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Abstract

Finding most probable explanations (MPEs) in
graphical models, such as Bayesian belief net-
works, is a fundamental problem in reasoning un-
der uncertainty, and much effort has been spent on
developing effective algorithms for thisNP-hard
problem. Stochastic local search (SLS) approaches
to MPE solving have previously been explored, but
were found to be not competitive with state-of-the-
art branch & bound methods. In this work, we iden-
tify the shortcomings of earlier SLS algorithms for
the MPE problem and demonstrate how these can
be overcome, leading to an SLS algorithm that sub-
stantially improves the state-of-the-art in solving
hard networks with many variables, large domain
sizes, high degree, and, most importantly, networks
with high induced width.

1 Introduction
Since Pearl’s classic text[Pearl, 1988], graphical models such
as Bayesian networks have become the prime representation
for uncertainty in AI. This paper deals with the problem of
finding theMost Probable Explanation (MPE) for some ev-
idence when reasoning under uncertainty. More specifically,
in the light of uncertain knowledge represented as a proba-
bilistic graphical model, this problem is cast as finding the
most probable instantiation of all the model’s variablesV

given the observed valuese for a subsetE ⊆ V.
The MPE problem in graphical models has applications

in different fields, such as medical diagnosis[Jaakkola and
Jordan, 1999], fault diagnosis[Rish et al., 2002], computer
vision [Tappen and Freeman, 2003], and prediction of side-
chains in protein folding[Yanover and Weiss, 2003], to name
just a few. Consequently, many algorithms have been sug-
gested to solve this problem, but since it isNP-hard, many
hard problem instances still cannot be solved efficiently. The
available algorithms for MPE solving include exact meth-
ods like variable elimination (VE)[Dechter, 1999], junc-
tion tree (JT)[Cowell et al., 1999] and conditioning tech-
niques[Pearl, 1988], but also systematic search algorithms,
such as branch & bound (B&B), guided by a Mini-Buckets
(MB) heuristic [Dechter and Rish, 2003]. Since in practice
many applications require efficient online algorithms for net-
works of high induced width, there is also much research

in approximate MPE algorithms, reaching from loopy belief
propagation (BP)[Pearl, 1988] and generalized BP[Yedidia
et al., 2002] to stochastic local search (SLS) algorithms[Kask
and Dechter, 1999; Park, 2002] and specialized algorithms,
such as graph cuts for certain pairwise Markov Random
Fields (MRFs) that, for example, occur in computer vi-
sion[Boykov et al., 2001].

B&B approaches have recently been shown to be state-
of-the-art methods in MPE solving, and it has been claimed
that for MPE, B&B algorithms clearly outperform GLS, the
best performing SLS algorithm known so far, in terms of the
ability to find high-quality solutions quickly[Marinescuet
al., 2003]. This is in stark contrast to results for numerous
other combinatorial optimisation problems, such as weighted
MAX-SAT, where SLS algorithms clearly define the state-of-
the-art (see, e.g.,[Hoos and Sẗutzle, 2004]).

In this work, we analyse the shortcomings of previous
SLS algorithms for MPE and demonstrate that these weak-
nesses can be overcome based on the careful consideration
of important issues, such as the time complexity of individ-
ual search steps, search stagnation and thorough parameter
tuning. In particular, we introduce improvements to Park’s
GLS algorithm[Park, 2002] that overcome its inferior scal-
ing behaviour with network and domain size. Our new al-
gorithm, GLS+, clearly outperforms current state-of-the-art
MPE algorithms on various types of networks, especially for
hard networks with high induced width, and hence establishes
stochastic local search as a highly attractive and competitive
approach to MPE solving.

The remainder of this paper is structured as follows. We
first introduce some basic concepts and notation in Section 2;
next, in Section 3, we describe GLS and GLS+ and present
some computational results illustrating the improvement of
GLS+ over GLS. In Section 4 we present empirical results
that establish GLS+ as a new state-of-the-art algorithm for
finding MPEs. We close with some conclusions and a brief
outlook on future work in Section 5.

