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Abstract

Finding most probable explanations (MPES) in
graphical models, such as Bayesian belief net-
works, is a fundamental problem in reasoning un-
der uncertainty, and much effort has been spent on
developing effective algorithms for thi§P-hard
problem. Stochastic local search (SLS) approaches
to MPE solving have previously been explored, but
were found to be not competitive with state-of-the-
art branch & bound methods. In this work, we iden-
tify the shortcomings of earlier SLS algorithms for
the MPE problem and demonstrate how these can
be overcome, leading to an SLS algorithm that sub-
stantially improves the state-of-the-art in solving
hard networks with many variables, large domain
sizes, high degree, and, most importantly, networks
with high induced width.
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in approximate MPE algorithms, reaching from loopy belief
propagation (BP)Pearl, 198Band generalized BPredidia
etal., 2009 to stochastic local search (SLS) algorithiKask
and Dechter, 1999; Park, 200and specialized algorithms,
such as graph cuts for certain pairwise Markov Random
Fields (MRFs) that, for example, occur in computer vi-
sion[Boykovet al., 2001.

B&B approaches have recently been shown to be state-
of-the-art methods in MPE solving, and it has been claimed
that for MPE, B&B algorithms clearly outperform GLS, the
best performing SLS algorithm known so far, in terms of the
ability to find high-quality solutions quicklyMarinescuet
al., 200d. This is in stark contrast to results for numerous
other combinatorial optimisation problems, such as weidht
MAX-SAT, where SLS algorithms clearly define the state-of-
the-art (see, e.glHoos and Sitzle, 2004).

In this work, we analyse the shortcomings of previous
SLS algorithms for MPE and demonstrate that these weak-
nesses can be overcome based on the careful consideration
of important issues, such as the time complexity of individ-
ual search steps, search stagnation and thorough parameter

Since Pearl’s classic teleearl, 1988 graphical models such tyning. In particular, we introduce improvements to Park’s
as Bayesian networks have become the prime representaties) s algorithm[Park, 2002 that overcome its inferior scal-
for uncertainty in Al. This paper deals with the problem of jng behaviour with network and domain size. Our new al-
finding theMost Probable Explanation (MPE) for some ev-  gorithm, GLS', clearly outperforms current state-of-the-art
idence when reasoning under uncertainty. More specificallyypg algorithms on various types of networks, especially for
in the light of uncertain knowledge represented as a probanard networks with high induced width, and hence estabdishe
bilistic graphical model, this problem is cast as finding thestochastic local search as a highly attractive and conyetit
most probable instantiation of all the model's variabMs approach to MPE solving.

given the observed valuesfor a subsek C V. L The remainder of this paper is structured as follows. We
. The MPE problem in graphical models has applicationsrst introduce some basic concepts and notation in Section 2
in different fields, such as medical diagnokisakkola and next, in Section 3, we describe GLS and GL8nd present
Jordan, 199p fault diagnosigRishet al., 2003, computer  some computational results illustrating the improvement o
vision [Tappen and Freeman, 240and prediction of side-  GLS+ over GLS. In Section 4 we present empirical results
chains in protein foldingYanover and Weiss, 20030 name  hat establish GLS as a new state-of-the-art algorithm for

just a few. Consequently, many algorithms have been suginging MPEs. We close with some conclusions and a brief
gested to solve this problem, but since itN§P-hard, many  gutiook on future work in Section 5.

