, the space of algorithm portfolios is a spectrum,
with approaches that use all available algorithms at one end and approaches that always
select only a single algorithm at the other. The advantage of using the term portfolio to
refer to this broader class of algorithms is that they all work for the same reason—they
exploit lack of correlation in the best-case performance of several algorithms in order to
obtain improved performance in the average case.

To more clearly describe algorithm portfolios in this broad sense, we introduce some
new terminology. We define an (a, b)-of-n portfolio as a set of n algorithms and a procedure
for selecting among them with the property that if no algorithm terminates early, at least a
and no more than b algorithms will be executed.2 For brevity, we also use the terms a-of-n
portfolio to refer to an (a, a)-of-n portfolio, and n-portfolio for an n-of-n portfolio. It is
also useful to distinguish how solvers are run after being selected. Portfolios can be parallel
(all algorithms are executed concurrently), sequential (the execution of one algorithm only
begins when the previous algorithm’s execution has ended), or partly sequential (some

1. Similarly, one could predict the performance of a single algorithm under different parameter settings and
choose the best setting on a per-instance basis. We have previously demonstrated that this approach is
feasible in the case where the number of parameters is small (Hutter, Hamadi, Hoos, & Leyton-Brown,
2006). Ultimately, it is conceivable to combine the two lines of research, and to automatically select a
good algorithm along with good parameter settings on a per-instance basis.

2. The termination condition is somewhat tricky. We consider the portfolio to have terminated early if it
solves the problem before one of the solvers has a chance to run, or if one of the solvers crashes. Thus,
when determining a and b, we do not consider crash-recovery techniques, such as using the next best
predicted solver (discussed later in this paper).

567

Xu, Hutter, Hoos & Leyton-Brown

combination of the two). Thus the “classic” algorithm portfolios of Huberman et al. (1997)
and Gomes and Selman (2001) can be described as parallel n-portfolios. In contrast, the
SATzilla solvers that we will present in this paper are sequential 3-of-n portfolios since
they sequentially execute two pre-solvers followed by one main solver.

There is a range of other work in the literature that describes algorithm portfolios in
the broad sense that we have defined here. First, we consider work that has emphasized
algorithm selection (or 1-of-n portfolios). Lobjois and Lemâıtre (1998) studied the problem
of selecting between branch-and-bound algorithms based on an estimate of search tree size
due to Knuth (1975). Gebruers, Hnich, Bridge, and Freuder (2005) employed case-based
reasoning to select a solution strategy for instances of a constraint programming problem.
Various authors have proposed classification-based methods for algorithm selection (e.g.,
Guerri & Milano, 2004; Gebruers, Guerri, Hnich, & Milano, 2004; Guo & Hsu, 2004; and,
to some extent, Horvitz, Ruan, Gomes, Kautz, Selman, & Chickering, 2001). One problem
with such approaches is that they use an error metric that penalizes all misclassifications
equally, regardless of their cost. This is problematic because using a suboptimal algorithm
is acceptable, provided it is nearly as good as the best algorithm. Our SATzilla approach
can be considered to be a classifier with an error metric that depends on the difference in
runtime between algorithms.

At the other end of the spectrum, much work has been done that considers switching
between multiple algorithms, or in our terminology building parallel n-portfolios. Gomes
and Selman (2001) built a portfolio of stochastic algorithms for quasi-group completion
and logistics scheduling problems. Low-knowledge algorithm control by Carchrae and Beck
(2005) employed a portfolio of anytime algorithms, prioritizing each algorithm according
to its performance so far. Gagliolo and Schmidhuber (2006b) learned dynamic algorithm
portfolios that also support running several algorithms at once, where an algorithm’s priority
depends on its predicted runtime conditioned on the fact that it has not yet found a solution.
Streeter, Golovin, and Smith (2007) improved average-case performance by using black-box
techniques for learning how to interleave the execution of multiple heuristics based not on
instance features but only on the runtime of algorithms.

Some approaches fall between these two extremes, making decisions about which al-
gorithms to use on the fly—while solving a problem instance—instead of committing in
advance to a subset of algorithms. The examples we give here are (1, n)-of-n portfolios.
Lagoudakis and Littman (2001) employed reinforcement learning to solve an algorithm
selection problem at each decision point of a DPLL solver for SAT in order to select a
branching rule. Similarly, Samulowitz and Memisevic (2007) employed classification to
switch between different heuristics for QBF solving during the search.

Finally, we describe the ways in which this paper builds on our own past work. Leyton-
Brown et al. (2002) introduced empirical hardness models. Nudelman et al. (2004a) demon-
strated that they work on (uniform-random) SAT and introduced the features that we use
here, and Hutter et al. (2006) showed how to apply them to randomized, incomplete al-
gorithms. Empirical hardness models were first used as a basis for algorithm portfolios
by Leyton-Brown et al. (2003b, 2003a). The idea of building such an algorithm portfo-
lio for SAT goes back to 2003, when we submitted the first SATzilla solver to the SAT
competition (Nudelman, Leyton-Brown, Devkar, Shoham, & Hoos, 2004b); this version of
SATzilla placed 2nd in two categories and 3rd in another. In the following, we describe a

568

SATzilla: Portfolio-based Algorithm Selection for SAT

substantially improved SATzilla solver, which was entered into the 2007 SAT Competition
and—despite considerable progress in the SAT community over this four year interval—
placed 1st in three categories, and 2nd and 3rd in two further categories. This solver was
described, along with some preliminary analysis, in a conference paper (Xu, Hutter, Hoos,
& Leyton-Brown, 2007c); it used hierarchical hardness models, described separately (Xu,
Hoos, & Leyton-Brown, 2007a). In this work, we provide a much more detailed description
of this new solver, present several new techniques that have never been previously published
(chiefly introduced in Section 5) and report new experimental results.

1.3 Overview

Overall, this paper is divided into two parts. The first part describes the development of
SATzilla07, which we submitted to the 2007 SAT Competition and the second part demon-
strates our most recent, improved portfolio algorithms (SATzilla07+ and SATzilla07∗).
Each part is subdivided into three sections, the first of which describes our approach for
designing a portfolio-based solver at a high level, the second of which explains lower-level
details of portfolio construction, and the third of which provides the results of an extensive
experimental evaluation.

Section 2 (Design I) begins with a general methodology for building algorithm portfolios
based on empirical hardness models. In this work, we apply these general strategies to SAT
and evaluate them experimentally. In Section 3 (Construction I) we describe the architecture
of the portfolio-based solvers that we entered into the 2007 SAT Competition and described
in our previous work (Xu et al., 2007c). In addition, we constructed a new portfolio-based
solver for INDUSTRIAL instances and analyzed it by effectively re-running the INDUSTRIAL
category of the 2007 competition with our portfolio included; the results of this analysis are
reported in Section 4 (Evaluation I).

We then move on to consider ways of extending, strengthening, and automating our
portfolio construction. We present five new design ideas in Section 5 (Design II), and
consider the incorporation of new solvers and training data in Section 6 (Construction
II). Finally, we evaluated these new ideas and quantified their benefits in a second set of
experiments, which we describe in Section 7 (Evaluation II). Section 8 concludes the paper
with some general observations.

2. Design I: Building Algorithm Portfolios with Empirical Hardness
Models

The general methodology for building an algorithm portfolio that we use in this work
follows Leyton-Brown et al. (2003b) in its broad strokes, but we have made significant
extensions here. Portfolio construction happens offline, as part of algorithm development,
and comprises the following steps.

1. Identify a target distribution of problem instances. Practically, this means selecting a
set of instances believed to be representative of some underlying distribution, or using
an instance generator that constructs instances that represent samples from such a
distribution.

569

Xu, Hutter, Hoos & Leyton-Brown

2. Select a set of candidate solvers that have relatively uncorrelated runtimes on this
distribution and are known or expected to perform well on at least some instances.

3. Identify features that characterize problem instances. In general this cannot be done
automatically, but rather must reflect the knowledge of a domain expert. To be
usable effectively for automated algorithm selection, these features must be related to
instance hardness and relatively cheap to compute.

4. On a training set of problem instances, compute these features and run each algorithm
to determine its running times.

5. Identify one or more solvers to use for pre-solving instances. These pre-solvers will
later be run for a short amount of time before features are computed (step 9 below),
in order to ensure good performance on very easy instances and to allow the empirical
hardness models to focus exclusively on harder instances.

6. Using a validation data set, determine which solver achieves the best performance
for all instances that are not solved by the pre-solvers and on which the feature
computation times out. We refer to this solver as the backup solver. In the absence of
a sufficient number of instances for which pre-solving and feature computation timed
out, we employ the single best component solver (i.e., the winner-take-all choice) as
a backup solver.

7. Construct an empirical hardness model for each algorithm in the portfolio, which pre-
dicts the runtime of the algorithm for each instance, based on the instance’s features.

8. Choose the best subset of solvers to use in the final portfolio. We formalize and
automatically solve this as a simple subset selection problem: from all given solvers,
select a subset for which the respective portfolio (which uses the empirical hardness
models learned in the previous step) achieves the best performance on the validation
set. (Observe that because our runtime predictions are not perfect, dropping a solver
from the portfolio entirely can increase the portfolio’s overall performance.)

Then, online, to solve a given problem instance, the following steps are performed.

9. Run each pre-solver until a predetermined fixed cutoff time is reached.

10. Compute feature values. If feature computation cannot be completed for some reason
(error or timeout), select the backup solver identified in step 6 above.

11. Otherwise, predict each algorithm’s runtime using the empirical hardness models from
step 7 above.

12. Run the algorithm predicted to be the best. If a solver fails to complete its run (e.g.,
it crashes), run the algorithm predicted to be next best.

The effectiveness of an algorithm portfolio built using this approach depends on our
ability to learn empirical hardness models that can accurately predict a solver’s runtime
on a given instance using efficiently computable features. In the experiments presented in

570

SATzilla: Portfolio-based Algorithm Selection for SAT

this paper, we use the same ridge regression method that has previously proven to be very
successful in predicting runtime on uniform random k-SAT, on structured SAT instances,
and on combinatorial auction winner determination problems (Nudelman et al., 2004a;
Hutter et al., 2006; Leyton-Brown et al., 2002).3

2.1 Ridge Regression and Feature Selection

We now explain the construction of the empirical hardness models described in Step 7 above.
To predict the runtime of an algorithm A on an instance distribution D, we first draw n
instances from D uniformly at random. (In this article, the distributions are given implicitly
by a benchmark set of instances, and we simply use all instances in the benchmark set.)
For each instance i, we compute a set of features xi = [xi,1, . . . , xi,m] that characterize the
instance. We also run algorithm A on the instance, recording its runtime ri.

Having computed features and runtimes on all n instances, we fit a function f(x) that,
given the features xi of instance i, yields a prediction, ỹi, of the logarithm of A’s runtime
yi = log ri. In our experience, we have found this log transformation of runtime to be very
important due to the large variation in runtimes for hard combinatorial problems. Unfor-
tunately, the performance of learning algorithms can deteriorate when some features are
uninformative or highly correlated with other features; it is difficult to construct features
that do not suffer from these problems. Therefore, we first reduce the set of features by per-
forming feature selection, in our case forward selection (see e.g., Guyon, Gunn, Nikravesh,
& Zadeh, 2006), a simple iterative method that starts with an empty feature set and greed-
ily adds one feature at a time, aiming to reduce cross-validation error as much as possible
with every added feature. Next, we add additional pairwise product features xi,j · xi,k for
j = 1 . . .m and k = j . . .m; this is a widely used method typically referred to as quadratic
basis function expansion. Finally, we perform another pass of forward selection on this
extended set to determine our final set of basis functions, such that for instance i we obtain
an expanded feature vector φi = φ(xi) = [φ1(xi), . . . , φd(xi)], where d is the final number
of basis functions used in the model.

We then use ridge regression (see, e.g., Bishop, 2006) to fit the free parameters w of the
function fw(x). Ridge regression works as follows. Let Φ be an n×d matrix containing the
vectors φi for each instance in the training set, let y be the vector of log runtimes, and let I
be the d× d identity matrix. Finally, let δ be a small constant to penalize large coefficients
w and thereby increase numerical stability (we used δ = 10−3 in our experiments). Then,
we compute w = (δI + Φ>Φ)−1Φ>y, where Φ> denotes the transpose of matrix Φ. For
a previously unseen instance i, we obtain a prediction of log runtime by computing the
instance features xi and evaluating fw(xi) = w>φ(xi).

3. It should be noted that our portfolio methodology can make use of any regression approach that provides
sufficiently accurate estimates of an algorithm’s runtime and that is computationally efficient enough that
the time spent making a prediction can be compensated for by the performance gain obtained through
improved algorithm selection. For example, in similar settings, we have previously explored many other
learning techniques, such as lasso regression, SVM regression, and Gaussian process regression (Leyton-
Brown et al., 2002; Hutter et al., 2006). All of these techniques are computationally more expensive
than ridge regression, and in our previous experiments we found that they did not improve predictive
performance enough to justify this additional cost.