2 Preliminaries
A discreteBayesian belief network (or Bayes net) B is a
quadruple〈V,D,G,Φ〉, whereV is an ordered set of ran-
dom variables,D is an ordered set of finite domainsDVi

for
eachVi ∈ V, G = (V, E) is a directed acyclic graph (DAG),
andΦ is an ordered set of CPTsφV = P (V |pa(V )), speci-
fying the conditional probability distribution of eachV ∈ V



given its parentspa(V ) in G. Semantically, a Bayes net spec-
ifies a joint probability distributionφ over its variablesV in
factored form:φ = P (V) =

∏
V ∈V

φV .
Given a Bayes netB = 〈V,D,G,Φ〉 and a set of evidence

variablesE = e, the Most Probable Explanation (MPE)
problem is to find an instantiationV = v with maximal prob-
ability p(v) :=

∏
φ∈Φ

φ[V = v] over all variable instantia-
tions v consistent with evidencee. While all networks in
our experimental analysis are Bayes nets, our algorithms are
equally applicable to other graphical models, such as MRFs
or general factor graphs.

CPTs are a special case ofpotentials, which are functions
that have non-negative entries for any assignment of their
variables. One well-known method for solving MPE in gen-
eral networks is variable elimination (VE) (see, e.g.,[Dechter,
1999]); it iteratively eliminates variablesV by multiplying all
potentials that are defined overV and then maximizingV out
of the product thus obtained. Once all variables are elimi-
nated, the best assignment can be recovered in linear time.
Mini-Buckets with i-boundib (MB(ib)) [Dechter and Rish,
2003] approximates VE by splitting each product into smaller
products with at mostib variables; MB-w(s) is a new variant
of MB that instead limits the number of entries in each prod-
uct bys. For constant domain sized, MB(ib) and MB-w(dib)
are equivalent, but for networks with different domain sizes
MB-w performed better in our experiments. All of VE, MB,
and MB-w employ a min-weight heuristic.

3 SLS for MPE: From GLS to GLS+

Probably the most prominent Stochastic Local Search algo-
rithm for inference in Bayesian networks is a method called
Stochastic Simulation [Pearl, 1988; Kask and Dechter, 1999],
also known as Gibbs sampling. However, for MPE, this
method, as well as Simulated Annealing, was shown to be
clearly outperformed by a simple algorithm calledGreedy
+ Stochastic Simulation (G+StS) [Kask and Dechter, 1999],
which probabilistically chooses between greedy and sam-
pling steps.

The MPE problem is closely related to weighted MAX-
SAT [Park, 2002] (and MAX-CSP[Marinescu and Dechter,
2004]); based on this close relationship, Park adapted
two high-performance MAX-SAT algorithms, DLM and
GLS [Mills and Tsang, 2000], to the MPE problem[Park,
2002].1 His computational experiments identified GLS as the
state-of-the-art SLS algorithm for MPE solving: he showed
that GLS and DLM clearly outperform G+StS and that GLS
performed better than DLM on most instances. However, as
shown in[Marinescuet al., 2003], GLS does not reach the
performance of current B&B algorithms.

GLS has been applied successfully to many combinato-
rial problems, including TSP[Voudouris and Tsang, 1999],
SAT and weighted MAX-SAT[Mills and Tsang, 2000]. It
can be classified as a dynamic local search algorithm[Hoos
and Sẗutzle, 2004] and uses penalties associated with solu-
tion components to guide the search process; these penalties

1Although Park motivated his versions of these algorithms with
the MAX-SAT domain, his implementation works on MPE directly.
To our best knowledge, his suggested encoding has never been im-
plemented, and we are not aware of any implementation of GLS for
weighted MAX-SAT with real-valued weights.

Algorithm 1 : GLS/GLS+ for MPE
GLS and GLS+ differ in the procedure used to generate an ini-
tial solution, the subsidiary local search procedure, and, most
importantly, in the evaluation functiong(v|Vi = vi). These dif-
ferences are explained in the text.
The utilitiesutil(φ,v) are defined in the text.

Input : Bayes netB = 〈V,D,G, Φ〉, evidenceE = e, time
boundt, smoothing factorρ, smoothing intervalNρ.