hard problem instances still cannot be solved efficienthe T
available algorithms for MPE solving include exact meth- . .
ods like variable elimination (VE]Dechter, 1998 junc- 2 Preliminaries

tion tree (JT)[Cowell et al., 1999 and conditioning tech- A discrete Bayesian belief network (or Bayes net) B is a
niques[Pearl, 1988 but also systematic search algorithms, quadruple(V,D, G, ®), whereV is an ordered set of ran-
such as branch & bound (B&B), guided by a Mini-Buckets dom variablesD is an ordered set of finite domaii, for
(MB) heuristic[Dechter and Rish, 2003 Since in practice eachV; € V, G = (V, ) is a directed acyclic graph (DAG),
many applications require efficient online algorithms fet-n and® is an ordered set of CPs, = P(V|pa(V)), speci-
works of high induced width, there is also much researcHying the conditional probability distribution of eadh € V



given its parentpa(V) in G. Semantically, a Bayes net spec- Algorithm 1: GLS/GLS' for MPE

ifies a joint probability distributiorp over its variablesv in GLS and GLS differ in the procedure used to generate an ini-

factored form:¢ = P(V) = Hvev dv. tial solution, the subsidiary local search procedure, and, most
Given a Bayes né8 = (V,D, G, ®) and a set of evidence importantly, in the evaluation functiof(v|V; = v;). These dif-

variablesE = e, the Most Probable Explanation (MPE) ferences are explained in the text.

problem is to find an instantiatiovi = v with maximal prob- ~ The utilitiesutil(¢, v) are defined in the text.

ability p(v) := [[,cqe ¢[V = v] over all variable instantia- Input: Bayes nef3 = (V,D, G, ®), evidenceE = e, time

tions v consistent with evidence. While all networks in boundt, smoothing factop, smoothing intervalV,.

our experimental analysis are Bayes nets, our algorithes ar Output: Variable assignmeri = v with highest probability

equally applicable to other graphical models, such as MRFs [I4ce [V = v] found in timet

or general factor graphs. [I===1nitialize variable assignment v, penalties A4, and local
CPTs are a special casemitentials, which are functions optima counter LO.

that have non-negative entries for any assignment of theit v < GeneratelnitialSolution(B3, e)

variables. One well-known method for solving MPE in gen- 2 foreach¢ € @ and all instantiations V, = v, do

eral networks is variable elimination (VE) (see, el@echter, 3 [ X¢[Ve =vs] <0

1999); it iteratively eliminates variableg by multiplying all 4 #(LO) <0

potentials that are defined ovérand then maximizing” out /l=== Alternate local search and updates of the evaluation
of the product thus obtained. Once all variables are elimi- function until termination.

nated, the best assignment can be recovered in linear time. while runtime < ¢ do

Mini-Buckets withi-boundib (MB(ib)) [Dechter and Rish, & v — SubsidiaryLocal Search(B, v, e)

2009 approximates VE by splitting each product into smaller /=== Local optimum, update evaluation function.
products with at mosth variables; MB-w§) is a new variant 5 foreach¢ € @ do '
of MB that instead limits the number of entries in each prod-g if util(¢,v) = maxyeq util(p,v) then
uct by s. For constant domain sizg MB(ib) and MB-w(d*) 9 L | X[V=v]—=X[V=v]+1
are equivalent, but for networks with different domain size
MB-w performed better in our experiments. All of VE, MB, /I=== Regularly smooth penalties.
and MB-w employ a min-weight heuristic. 10 | #(LO) — #(LO) +1

11 if #(LO) modulo N, = 0 then
3 SLS for MPE: From GLS to GLS* 2 L RN Aot Bl i
Probably the most prominent Stochastic Local Search algo- | pe T e = telEp

rithm for inference in Bayesian networks is a method called

Sochastic Smulation [Pearl, 1988; Kask and Dechter, 1999

also known as Gibbs sampling. However, for MPE, this .

method, as well as Simulated Annealing, was shown to bgr?_dynamlcally updated whenever the search reaches a local
: ; optimum.

ile;(r)lélh:;it g gmﬂggnbéfgg)n F&%ig:r:gh&gﬁlfﬂ%%’g An outline of the GLS algorithm is shown in Figure 1. At

; it a high level, after initialising the search and setting alhal-
\F/)vl?rlghstrérr())sb.ab|llst|cally chooses between greedy and Samties to zero, GLS alternates between two search phases: Firs