571

Xu, Hutter, Hoos & Leyton-Brown

2.2 Accounting for Censored Data

As is common with heuristic algorithms for solving NP-complete problems, SAT algorithms
tend to solve some instances very quickly, while taking an extremely long amount of time
to solve other instances. Hence, runtime data can be very costly to gather, as individual
runs can take literally weeks to complete, even when other runs on instances of the same
size take only milliseconds. The common solution to this problem is to “censor” some runs
by terminating them after a fixed cutoff time.

The question of how to fit good models in the presence of censored data has been exten-
sively studied in the survival analysis literature in statistics, which originated in actuarial
questions such as estimating a person’s lifespan given mortality data as well as the ages and
characteristics of other people still alive. Observe that this problem is the same as ours,
except that in our case, data points are always censored at the same value, a subtlety that
turns out not to matter.

The best approach that we know for dealing with censored data is to build models that
use all available information about censored runs by using the censored runtimes as lower
bounds on the actual runtimes. To our knowledge, this technique was first used in the
context of SAT by Gagliolo and Schmidhuber (2006a). We chose the simple, yet effective
method by Schmee and Hahn (1979) to deal with censored samples. In brief, this method
first trains a hardness model treating the cutoff time as the true (uncensored) runtime for
censored samples, and then repeats the following steps until convergence.

1. Estimate the expected runtime of censored runs using the hardness model. Since in
ridge regression, predictions are in fact normal distributions (with a fixed variance),
the expected runtime conditional on the runtime exceeding the cutoff time is the mean
of the corresponding normal distribution truncated at the cutoff time.

2. Train a new hardness model using true runtimes for the uncensored instances and the
predictions generated in the previous step for the censored instances.

In earlier work (Xu, Hutter, Hoos, & Leyton-Brown, 2007b), we experimentally compared
this approach with two other approaches for dealing with censored data: dropping such data
entirely, and treating censored runs as though they had finished at the cutoff threshold.
We demonstrated empirically that both of these methods are significantly worse than the
method presented above. Intuitively, both methods introduce bias into empirical hardness
models, whereas the method by Schmee and Hahn (1979) is unbiased.

2.3 Using Hierarchical Hardness Models

Our previous research on empirical hardness models for SAT showed that we can achieve
better prediction accuracy even with simpler models if we restrict ourselves only to sat-
isfiable or unsatisfiable instances (Nudelman et al., 2004a). Of course, in practice we are
interested in making accurate predictions even when we do not know whether an instance
is satisfiable. In recent work (Xu et al., 2007a), we introduced hierarchical hardness models
as a method for solving this problem. We define the subjective probability that an instance
with features x is satisfiable to be the probability that an instance chosen at random from
the underlying instance distribution with features matching x is satisfiable. Hierarchical

572

SATzilla: Portfolio-based Algorithm Selection for SAT

hardness models first use a classifier to predict this subjective probability of satisfiability and
then use this probability, as well as the features x, to combine the predictions of so-called
conditional models, which are trained only on satisfiable instances and only on unsatisfi-
able instances, respectively. In our previous work we conducted extensive experiments on
various types of SAT instances and found that these hierarchical hardness models achieve
better runtime prediction accuracies than traditional empirical hardness models (Xu et al.,
2007a).

Specifically, we begin by predicting an instance’s satisfiability using a classification
algorithm that depends on the same instance features used by the empirical hardness
models. We chose Sparse Multinomial Logistic Regression, SMLR (Krishnapuram, Carin,
Figueiredo, & Hartemink, 2005), but any other classification algorithm that returns the
probability that an instance belongs to each class could be used instead. Then, we train
conditional empirical hardness models (Msat, Munsat) using quadratic basis-function regres-
sion for both satisfiable and unsatisfiable training instances.

Next, we must decide how to combine the predictions of these two models.4 We observe
a set of instance features x and a classifier prediction s; our task is to predict the expected
value of the algorithm’s runtime y given this information. We introduce an additional
random variable z ∈ {sat, unsat}, which represents our subjective belief about an oracle’s
choice of which conditional model will perform best for a given instance. (Observe that this
may not always correspond to the model trained on the data with the same satisfiability
status as the instance.) We can express the conditional dependence relationships between
our random variables using a graphical model, as illustrated in Figure 1.

x, s z y

features &

probability of

being satisfiable

model

selection

oracle

runtime

Figure 1: Graphical model for our mixture-of-experts approach.

Then we can write the expression for the probability distribution over an instance’s
runtime given the features x and s as

P (y | x, s) =
∑

k∈{sat,unsat}

P (z = k | x, s) · PMk
(y | x, s), (1)

where PMk
(y | x, s) is the probability of y evaluated according to model Mk (see Figure 1).

Since the models were fitted using ridge regression, we can rewrite Equation (1) as

4. Note that the classifier’s output is not used directly to select a model—doing so would mean ignoring the
cost of making a mistake. Instead, we use the classifier’s output as a feature upon which our hierarchical
model can depend.

573

Xu, Hutter, Hoos & Leyton-Brown

P (y | x, s) =
∑

k∈{sat,unsat}

P (z = k | x, s) · ϕ
(
y −w>k φ(x)

σk

)
, (2)

where ϕ(·) denotes the probability distribution function of a Normal distribution with mean
zero and unit variance, wk are the weights of model Mk, φ(x) is the quadratic basis function
expansion of x, and σk is a fixed standard deviation.

In particular, we are interested in the mean predicted runtime, that is, the expectation
of P (y | x, s):

E(y | x, s) =
∑

k∈{sat,unsat}

P (z = k | x, s) ·w>k φ(x). (3)

Evaluating this expression would be easy if we knew P (z = k | x, s); of course, we do
not. Our approach is to learn weighting functions P (z = k | x, s) to minimize the following
loss function:

L =
n∑

i=1

(
yi − E(y | x, s)

)2

, (4)

where yi is the true log runtime on instance i and n is the number of training instances.
As the hypothesis space for these weighting functions we chose the softmax function

(see, e.g., Bishop, 2006)

P (z = sat | x, s) =
ev
>[x;s]

1 + ev>[x;s]
, (5)

where v is a vector of free parameters that is set to minimize the loss function (4). This
functional form is frequently used for probabilistic classification tasks: if v>[x; s] is large
and positive, then ev

>[x;s] is much larger than 1 and the resulting probability is close to 1; if
it is large and negative, the result is close to zero; if it is zero, then the resulting probability
is exactly 0.5.

This can be seen as a mixture-of-experts problem (see, e.g., Bishop, 2006) with the ex-
perts fixed to Msat and Munsat. (In traditional mixture-of-experts methods, the experts are
allowed to vary during the training process described below.) For implementation conve-
nience, we used an existing mixture of experts implementation to optimize v, which is built
around an expectation maximization (EM) algorithm that performs iterative reweighted
least squares in the M step (Murphy, 2001). We modified this code slightly to fix the
experts and initialized the choice of expert to the classifier’s output by setting the initial
values of P (z | x, s) to s. Note that other numerical optimization procedures could be used
to minimize the loss function (4) with respect to v.

Having optimized v, to obtain a runtime prediction for an unseen test instance we
simply compute the instance’s features x and the classifier’s output s, and then compute
the expected runtime by evaluating Equation (3).

Finally, note that these techniques do not require us to restrict ourselves to the con-
ditional models Msat and Munsat, or even to the use of only two models. In Section 7,
we describe hierarchical hardness models that rely on six conditional models, trained on
satisfiable and unsatisfiable instances from different data sets.

574

SATzilla: Portfolio-based Algorithm Selection for SAT

3. Construction I: Building SATzilla07 for the 2007 SAT Competition

In this section, we describe the SATzilla07 solvers entered into the 2007 SAT Competi-
tion, which—like previous events in the series—featured three main categories of instances,
RANDOM, HANDMADE (also known as CRAFTED) and INDUSTRIAL. We submitted three ver-
sions of SATzilla07 to the competition. Two versions specifically targeted the RANDOM and
HANDMADE instance categories and were trained only on data from their target category.
In order to allow us to study SATzilla07’s performance on an even more heterogeneous
instance distribution, a third version of SATzilla07 was trained on data from all three
categories of the competition; we call this new category ALL. We did not construct a version
of SATzilla07 for the INDUSTRIAL category, because of time constraints and the limit of
three submissions per team. However, we built such a version after the submission deadline
and report results for it below.

All of our solvers were built using the design methodology detailed in Section 2. Each
of the following subsections corresponds to one step from this methodology.

3.1 Selecting Instances

In order to train empirical hardness models for any of the above scenarios, we needed
instances that would be similar to those used in the real competition. For this purpose
we used instances from the respective categories of all previous SAT competitions (2002,
2003, 2004, and 2005), as well as from the 2006 SAT Race (which only featured INDUSTRIAL
instances). Instances that were repeated in previous competitions were also repeated in our
data sets. Overall, there were 4 811 instances: 2 300 instances in category RANDOM, 1 490 in
category HANDMADE and 1 021 in category INDUSTRIAL; of course, category ALL included all
of these instances. About 68% of the instances were solved within 1 200 CPU seconds on
our reference machine by at least one of the seven solvers we used (see Section 3.2 below;
the computational infrastructure used for our experiments is described in Section 3.4). All
instances that were not solved by any of these solvers were dropped from our data set.

We randomly split our data set into training, validation and test sets at a ratio of
40:30:30. All parameter tuning and intermediate model testing was performed on the vali-
dation set; the test set was used only to generate the final results reported here.

In this section, we use the same SATzilla07 methodology for building multiple portfolios
for different sets of benchmark instances. In order to avoid confusion between the changes
to our overall methodology discussed later and differences in training data, we treat the
data set as an input parameter for SATzilla. For the data set comprising the previously
mentioned RANDOM instances, we write Dr; similarly, we write Dh for HANDMADE and Di for
INDUSTRIAL; for ALL, we simply write D.

3.2 Selecting Solvers

To decide what algorithms to include in our portfolio, we considered a wide variety of solvers
that had been entered into previous SAT competitions and into the 2006 SAT Race. We
manually analyzed the results of these competitions, identifying all algorithms that yielded
the best performance on some subset of instances. Since our focus was on both satisfiable
and unsatisfiable instances, and since we were concerned about the cost of misclassifications,

575

Xu, Hutter, Hoos & Leyton-Brown

we did not choose any incomplete algorithms at this stage; however, we revisit this issue in
Section 5.4. In the end, we selected the seven high-performance solvers shown in Table 1 as
candidates for the SATzilla07 portfolio. Like the data set used for training, we treat the
component solvers as an input to SATzilla, and denote the set of solvers from Table 1 as
S.

Solver Reference

Eureka Nadel, Gordon, Palti, and Hanna (2006)
Kcnfs06 Dubois and Dequen (2001)

March dl04 Heule et al. (2004)
Minisat 2.0 Eén and Sörensson (2006)
Rsat 1.03 Pipatsrisawat and Darwiche (2006)
Vallst Vallstrom (2005)

Zchaff Rand Mahajan, Fu, and Malik (2005)

Table 1: The seven solvers in SATzilla07; we refer to this set of solvers as S.

In previous work (Xu et al., 2007b), we considered using the Hypre preprocessor (Bac-
chus & Winter, 2003) before applying one of SATzilla’s component solvers; this effectively
doubled our number of component solvers. For this work, we re-evaluated this option and
found performance to basically remain unchanged without preprocessing (performance dif-
ferences in terms of instances solved, runtime, and SAT competition score were smaller
than 1%, and even this small difference was not consistently in favor of using the Hypre
preprocessor). For this reason, we dropped preprocessing in the work reported here.

3.3 Choosing Features

The choice of instance features has a significant impact on the performance of empirical
hardness models. Good features need to correlate well with (solver-specific) instance hard-
ness and need to be cheap to compute, since feature computation time counts as part of
SATzilla07’s runtime.

Nudelman et al. (2004a) introduced 84 features for SAT instances. These features can
be classified into nine categories: problem size, variable-clause graph, variable graph, clause
graph, balance, proximity to Horn formulae, LP-based, DPLL probing and local search
probing features — the code for this last group of features was based on UBCSAT (Tompkins
& Hoos, 2004). In order to limit the time spent computing features, we slightly modified
the feature computation code of Nudelman et al. (2004a). For SATzilla07, we excluded a
number of computationally expensive features, such as LP-based and clause graph features.
The computation time for each of the local search and DPLL probing features was limited
to 1 CPU second, and the total feature computation time per instance was limited to 60
CPU seconds. After eliminating some features that had the same value across all instances
and some that were too unstable given only 1 CPU second of local search probing, we ended
up using the 48 raw features summarized in Figure 2.

576

SATzilla: Portfolio-based Algorithm Selection for SAT

Problem Size Features:
1. Number of clauses: denoted c

2. Number of variables: denoted v

3. Ratio: c/v

Variable-Clause Graph Features:
4-8. Variable nodes degree statistics: mean,
variation coefficient, min, max and entropy.
9-13. Clause nodes degree statistics: mean, varia-
tion coefficient, min, max and entropy.

Variable Graph Features:
14-17. Nodes degree statistics: mean, variation
coefficient, min and max.

