Stochastic Local Search
for Solving the
Most Probable Explanation Problem
In Bayesian Networks

Diplomarbeit in englischer Sprache
Eingereicht am Fachbereich Informatik
der Technischen Universit Darmstadt

von Frank Hutter

Betreuer: Dr. Thomas Sitzle
Externer Betreuer: Dr. Holger H. Hoos (The University of BiitiColumbia, Canada)
Tag der Einreichung: 30. September 2004

Abstract

In this thesis, we develop and study novel Stochastic Loealk& (SLS) algo-
rithms for solving the Most Probable Explanation (MPE) peob in graphical
models, that is, to find the most probable instantiation bi/afiablesV in the
model, given the observed valuBs= e of a subseE of V. SLS algorithms have
been applied to the MPE problem before [KD99b, Par02], bueraf the previous
SLS algorithms pays sufficient attention to such importamnicerns as algorithmic
complexity per search step, search stagnation, and thbnoaigameter tuning. We
remove these shortcomings of previous SLS algorithms foEM®proving their
efficiency by up to six orders of magnitude. In a thorough expental analysis,
we demonstrate how each of the novel components of our #igasisubstantially
contributes to their high performance. A comparison witheagtime version of
the prominent Mini-Buckets algorithm [DRO3] and the exactoaitpm Branch-
and-Bound with static Mini-Buckets heuristic (BBMB) [KD99a, MKIB] shows
that our best algorithm outperforms these approaches oh Mi®E instances we
study. We also show that our SLS algorithms scale much hetterms of a num-
ber of important instance characteristics, namely the rerrabvariables, domain
size, node degree, and induced width of the underlying gcapimodel.

Zusammenfassung

In dieser Diplomarbeit entwickeln und untersuchen wir méga Stochastische
Lokale Suchverfahren, um das Problem der wahrscheindoh&tkirung (most
probable explanation MPE) in Graphischen Modellen zuwden, d. h., die
wahrscheinlichste Instantiierung aller Modellvariabl€nzu finden, wenn eine
partielle Instantiierunde = e der VariablenE C V als Evidenz gegeben ist.
Stochastische Lokale Suche (SLS) wurde schon zuvor pguhg dieses Prob-
lems angewendet, aber keiner der bisherigen SLS Algorithfii®99b, Par02]
befasst sich detailliert genug mit den zentralen Problieaider Komplexiat pro
Suchschritt, der Stagnation der Suche und dem &liiggn Abstimmen der Pa-
rameter. Wir entfernen diese Schghen filherer SLS Algorithmen und erreichen
so eine Geschwindigkeitssteigerung von bis zu secli®€&rordnungen. In einer
umfassenden experimentellen Analyse zeigen wir, wie jede iomponente un-
serer Algorithmen zu deren hohen Performanz bgitr Ein Vergleich mit einer
“Anytime”-Variante des prominenten Mini-Buckets Algornittusses [DR03], sowie
mit dem exakten Algorithmus Branch and Bound mit Mini-BucketuHstik (s-
BBMB) [KD99a, MKDO03] zeigt, dass unser bester Algorithmiis tie meisten
Probleminstanzen ein@here Performanz zeigt als diese Algorithmen. Wir zeigen
auch, dass unsere SLS Algorithmen deutlich besser mit &a#re wichtiger In-
stanzmerkmalen skalieren als die anderendzes Diese Merkmale umfassen die
Anzahl an Variablen, die Doémengol3e, den Knotengrad, sowie die induzierte
Weite des zugrundeliegenden Graphischen Modells.

Ehrenwortliche Erkl arung

Hiermit versichere ich, die vorliegende Diplomarbeit ohhiéfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigtaben. Alle Stellen,
die aus den Quellen entmommen wurden, sind als solche k@ng#macht wor-
den. Diese Arbeit hat in gleicher odannlicher Form noch keiner #lungsbebrde

vorgelegen.

Darmstadt, September 2004 Frank Hutter

Acknowledgements

| am deeply grateful to my thesis supervisor Thomagz at Darmstadt Univer-
sity of Technology (TUD) and my cosupervisor Holger Hoos a¢é TUniversity of
British Columbia (UBC) for giving me the freedom to explore myam®f interest
and for their precise feedback that led to substantial ingmreents of this thesis.