The MPE problem is closely related to weighted MAX- & simple iterative improvement search is performed with re-

SAT [Park, 2002 (and MAX-CSP[Marinescu and Dechter, SPECt t0 the evaluation functianthat takes into account the
2004); based on this close relationship, Park adapted:“”ent. penalty values. After this process has reached a lo-
two high-performance MAX-SAT algorithms, DLM and Cal optimumo of g, certain penalty values are incremented
GLS [Mills and Tsang, 2000 to the MPE problen{Park, by one. Only penalties of solution components presemt in
2004.% His computational experiments identified GLS as theCaNn be selected to be incremented; this selection is based on
state-of-the-art SLS algorithm for MPE solving: he showed!€ contribution of the respective solution componen(ig

that GLS and DLM clearly outperform G+StS and that GLS @1d its current penalty value. (For details, see Algorithen 1
performed better than DLM on most instances. However, akPark, 2002) Additionally, all penalties are regularly multi-
shown in[Marinescuet al., 2004, GLS does not reach the Plied by a factorp < 1; this smoothing mechanism prevents

performance of current B&B algorithms. the penalty values from growing too large and is performed

GLS has been applied successfully to many combinato€Very/V, local optima, whereV,, is a parameter.
bp y y In Park’'s GLS for MPE, the solution components are par-

rial problems, including TSPVoudouris and Tsang, 1999 . M) > 3 . o
SAT and weighted MAX-SATIMills and Tsang, 2000 It tial instantiations of the variables. More specifically, éach
can be classified as a dynamic local search algorfiHoos ~ Potential¢ € &, every instantiationV, = v, of its vari-
and Stitzle, 2004 and uses penalties associated with solu-ables is a solution componehihe evaluation function to be
tion components to guide the search process; these panalti
- 2Note that the number of components present in any candidate

Although Park motivated his versions of these algorithms withsolution for an MPE instance is constant; this is because every vari-
the MAX-SAT domain, his implementation works on MPE directly. able instantiationrV = v is consistent with exactly one (partial)
To our best knowledge, his suggested encoding has never been inmstantiationV, = v, of each potentiap, and thus the number of
plemented, and we are not aware of any implementation of GLS fosolution features present in each instantiation is the total number of
weighted MAX-SAT with real-valued weights. potentials|D|.
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(a) Speedup due to modified evaluation function (b) Speedup due to novel caching schemes

Figure 1: (a) Effect of the modification of the evaluationdtian in GLS" compared to GLS on instand&ini n2. Given are
the best, average and worst solution quality over computdiine for 25 runs of GLS and GIIS The GLS" plot ends after
22.94 CPU seconds when all its runs have found the optimatisalquality. (b) The speedup achieved by our new caching
schemes over the previously best-performing caching setwna collection of randomly generated and real-world iTcsta,
where instance size is given as the number of variabBligdimes the average domain sizE€).

minimized is defined ag(v) = > ,.4 A¢[V = v], where  tune. [Park, 2002, its performance can be boosted by up

A\s[V = v] is the penalty associated with solution compo-to several orders of magnitude by simply changing Park’s de-
nentV, = v,. It may be noted that this deviates from the fault smoothing valugy = 0.8 to the constant valug =
standard form of the evaluation function for the general GLS)-999. For example, for thédai | fi nder network GLS
algorithm, which also captures the contribution of eaclisol finds the optimal solution 10 times faster with=0.999

tion component to the optimisation objectivey ). than withp = 0.8, and for several random instances this ef-

Due to this non-standard evaluation function, the sole infectis much more pronounced. Itis interesting to note et t

teraction of objective function and penalties in Park's GLSVery small amount of smoothing performedgat- 0.999 can

for MPE is via the utilities of potentiale under the current e rather important: Without smoothing & 1), we found

assignment,, which are defined astil(¢,v) = —¢[V = rare but conclusive evidence for search stagnation on rando
v]/(1 + A\s[V = v]). An entry ¢[V, = vg] with high  networks. . .
probability is assigned low utility, and its associated gdgn Secondly, the subsidiary local search procedure in GLS