Output : Variable assignmentV = v with highest probability∏
φ∈Φ

φ[V = v] found in timet

//=== Initialize variable assignment v, penalties λφ, and local
optima counter LO.

v ← GenerateInitialSolution(B, e)1
foreachφ ∈ Φ and all instantiations Vφ = vφ do2

λφ[Vφ = vφ] ← 03

#(LO) ← 04

//=== Alternate local search and updates of the evaluation
function until termination.

while runtime < t do5
v ← SubsidiaryLocalSearch(B,v, e)6

//=== Local optimum, update evaluation function.
foreachφ ∈ Φ do7

if util(φ,v) = maxφ∈Φ util(φ,v) then8
λφ[V = v] ← λφ[V = v] + 19

//=== Regularly smooth penalties.
#(LO) ← #(LO) + 110
if #(LO) modulo Nρ = 0 then11

for φ ∈ Φ and all instantiations Vφ = vφ do12
λφ[Vφ = vφ] ← λφ[Vφ = vφ] ∗ ρ13

are dynamically updated whenever the search reaches a local
optimum.

An outline of the GLS algorithm is shown in Figure 1. At
a high level, after initialising the search and setting all penal-
ties to zero, GLS alternates between two search phases: First,
a simple iterative improvement search is performed with re-
spect to the evaluation functiong that takes into account the
current penalty values. After this process has reached a lo-
cal optimumo of g, certain penalty values are incremented
by one. Only penalties of solution components present ino
can be selected to be incremented; this selection is based on
the contribution of the respective solution component tog(o)
and its current penalty value. (For details, see Algorithm 1or
[Park, 2002].) Additionally, all penalties are regularly multi-
plied by a factorρ ≤ 1; this smoothing mechanism prevents
the penalty values from growing too large and is performed
everyNρ local optima, whereNρ is a parameter.

In Park’s GLS for MPE, the solution components are par-
tial instantiations of the variables. More specifically, for each
potentialφ ∈ Φ, every instantiationVφ = vφ of its vari-
ables is a solution component.2 The evaluation function to be

2Note that the number of components present in any candidate
solution for an MPE instance is constant; this is because every vari-
able instantiationV = v is consistent with exactly one (partial)
instantiationVφ = vφ of each potentialφ, and thus the number of
solution features present in each instantiation is the total number of
potentials|Φ|.
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Figure 1: (a) Effect of the modification of the evaluation function in GLS+ compared to GLS on instanceMunin2. Given are
the best, average and worst solution quality over computation time for 25 runs of GLS and GLS+. The GLS+ plot ends after
22.94 CPU seconds when all its runs have found the optimal solution quality. (b) The speedup achieved by our new caching
schemes over the previously best-performing caching scheme on a collection of randomly generated and real-world instances,
where instance size is given as the number of variables (N ) times the average domain size (K).

minimized is defined asg(v) =
∑

φ∈Φ
λφ[V = v], where

λφ[V = v] is the penalty associated with solution compo-
nentVφ = vφ. It may be noted that this deviates from the
standard form of the evaluation function for the general GLS
algorithm, which also captures the contribution of each solu-
tion component to the optimisation objectivep(v).

Due to this non-standard evaluation function, the sole in-
teraction of objective function and penalties in Park’s GLS
for MPE is via the utilities of potentialsφ under the current
assignmentv, which are defined asutil(φ,v) = −φ[V =
v]/(1 + λφ[V = v]). An entry φ[Vφ = vφ] with high
probability is assigned low utility, and its associated penalty
λφ[Vφ = vφ] will be increased less often, driving the search
towards the partial variable instantiationVφ = vφ eventually,
but possibly only after a considerable delay.

Due to this initial and persistent lack of greediness, we ex-
pected the performance of GLS for MPE to be boosted sig-
nificantly by integrating the objective function into the search
heuristic. We achieved this by a change in GLS’s evalua-
tion function. Our improved version of GLS, which we call
GLS+, adds the logarithmic objective function to the appro-
priate penalties, making the new evaluation function to be
maximizedg(v) =

∑
φ∈Φ

log(φ[V = v])−w×λφ[V = v],
wherew is a weighting factor.3 Indeed, this modification
of the evaluation function has major consequences on search
behaviour and especially boosts the search in early phases
of the search. Figure 1(a) illustrates this for the real-world
networkMunin2 (from the Bayesian Network Repository),
where GLS+ finds optimal-quality solutions 10 times faster
on average.