Balance Features:
18-20. Ratio of positive and negative literals in each
clause: mean, variation coefficient and entropy.
21-25. Ratio of positive and negative occurrences of
each variable: mean, variation coefficient, min, max
and entropy.
26-27. Fraction of binary and ternary clauses

Proximity to Horn Formula:
28. Fraction of Horn clauses
29-33. Number of occurrences in a Horn clause for
each variable: mean, variation coefficient, min, max
and entropy.

DPLL Probing Features:
34-38. Number of unit propagations: computed at
depths 1, 4, 16, 64 and 256.
39-40. Search space size estimate: mean depth to
contradiction, estimate of the log of number of nodes.

Local Search Probing Features:
41-44. Number of steps to the best local minimum
in a run: mean, median, 10th and 90th percentiles for
SAPS.
45. Average improvement to best in a run: mean
improvement per step to best solution for SAPS.
46-47. Fraction of improvement due to first local
minimum: mean for SAPS and GSAT.
48. Coefficient of variation of the number of un-
satisfied clauses in each local minimum: mean over
all runs for SAPS.

Figure 2: The features used for building SATzilla07; these were originally introduced and described
in detail by Nudelman et al. (2004a).

3.4 Computing Features and Runtimes

All our experiments were performed using a computer cluster consisting of 55 machines with
dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, running Suse Linux 10.1. As in
the SAT competition, all runs of any solver that exceeded a certain runtime were aborted
(censored) and recorded as such. In order to keep the computational cost manageable, we
chose a cutoff time of 1 200 CPU seconds.

3.5 Identifying Pre-solvers

As described in Section 2, in order to solve easy instances quickly without spending any time
for the computation of features, we use one or more pre-solvers: algorithms that are run
unconditionally but briefly before features are computed. Good algorithms for pre-solving
solve a large proportion of instances quickly. Based on an examination of the training
runtime data, we chose March dl04 and the local search algorithm SAPS (Hutter et al., 2002)
as pre-solvers for RANDOM, HANDMADE and ALL; for SAPS, we used the UBCSAT implementation
(Tompkins & Hoos, 2004) with the best fixed parameter configuration identified by Hutter
et al. (2006). (Note that while we did not consider incomplete algorithms for inclusion in
the portfolio, we did use one here.)

Within 5 CPU seconds on our reference machine, March dl04 solved 47.8%, 47.7%, and
43.4% of the instances in our RANDOM, HANDMADE and ALL data sets, respectively. For the
remaining instances, we let SAPS run for 2 CPU seconds, because we found its runtime to be
almost completely uncorrelated with March dl04 (Pearson correlation coefficient r = 0.118

577

Xu, Hutter, Hoos & Leyton-Brown

RANDOM HANDMADE INDUSTRIAL ALL
Solver Time Solved Time Solved Time Solved Time Solved

Eureka 770 40% 561 59% 330 84% 598 57%
Kcnfs06 319 81% 846 33% 1050 13% 658 50%

March dl04 269 85% 311 80% 715 42% 394 73%
Minisat 2.0 520 62% 411 73% 407 76% 459 69%
Rsat 1.03 522 62% 412 72% 345 81% 445 70%
Vallst 757 40% 440 67% 582 59% 620 54%

Zchaff Rand 802 36% 562 58% 461 71% 645 51%

Table 2: Average runtime (in CPU seconds on our reference machine) and percentage of instances
solved by each solver for all instances that were solved by at least one of our seven com-
ponent solvers within the cutoff time of 1 200 seconds.

for the 487 remaining instances solved by both solvers). In this time, SAPS solved 28.8%,
5.3%, and 14.5% of the remaining RANDOM, HANDMADE and ALL instances, respectively. For
the INDUSTRIAL category, we chose to run Rsat 1.03 for 2 CPU seconds as a pre-solver,
which resulted in 32.0% of the instances in our INDUSTRIAL set being solved. Since SAPS
solved less than 3% of the remaining instances within 2 CPU seconds, it was not used as a
pre-solver in this category.

3.6 Identifying the Backup Solver

The performance of all our solvers from Table 1 is reported in Table 2. We computed
average runtime (here and in the remainder of this work) counting timeouts as runs that
completed at the cutoff time of 1 200 CPU seconds. As can be seen from this data, the
best single solver for ALL, RANDOM and HANDMADE was always March dl04. For categories
RANDOM and HANDMADE, we did not encounter instances for which the feature computation
timed out. Thus, we employed the winner-take-all solver March dl04 as a backup solver
in both of these domains. For categories INDUSTRIAL and ALL, Eureka performed best on
those instances that remained unsolved after pre-solving and for which feature computation
timed out; we thus chose Eureka as the backup solver.

3.7 Learning Empirical Hardness Models

We learned empirical hardness models for predicting each solver’s runtime as described in
Section 2, using the procedure of Schmee and Hahn (1979) for dealing with censored data
and also employing hierarchical hardness models.

3.8 Solver Subset Selection

We performed automatic exhaustive subset search as outlined in Section 2 to determine
which solvers to include in SATzilla07. Table 3 describes the solvers that were selected for
each of our four data sets.

578

SATzilla: Portfolio-based Algorithm Selection for SAT

Data Set Solvers used in SATzilla07

RANDOM March dl04, Kcnfs06, Rsat 1.03
HANDMADE Kcnfs06, March dl04, Minisat 2.0, Rsat 1.03, Zchaff Rand

INDUSTRIAL Eureka, March dl04, Minisat 2.0, Rsat 1.03
ALL Eureka, Kcnfs06, March dl04, Minisat 2.0, Zchaff Rand

Table 3: Results of subset selection for SATzilla07.

4. Evaluation I: Performance Analysis of SATzilla07

In this section, we evaluate SATzilla07 for our four data sets. Since we use the SAT Compe-
tition as a running example throughout this paper, we start by describing how SATzilla07
fared in the 2007 SAT Competition. We then describe more comprehensive evaluations of
each SATzilla07 version in which we compared it in greater detail against its component
solvers.

4.1 SATzilla07 in the 2007 SAT Competition

We submitted three versions of SATzilla07 to the 2007 SAT Competition, namely
SATzilla07(S,Dr) (i.e., SATzilla07 using the seven component solvers from Ta-
ble 1 and trained on RANDOM instances) SATzilla07(S,Dh) (trained on HANDMADE), and
SATzilla07(S,D) (trained on ALL). Table 4 shows the results of the 2007 SAT Competi-
tion for the RANDOM and HANDMADE categories. In the RANDOM category, SATzilla07(S,Dr)
won the gold medal in the subcategory SAT+UNSAT, and came third in the UNSAT sub-
category. The SAT subcategory was dominated by local search solvers. In the HANDMADE
category, SATzilla07(S,Dh) showed excellent performance, winning the SAT+UNSAT and
UNSAT subcategories, and placing second in the SAT subcategory.

Category Rank SAT & UNSAT SAT UNSAT

1st SATzilla07(S,Dr) Gnovelty+ March ks
RANDOM 2nd March ks Ag2wsat0 Kcnfs04

3rd Kcnfs04 Ag2wsat+ SATzilla07(S,Dr)

1st SATzilla07(S,Dh) March ks SATzilla07(S,Dh)
HANDMADE 2nd Minisat07 SATzilla07(S,Dh) TTS

3rd MXC Minisat07 Minisat07

Table 4: Results from the 2007 SAT Competition. More that 30 solvers competed in each
category.

Since the general portfolio SATzilla07(S,D) included Eureka (whose source code is not
publicly available) it was run in the demonstration division only. The official competition
results (available at http://www.cril.univ-artois.fr/SAT07/) show that this solver,
which was trained on instances from all three categories, performed very well, solving more

579

Xu, Hutter, Hoos & Leyton-Brown

Solver Average runtime [s] Solved percentage Performance score

Picosat 398 82 31484
TinisatElite 494 71 21630
Minisat07 484 72 34088
Rsat 2.0 446 75 23446

SATzilla07(S,Di) 346 87 29552

Table 5: Performance comparison of SATzilla07(S,Di) and winners of the 2007 SAT Competition
in the INDUSTRIAL category. The performance scores are computed using the 2007 SAT
Competition scoring function with a cutoff time of 1 200 CPU seconds. SATzilla07(S,Di)

is exactly the same solver as shown in Figure 6 and was trained without reference to the
2007 SAT Competition data.

instances of the union of the three categories than any other solver (including the other two
versions of SATzilla07).

We did not submit a version of SATzilla07 to the 2007 SAT Competition that was
specifically trained on instances from the INDUSTRIAL category. However, we constructed
such a version, SATzilla07(S,Di), after the submission deadline and here report on its
performance. Although SATzilla07(S,Di) did not compete in the actual 2007 SAT Com-
petition, we can approximate how well it would have performed in a simulation of the
competition, using the same scoring function as in the competition (described in detail
in Section 5.3), based on a large number of competitors, namely the 19 solvers listed in
Tables 1, 9 and 10, plus SATzilla07(S,Di).

Table 5 compares the performance of SATzilla07 in this simulation of the competition
against all solvers that won at least one medal in the INDUSTRIAL category of the 2007
SAT Competition: Picosat, TinisatElite, Minisat07 and Rsat 2.0. There are some
differences between our test environment and that used in the real SAT competition: our
simulation ran on different machines and under a different operating system; it also used a
shorter cutoff time and fewer competitors to evaluate the solver’s performance scores. Be-
cause of these differences, the ranking of solvers in our simulation is not necessarily the same
as it would have been in the actual competition. Nevertheless, our results leave no doubt
that SATzilla07 can compete with the state-of-the-art SAT solvers in the INDUSTRIAL
category.

4.2 Feature Computation

The actual time required to compute our features varied from instance to instance. In the
following, we report runtimes for computing features for the instance sets defined in Section
3.1. Typically, feature computation took at least 3 CPU seconds: 1 second each for local
search probing with SAPS and GSAT, and 1 further second for DPLL probing. However, for
some small instances, the limit of 300 000 local search steps was reached before one CPU
second had passed, resulting in feature computation times lower than 3 CPU seconds. For
most instances from the RANDOM and HANDMADE categories, the computation of the other
features took an insignificant amount of time, resulting in feature computation times just

580

SATzilla: Portfolio-based Algorithm Selection for SAT

0 1 2 3 4 5
0

20

40

60

80

100

Feature Time [CPU sec]

%
 In

st
an

ce
s

F
in

is
he

d

0 10 20 30 40 50 60
0

20

40

60

80

100

Feature Time [CPU sec]

%
 In

st
an

ce
s

F
in

is
he

d

Figure 3: Variability in feature computation times. The y-axis denotes the percentage of instances
for which feature computation finished in at most the time given by the x-axis. Left:
RANDOM, right: INDUSTRIAL. Note the different scales of the x-axes.

above 3 CPU seconds. However, for many instances from the INDUSTRIAL category, the
feature computation was quite expensive, with times up to 1 200 CPU seconds for some
instances. We limited the feature computation time to 60 CPU seconds, which resulted
in time-outs for 19% of the instances from the INDUSTRIAL category (but for no instances
from the other categories). For instances on which the feature computation timed out, the
backup solver was used.

Figure 3 illustrates this variation in feature computation time. For category RANDOM
(left pane), feature computation never took significantly longer than three CPU seconds.
In contrast, for category INDUSTRIAL, there was a fairly high variation, with the feature
computation reaching the cut-off time of 60 CPU seconds for 19% of the instances. The
average total feature computation times for categories RANDOM, HANDMADE, and INDUSTRIAL
were 3.01, 4.22, and 14.4 CPU seconds, respectively.

4.3 RANDOM Category

For each category, we evaluated our SATzilla portfolios by comparing them against the
best solvers from Table 1 for the respective category. Note that the solvers in this table are
exactly the candidate solvers used in SATzilla.

Figure 4 shows the performance of SATzilla07 and the top three single solvers from
Table 1 on category RANDOM. Note that we count the runtime of pre-solving, as well as the
feature computation time, as part of SATzilla’s runtime. Oracle(S) provides an upper
bound on the performance that could be achieved by SATzilla: its runtime is that of a
hypothetical version of SATzilla that makes every decision in an optimal fashion, and
without any time spent computing features. Furthermore, it can also choose not to run
the pre-solvers on an instance. Essentially, Oracle(S) thus indicates the performance that
would be achieved by only running the best algorithm for each single instance. In Figure 4
(right), the horizontal line near the bottom of the plot shows the time SATzilla07(S,Dr)
allots to pre-solving and (on average) to feature computation.

581

Xu, Hutter, Hoos & Leyton-Brown

0

100

200

300

400

500

600

Kcnfs06

March_dl04

Rsat1.03

SATzilla
07

Oracle

A
ve

ra
ge

 R
un

tim
e

[C
P

U
 s

ec
]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

AvgFeaturePre−solving

Oracle(S)
SATzilla07(S,D

r
)

Kcnfs06
March_dl04
Rsat1.03

Figure 4: Left: Average runtime, right: runtime cumulative distribution function (CDF) for dif-
ferent solvers on RANDOM; the average feature computation time was 2.3 CPU seconds
(too insignificant to be visible in SATzilla07’s runtime bar). All other solvers’ CDFs are
below the ones shown here (i.e., at each given runtime the maximum of the CDFs for the
selected solvers is an upper bound for the CDF of any of the solvers considered in our
experiments).