As[Vis = vg] will be increased less often, driving the searchuses a computationally efficient first-improvement strateg
towards the partial variable instantiatibp = v, eventually, ~Whereas GLS employs a more powerful best-improvement
but possibly only after a considerable delay. procedure in conjunction with newly developed, powerful
Due to this initial and persistent lack of greediness, we exstrategies for caching and updating the effects of varitiple
pected the performance of GLS for MPE to be boosted sigon the evaluation function. While previously used caching
nificantly by integrating the objective function into theaseh ~ schemes only locally update the partial evaluation fumctio
heuristic. We achieved this by a change in GLS's evaluavalue involving variables in the Markov blanket of a flipped
tion function. Our improved version of GLS, which we call variable, we developed two substantial improvements. At ev
GLS*, adds the logarithmic objective function to the appro-€ry step, we maintain the score of flipping each variable to
priate penalties, making the new evaluation function to beany of its values (caching scherSeores), and on top of that
maximizedg(v) = Z¢E¢ log(d[V = v]) —w x \y[V =], the set of all variables that lead to an improvement in eval-
wherew is a weighting factof. Indeed, this modification uation function value when flipped to some value (caching

of the evaluation function has major consequences on sear@lhemeI mproving); since after an initial search phase this

behaviour and especially boosts the search in early phasggitly 8 3 TATRER B BRCR JOF EEERECCRS
of the search. Figure 1(a) illustrates this for the realidior 9

networkMuni n2 (from the Bayesian Network Repository), a search position in constant time. Figure 1(b) demonstrate

X g . . . the large performance gains of our new caching schemes over
\(I)vr?g/eeg;g finds optimal-quality solutions 10 times faster the previous state-of-the-art caching scheme.

GLS' differs from GLS in a number of other components, Thirdly, GLS initializes the search randomly. However,

: : it has been shown that strong initial solutions, such as the
namely the parameter setting, the caching scheme, and the . . '
initialization. All of these modifications contribute sifjn ohes obtained with MB, lead to much better overall solu-

o i - tions[Kask and Dechter, 1999Consequently, GLS initial-
cantly to GLS™'s improved performance (a detailed analy- .~ > . ' : ' X
sis of their individual importance can be found [idutter, izes its search using the MB variant MB-It ) (see Section

2004). Firstly, a thorough experimental analysis showedz)’ which improves the quality of found solutions consider-

that, although Park states that “GLS had no parameters @g:ﬂt%nnifg; ‘t’l%r?oe tlvr\}gtg:]g:rssscgerﬁgs n‘fﬁj g:ae search for optimal

%In order to achieve a meaningful guidance by this evaluation We also study a version of GL'Sthat has an additional
function in areas of the search space with probability zero, we tregpreprocessing stage based on VE. In this preprocessing, VE
log(¢[V = v]) as—10* for ¢[V = v] = 0; we also fixed the is applied until a potential with more thanentries is ob-
weighting factorw to 10* to make the penalties comparably large. tained, wheré is a parameters(= 0 results in the standard