My interest in Stochastic Local Search methods has its rivots graduate
course by Holger Hoos | attended during my visit to UBC in 20@1/ In this
context, | am indebted to Prof. Wolfgang Bibel and ThomagZ for founding
and supervising the Exchange Program between TUD and UBQ, oygirofes-
sors and fellow students at UBC for a seamless integratioritengreat times we
shared, to Holger Hoos for his continued advice and guidaucig this time,
as well as to the German Academic Exchange Service for spsihipo | thank
everybody who contributed to making Vancouver a home away fnome.

I would also like to express my gratitude to Richard Dearderhiong me as
an intern at the NASA Ames Research Center in the summers of 2092003.
These internships have boosted my interest in probabiligirence and also gave
me the chance to enjoy work and fun with top researchers.

During the course of my research, | have further enjoyed jaeearch with
and received much valuable input from the members of thdldotees group at
TUD, the members of the Bioinformatics, and Empirical & Thetaral Algorith-
mics Laboratory at UBC, and many members of the Laboratory fonidational
Intelligence at UBC. | am especially grateful for the stimingtenvironment in
these groups and the pleasant discussions | had with stualedtresearchers of so
different academic and personal backgrounds.

From a technical point of view, | would like to thank my officeata Christian
Bang at Darmstadt University of Technology for his continsibelp in finding my
way in the world of the Ruby programming language, which pawedway to an
invaluable automization of my experiments and the devekgnof ParamiLS. |
gratefully acknowledge James Park for providing his imp#atation of GLS and
Radu Marinescu for providing implementations of the detarstic algorithms s-
BBMB and d-BBMB, as well as useful advice.

Y

Finally, I would like to thank my loving partner Diana for piig up with my
nights and weekends spend in the office and for bringing sneshto my life
when all else failed. | am extremely grateful to her and to emify, especially my
parents and my brother, for their unconditional love, cambjice, and emotional
support. | also would like to thank them and all my friends thoe peaceful and
enjoyable environment | can always be certain to find at hdnespecially thank
my parents and Diana for supporting my choice to follow thtn paid out for me
far away from home.

Vi

Contents

1 Introduction

2 Problem Statement

2.1

2.4

Bayesian Networks
2.2 The Most Probable Explanation Problem
2.3 Applications of MPE and Similar Tasks

BenchmarkInstances

3 Stochastic Local Search

3.1
3.2
3.3
3.4
3.5
3.6

Combinatorial Problems
Basic Concepts of Stochastic Local Search
Escaping from Local Minima

Caching: Exploiting Local Computations to Improve Effirzig

Systematic versus Local Search
MPE-Specific Issuesof SLS

4 Existing Algorithms for the MPE Problem

4.1
4.2
4.3
4.4

Stochastic LocalSearch
Bucket Elimination and Mini Buckets
Exact Algorithms based on Mini-Buckets
Other AlgorithmsforMPE

5 SLS Algorithms for MPE

5.1
5.2
5.3
5.4

Greedy plus Stochastic Simulation (G+StS)
Guided Local Search (GLSandGbs

Iterated Local Search (ILS)
Hybrid Algorithm

10

Efficient Implementation 51
6.1 CachingSchemaive 51
6.2 Caching Schem@mple 52
6.3 Caching Schem®cores. 53
6.4 Caching Schemienproving. 56
6.5 Experimental Evaluation of Caching Schemes 57
Tuning SLS Algorithms for MPE 65
7.1 Experimental Methodology 65
7.2 TuningG+StS L 68
7.3 TuningGLS 71
7.4 TuningGLS 77
7.5 TuninglILS 79
Experimenal Evaluation of SLS Algorithms 85
8.1 Reproductionof PreviousResults. 85
8.2 Experimental Methodology: CorrelationPlots 90
83 G+StSvs.ILS 91
84 GLSvs.GLS 94
85 ILSvs.GLS 102
Comparison with Exact Algorithms 107
9.1 Performance of Systematic Algorithms 107
9.2 Comparison of Best-Performing Algorithms 141
9.3 ScalingStudies 118
Conclusions and Future Directions 127
Parameter Tuning by Iterated Local Search 133
Detailed experimental results 139

viii

List of Figures

2.1 Example for multiplication of probability tables
2.2 Example for a Bayesian Networgprinkler

6.1 Effects of caching for G+StSandILS

6.2 Effects of caching & speedups of G+StSand GLS

7.1 G+StS with varyingnp: Mean solution qualities
7.2 GLS with varyingo: Mean solution qualities

7.3 GLS with varyingp: Empirical RTDs

7.4 GLS withp = 1.00: Search stagnation on random instance

7.5 GLS with varyingV,: Empirical RTDs

7.6 GLS: init MB*(10°) vs. rand.: Mean sol. qual. & Emp. RTDs . .

8.1 Original G+StS vs. ILS, both with init MB10°):Correlation Plots
8.2 Original G+StS vs. ILS, both with random init: CorrelatiBlots .
8.3 G+StS with old vs. new caching: Correlation Plots