0

50

100

150

200

250

300

350

400

450

500

March_dl04

Minisat2.0
Vallst

SATzilla
07

Oracle

A
ve

ra
ge

 R
un

tim
e

[C
P

U
 s

ec
]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving AvgFeature

Oracle(S)
SATzilla07(S,D

h
)

March_dl04
Minisat2.0
Vallst

Figure 5: Left: Average runtime, right: runtime CDF for different solvers on HANDMADE; the av-
erage feature computation time was 4.5 CPU seconds (shown as a white box on top of
SATzilla07’s runtime bar). All other solvers’ CDFs are below the ones shown here.

Overall, SATzilla07(S,Dr) achieved very good performance on data set RANDOM: It was
more than three times faster on average than its best component solver, March dl04 (see
Figure 4, left), and also dominated it in terms of fraction of instances solved, solving 20%
more instances within the cutoff time (see Figure 4, left). The runtime CDF plot also shows
that the local-search-based pre-solver SAPS helped considerably by solving more than 20%
of instances within 2 CPU seconds (this is reflected in the sharp increase in solved instances
just before feature computation begins).

582

SATzilla: Portfolio-based Algorithm Selection for SAT

0

50

100

150

200

250

300

350

400

450

Eureka

Minisat2.0

Rsat1.03

SATzilla
07

Oracle

A
ve

ra
ge

 R
un

tim
e

[C
P

U
 s

ec
]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving AvgFeature

Oracle(S)
SATzilla07(S,D

i
)

Eureka
Minisat2.0
Rsat1.03

Figure 6: Left: Average runtime, right: runtime CDF for different solvers on INDUSTRIAL; the
average feature computation time was 14.1 CPU seconds (shown as a white box on top
of SATzilla07’s runtime bar). All other solvers’ CDFs are below the ones shown here.

4.4 HANDMADE Category

SATzilla07’s performance results for the HANDMADE category were also very good. Using the
five component solvers listed in Table 3, its average runtime was about 45% less than that
of the best single component solver (see Figure 5, left). The CDF plot in Figure 5 (right)
shows that SATzilla07 dominated all its components and solved 13% more instances than
the best non-portfolio solver.

4.5 INDUSTRIAL Category

We performed the same experiment for INDUSTRIAL instances as for the other categories in
order to study SATzilla07’s performance compared to its component solvers. SATzilla07
was more than 23% faster on average than the best component solver, Eureka (see Figure 6
(left)). Moreover, Figure 6 (right) shows that SATzilla07 also solved 9% more instances
than Eureka within the cutoff time of 1 200 CPU seconds. Note that in this category, the
feature computation timed out on 15.5% of the test instances after 60 CPU seconds; Eureka
was used as a backup solver in those cases.

4.6 ALL

For our final category, ALL, a heterogeneous category that included the instances from all the
above categories, a portfolio approach is especially appealing. SATzilla07 performed very
well in this category, with an average runtime of less than half that of the best single solver,
March dl04 (159 vs. 389 CPU seconds, respectively). It also solved 20% more instances than
any non-portfolio solver within the given time limit of 1 200 CPU seconds (see Figure 7).

583

Xu, Hutter, Hoos & Leyton-Brown

0

50

100

150

200

250

300

350

400

450

500

March_dl04

Minisat2.0

Rsat1.03

SATzilla
07

Oracle

A
ve

ra
ge

 R
un

tim
e

[C
P

U
 s

ec
]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving AvgFeature

Oracle(S)
SATzilla07(S,D)
March_dl04
Minisat2.0
Rsat1.03

Figure 7: Left: Average runtime; right: runtime CDF for different solvers on ALL; the aver-
age feature computation time was 6.7 CPU seconds (shown as a white box on top of
SATzilla07’s runtime bar). All other solvers’ CDFs are below the ones shown here.

4.7 Classifier Accuracy

The satisfiability status classifiers trained on the various data sets were surprisingly effective
in predicting satisfiability of RANDOM and INDUSTRIAL instances, where they reached classi-
fication accuracies of 94% and 92%, respectively. For HANDMADE and ALL, the classification
accuracy was still considerably better than random guessing, at 70% and 78%, respectively.

Interestingly, our classifiers more often misclassified unsatisfiable instances as SAT than
satisfiable instances as UNSAT. This effect can be seen from the confusion matrices in
Table 6; it was most pronounced in the HANDMADE category, where the overall classification
quality was also lowest: 40% of the HANDMADE instances that were classified as SAT are in
fact unsatisfiable, while only 18% of the instances that were classified as UNSAT are in fact
satisfiable.

5. Design II: SATzilla Beyond 2007

Despite SATzilla07’s success in the 2007 SAT Competition, there was still room for im-
provement. This section describes a number of design enhancements over SATzilla07 that
underly the new SATzilla versions, SATzilla07+ and SATzilla07∗, which we describe in
detail in Section 6 and evaluate experimentally in Section 7.

5.1 Automatically Selecting Pre-solvers

In SATzilla07, we identified pre-solvers and their cutoff times manually. There are several
limitations to this approach. First and foremost, manual pre-solver selection does not
scale well. If there are many candidate solvers, manually finding the best combination of
pre-solvers and cutoff times can be difficult and requires significant amounts of valuable
human time. In addition, the manual pre-solver selection we performed for SATzilla07
concentrated solely on solving a large number of instances quickly and did not take into

584

SATzilla: Portfolio-based Algorithm Selection for SAT

satisfiable unsatisfiable

classified SAT 91% 9%

classified UNSAT 5% 95%

RANDOM data set

satisfiable unsatisfiable

classified SAT 60% 40%

classified UNSAT 18% 82%

HANDMADE data set

satisfiable unsatisfiable

classified SAT 81% 19%

classified UNSAT 5% 95%

INDUSTRIAL data set

satisfiable unsatisfiable

classified SAT 65% 35%

classified UNSAT 12% 88%

ALL data set

Table 6: Confusion matrices for the satisfiability status classifier on data sets RANDOM, HANDMADE,
INDUSTRIAL and ALL.

account the pre-solvers’ effect on model learning. In fact, there are three consequences of
pre-solving.

1. Pre-solving solves some instances quickly before features are computed. In the context
of the SAT competition, this improves SATzilla’s scores for easy problem instances
due to the “speed purse” component of the SAT competition scoring function. (See
Section 5.3 below.)

2. Pre-solving increases SATzilla’s runtime on instances not solved during pre-solving
by adding the pre-solvers’ time to every such instance. Like feature computation itself,
this additional cost reduces SATzilla’s scores.

3. Pre-solving filters out easy instances, allowing our empirical hardness models to be
trained exclusively on harder instances.

While we considered (1) and (2) in our manual selection of pre-solvers, we did not consider
(3), namely the fact that the use of different pre-solvers and/or cutoff times results in differ-
ent training data and hence in different learned models, which can also affect a portfolio’s
effectiveness.

Our new automatic pre-solver selection technique works as follows. We committed in
advance to using a maximum of two pre-solvers: one of three complete search algorithms
and one of three local search algorithms. The three candidates for each of the search
approaches are automatically determined for each data set as those with highest score on
the validation set when run for a maximum of 10 CPU seconds. We also use a number
of possible cutoff times, namely 2, 5 and 10 CPU seconds, as well as 0 seconds (i.e., the
pre-solver is not run at all) and consider both orders in which the two pre-solvers can be
run. For each of the resulting 288 possible combinations of two pre-solvers and cutoff times,
SATzilla’s performance on the validation data is evaluated by performing steps 6, 7 and 8
of the general methodology presented in Section 2:

585

Xu, Hutter, Hoos & Leyton-Brown

6. determine the backup solver for selection when features time out;

7. construct an empirical hardness model for each algorithm; and

8. automatically select the best subset of algorithms to use as part of SATzilla.

The best-performing subset found in this last step—evaluated on validation data—is se-
lected as the algorithm portfolio for the given combination of pre-solver / cutoff time
pairs. Overall, this method aims to choose the pre-solver configuration that yields the
best-performing portfolio.

5.2 Randomized Solver Subset Selection for a Large Set of Component Solvers

Our methodology from Section 2 relied on exhaustive subset search for choosing the best
combination of component solvers. For a large number of component solvers, this is impossi-
ble (N component solvers would require the consideration of 2N solver sets, for each of which
a model would have to be trained). The automatic pre-solver selection methods described
in Section 5.1 above further worsens this situation: solver selection must be performed for
every candidate configuration of pre-solvers, because new pre-solver configurations induce
new models.

As an alternative to exhaustively considering all subsets, we implemented a randomized
iterative improvement procedure to search for a good subset of solvers. The local search
neighbourhood used by this procedure consists of all subsets of solvers that can be reached
by adding or dropping a single component solver. Starting with a randomly selected subset
of solvers, in each search step, we consider a neighbouring solver subset selected uniformly
at random and accept it if validation set performance increases; otherwise, we accept the
solver subset anyway with a probability of 5%. Once 100 steps have been performed with
no improving step, a new run is started by re-initializing the search at random. After 10
such runs, the search is terminated and the best subset of solvers encountered during the
search process is returned. Preliminary evidence suggests that this local search procedure
efficiently finds very good subsets of solvers.

5.3 Predicting Performance Score Instead of Runtime

Our general portfolio methodology is based on empirical hardness models, which predict an
algorithm’s runtime. However, one might not simply be interested in using a portfolio to pick
the solver with the lowest expected runtime. For example, in the SAT competition, solvers
are evaluated based on a complex scoring function that depends only partly on a solver’s
runtime. Although the idiosyncracies of this scoring function are somewhat particular to the
SAT competition, the idea that a portfolio should be built to optimize a performance score
more complex than runtime has wide applicability. In this section we describe techniques
for building models that predict such a performance score directly.

One key issue is that—as long as we depend on standard supervised learning methods
that require independent and identically distributed training data—we can only deal easily
with scoring functions that actually associate a score with each single instance and combine
the partial scores of all instances to compute the overall score. Given training data labeled
with such a scoring function, SATzilla can simply learn a model of the score (rather than

586

SATzilla: Portfolio-based Algorithm Selection for SAT

runtime) and then choose the solver with highest predicted score. Unfortunately, the scoring
function used in the 2007 SAT Competition does not satisfy this independence property: the
score a solver attains for solving a given instance depends in part on its (and, indeed, other
solvers’) performance on other, similar instances. More specifically, in the SAT competition
each instance P has a solution purse SolutionP and a speed purse SpeedP ; all instances in
a given series (typically 5–40 similar instances) share one series purse SeriesP . Algorithms
are ranked by summing three partial scores derived from these purses.

1. For each problem instance P , its solution purse is equally distributed between the
solvers Si that solve the instance within the cutoff time (thereby rewarding robustness
of a solver).

2. The speed purse for P is divided among a set of solvers S that solved the instance as
Score(P, Si) = SpeedP×SF(P,Si)

ΣjSF(P,Sj) , where the speed factor SF(P, S) = timeLimit(P)
1+timeUsed(P,S) is a

measure of speed that discounts small absolute differences in runtime.

3. The series purse for each series is divided equally and distributed between the solvers
Si that solved at least one instance in that series.5

Si’s partial score from problem P ’s solution and speed purses solely depends on the solver’s
own runtime for P and the runtime of all competing solvers for P . Thus, given the runtimes
of all competing solvers as part of the training data, we can compute the score contributions
from the solution and speed purses of each instance P , and these two components are
independent across instances. In contrast, since a solver’s share of the series purse will
depend on its performance on other instances in the series, its partial score received from
the series purse for solving one instance is not independent of its performance on other
instances.

Our solution to this problem is to approximate an instance’s share of the series purse
score by an independent score. If N instances in a series are solved by any of SATzilla’s
component solvers, and if n solvers solve at least one of the instances in that series, we assign
a partial score of SeriesP/(N × n) to each solver Si (where i = 1, . . . , n) for each instance
in the series it solved. This approximation of a non-independent score as independent is
not always perfect, but it is conservative because it defines a lower-bound on the partial
score from the series purse. Predicted scores will only be used in SATzilla to choose
between different solvers on a per-instance basis. Thus, the partial score of a solver for an
instance should reflect how much it would contribute to SATzilla’s score. If SATzilla were
perfect (i.e., for each instance, it always selected the best algorithm) our score approximation
would be correct: SATzilla would solve all N instances from the series that any component
solver can solve, and thus would actually achieve the series score SeriesP/(N × n)×N =
SeriesP/n. If SATzilla performed very poorly and did not solve any instance in the series,
our approximation would also be exact, since it would estimate the partial series score as
zero. Finally, if SATzilla were to pick successful solvers for some (say, M) but not all
instances of the series that can be solved by its component solvers (i.e., M < N), we would
underestimate the partial series purse, since SeriesP/(N × n)×M < SeriesP/n.