Distributi Stats | GLST GLS BBMB AOMB
Istribution W | Opt | (default) (orig) static(10) | dynamic(4) | static(10) | dynamic(6)
Random networks
Baseline:N — 100, K = 2, P — 2 [165[100] 0.1 | 1.88(1/0) | 0.05 | 1.69 [ 033 | 110
\ N=200K=2,P=2 [34.8] 0 | 0.70 ]33.97(68/0.8464)61.95(88/0.2694) 47.66(86/0.4168) -(100/0) | -(100/0) |
\ N =400, K =2, P =2 [72.6] 0 | 10.13 | -(100/0.0355) | -(100/0.0020) | -(100/0.0254) | -(100/0) | -(100/0) |
\ N=100K=3,P=2 [16.5[100] 0.34 [37.15(81/0.7392) 5.51 [ 28.90(7/0.5608) _15.38 | 33.72(20/0)
\ N=100K=4,P=2 [16.3] 60 | 0.88 | -(100/0.2225) | 21.86(25/0.4856) 29.88(65/0.5071) 42.41(53/0) 59.02(91/0)
\ N=100,K=2,P =23 [28.3] 47| 0.42 | 13.26(3/0.9659) 36.12(48/0.3650) 31.49(74/0.3884) 43.01(62/0) 53.17(62/0)
\ N=100,K=2P=4 [37.0] 0 | 0.81 | 41.89(4/0.8538) 46.83(98/0.1079) 2.07(99/0.1502) -(100/0) | -(100/0) |
\ Grid networks |
\ Base-ine:N = 10, K =2 [11.8]100] 0.01 | 4.55(5/0.1989)] 0.05 [20.23(7/0.6847)] 013 | 256 |
N =15, K=2 22.4] 0 | 0.90 |50.00(99/0.4201) 9.75(95/0.2686) -(100/0.0880) | -(100/0) | -(100/0)
N =20, K=2 32.8] 0 | 30.01 | -(100/0.0031) | -(100/0.0058) | ~(100/0.0015) | -(100/0) | -(100/0)
N = 25, K=2 443 0 | 52.06 ~(100/0) ~(100/0.0002) -(100/0) ~(100/0) | -(100/0)
N=10,K = 3 12.0]100] 0.34 | -(100/0.4955) 0.98 47.16(97/0.3187) 1.90 | 43.29(53/0)
N=10K = 4 11.7] 95 | 1.17 | -(100/0.0496) | 4.77(3/0.5950)| -(100/0.1830) | 15.59(4/0)| 68.32(95/0)
N=I00K =5 11.8] 84 | 505 | -(100/0.0098) | 6.41(9/0.5619)| -(100/0.1334) | 76.52(33/0) -(100/0)
N=10,K = 6 11.9] 0 | 17.89 | -(100/0.0049) ~(100/0) ~(100/0.0940) | -(100/0) | -(100/0)

Table 1: Scaling of performance for random networks and iggitivorks with network sizév, domain sizek’, and number of
parentsP. For each problem distribution, there are 100 netwoik& gives their average induced widi@pt the number of
networks for which our quasi-optimal solutions are proyatgtimal (we never found a better solution than the quasinog
one). For each algorithm and problem distribution, we histaverage time to find a quasi-optimal solution. If an atbaridid
not find the quasi-optimal solution for all instances with® CPU seconds, we give its average time for its solvednosty
and in parentheses its number of unsolved instances, fedldy its average approximation quality for these instances

GLS* algorithm, andb = oo yields pure VE). The result- b = 0 in the experiments on random instances.

ing reduced network can then quickly be solved with GLS | the first two experiments, for each network, we executed
and the eliminated variables can be instantiated optimally agch algorithm once for a maximum of 100 CPU seconds and

linear time like in regular VE. call the best solution found in any such run of an algorithm
) quasi-optimal. For the second and third experiment, we ran
4 Experimental Results the B&B algorithms for a long time to obtain provably opti-