GLS+ differs from GLS in a number of other components,
namely the parameter setting, the caching scheme, and the
initialization. All of these modifications contribute signifi-
cantly to GLS+’s improved performance (a detailed analy-
sis of their individual importance can be found in[Hutter,
2004]). Firstly, a thorough experimental analysis showed
that, although Park states that “GLS had no parameters to

3In order to achieve a meaningful guidance by this evaluation
function in areas of the search space with probability zero, we treat
log(φ[V = v]) as−104 for φ[V = v] = 0; we also fixed the
weighting factorw to 104 to make the penalties comparably large.

tune.” [Park, 2002], its performance can be boosted by up
to several orders of magnitude by simply changing Park’s de-
fault smoothing valueρ = 0.8 to the constant valueρ =
0.999. For example, for theHailfinder network GLS
finds the optimal solution 10 times faster withρ = 0.999
than withρ = 0.8, and for several random instances this ef-
fect is much more pronounced. It is interesting to note that the
very small amount of smoothing performed atρ = 0.999 can
be rather important: Without smoothing (ρ = 1), we found
rare but conclusive evidence for search stagnation on random
networks.

Secondly, the subsidiary local search procedure in GLS
uses a computationally efficient first-improvement strategy,
whereas GLS+ employs a more powerful best-improvement
procedure in conjunction with newly developed, powerful
strategies for caching and updating the effects of variableflips
on the evaluation function. While previously used caching
schemes only locally update the partial evaluation function
value involving variables in the Markov blanket of a flipped
variable, we developed two substantial improvements. At ev-
ery step, we maintain the score of flipping each variable to
any of its values (caching schemeScores), and on top of that
the set of all variables that lead to an improvement in eval-
uation function value when flipped to some value (caching
schemeImproving); since after an initial search phase this
quantity is a low constant in practice, this latter caching
scheme enables an evaluation of the whole neighbourhood of
a search position in constant time. Figure 1(b) demonstrates
the large performance gains of our new caching schemes over
the previous state-of-the-art caching scheme.

Thirdly, GLS initializes the search randomly. However,
it has been shown that strong initial solutions, such as the
ones obtained with MB, lead to much better overall solu-
tions[Kask and Dechter, 1999]. Consequently, GLS+ initial-
izes its search using the MB variant MB-w(105) (see Section
2), which improves the quality of found solutions consider-
ably and for some instances speeds up the search for optimal
solutions by up to two orders of magnitude.

We also study a version of GLS+ that has an additional
preprocessing stage based on VE. In this preprocessing, VE
is applied until a potential with more thanb entries is ob-
tained, whereb is a parameter (b = 0 results in the standard



Distribution
Stats GLS+ GLS BBMB AOMB

W Opt (default) (orig) static(10) dynamic(4) static(10) dynamic(6)
Random networks

Base-line:N = 100, K = 2, P = 2 16.5 100 0.11 1.88(1/0) 0.05 1.69 0.33 1.10

N = 200, K = 2, P = 2 34.8 0 0.70 33.97(68/0.8464) 61.95(88/0.2694) 47.66(86/0.4168) -(100/0) -(100/0)
N = 400, K = 2, P = 2 72.6 0 10.13 -(100/0.0355) -(100/0.0020) -(100/0.0254) -(100/0) -(100/0)

N = 100, K = 3, P = 2 16.5 100 0.34 37.15(81/0.7392) 5.51 28.90(7/0.5608) 15.38 33.72(20/0)
N = 100, K = 4, P = 2 16.3 60 0.88 -(100/0.2225) 21.86(25/0.4856) 29.88(65/0.5071) 42.41(53/0) 59.02(91/0)

N = 100, K = 2, P = 3 28.3 47 0.42 13.26(3/0.9659) 36.12(48/0.3650) 31.49(74/0.3884) 43.01(62/0) 53.17(62/0)
N = 100, K = 2, P = 4 37.0 0 0.81 41.89(4/0.8538) 46.83(98/0.1079) 2.07(99/0.1502) -(100/0) -(100/0)

Grid networks
Base-line:N = 10, K = 2 11.8 100 0.01 4.55(5/0.1989) 0.05 20.23(7/0.6847) 0.13 2.56

N = 15, K=2 22.4 0 0.90 50.00(99/0.4201) 9.75(95/0.2686) -(100/0.0880) -(100/0) -(100/0)
N = 20, K=2 32.8 0 30.01 -(100/0.0031) -(100/0.0058) -(100/0.0015) -(100/0) -(100/0)
N = 25, K=2 44.3 0 52.06 -(100/0) -(100/0.0002) -(100/0) -(100/0) -(100/0)