5. See http://www.satcompetition.org/2007/rules07.html for further details.

587

Xu, Hutter, Hoos & Leyton-Brown

While our learning techniques require an approximation of the performance score as
an independent score, our experimental evaluations of solvers’ scores employ the actual
SAT competition scoring function. As explained previously, in the SAT competition, the
performance score of a solver depends on the score of all other solvers in the competition. In
order to simulate a competition, we select a large number of solvers and pretend that these
“reference solvers” and SATzilla are the only solvers in the competition; throughout our
analysis we use the 19 solvers listed in Tables 1, 9 and 10. This is not a perfect simulation,
since the scores change somewhat when different solvers are added to or removed from
the competition. However, we obtain much better approximations of performance score by
following the methodology outlined here than by using cruder measures, such as learning
models to predict mean runtime or the numbers of benchmark instances solved.

Finally, predicting performance score instead of runtime has a number of implications
for the components of SATzilla. First, notice that we can compute an exact score for each
algorithm and instance, even if the algorithm times out unsuccessfully or crashes—in these
cases, the score from all three components is simply zero. When predicting scores instead
of runtimes, we thus do not need to rely on censored sampling techniques (see Section 2.2)
anymore. Secondly, notice that the oracles for maximizing SAT competition score and for
minimizing runtime are identical, since always using the solver with the smallest runtime
guarantees that the highest values in all three components are obtained.

5.4 Introducing Local Search Solvers into SATzilla

SAT solvers based on local search are well known to be effective on certain classes of
satisfiable instances. In fact, there are classes of hard random satisfiable instances that
only local search solvers can solve in a reasonable amount of time (Hoos & Stützle, 2005).
However, all high-performance local-search-based SAT solvers are incomplete and cannot
solve unsatisfiable instances. In previous versions of SATzilla we avoided using local search
algorithms because of the risk that we would select them for unsatisfiable instances, where
they would run uselessly until reaching the cutoff time.

When we shift to predicting and optimizing performance score instead of runtime, this
issue turns out not to matter anymore. Treating every solver as a black box, local search
solvers always get a score of exactly zero on unsatisfiable instances since they are guaranteed
not to solve them within the cutoff time. (Of course, they do not need to be run on an
instance during training if the instance is known to be unsatisfiable.) Hence, we can build
models for predicting the score of local search solvers using exactly the same methods as
for complete solvers.

5.5 More General Hierarchical Hardness Models

Our benchmark set ALL consists of all instances from the categories RANDOM, HANDMADE and
INDUSTRIAL. In order to further improve performance on this very heterogeneous instance
distribution, we extend our previous hierarchical hardness model approach (predicting sat-
isfiability status and then using a mixture of two conditional models) to the more general
scenario of six underlying empirical hardness models (one for each combination of category
and satisfiability status). The output of the general hierarchical model is a linear weighted
combination of the output of each component. As described in Section 2.3, we can approx-

588

SATzilla: Portfolio-based Algorithm Selection for SAT

“Old” instances from before 2007 “New” instances from 2007

Training (40%) To (1 925 instances) Tn (347 instances)
Validation (30%) Vo (1 443 instances) Vn (261 instances)

Test (30%) Eo (1 443 instances) En (261 instances)

Table 7: Instances from before 2007 and from 2007 randomly split into training (T), validation (V)
and test (E) data sets. These sets include instances for all categories: RANDOM, HANDMADE
and INDUSTRIAL.

Data set Training Validation Test

D To Vo Eo

D′ To Vo Eo ∪ En

D+ To ∪ Tn Vo ∪ Vn Eo ∪ En

Table 8: Data sets used in our experiments. D was used in our first series of experiments in
Section 4, D′ and D+ are used in our second series of experiments. Note that data sets
D and D′ use identical training and validation data, but different test data.

imate the model selection oracle by a softmax function whose parameters are estimated
using EM.

6. Construction II: Building the Improved SATzilla Versions

In this section we describe the construction of new SATzilla versions that incorporate new
design elements from the previous section. We also describe two versions based on our old
design, which we use to evaluate the impact of our changes.

6.1 Benchmark Instances

In addition to all instances used in Section 3.1, we added the 869 instances from the 2007
SAT Competition into our four data sets. Overall, this resulted in 5 680 instances: 2 811
instances in category RANDOM, 1 676 in category HANDMADE and 1 193 in category INDUSTRIAL.
Recall that in Section 3.1 we dropped instances that could not be solved by any of the seven
solvers in Table 1. We follow the same methodology here, but extend our solver set by the
12 solvers in Tables 9 and 10. Now, 71.8% of the instances can be solved by at least one of
our 19 solvers within the cutoff time of 1 200 CPU seconds on our reference machine; the
remaining instances were excluded from our analysis.

We randomly split the above benchmark sets into training, validation and test sets,
as described in Table 7. All parameter tuning and intermediate testing was performed on
validation sets, and test sets were used only to generate the final results reported here.

We will be interested in analyzing SATzilla’s performance as we vary the data that
was used to train it. To make it easy to refer to our different data sets, we describe them
here and assign names (D, D′, D+) to them. Table 7 shows the division of our data into

589

Xu, Hutter, Hoos & Leyton-Brown

Solver Reference

Kcnfs04 Dequen and Dubois (2007)
TTS Spence (2007)

Picosat Biere (2007)
MXC Bregman and Mitchell (2007)

March ks Heule and v. Maaren (2007)
TinisatElite Huang (2007)
Minisat07 Sörensson and Eén (2007)
Rsat 2.0 Pipatsrisawat and Darwiche (2007)

Table 9: Eight complete solvers from the 2007 SAT Competition.

Solver Reference

Ranov Pham and Anbulagan (2007)
Ag2wsat0 C. M. Li and Zhang (2007)
Ag2wsat+ Wei, Li, and Zhang (2007)
Gnovelty+ Pham and Gretton (2007)

Table 10: Four local search solvers from the 2007 SAT Competition.

“old” (pre-2007) and “new” (2007) instances. Table 8 shows how we combined this data
to construct the three data sets we use for evaluation. Data set D is the one introduced
and used in Section 3.1: it uses only pre-2007 instances for training, validation and testing.
Data set D′ uses the same training and validation data sets, but differs in its test sets, which
include both old and new instances. Data set D+ combines both old and new instances in
its training, validation and test sets.

Thus, note that data sets D′ and D+ use the same test sets, meaning that the perfor-
mance of portfolios trained using these different sets can be compared directly. However,
we expect a portfolio trained using D+ to be at least slightly better, because it has access
to more data. As before, when we want to refer to only the RANDOM instances from D+, we
write D+

r ; likewise, we write D+
h for HANDMADE, D+

i for INDUSTRIAL, etc.

6.2 Extending the Set of Component Solvers

In addition to the seven “old” solvers used in SATzilla07 (previously described in Table 1),
we considered eight new complete solvers and four local search solvers from the 2007 SAT
Competition for inclusion in our portfolio; these solvers are described in Tables 9 and 10.

As with training instances, we treat sets of candidate solvers as an input parameter of
SATzilla. The sets of candidate solvers used in our experiments are detailed in Table 11.

6.3 Different SATzilla Versions

Having just introduced new design ideas for SATzilla (Section 5), new training data (Sec-
tion 6.1) and new solvers (Section 6.2), we were interested in evaluating how much our port-
folio improved as a result. In order to gain insights into how much performance improvement

590

SATzilla: Portfolio-based Algorithm Selection for SAT

Name of Set Solvers in the Set

S all 7 solvers from Table 1
S+ all 15 solvers from Tables 1 and 9
S++ all 19 solvers from Tables 1, 9 and 10

Table 11: Solver sets used in our second series of experiments.

SATzilla version Description

SATzilla07(S,D′) This is the version we entered into the 2007 SAT Competition (Section 3),
but evaluated on an extended test set.

SATzilla07(S+,D+) This version is built using the same design as described in Section 3, but
includes new complete solvers (Table 9) and new data (Section 6.1).

SATzilla07+(S++,D+) In addition to new complete solvers and data, this version uses local search
solvers (Table 10) and all of the new design elements from Section 5 except
“more general hierarchical hardness models” (Section 5.5).

SATzilla07∗(S++,D+) This version uses all solvers, all data and all new design elements. Unlike
for the other versions, we trained only one variant of this solver for use in
all data set categories.

Table 12: The different SATzilla versions evaluated in our second set of experiments.

was achieved by these different changes, we studied several intermediate SATzilla solvers,
which are summarized in Table 12.

Observe that all of these solvers were built using identical test data and were thus directly
comparable. We generally expected each solver to outperform its predecessors in the list.
The exception was SATzilla07∗(S++,D+): instead of aiming for increased performance,
this last solver was designed to achieve good performance across a broader range of instances.
Thus, we expected SATzilla07∗(S++,D+) to outperform the others on category ALL, but
not to outperform SATzilla07+(S++,D+) on the more specific categories.

6.4 Constructing SATzilla07+(S++,D+) and SATzilla07∗(S++,D+)

The construction of SATzilla07(S,D) was already described in Section 3;
SATzilla07(S,D’) differed in the test set we used to evaluate it, but was other-
wise identical. The construction of SATzilla07(S+,D+) was the same as that for
SATzilla07(S,D’), except that it relied on different solvers and corresponding training
data. SATzilla07+(S++,D+) and SATzilla07∗(S++,D+) incorporated the new tech-
niques introduced in Section 5. In this section we briefly describe how these solvers were
constructed.

We used the same set of features as for SATzilla07 (see Section 3.3). We also used the
same execution environment and cutoff times. Pre-solvers were identified automatically as
described in Section 5.1, using the (automatically determined) candidate solvers listed in
Table 13. The final sets of pre-solvers selected for each version of SATzilla are listed in
Section 7 (Tables 14, 17, 20 and 23). Based on the solvers’ scores on validation data sets,

591

Xu, Hutter, Hoos & Leyton-Brown

RANDOM HANDMADE INDUSTRIAL ALL

Complete Kcnfs06 March dl04 Rsat 1.03 Minisat07
Pre-solver March dl04 Vallst Picosat March ks
Candidates March ks March ks Rsat 2.0 March dl04

Local Search Ag2wsat0 Ag2wsat0 Ag2wsat0 SAPS
Pre-solver Gnovelty+ Ag2wsat+ Ag2wsat+ Ag2wsat0
Candidates SAPS Gnovelty+ Gnovelty+ Gnovelty+

Table 13: Pre-solver candidates for our four data sets. These candidates were automatically
chosen based on the scores on validation data achieved by running the respective
algorithms for a maximum of 10 CPU seconds.

we automatically determined the backup solvers for RANDOM, HANDMADE, INDUSTRIAL and
ALL to be March ks, March dl04, Eureka and Eureka, respectively.

We built models to predict the performance score of each algorithm. This score is well
defined even in case of timeouts and crashes; thus, there was no need to deal with censored
data. Like SATzilla07, SATzilla07+ used hierarchical empirical hardness models (Xu
et al., 2007a) with two underlying models (Msat and Munsat) for predicting a solver’s score.
For SATzilla07∗, we built more general hierarchical hardness models for predicting scores
as described in Section 5.5; these models were based on six underlying empirical hardness
models (Msat and Munsat trained on data from each SAT competition category).

We chose solver subsets based on the results of our local search procedure for sub-
set search as outlined in Section 5.2. The resulting final components of SATzilla07,
SATzilla07+ and SATzilla07∗ for each category are described in detail in the following
section.

7. Evaluation II: Performance Analysis of the Improved SATzilla Versions

In this section, we investigate the effectiveness of our new techniques by evaluating
the four SATzilla versions listed in Table 12: SATzilla07(S,D′), SATzilla07(S+,D+),
SATzilla07+(S++,D+) and SATzilla07∗(S++,D+). To evaluate their performance, we
constructed a simulated SAT competition using the same scoring function as in the 2007
SAT Competition, but differing in a number of important aspects. The participants in our
competition were the 19 solvers listed in Tables 1, 9, and 10 (all solvers were considered for
all categories), and the test instances were Eo∪En as described in Tables 7 and 8. Further-
more, our computational infrastructure (see Section 3.4) differed from the 2007 competition,
and we also used shorter cutoff times of 1200 seconds. For these reasons some solvers ranked
slightly differently in our simulated competition than in the 2007 competition.

7.1 RANDOM Category

Table 14 shows the configuration of the three different SATzilla versions designed for
the RANDOM category. Note that the automatic solver selection in SATzilla07+(S++,D+

r)
included different solvers than the ones used in SATzilla07(S+,D+

r); in particular, it chose

592

SATzilla: Portfolio-based Algorithm Selection for SAT

SATzilla version Pre-Solvers (time) Component solvers

SATzilla07(S,D′r) March dl04(5); SAPS(2) Kcnfs06, March dl04, Rsat 1.03

SATzilla07(S+,D+
r) March dl04(5); SAPS(2) Kcnfs06, March dl04, March ks,

Minisat07

SATzilla07+(S++,D+
r) SAPS(2); Kcnfs06(2) Kcnfs06, March ks, Minisat07, Ranov,

Ag2wsat+, Gnovelty+

Table 14: SATzilla’s configuration for the RANDOM category; cutoff times for pre-solvers are speci-
fied in CPU seconds.

three local search solvers, Ranov, Ag2wsat+, and Gnovelty+, that were not available to
SATzilla07. Also, the automatic pre-solver selection chose a different order and cutoff
time of pre-solvers than our manual selection: it chose to first run SAPS for two CPU
seconds, followed by two CPU seconds of Kcnfs06. Even though running the local search
algorithm SAPS did not help for solving unsatisfiable instances, we see in Figure 8 (left) that
SAPS solved many more instances than March dl04 in the first few seconds.