We conducted a number of computational experiments tén@l solution qualities, which we found to always agree with
compare the performance and scaling behaviour for the origeur quasi-optimal solutions. For a fair comparison, we gkva
inal GLS algorithm, GLS, and the current state-of-the-art in '€POrt the times each algorithm requires for finding a quasi-
MPE solving* In [Marinescuet al., 2003, B&B with static optimal solution; only for the third experiment we addition
MB heuristic (s-BBMB) and a B&B algorithm with MB tree  ally report the time required for proving optimality. Fifal
elimination heuristic (BBBT) were claimed to be the state-We define theapproximation quality of an algorithm run as
of-the-art for MPE solving.[Marinescu and Dechter, 2004 the ratio pf the proba}plllty of the solution it found and the
then introduced B&B with dynamic MB heuristic (d-BBMB), duasi-optimal probability.
as well as versions of s-BBMB and d-BBMB that employ Our first experiment evaluates how the various algorithms
an AND/OR search tree; these are called s-AOMB and dscale with important instance characteristics, such aganlt
AOMB. size (V), domain size of the variable(), and network den-
We used Radu Marinescu’s C++ implementations of s-sity, here controlled by the numbg&rof parents of each node.
BBMB, d-BBMB, s-AOMB, and d-AOMB?® Furthermore, We created instances with a random network generator pro-
we used Marinescu’s C++ implementation of GLS insteadvided by Radu Marinescu (this is, e.g., describedNfari-
of the original Java implementation by PdRark, 2002, nescuet al., 2003), topologically sampled all variables to
since the former was orders of magnitude faster than the lagguarantee non-zero joint probability, and randomly pick@d
ter on all instances we tried; our GESmplementation is evidence variables. Table 1 shows that for small and easy net
also written in C++. We employed a fixed parameter settingvorks, identified as “Base-line” in the table, the origindl$
of (p,N,) = (0.999,200) for GLS" and the overall best- and the B&B algorithms are competitive with GESbut that
performing fixedi-boundib € {2,4,6,8,10,12} for each  when scaling any ofV, K, or P, the performance of all al-
B&B algorithm. The preprocessing stage in GL8nly im-  gorithms except GLS degrades rapidly[Marinescuet al.,
proves its performance for structured networks. Thus, we s2003 showed that s-BBMB scales much better with domain
— ) size K than the original GLS algorithm. While this is con-
All experiments were carried out on compute servers eaclfirmed by our experiments (see Table 1), our results in Fig-
equipped with dual 2GHz Intel Xeon CPUs with 512KB cache andyre 2(a) show that GLS substantially outperforms s-BBMB
4GB RAM running Linux version 2.4.20, build 28.9. Our imple- ¢ |arger i, and that the relative variability in run-time in-

mentation and the benchmark instances we used are available onli . .
at http://www.cs.ubc.ca/labs/beta/Projects/SLS4MPE/ CFeases witt for s-BBMB, but remains constant for GI'S

5We do not report results for BBBT, since the implementa- GLS™ does not only outperform the other algorithms in
tion available to us could only correctly handle networks generatederms of runtime for finding quasi-optimal solutions, bugal
within the REES system (http://www.ics.uci.edu/"radum/rees.html).in terms of solution quality found in a given fixed time. This
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Figure 2: (a) CPU time required by GifSand s-BBMB(10) to solve random network instances to opiigaEach point is

the result of a single run on one instance. The instanceshareame as summarized in Table 1. The same CPU-time for
both algorithms is indicated by the line. (b) Comparisonhaf tuality reached by the three algorithms GLS, GLSnd s-
BBMB(10) within 100 CPU seconds. For all instances, GLiBund the best known solution quality, thus its approxiomti
quality is always 1. Each point in the figure is the result ofrgle run for one instance by GLS and s-BBMB(10), while the
two lines show the approximation quality of GES(c) Scaling with induced width for random networks with h@fiables,
domain size 2, and maximal node degree 5. For each inducet,viadsed on one run on each of 100 instances, we plot the
median runtime for finding the optimal solution. The errosbare based on the quantilgs.s andgg.75. We do not employ
means and standard deviations since the B&B algorithmsatidurcceed in finding an optimal solution for every networdr F
example, for the networks of induced width 40, GL®ok 0.5 seconds in the worst case, whereas s-BBMB(10) failed to find
the optimal solution for 18 of the 100 networks withifl0 seconds.