N=10,K = 3 12.0 100 0.34 -(100/0.4955) 0.98 47.16(97/0.3187) 1.90 43.29(53/0)
N=10,K = 4 11.7 95 1.17 -(100/0.0496) 4.77(3/0.5950) -(100/0.1830) 15.59(4/0) 68.32(95/0)
N=10,K = 5 11.8 84 5.05 -(100/0.0098) 6.41(9/0.5619) -(100/0.1334) 76.52(33/0) -(100/0)
N=10,K = 6 11.9 0 17.89 -(100/0.0049) -(100/0) -(100/0.0940) -(100/0) -(100/0)

Table 1: Scaling of performance for random networks and gridnetworks with network sizeN , domain sizeK, and number of
parentsP . For each problem distribution, there are 100 networks.W gives their average induced width,Opt the number of
networks for which our quasi-optimal solutions are provably optimal (we never found a better solution than the quasi-optimal
one). For each algorithm and problem distribution, we list the average time to find a quasi-optimal solution. If an algorithm did
not find the quasi-optimal solution for all instances within100 CPU seconds, we give its average time for its solved instances,
and in parentheses its number of unsolved instances, followed by its average approximation quality for these instances.

GLS+ algorithm, andb = ∞ yields pure VE). The result-
ing reduced network can then quickly be solved with GLS+,
and the eliminated variables can be instantiated optimallyin
linear time like in regular VE.

4 Experimental Results
We conducted a number of computational experiments to
compare the performance and scaling behaviour for the orig-
inal GLS algorithm, GLS+, and the current state-of-the-art in
MPE solving.4 In [Marinescuet al., 2003], B&B with static
MB heuristic (s-BBMB) and a B&B algorithm with MB tree
elimination heuristic (BBBT) were claimed to be the state-
of-the-art for MPE solving.[Marinescu and Dechter, 2004]
then introduced B&B with dynamic MB heuristic (d-BBMB),
as well as versions of s-BBMB and d-BBMB that employ
an AND/OR search tree; these are called s-AOMB and d-
AOMB.

We used Radu Marinescu’s C++ implementations of s-
BBMB, d-BBMB, s-AOMB, and d-AOMB.5 Furthermore,
we used Marinescu’s C++ implementation of GLS instead
of the original Java implementation by Park[Park, 2002],
since the former was orders of magnitude faster than the lat-
ter on all instances we tried; our GLS+ implementation is
also written in C++. We employed a fixed parameter setting
of 〈ρ,Nρ〉 = 〈0.999, 200〉 for GLS+ and the overall best-
performing fixedi-bound ib ∈ {2, 4, 6, 8, 10, 12} for each
B&B algorithm. The preprocessing stage in GLS+ only im-
proves its performance for structured networks. Thus, we set

4All experiments were carried out on compute servers each
equipped with dual 2GHz Intel Xeon CPUs with 512KB cache and
4GB RAM running Linux version 2.4.20, build 28.9. Our imple-
mentation and the benchmark instances we used are available online
at http://www.cs.ubc.ca/labs/beta/Projects/SLS4MPE/

5We do not report results for BBBT, since the implementa-
tion available to us could only correctly handle networks generated
within the REES system (http://www.ics.uci.edu/˜radum/rees.html).

b = 0 in the experiments on random instances.
In the first two experiments, for each network, we executed

each algorithm once for a maximum of 100 CPU seconds and
call the best solution found in any such run of an algorithm
quasi-optimal. For the second and third experiment, we ran
the B&B algorithms for a long time to obtain provably opti-
mal solution qualities, which we found to always agree with
our quasi-optimal solutions. For a fair comparison, we always
report the times each algorithm requires for finding a quasi-
optimal solution; only for the third experiment we addition-
ally report the time required for proving optimality. Finally,
we define theapproximation quality of an algorithm run as
the ratio of the probability of the solution it found and the
quasi-optimal probability.