Table 15 shows the performance of different versions of SATzilla compared to the best
solvers in the RANDOM category. All versions of SATzilla outperformed every non-portfolio
solver in terms of average runtime and number of instances solved. SATzilla07+ and
SATzilla07∗, the variants optimizing score rather than another objective function, also
clearly achieved higher scores than the non-portfolio solvers. This was not always the case
for the other versions; for example, SATzilla07(S+,D+

r) achieved only 86.6% of the score
of the best solver, Gnovelty+ (where scores were computed based on a reference set of 20
reference solvers: the 19 solvers from Tables 1, 9, and 10, as well as SATzilla07(S+,D+

r)).
Table 15 and Figure 8 show that adding complete solvers and training data did not improve
SATzilla07 much. At the same time, substantial improvements were achieved by the
new mechanisms in SATzilla07+, leading to 11% more instances solved, a reduction of
average runtime by more than half, and an increase in score by over 50%. Interestingly, the
performance of the more general SATzilla07∗(S++,D+) trained on instance mix ALL and
tested on the RANDOM category was quite close to the best version of SATzilla specifically
designed for RANDOM instances, SATzilla07+(S++,D+

r). Note that due to their excellent
performance on satisfiable instances, the local search solvers in Table 15 (Gnovelty+ and
Ag2wsat variants) tended to have higher overall scores than the complete solvers (Kcnfs04
and March ks) even though they solved fewer instances and in particular could not solve any
unsatisfiable instance. In the 2007 SAT Competition, however, all winners of the random
SAT+UNSAT category were complete solvers, which lead us to speculate that local search
solvers were not considered in this category (in the random SAT category, all winners were
indeed local search solvers).

Figure 8 presents CDFs summarizing the performance of the best non-portfolio solvers,
SATzilla solvers and two oracles. All non-portfolio solvers omitted had CDFs below those
shown. As in Section 4, the oracles represent ideal versions of SATzilla that choose among
component solvers perfectly and without any computational cost. More specifically, given
an instance, an oracle picks the fastest algorithm; it is allowed to consider SAPS (with a

593

Xu, Hutter, Hoos & Leyton-Brown

Solver Avg. runtime [s] Solved [%] Performance score

Kcnfs04 852 32.1 38309
March ks 351 78.4 113666
Ag2wsat0 479 62.0 119919
Ag2wsat+ 510 59.1 110218
Gnovelty+ 410 67.4 131703

SATzilla07(S,D′r) 231 85.4 — (86.6%)
SATzilla07(S+,D+

r) 218 86.5 — (88.7%)
SATzilla07+(S++,D+

r) 84 97.8 189436 (143.8%)
SATzilla07∗(S++,D+) 113 95.8 — (137.8%)

Table 15: The performance of SATzilla compared to the best solvers on RANDOM. The cutoff time
was 1 200 CPU seconds; SATzilla07∗(S++,D+) was trained on ALL. Scores were com-
puted based on 20 reference solvers: the 19 solvers from Tables 1, 9, and 10, as well as one
version of SATzilla. To compute the score for each non-SATzilla solver, the SATzilla

version used as a member of the set of reference solvers was SATzilla07+(S++,D+
r).

Since we did not include SATzilla versions other than SATzilla07+(S++,D+
r) in the

set of reference solvers, scores for these solvers are incomparable to the other scores given
here, and therefore we do not report them. Instead, for each SATzilla solver, we indicate
in parentheses its performance score as a percentage of the highest score achieved by a
non-portfolio solver, given a reference set in which the appropriate SATzilla solver took
the place of SATzilla07+(S++,D+

r).

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving(07+(S++,D+
r
)) AvgFeature(07+(S++,D+

r
))

Oracle(S++)
SATzilla07+(S++,D+

r
)

March_dl04
March_ks
Gnovelty+

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving(07(S+,D+
r
),07(S,D’

r
)) AvgFeature(07(S+,D+

r
),07(S,D’

r
))

Pre−solving(others) AvgFeature(others)

Oracle(S++)
Oracle(S)

SATzilla07+(S++,D+
r
)

SATzilla07(S+,D+
r
)

SATzilla07(S,D’
r
)

SATzilla07*(S++,D+)

Figure 8: Left: CDFs for SATzilla07+(S++,D+
r) and the best non-portfolio solvers on RANDOM;

right: CDFs for the different versions of SATzilla on RANDOM shown in Table 14, where
SATzilla07∗(S++,D+) was trained on ALL. All other solvers’ CDFs are below the ones
shown here.

maximum runtime of 10 CPU seconds) and any solver from the given set (S for one oracle
and S++ for the other).

Table 16 indicates how often each component solver of SATzilla07+(S++,D+
r) was

selected, how often it was successful, and the amount of its average runtime. We found

594

SATzilla: Portfolio-based Algorithm Selection for SAT

Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

SAPS(2) 52.2 1.1
March dl04(2) 9.6 1.68

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

March dl04 34.8 96.2 294.8
Gnovelty+ 28.8 93.9 143.6
March ks 23.9 92.6 213.3
Minisat07 4.4 100 61.0
Ranov 4.0 100 6.9

Ag2wsat+ 4.0 77.8 357.9

Table 16: The solvers selected by SATzilla07+(S++,D+
r) for the RANDOM category. Note that

column “Selected [%]” shows the percentage of instances remaining after pre-solving for
which the algorithm was selected, and this sums to 100%. Cutoff times for pre-solvers
are specified in CPU seconds.

that the solvers picked by SATzilla07+(S++,D+
r) solved the given instance in most cases.

Another interesting observation is that when a solver’s success ratio was high, its average
runtime tended to be lower.

7.2 HANDMADE Category

The configurations of the three SATzilla versions designed for the HANDMADE category are
shown in Table 17. Again, SATzilla07+(S++,D+

h) included three local search solvers,
Ranov, Ag2wsat+ and Gnovelty+, which had not been available to SATzilla07. Like our
manual choice in SATzilla07, the automatic pre-solver selection chose to run March dl04
for five CPU seconds. Unlike the manual selection, it abstained from using SAPS (or indeed
any other solver) as a second pre-solver. Table 18 shows the performance of the different
versions of SATzilla compared to the best solvers for category HANDMADE. Here, about half
of the observed performance improvement was achieved by using more solvers and more
training data; the other half was due to the improvements in SATzilla07+. Note that for
the HANDMADE category, SATzilla07∗(S++,D+) performed quite poorly. We attribute this
to a weakness of the feature-based classifier on HANDMADE instances, an issue we discuss
further in Section 7.4.

Table 19 indicates how often each component solver of SATzilla07+(S++,D+
h) was

selected, how many problem instances it solved, and its average runtime for these runs.
There are many solvers that SATzilla07+(S++,D+

h) picked quite rarely; however, in most
cases, their success ratios are close to 100%, and their average runtimes are very low.

7.3 INDUSTRIAL Category

Table 20 shows the configuration of the three different SATzilla versions designed for the
INDUSTRIAL category. Local search solvers performed quite poorly for the instances in this
category, with the best local search solver, Ag2wsat0, only solving 23% of the instances

595

Xu, Hutter, Hoos & Leyton-Brown

SATzilla Pre-Solver (time) Components

SATzilla07(S,D′h) March dl04(5); SAPS(2)
Kcnfs06, March dl04, Minisat 2.0,
Rsat 1.03

SATzilla07(S+,D+
h) March dl04(5); SAPS(2) Vallst, Zchaff rand, TTS, MXC,

March ks, Minisat07, Rsat 2.0

SATzilla07+(S++,D+
h) March ks(5)

Eureka, March dl04; Minisat 2.0,
Rsat 1.03, Vallst, TTS, Picosat, MXC,
March ks, TinisatElite, Minisat07,
Rsat 2.0, Ranov, Ag2wsat0, Gnovelty+

Table 17: SATzilla’s configuration for the HANDMADE category.

Solver Avg. runtime [s] Solved [%] Performance score

TTS 729 41.1 40669
MXC 527 61.9 43024

March ks 494 63.9 68859
Minisat07 438 68.9 59863
March dl04 408 72.4 73226

SATzilla07(S,D′h) 284 80.4 — (93.5%)
SATzilla07(S+,D+

h) 203 87.4 — (118.8%)
SATzilla07+(S++,D+

h) 131 95.6 112287 (153.3%)
SATzilla07∗(S++,D+) 215 88.0 — (110.5%)

Table 18: The performance of SATzilla compared to the best solvers on HANDMADE. Scores for non-
portfolio solvers were computed using a reference set in which the only SATzilla solver
was SATzilla07+(S++,D+

h). Cutoff time: 1 200 CPU seconds; SATzilla07∗(S++,D+)

was trained on ALL.

10
−1

10
0

10
1

10
2

10
3

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

AvgFeature(07+(S++,D+
h
))Pre−solving(07+(S++,D+

h
))

Oracle(S++)
SATzila07+(S++,D+

h
)

March_dl04
March_ks
Minisat07

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving(07(S+,D+
h
),07(S,D’

h
)) AvgFeature(07(S+,D+

h
),07(S,D’

h
))

Pre−solving(07+(S++,D+
h
)) AvgFeature(07+(S++,D+

h
))

Pre−solving(others) AvgFeature(others)

Oracle(S++)
Oracle(S)

SATzilla07+(S++,D+
h
)

SATzilla07(S+,D+
h
)

SATzilla07(S,D’
h
)

SATzilla07*(S++,D+)

Figure 9: Left: CDFs for SATzilla07+(S++,D+
h) and the best non-portfolio solvers on HANDMADE;

right: CDFs for the different versions of SATzilla on HANDMADE shown in Table 17, where
SATzilla07∗(S++,D+) was trained on ALL. All other solvers’ CDFs are below the ones
shown here.

596

SATzilla: Portfolio-based Algorithm Selection for SAT

Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

March ks(5) 39.0 3.2

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

Minisat07 40.4 89.3 205.1
TTS 11.5 91.7 133.2
MXC 7.2 93.3 310.5

March ks 7.2 100 544.7
Eureka 5.8 100 0.34

March dl04 5.8 91.7 317.6
Rsat 1.03 4.8 100 185.1
Picosat 3.9 100 1.7
Ag2wsat0 3.4 100 0.5

TinisatElite 2.9 100 86.5
Ranov 2.9 83.3 206.1

Minisat 2.0 1.4 66.7 796.5
Rsat 2.0 1.4 100 0.9
Gnovelty+ 1.0 100 3.2
Vallst 0.5 100 <0.01

Table 19: The solvers selected by SATzilla07+(S++,D+
h) for the HANDMADE category.

SATzilla Pre-Solver (time) Components

SATzilla07(S,D’i) Rsat 1.03 (2)
Eureka, March dl04, Minisat 2.0,
Rsat 1.03

SATzilla07(S+,D+
i) Rsat 2.0 (2) Eureka, March dl04, Minisat 2.0,

Zchaff Rand, TTS, Picosat, March ks

SATzilla07+(S++,D+
i) Rsat 2.0 (10); Gnovelty+(2)

Eureka, March dl04, Minisat 2.0,
Rsat 1.03, TTS, Picosat, Minisat07,
Rsat 2.0

Table 20: SATzilla’s configuration for the INDUSTRIAL category.

within the cutoff time. Consequently, no local search solver was selected by the automatic
solver subset selection in SATzilla07+(S++,D+

i). However, automatic pre-solver selection
did include the local search solver Gnovelty+ as the second pre-solver, to be run for 2 CPU
seconds after 10 CPU seconds of running Rsat 2.0.

Table 21 compares the performance of different versions of SATzilla and the best
solvers on INDUSTRIAL instances. It is not surprising that more training data and more
solvers helped SATzilla07 to improve in terms of all our metrics (avg. runtime, percentage
solved and score). A somewhat bigger improvement was due to the new mechanisms in
SATzilla07+ that led to SATzilla07+(S++,D+

i) outperforming every non-portfolio solver
with respect to every metric, specially in terms of performance score. Note that the general
SATzilla version SATzilla07∗(S++,D+) trained on ALL achieved performance very close
to that of SATzilla07+(S++,D+

i) on the INDUSTRIAL data set in terms of average runtime
and percentage of solved instances.