can be seen from Table 1 for all &f, K and P, and is that theLi nk network could not be solved by any of the
visualized in Figure 2(b) for scalingy in random grid net- B&B algorithms, while GLS and GLS find the optimal so-
works. This scatter plot compares the original GLS, GLS Iution in one CPU second. Interestingly, MB(2) already finds
and s-BBMB all given the same maximum computation time;a tight upper bound on solution quality (in 10 CPU millisec-
this is possible since GLl'Salways finds the quasi-optimal onds), but with feasiblé-bounds never even comes close to a
solutions, such that its approximation quality is condgant tight lower bound. Consequently, only a combination of SLS
1. Even though s-BBMB(10) scales better than the origi-and MB can find the optimal solution and prove its optimality
nal GLS, GLS shows even better scaling behaviour. Once(and this within one CPU second).
again, not only the average quality difference to Glgdows,
but for both GLS and s-BBMB, the relative variability also 5§ Conclusion and Future Work
increases with network size.

These scaling results are further extended in our second e
g? ggsvrg}kvghoerﬁr\]’\éepséﬁg'relﬁ at;] gelrgf %ﬁgé)/fsfhgﬂgdgﬁgdﬂ\:\gdt em, and introduced GLS a novel variant of GLS that pays

. ; . i h important concerns as algorithmic
B&B algorithms. For this, we used networks generated withTore att_entlon to suc -
BNGen%ratoP, which allows to generate net%vorks with a complexity per search step, thorough parameter tuning, and

rather accurate upper bound on the induced width. The res_trong guidance by the evaluation function. For a wide range

sults in Figure 2(c) show that the induced width has a majog];'s\{l_PEr;gfﬁ?]ce;a%tl‘j Vgﬁg%ggﬂ%ﬁﬂ;ﬁfﬂg ;lh%
effect on algorithm performance, and that GLS and GLS P 9 9 9

scale much better with induced width than the B&B algo- rithms) that defined the state-of-the-art in MPE solving.sMo
rithms (we omit s-AOMB and d-AOMB which were worse importantly, we demonstrated that the performance of GLS

than d-BBMB). We attribute this to the B&B algorithm’s MB scales much better than GLS and B&B algorithms with the
heuristic whose guidance is impaired for high induced vadth gﬁg”i?]g(uggg v?/%ThamGsl'_léeélss s\ﬁillvgsthvgltt?egfmé?frcl)(rnﬂiﬂscléy
In our third experiment we studied real-world networks ' P

; : for real-world instances.
ggrrpo;tpnes %2353:%?' [\:a?(t(\:l\é%rtkfErelg(r)sg({?élt_\'/?crﬁks(;vbﬁ] Iaz)lsvoin- In contrast to recent claims that stochastic local search al

: ; ; : ithms are not competitive for MPE solvililarinescuet
duced width, which are easily solved with VE. As we show 90" .
in Table 2, a short preprocessing stagex( 0) significantly al., 2009, our results establish SLS as a state-of-the-art ap-

improves the performance of Gt:Sor these structured net- proach for MPE solving that merits further investigation. |
Woeks, making it faster than all B&B algorithms (with op- particular, the anytime characteristics and excellentirsga

timal i-bound) for all but one network. In particular, note  without the preprocessing & 0), we performed 25 additional runs

e . of two hours on the instancdd abet es and Muni n4. Out of
http://www.pmr.poli.usp.br/ltd/Software/BNGenerator/ these, eleven runs solved tBeabet es network, but theWuni n4
"http://www.cs.huiji.ac.il/labs/compbio/Repository/ network was never solved. This highlights the importance of pre-
8To study whether GLS eventually finds the optimum even processing for structured networks.