Our first experiment evaluates how the various algorithms
scale with important instance characteristics, such as network
size (N ), domain size of the variables (K), and network den-
sity, here controlled by the numberP of parents of each node.
We created instances with a random network generator pro-
vided by Radu Marinescu (this is, e.g., described in[Mari-
nescuet al., 2003]), topologically sampled all variables to
guarantee non-zero joint probability, and randomly picked10
evidence variables. Table 1 shows that for small and easy net-
works, identified as “Base-line” in the table, the original GLS
and the B&B algorithms are competitive with GLS+, but that
when scaling any ofN , K, or P , the performance of all al-
gorithms except GLS+ degrades rapidly.[Marinescuet al.,
2003] showed that s-BBMB scales much better with domain
sizeK than the original GLS algorithm. While this is con-
firmed by our experiments (see Table 1), our results in Fig-
ure 2(a) show that GLS+ substantially outperforms s-BBMB
for largerK, and that the relative variability in run-time in-
creases withK for s-BBMB, but remains constant for GLS+.

GLS+ does not only outperform the other algorithms in
terms of runtime for finding quasi-optimal solutions, but also
in terms of solution quality found in a given fixed time. This
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Figure 2: (a) CPU time required by GLS+ and s-BBMB(10) to solve random network instances to optimality. Each point is
the result of a single run on one instance. The instances are the same as summarized in Table 1. The same CPU-time for
both algorithms is indicated by the line. (b) Comparison of the quality reached by the three algorithms GLS, GLS+, and s-
BBMB(10) within 100 CPU seconds. For all instances, GLS+ found the best known solution quality, thus its approximation
quality is always 1. Each point in the figure is the result of a single run for one instance by GLS and s-BBMB(10), while the
two lines show the approximation quality of GLS+. (c) Scaling with induced width for random networks with 100variables,
domain size 2, and maximal node degree 5. For each induced width, based on one run on each of 100 instances, we plot the
median runtime for finding the optimal solution. The errorbars are based on the quantilesq0.25 andq0.75. We do not employ
means and standard deviations since the B&B algorithms did not succeed in finding an optimal solution for every network. For
example, for the networks of induced width 40, GLS+ took 0.5 seconds in the worst case, whereas s-BBMB(10) failed to find
the optimal solution for 18 of the 100 networks within100 seconds.

can be seen from Table 1 for all ofN , K and P , and is
visualized in Figure 2(b) for scalingN in random grid net-
works. This scatter plot compares the original GLS, GLS+,
and s-BBMB all given the same maximum computation time;
this is possible since GLS+ always finds the quasi-optimal
solutions, such that its approximation quality is constantly
1. Even though s-BBMB(10) scales better than the origi-
nal GLS, GLS+ shows even better scaling behaviour. Once
again, not only the average quality difference to GLS+ grows,
but for both GLS and s-BBMB, the relative variability also
increases with network size.

These scaling results are further extended in our second ex-
periment, where we studied the impact of the induced width
of networks on the performance of GLS+ vs. GLS and the
B&B algorithms. For this, we used networks generated with
BNGenerator,6 which allows to generate networks with a
rather accurate upper bound on the induced width. The re-
sults in Figure 2(c) show that the induced width has a major
effect on algorithm performance, and that GLS and GLS+

scale much better with induced width than the B&B algo-
rithms (we omit s-AOMB and d-AOMB which were worse
than d-BBMB). We attribute this to the B&B algorithm’s MB
heuristic whose guidance is impaired for high induced widths.

In our third experiment we studied real-world networks
from the Bayesian Network Repository.7 Here, GLS+ also
performs very well, except for large networks with low in-
duced width, which are easily solved with VE. As we show
in Table 2, a short preprocessing stage (b > 0) significantly
improves the performance of GLS+ for these structured net-
works, making it faster than all B&B algorithms (with op-
timal i-bound) for all but one network.8 In particular, note

6http://www.pmr.poli.usp.br/ltd/Software/BNGenerator/
7http://www.cs.huji.ac.il/labs/compbio/Repository/
8To study whether GLS+ eventually finds the optimum even

that theLink network could not be solved by any of the
B&B algorithms, while GLS and GLS+ find the optimal so-
lution in one CPU second. Interestingly, MB(2) already finds
a tight upper bound on solution quality (in 10 CPU millisec-
onds), but with feasiblei-bounds never even comes close to a
tight lower bound. Consequently, only a combination of SLS
and MB can find the optimal solution and prove its optimality
(and this within one CPU second).