597

Xu, Hutter, Hoos & Leyton-Brown

Solver Avg. runtime [s] Solved [%] Performance score

Rsat 1.03 353 80.8 52740
Rsat 2.0 365 80.8 51299
Picosat 282 85.9 66561

TinisatElite 452 70.8 40867
Minisat07 372 76.6 60002
Eureka 349 83.2 71505

SATzilla07(S,D′i) 298 87.6 — (91.3%)
SATzilla07(S+,D+

i) 262 89.0 — (98.2%)
SATzilla07+(S++,D+

i) 233 93.1 79724 (111.5%)
SATzilla07∗(S++,D+) 239 92.7 — (104.8%)

Table 21: The performance of SATzilla compared to the best solvers on INDUSTRIAL. Scores
for non-portfolio solvers were computed using a reference set in which the only
SATzilla solver was SATzilla07+(S++,D+

i). Cutoff time: 1 200 CPU seconds;
SATzilla07∗(S++,D+) was trained on ALL.

Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

Rsat 2.0(10) 38.1 6.8
Gnovelty+ (2) 0.3 2.0

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

Eureka (BACKUP) 29.1 88.5 385.4
Eureka 15.1 100 394.2
Picosat 14.5 96.2 179.6

Minisat07 14.0 84.0 306.3
Minisat 2.0 12.3 68.2 709.2
March dl04 8.4 86.7 180.8

TTS 3.9 100 0.7
Rsat 2.0 1.7 100 281.6
Rsat 1.03 1.1 100 10.6

Table 22: The solvers selected by SATzilla07+(S++,D+
i) for the INDUSTRIAL category.

As can be seen from Figure 10, the performance improvements achieved by SATzilla
over non-portfolio solvers are smaller for the INDUSTRIAL category than for other cate-
gories. Note that the best INDUSTRIAL solver performed very well, solving 85.9% of the
instances within the cutoff time of 1 200 CPU seconds.6 Still, SATzilla07+(S++,D+

i) had
significantly smaller average runtime (17%) and solved 7.2% more instances than the best
component solver, Picosat. Likewise, the score for SATzilla07+(S++,D+

i) was 11.5%
higher than that of the top-ranking component solver (in terms of score), Eureka.

6. Recall that this number means the solver solved 85.9% of the instances that could be solved by at least
one solver. Compared to our other data sets, it seems that either solvers exhibited more similar behavior
on INDUSTRIAL instances or that instances in this category exhibited greater variability in hardness.

598

SATzilla: Portfolio-based Algorithm Selection for SAT

10
−1

10
0

10
1

10
2

10
3

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving(07+(S++,D+
i
)) AvgFeature(07+(S++,D+

i
))

Oracle(S++)
SATzilla07+(S++,D+

i
)

Rsat1.03
Picosat

10
−1

10
0

10
1

10
2

10
3

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving(07+(S++,D+
i
)) AvgFeature(07+(S++,D+

i
))

AvgFeature(07*(S++,D+))Pre−solving(07*(S++,D+))

AvgFeature(others)Pre−solving(others)

Oracle(S++)
Oracle(S)

SATzilla07+(S++,D+
i
))

SATzilla07(S+,D+
i
)

SATzilla07(S,D’
i
)

SATzilla07*(S++,D+)

Figure 10: Left: CDFs for SATzilla07+(S++,D+
i) and the best non-portfolio solvers on

INDUSTRIAL; right: CDFs for the different versions of SATzilla on INDUSTRIAL shown
in Table 20, where SATzilla07∗(S++,D+) was trained on ALL. All other solvers’ CDFs
(including Eureka’s) are below the ones shown here.

Table 22 indicates how often each component solver of SATzilla07+(S++,D+
i) was se-

lected, how many problem instances it solved, and its average runtime for these runs. In this
case, backup solver Eureka was used for problem instances for which feature computation
timed out and pre-solvers did not produce a solution.

7.4 ALL

There are four versions of SATzilla specialized for category ALL. Their detailed configu-
rations are listed in Table 23. The results of automatic pre-solver selection were identical
for SATzilla07+ and SATzilla07∗: both chose to first run the local search solver SAPS
for two CPU seconds, followed by two CPU seconds of March ks. These solvers were sim-
ilar to our manual selection, but their order was reversed. For the solver subset selection,
SATzilla07+ and SATzilla07∗ yielded somewhat different results, but both of them kept
two local search algorithms, Ag2wsat+ & Ranov, and Ag2wsat+ & Gnovelty+, respectively.

Table 24 compares the performance of the four versions of SATzilla on the ALL category.
Roughly equal improvements in terms of all our performance metrics were due to more
training data and solvers on the one hand, and to the improvements in SATzilla07+ on the
other hand. The best performance in terms of all our performance metrics was obtained by
SATzilla07∗(S++,D+). Recall that the only difference between SATzilla07+(S++,D+)
and SATzilla07∗(S++,D+) was the use of more general hierarchical hardness models, as
described in Section 5.5.

Note that using a classifier is of course not as good as using an oracle for determining
the distribution an instance comes from; thus, the success ratios of the solvers selected
by SATzilla07∗ over the instances in the test set for distribution ALL (see Table 25) were
slightly lower than those for the solvers picked by SATzilla07+ for each of the distributions
individually (see Tables 16, 19, and 22). However, when compared to SATzilla07+ on
distribution ALL, SATzilla07∗ performed significantly better: achieving overall performance

599

Xu, Hutter, Hoos & Leyton-Brown

SATzilla Pre-Solver (time) Components

SATzilla07(S,D’) March dl04(5); SAPS(2)
Eureka, Kcnfs06, March dl04, Minisat
2.0,Zchaff rand

SATzilla07(S+,D+) March dl04(5); SAPS(2)
Eureka, March dl04, Zchaff rand,
Kcnfs04, TTS, Picosat, March ks,
Minisat07

SATzilla07+(S++,D+) SAPS(2); March ks(2)
Eureka, Kcnfs06, Rsat 1.03,
Zchaff rand, TTS, MXC, TinisatElite,
Rsat 2.0, Ag2wsat+, Ranov

SATzilla07∗(S++,D+) SAPS(2); March ks(2)

Eureka, Kcnfs06, March dl04, Minisat
2.0, Rsat 1.03, Picosat, MXC,
March ks, Minisat07, Ag2wsat+,
Gnovelty+

Table 23: SATzilla’s configuration for the ALL category.

Solver Avg. runtime [s] Solved [%] Performance score

Rsat 1.03 542 61.1 131399
Kcnfs04 969 21.3 46695
TTS 939 22.6 74616

Picosat 571 57.7 135049
March ks 509 62.9 202133

TinisatElite 690 47.3 93169
Minisat07 528 61.8 162987
Gnovelty+ 684 43.9 156365
March dl04 509 62.7 205592

SATzilla07(S,D’) 282 83.1 — (125.0%)
SATzilla07(S+,D+) 224 87.0 — (139.2%)

SATzilla07+(S++,D+) 194 91.1 — (158%)
SATzilla07∗(S++,D+) 172 92.9 344594 (167.6%)

Table 24: The performance of SATzilla compared to the best solvers on ALL. Scores for non-
portfolio solvers were computed using a reference set in which the only SATzilla solver
was SATzilla07∗(S++,D+). Cutoff time: 1 200 CPU seconds.

improvements of 11.3% lower average runtime, 1.8% more solved instances and 9.6% higher
score. This supports our initial hypothesis that SATzilla07∗ would perform slightly worse
than specialized versions of SATzilla07+ in each single category, yet would yield the best
result when applied to a broader and more heterogeneous set of instances.

The runtime cumulative distribution function (Figure 11, right) shows that
SATzilla07∗(S++,D+) dominated the other versions of SATzilla on ALL and solved about
30% more instances than the best non-portfolio solver, March dl04 (Figure 11, left).

Table 26 shows the performance of the general classifier in SATzilla07∗(S++,D+). We
note several patterns: Firstly, classification performance for RANDOM and INDUSTRIAL in-

600

SATzilla: Portfolio-based Algorithm Selection for SAT

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving(07*(S++,D+)) AvgFeature(07*(S++,D+))

Oracle(S++)
SATzilla07*(S++,D+)
March_dl04
Gnovelty+

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [CPU sec]

%
 In

st
an

ce
s

S
ol

ve
d

Pre−solving(07(S+,D+),07(S,D’)) AvgFeature(07(S+,D+),07(S,D’))

Pre−solving(others) AvgFeature(others)

Oracle(S++)
Oracle(S)

SATzilla07+(S++,D+)

SATzilla07(S+,D+)
SATzilla07(S,D’)

SATzilla07*(S++,D+)

Figure 11: Left: CDF for SATzilla07∗(S++,D+) and the best non-portfolio solvers on ALL; right:
CDFs for different versions of SATzilla on ALL shown in Table 23. All other solvers’
CDFs are below the ones shown here.

Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

SAPS(2) 33.0 1.4
March ks (2) 13.9 1.6

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

Minisat07 21.2 85.5 247.5
March dl04 14.5 84.0 389.5
Gnovelty+ 12.5 85.2 273.2
March ks 9.1 89.8 305.6

Eureka (BACKUP) 8.9 89.7 346.1
Eureka 7.2 97.9 234.6
Picosat 6.6 90.7 188.6
Kcnfs06 6.5 95.2 236.3
MXC 5.5 88.9 334.0

Rsat 1.03 4.0 80.8 364.9
Minisat 2.0 3.5 56.5 775.7
Ag2wsat+ 0.5 33.3 815.7

Table 25: The solvers selected by SATzilla07∗(S++,D+) for the ALL category.

stances was much better than for HANDMADE instances. Secondly, for HANDMADE instances,
most misclassifications were not due to a misclassification of the type of instance, but
rather of the satisfiability status. Finally, we can see that RANDOM instances were al-
most perfectly classified as RANDOM and only very few other instances were classified as
RANDOM, while HANDMADE and INDUSTRIAL instances were confused somewhat more often.
The comparably poor classification performance for HANDMADE instances partly explains why
SATzilla07∗(S++,D+) did not perform as well for the HANDMADE category as for the others.

601

Xu, Hutter, Hoos & Leyton-Brown

R, sat R, unsat H, sat H, unsat I, sat I, unsat

classified R, sat
92% 5% 1% – 1% 1%

classified R, unsat 4% 94% – 1% – 1%

classified H, sat – – 57% 38% – 5%

classified H, unsat – 1% 23% 71% 1% 4%

classified I, sat – – 8% – 81% 11%

classified I, unsat – – – 5% 6% 89%

Table 26: Confusion matrix for the 6-way classifier on data set ALL.

8. Conclusions

Algorithms can be combined into portfolios to build a whole greater than the sum of its
parts. We have significantly extended earlier work on algorithm portfolios for SAT that
select solvers on a per-instance basis using empirical hardness models for runtime predic-
tion. We have demonstrated the effectiveness of our general portfolio construction method,
SATzilla07, on four large sets of SAT competition instances. Our own experiments show
that our SATzilla07 portfolio solvers always outperform their components. Furthermore,
SATzilla07’s excellent performance in the recent 2007 SAT Competition demonstrates the
practical effectiveness of our approach.

In this work, we pushed the SATzilla approach further beyond SATzilla07. For the
first time, we showed that portfolios can optimize complex scoring functions and integrate
local search algorithms as component solvers. Furthermore, we showed how to automate the
process of pre-solver selection, one of the last aspects of our approach that was previously
based on manual engineering. As demonstrated in extensive computational experiments,
these enhancements improved SATzilla07’s performance substantially.

SATzilla is now at a stage where it can be applied “out of the box” given a set of
possible component solvers along with representative training and validation instances. In
an automated built-in meta-optimization process, the component solvers to be used and
the solvers to be used as pre-solvers are automatically determined from the given set of
solvers, without any human effort. The computational bottleneck is to execute the possible
component solvers on a representative set of instances in order to obtain enough runtime
data to build reasonably accurate empirical hardness models. However, these computations
can be parallelized very easily and require no human intervention, only computer time,
which becomes ever cheaper. Matlab code for building empirical hardness models and
C++ code for building SATzilla portfolios that use these models are available online at
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.

It is interesting to note that the use of local search methods has a significant impact
on the performance of SATzilla. In preliminary experiments, we observed that the over-
all performance of SATzilla07∗ was significantly weaker when local search solvers and
local-search-based features were excluded. Specifically, the availability of these local search

602

SATzilla: Portfolio-based Algorithm Selection for SAT

components substantially boosted SATzilla07∗’s performance on the RANDOM instance cate-
gory and also led to some improvements on INDUSTRIAL, but resulted in weaker performance
on HANDMADE instances. Generally, we believe that a better understanding of the impact
of features on our runtime predictions and instance categorizations will allow us to further
improve SATzilla, and we have therefore begun an in-depth investigation in this direction.

SATzilla’s performance ultimately depends on the power of all its component solvers
and automatically gets better as they are improved. Furthermore, SATzilla takes advan-
tage of solvers that are only competitive for certain kinds of instances and perform poorly
otherwise, and thus SATzilla’s success demonstrates the value of such solvers. Indeed,
the identification of more such solvers, which are otherwise easily overlooked, still has the
potential to further improve SATzilla’s performance substantially.