8.4 G+StSvs. ILS, all else being equal: Correlation Plots

8.5 ILS with MB*(10°) vs. random init: Correlation Plots

8.6 Original GLS vs. new GLS& CorrelationPlots
8.7 GLS withp = 0.8 vs. p = 0.999: CorrelationPlots

8.8 GLS with old vs. new caching: CorrelationPlots

8.9 GLSvs. GLS, all else being equal: Correlation Plots

8.10 GLS with MB*(10°) vs. random init: Correlation Plots
8.11 GLS vs. GLS: Mean solution qualities & Empirical RTDs

8.12 GLS vs. GLS: Mean solution qualitiesobnrep
8.13 GLS vs. GLS: Mean solution qualitiesogen
8.14 ILS vs. GLS, both with random init: Correlation Plots
8.15 ILS vs. GLS, both with init MB*(10°): Correlation Plots

9.1 s-BBMB() vs. d-BBMB(@): CorrelationPlots
9.2 s-BBMB(14) vs. d-BBMB(14): CorrelationPlots

iX

79

92
93

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16

s-BBMB() vs. s-BBMB(10): CorrelationPlots
s-BBMB(10) vs. s-BBMB(14): CorrelationPlots
s-BBMB(14) vs. s-BBMB(18): CorrelationPlots
s-BBMB(10) vs. Anytime MB: CorrelationPlots
s-BBMB(4) vs. Anytime MB: CorrelationPlots
HYBRID vs. pure ILS: CorrelationPlots
HYBRID vs. pure GLS: CorrelationPlots
HYBRID vs. Anytime MB: CorrelationPlots
HYBRID vs. s-BBMB(0): CorrelationPlots
HYBRID vs. s-BBMB(4): CorrelationPlots
Scaling of solution time with number of variables
Scaling of solution time with maximal domain size
Scaling of solution time with maximal node degree
Scaling of solution time with induced width

List of Tables

2.1
2.2

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4

B.1

Characteristics of instances in problemtsgep
Characteristics of instances in problemget

Overview of computational complexity per search step
Overview of additional computational complexity for GL. . . .
Steps per second for G+StS, GLS, and ILSorep
Steps per second for G+StS, GLS,and ILen

Statistics for varying G+StS'’s cutoff factorbnrep
Statistics for varying G+StS’s cutoff factorgen
Statistics for varying G+StS’s noise probabilitylnmep
Statistics for varying G+StS’s noise probabilitygen
Statistics for varying GLS’s smoothing factorlomep
Statistics for varying GLS’s smoothing factorgen
Statistics for varying GLS’s smoothing intervallomrep
Statistics for varying GLS’s smoothing intervalgen

Trace of ParamiILS for tuning the parameters of ILS

Statistics for G+StS, GLS, and s-BBMBbnrep
Statistics for G+StS, GLS, ands-BBMBgan
Statistics for non-penalty based algorithmsarep
Statistics for non-penalty based algorithmsggen
Statistics for penalty based algorithmsbomep
Statistics for penalty based algorithmsgam

Statistics for exact algorithms onmrep
Statistics for exact algorithmsgen
Statistics for best algorithms omrep
Statistics for best algorithmsgen

Full results for varying G+StS’s cutoff factor emrep

Xi

60

B.2 Full results for varying G+StS’s cutoff factorgen
B.3 Full results for varying G+StS’s noise probability onrep . . .
B.4 Full results for varying G+StS’s noise probabilitygen
B.5 Full results for varying GLS’s smoothing factor bnrep
B.6 Full results for varying GLS’s smoothing factorgan
B.7 Full results for varying GLS’s smoothing interval bnrep . . .
B.8 Full results for varying GLS’s smoothing intervalgan
B.9 Full results for G+StS, GLS, ands-BBMBobnrep
B.10 Full results for G+StS, GLS, ands-BBMBgen
B.11 Full results for non-penalty based algorithmsonep
B.12 Full results for non-penalty based algorithmsgyen
B.13 Full results for penalty based algorithmstomwep
B.14 Full results for penalty based algorithmsgem
B.15 Full results for exact algorithms amrep
B.16 Full results for exact algorithmsgen
B.17 Full results for best algorithms &mrep
B.18 Full results for best algorithmsgen