5 Conclusion and Future Work
In this work, we identified various weaknesses of GLS, the
previously best-performing SLS algorithm for the MPE prob-
lem, and introduced GLS+, a novel variant of GLS that pays
more attention to such important concerns as algorithmic
complexity per search step, thorough parameter tuning, and
strong guidance by the evaluation function. For a wide range
of MPE instances, GLS+ widely outperforms GLS and the
best-performing exact algorithms (all of which are B&B algo-
rithms) that defined the state-of-the-art in MPE solving. Most
importantly, we demonstrated that the performance of GLS+

scales much better than GLS and B&B algorithms with the
network and domain size, as well as with network density
and induced width. GLS+ also shows the best performance
for real-world instances.

In contrast to recent claims that stochastic local search al-
gorithms are not competitive for MPE solving[Marinescuet
al., 2003], our results establish SLS as a state-of-the-art ap-
proach for MPE solving that merits further investigation. In
particular, the anytime characteristics and excellent scaling

without the preprocessing (b = 0), we performed 25 additional runs
of two hours on the instancesDiabetes andMunin4. Out of
these, eleven runs solved theDiabetes network, but theMunin4
network was never solved. This highlights the importance of pre-
processing for structured networks.



Instance
Stats GLS+ GLS+

VE
GLS BBMB AOMB

N K w with b = 0 optimal b Nrest (orig) static ib dynamic ib static ib dynamic ib
Barley 48 8.77 7 19.22 17.95 10

4 31 - (-) 2.58/2.58 6 6.28/68.91 4 3.08/3.08 6 43.37/43.37 4
Diabetes 413 11.34 4 (0.0099) 3.61 ≥ 10

6 0 3.61/3.61 (-) 4.55/4.55 ≥6 - - 8.64/8.64 ≥6 162.28/162.28 8
Link 724 2.53 15 1.25 1.16 10

2 352 - 1.0 (0.0050) 10 (0.0050) 4 - - - -
Munin1 189 5.26 11 0.34 0.34 10

4 45 - 1.0 1.25/10.57 6 1.03/45.84 4 6.42/6.42 6 38.15/38.15 4
Munin2 1003 5.36 7 0.96 0.91 10

4 79 1.9/1.9 1.0 3.98/6.55 8 76.36/- 6 2.77/2.77 6 10.24/40.24 8
Munin3 1044 5.37 7 0.87 0.83 10

4 62 1.5/1.5 (-) 4.34/4.34 12 27.59/44.10 10 2.39/2.39 6 12.92/12.92 6
Munin4 1041 5.43 8 (0.0347) 1.87 10

4 157 17.69/17.69 (-) 21.30/24.75 12 (0.0090) 4 20.77/20.77 8 128.24/128.24 8

Table 2: Performance on networks from the Bayesian Network Repository.N is the number of variables of the network,K
its average domain size, andw its induced width. For GLS+, b is the limit on the number of entries for applying VE in the
extended version of GLS+ andNrest is the remaining number of variables after the preprocessing with that bound; we report the
combined time for preprocessing and search. For each network and SLS algorithm, if all of 25 runs found the optimal solution
within 600 CPU seconds, we give their average runtime. Otherwise, we give the average approximation quality in parentheses.
For each B&B algorithm, we report the best result for anyi-bound in{2, 4, 6, 8, 10, 12}. If a B&B algorithm found the optimal
solution within 600 CPU seconds, we give the time it requiredto find it, followed by the time it required to prove optimality
(if applicable). If it did not find the optimal solution, we give its approximation quality in parentheses. For each network, we
highlight the fastest solution time and the fastest proof time. Remarkably, the B&B algorithms often prove optimality shortly
after finding the optimal solution, which suggests that thistask is only slightly harder. The networksAlarm, Insurance,
Hailfinder, Mildew, Pigs, andWater are not listed in this table since they are always solved in well below a second by
all algorithms except the original GLS, which does not solveMildew.

behaviour of GLS+ suggest its use for large problems with
real-time constraints, such as finding the MPE in pairwise
MRFs for early computer vision[Boykov et al., 2001]. We
therefore plan a comparative study of GLS+, generalized BP
and graph cuts, which currently define the state-of-the-artin
that domain[Tappen and Freeman, 2003]. Furthermore, in
the near future we plan to implement an extension of GLS+

that computes a diverse set of high-quality MPEs—the SLS
paradigm accommodates such an extension easily, for exam-
ple, by using the best solutions encountered along the search
trajectory.
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