Acknowledgments

This work builds on contributions from a wide range of past co-authors, colleagues, and
members of the SAT community. First, we have many colleagues to thank for their con-
tributions to the work described in this article. Eugene Nudelman, Alex Devkar and Yoav
Shoham were Kevin and Holger’s co-authors on the papers that first introduced SATzilla
(Nudelman et al., 2004a, 2004b); this work grew out of a project on automated algorithm
selection that involved Galen Andrew and Jim McFadden, in addition to Kevin, Eugene
and Yoav (Leyton-Brown et al., 2003b, 2003a). Nando de Freitas, Bart Selman, and Kevin
Murphy gave useful suggestions about machine learning algorithms, SAT instance features,
and mixtures of experts, respectively. Second, while academic research always builds on
previous work, we are especially indebted to the authors of the dozens of SAT solvers we
discuss in this paper, and particularly to their commitment to furthering scientific under-
standing by making their code publicly available. Without these researchers’ considerable
efforts, SATzilla could never have been built.

References

Bacchus, F. (2002a). Enhancing Davis Putnam with extended binary clause reasoning. In Proceedings of
the Eighteenth National Conference on Artificial Intelligence (AAAI’02), pp. 613–619.

Bacchus, F. (2002b). Exploring the computational tradeoff of more reasoning and less searching. In
Proceedings of the Fifth International Conference on Theory and Applications of Satisfiability Test-
ing (SAT’02), pp. 7–16.

Bacchus, F., & Winter, J. (2003). Effective preprocessing with hyper-resolution and equality reduction.
In Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), pp. 341–355.

Biere, A. (2007). Picosat version 535. Solver description, SAT competition 2007.

Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., & Zhu, Y. (1999). Symbolic model checking using SAT
procedures instead of BDDs. In Proceedings of Design Automation Conference (DAC’99), pp. 317–320.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bregman, D. R., & Mitchell, D. G. (2007). The SAT solver MXC, version 0.5. Solver description, SAT
competition 2007.

C. M. Li, W. W., & Zhang, H. (2007). Combining adaptive noise and promising decreasing variables in local
search for SAT. Solver description, SAT competition 2007.

603

Xu, Hutter, Hoos & Leyton-Brown

Carchrae, T., & Beck, J. C. (2005). Applying machine learning to low-knowledge control of optimization
algorithms. Computational Intelligence, 21 (4), 372–387.

Crawford, J. M., & Baker, A. B. (1994). Experimental results on the application of satisfiability algo-
rithms to scheduling problems. In Proceedings of the Twelfth National Conference on Artificial Intel-
ligence (AAAI’94), pp. 1092–1097.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem proving. Communications
of the ACM, 5 (7), 394–397.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the ACM,
7 (1), 201–215.

Dechter, R., & Rish, I. (1994). Directional resolution: The Davis-Putnam procedure, revisited. In Principles
of Knowledge Representation and Reasoning (KR’94), pp. 134–145.

Dequen, G., & Dubois, O. (2007). kcnfs. Solver description, SAT competition 2007.

Dubois, O., & Dequen, G. (2001). A backbone-search heuristic for efficient solving of hard 3-SAT formulae.
In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI’01),
pp. 248–253.

Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In Proceedings of the Sixth International
Conference on Theory and Applications of Satisfiability Testing (SAT’03), pp. 502–518.

Eén, N., & Sörensson, N. (2006). Minisat v2.0 (beta). Solver description, SAT Race 2006.

Gagliolo, M., & Schmidhuber, J. (2006a). Impact of censored sampling on the performance of restart
strategies. In Twelfth Internatioal Conference on Principles and Practice of Constraint Program-
ming (CP’06), pp. 167–181.

Gagliolo, M., & Schmidhuber, J. (2006b). Learning dynamic algorithm portfolios. Annals of Mathematics
and Artificial Intelligence, 47 (3-4), 295–328.

Gebruers, C., Hnich, B., Bridge, D., & Freuder, E. (2005). Using CBR to select solution strategies in
constraint programming. In Proceedings of the Sixth International Conference on Case-Based Rea-
soning (ICCBR’05), pp. 222–236.

Gebruers, C., Guerri, A., Hnich, B., & Milano, M. (2004). Making choices using structure at the instance
level within a case based reasoning framework. In International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR-04),
pp. 380–386.

Gomes, C. P., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126(1-2), 43–62.

Guerri, A., & Milano, M. (2004). Learning techniques for automatic algorithm portfolio selection. In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-04), pp. 475–479.

Guo, H., & Hsu, W. H. (2004). A learning-based algorithm selection meta-reasoner for the real-time MPE
problem. In Proceedings of the Seventeenth Australian Conference on Artificial Intelligence, pp. 307–
318.

Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. (2006). Feature Extraction, Foundations and Applications.
Springer.

Heule, M., & v. Maaren, H. (2007). march ks. Solver description, SAT competition 2007.

Heule, M., Zwieten, J., Dufour, M., & Maaren, H. (2004). March eq: implementing additional reasoning into
an efficient lookahead SAT solver. In Proceedings of the Seventh International Conference on Theory
and Applications of Satisfiability Testing (SAT’04), pp. 345–359.

Hoos, H. H. (2002). An adaptive noise mechanism for WalkSAT. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI’02), pp. 655–660.

Hoos, H. H., & Stützle, T. (2005). Stochastic Local Search - Foundations & Applications. Morgan Kaufmann
Publishers, San Francisco, CA, USA.

Horvitz, E., Ruan, Y., Gomes, C. P., Kautz, H., Selman, B., & Chickering, D. M. (2001). A Bayesian
approach to tackling hard computational problems. In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence (UAI’01), pp. 235–244.

Huang, J. (2007). TINISAT in SAT competition 2007. Solver description, SAT competition 2007.

Huberman, B., Lukose, R., & Hogg, T. (1997). An economics approach to hard computational problems.
Science, 265, 51–54.

604

SATzilla: Portfolio-based Algorithm Selection for SAT

Hutter, F., Hamadi, Y., Hoos, H. H., & Leyton-Brown, K. (2006). Performance prediction and automated
tuning of randomized and parametric algorithms. In Twelfth Internatioal Conference on Principles
and Practice of Constraint Programming (CP’06), pp. 213–228.

Hutter, F., Tompkins, D. A. D., & Hoos, H. H. (2002). Scaling and probabilistic smoothing: Efficient dynamic
local search for SAT. In Proceedings of the Eighth International Conference on Principles and Practice
of Constraint Programming, pp. 233–248.

Ishtaiwi, A., Thornton, J., Anbulagan, Sattar, A., & Pham, D. N. (2006). Adaptive clause weight redis-
tribution. In Twelfth Internatioal Conference on Principles and Practice of Constraint Program-
ming (CP’06), pp. 229–243.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative
Applications of Artificial Intelligence Conference, pp. 1194–1201.

Kautz, H. A., & Selman, B. (1999). Unifying SAT-based and graph-based planning. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI’99), pp. 318–325.

Knuth, D. (1975). Estimating the efficiency of backtrack programs. Mathematics of Computation, 29 (129),
121–136.

Krishnapuram, B., Carin, L., Figueiredo, M., & Hartemink, A. (2005). Sparse multinomial logistic regression:
Fast algorithms and generalization bounds. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 957–968.

Kullmann, O. (2002). Investigating the behaviour of a SAT solver on random formulas. http://cs-
svr1.swan.ac.uk/∼csoliver/Artikel/OKsolverAnalyse.html.

Lagoudakis, M. G., & Littman, M. L. (2001). Learning to select branching rules in the DPLL procedure for
satisfiability. In LICS/SAT, pp. 344–359.

Le Berre, D., & Simon, L. (2004). Fifty-five solvers in Vancouver: The SAT 2004 competition. In Proceedings
of the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT’04),
pp. 321–344.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003a). Boosting as a metaphor
for algorithm design. In Ninth Internatioal Conference on Principles and Practice of Constraint
Programming (CP’03), pp. 899–903.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003b). A portfolio approach
to algorithm selection. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI’03), pp. 1542–1543.

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2002). Learning the empirical hardness of optimization
problems: The case of combinatorial auctions. In Eighth Internatioal Conference on Principles and
Practice of Constraint Programming (CP’02), pp. 556–572.

Li, C., & Huang, W. (2005). Diversification and determinism in local search for satisfiability. In Proceedings
of the Eighth International Conference on Theory and Applications of Satisfiability Testing (SAT’05),
pp. 158–172.

Lobjois, L., & Lemâıtre, M. (1998). Branch and bound algorithm selection by performance prediction. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI’98), pp. 353–358.

Mahajan, Y. S., Fu, Z., & Malik, S. (2005). Zchaff2004: an efficient SAT solver. In Proceedings of the Eighth
International Conference on Theory and Applications of Satisfiability Testing (SAT’05), pp. 360–375.

Murphy, K. (2001). The Bayes Net Toolbox for Matlab. In Computing Science and Statistics, Vol. 33.
http://bnt.sourceforge.net/.

Nadel, A., Gordon, M., Palti, A., & Hanna, Z. (2006). Eureka-2006 SAT solver. Solver description, SAT
Race 2006.

Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar, A., & Shoham, Y. (2004a). Understanding random
SAT: Beyond the clauses-to-variables ratio. In Tenth Internatioal Conference on Principles and
Practice of Constraint Programming (CP’04), pp. 438–452.

Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., & Hoos, H. (2004b). Satzilla: An algorithm
portfolio for SAT. Solver description, SAT competition 2004.

Pham, D. N., & Anbulagan (2007). Resolution enhanced SLS solver: R+AdaptNovelty+. Solver description,
SAT competition 2007.

605

Xu, Hutter, Hoos & Leyton-Brown

Pham, D. N., & Gretton, C. (2007). gNovelty+. Solver description, SAT competition 2007.

Pipatsrisawat, K., & Darwiche, A. (2006). Rsat 1.03: SAT solver description. Tech. rep. D-152, Automated
Reasoning Group, UCLA.

Pipatsrisawat, K., & Darwiche, A. (2007). Rsat 2.0: SAT solver description. Solver description, SAT
competition 2007.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.

Samulowitz, H., & Memisevic, R. (2007). Learning to solve QBF. In Proceedings of the Twentysecond
National Conference on Artificial Intelligence (AAAI’07), pp. 255–260.

Schmee, J., & Hahn, G. J. (1979). A simple method for regression analysis with censored data. Technometrics,
21 (4), 417–432.

Selman, B., Kautz, H., & Cohen, B. (1994). Noise strategies for improving local search. In Proceedings of
the Twelfth National Conference on Artificial Intelligence (AAAI’94), pp. 337–343.

Selman, B., Levesque, H., & Mitchell, D. (1992). A new method for solving hard satisfiability problems. In
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI’92), pp. 440–446.

Sörensson, N., & Eén, N. (2007). Minisat2007. http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/.

Spence, I. (2007). Ternary tree solver (tts-4-0). Solver description, SAT competition 2007.

Stephan, P., Brayton, R., & Sangiovanni-Vencentelli, A. (1996). Combinational test generation using sat-
isfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15,
1167–1176.

Streeter, M., Golovin, D., & Smith, S. F. (2007). Combining multiple heuristics online. In Proceedings of
the Twentysecond National Conference on Artificial Intelligence (AAAI’07), pp. 1197–1203.

Subbarayan, S., & Pradhan, D. (2005). Niver: Non-increasing variable elimination resolution for preprocess-
ing sat instances. Lecture Notes in Computer Science,Springer, 3542/2005, 276–291.

Tompkins, D. A. D., & Hoos, H. H. (2004). UBCSAT: An implementation and experimentation environment
for SLS algorithms for SAT & MAX-SAT.. In Proceedings of the Seventh International Conference
on Theory and Applications of Satisfiability Testing (SAT’04).

Vallstrom, D. (2005). Vallst documentation. http://vallst.satcompetition.org/index.html.

van Gelder, A. (2002). Another look at graph coloring via propositional satisfiability. In Proceedings of
Computational Symposium on Graph Coloring and Generalizations (COLOR-02), pp. 48–54.

Wei, W., Li, C. M., & Zhang, H. (2007). Deterministic and random selection of variables in local search for
SAT. Solver description, SAT competition 2007.

Xu, L., Hoos, H. H., & Leyton-Brown, K. (2007a). Hierarchical hardness models for SAT. In Thirteenth
Internatioal Conference on Principles and Practice of Constraint Programming (CP’07), pp. 696–711.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2007b). Satzilla-07: The design and analysis of an
algorithm portfolio for SAT. In Thirteenth Internatioal Conference on Principles and Practice of
Constraint Programming (CP’07), pp. 712–727.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2007c). Satzilla2007: a new & improved algorithm
portfolio for SAT. Solver description, SAT competition 2007.

Zhang, L., Madigan, C. F., Moskewicz, M. W., & Malik, S. (2001). Efficient conflict driven learning in Boolean
satisfiability solver. In Proceedings of the International Conference on Computer Aided Design, pp.
279–285.

Zhang, L. (2002). The quest for efficient Boolean satisfiability solvers. In Proceedings of 8th International
Conference on Computer Aided Deduction (CADE-02), pp. 313–331.

606