)Igj this work, we identified various weaknesses of GLS, the
reviously best-performing SLS algorithm for the MPE prob-



Instance Stats _GLS+ _ GLST VE GLS _ BBMB - _ AOMB _ _
N K | w |withb = 0 | optimal b Niest (orig) static ib dynamic | ib static ib dynamic |ib
Bar | ey 48 | 8.77 | 7 19.22 17.95 | 107 31 - ) 258258 | 6 | 6.28/68.91| 4 | 3.08/3.08 | 6 | 43.37/43.37 | 4
Di abetes | 413[11.34] 4 | (0.0099) | 361 [>10°| 0 | 3.6¥3.61 | () | 4.55/4.55 | >6 - 8.64/8.64 | >6|162.28/162.28 8
Li nk 724 | 25315 1.25 1.16 | 10% | 352 - 1.0 | (0.0050) | 10| (0.0050) | 4 - - -
Muninl | 189 | 5.26 |11 0.34 0.34 107 45 - 1.0 | 1.25/10.57| 6 | 1.03/45.84| 4 | 6.426.42 | 6 | 38.15/38.15| 4
Muni n2 |1003| 5.36 | 7 0.96 0.91 107 79 1.91.9 1.0 | 3.98/6.55| 8 76.36/- | 6 | 2.77/2.77 | 6 | 10.24/40.24 | 8
Mini n3 |1044| 537 | 7 0.87 0.83 107 62 1.51.5 ) 4.34/4.34 | 12 | 27.59/44.10 10| 2.39/2.39 | 6 12.92/12.92 | 6
Mini n4 | 1041| 5.43| 8 | (0.0347) 1.87 107 157 | 17.6947.69| (-) |21.30/24.79 12 | (0.0090) | 4 | 20.77/20.77 8 |128.24/128.24 8

Table 2: Performance on networks from the Bayesian NetwaoRitory. N is the number of variables of the network,
its average domain size, andits induced width. For GLS, b is the limit on the number of entries for applying VE in the
extended version of GLSand Nystis the remaining number of variables after the preprocgssith that bound; we report the
combined time for preprocessing and search. For each nemor SLS algorithm, if all of 25 runs found the optimal sabuti
within 600 CPU seconds, we give their average runtime. @tser we give the average approximation quality in paresebe
For each B&B algorithm, we report the best result for &found in{2, 4, 6,8, 10, 12}. If a B&B algorithm found the optimal
solution within 600 CPU seconds, we give the time it requie@ind it, followed by the time it required to prove optimalit
(if applicable). If it did not find the optimal solution, wewi its approximation quality in parentheses. For each nétvwee
highlight the fastest solution time and the fastest praokti Remarkably, the B&B algorithms often prove optimalitygly
after finding the optimal solution, which suggests that thik is only slightly harder. The networké ar m | nsur ance,
Hai | fi nder, M | dew, Pi gs, andWat er are not listed in this table since they are always solved ihlvedow a second by
all algorithms except the original GLS, which does not sdl/¢ dew.

behaviour of GLS suggest its use for large problems with [Jaakkola and Jordan, 1999. S. Jaakkola and M. I. Jordan.
real-time constraints, such as finding the MPE in pairwise Variational probabilistic inference and the QMR-DT net-
MRFs for early computer visiofBoykov et al., 200]. We work. JAIR, 10:291-322, 1999.
therefore plan a comparative study of GL.jeneralized BP  [Kask and Dechter, 199K. Kask and R. Dechter. Stochas-
and graph cuts, which currently define the state-of-théaart tic local search for Bayesian networks. Rroc. of
that domain[Tappen and Freeman, 2d03Furthermore, in AISTATS-99, January 1999.
the near future we plan to implement an extension of GLS [Marinescu and Dechter, 20DR. Marinescu and
that computes a diverse set of high-quality MPEs—the SLS R, Dechter. AND/OR tree search for constraint opti-
paradigm accommodates such an extension easily, for exam- mjzation. InSoft’' 04 workshop at CP’ 2004, 2004.
ple, by using the best solutions encountered along thelseargyiarinescuet al., 2003 R. Marinescu, K. Kask, and
trajectory. R. Dechter. Systematic vs. non-systematic algorithms for
solving the MPE task. I®roc. of UAI-03, 2003.
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