List of Algorithms

3.1 Algorithm outline Dynamic Local Search
3.2 Algorithm outline Iterated Local Search
4.1 Bucket EliminationforMPE
4.2 Mini-Bucket Elimination (MB/MB) forMPE
4.3 Anytime Mini-Bucket Elimination for MPE (Anytime MB)
5.1 Greedy plus Stochastic Simulation (G+StS) for MPE
5.2 Guided Local Search (GLS)forMPE
5.3 Improved Guided Local Search (GLSorMPE
5.4 Algorithm outline Basic ILSforMPE
5.5 Hybrid of MB¥, ILS, and GLS for MPE (to be continued) .
5.5 Hybrid of MB*, ILS, and GLS for MPE (continued)
6.1 Cachingschemaive
6.2 Cachingschem®&imple
6.3 Cachingschems@cores
6.4 Caching schemenproving.
7.1 Iterated Local Search (ILS) for MPE (to be continued) .

7.1 Iterated Local Search (ILS) for MPE (continued) .

A.1 Iterated Local Search in configuration space (ParamILS)

Xii

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

137

Chapter 1

Introduction

Since the early days of Atrtificial Intelligence, differempresentations of know-
ledge in “intelligent” computer systems have been advatatény such know-
ledge representation must enable the system to draw camasugiven some data.
In this thesis, we deal with the problem of finding tht®ost Probable Explana-
tion (MPE) for the data when reasoning under uncertainty. More spatifidn
the light of uncertain knowledge represented as a prolstibilgraphical model,
such as a Bayesian network, this problem is cast as finding st pnobable in-
stantiation of all the model’s variabl&é given the observed values of a subset of
V.

The MPE problem in graphical models is of considerable ed#ero re-
searchers in such heterogeneous fields as medical diaddds®), fault diag-
nosis [RBMO02a], computer vision [TF03], and prediction ofesithains in pro-
tein folding [YWO03], to name just a few. Consequently, manyoalkhms have
been suggested to solve this problem, but since X -hard [SD03], the search
for efficient algorithms is far from over. Prominent exacyaithms, such as
Bucket Elimination [Dec96] or Junction Trees [CDLS99] carnvedhe MPE prob-
lem in many practically relevant sparse Bayesian networksL [€99]. However,
these algorithms degrade rapidly as networks become denxdghiting exponen-
tial time- and space-complexity in the induced width of thetwork’s indepen-
dence graph [CDLS99, Dec96]. Another type of exact algoritifion MPE that is
more suitable for networks with high induced width is basedystematic search,
such as Branch-and-Bound (BnB), guided by the approximate Blickets al-
gorithm [KD99a, DR03]. BnB algorithms have recently beenrokl to be the
state-of-the art method in MPE solving [MKDO03], but as wewho this thesis,
their performance also degrades quite rapidly with inargamduced width. We
attribute this to the impaired guidance of the underlyingniMBuckets heuristic.

1

2 CHAPTER 1. INTRODUCTION

One way to cope with this restriction of exact algorithmsoisvoid networks
with high induced widths and approximate them by network$oafer induced
width [Kjee94, BJ02]. In this thesis, we study a different agmto to deal with
networks of high induced width, namely to employ incompISteE algorithms
which quickly solve most problem instances to optimality; tvhich are not able
to proof this optimality. We show that these algorithms dieautperform the
best available BnB algorithm s-BBMB for a wide range of instandéven more
importantly, we demonstrate empirically that the efficienEthe novel algorithms
we introduce does not depend on the problem’s induced wattt;that for each
setting of s-BBMB'’s so-called-bound, s-BBMB scales poorly with one or more
of the instance characteristics “number of variables”, Xl domain size”, and
“maximal degree of the independence graph”.

More specifically, the MPE algorithms we study are Stochkasiocal
Search (SLS) algorithms [HS04]. SLS algorithms are amotigsstate-of-the-art
in such heterogeneous research areas as propositioséibdality (SAT) [SLM92,
HTHO2], weighted Max-SAT [MT00, SHSO03], graph colouringgF2], the trav-
elling salesperson problem (TSP) [LK73, ACRO03], schedulidB3D01], RNA
secondary structure design [AFB4] and protein folding [SAHH02]. They are in-
complete search methods rapidly moving through the spapessible solutions,
changing single solution components at a time given onlyldlal information
available in a search state.

In this thesis, we concentrate on two particular subclasE&t.S algorithms,
namely Dynamic Local Search (DLS) and Iterated Local Se@tc®) algorithms.
DLS algorithms employ an evaluation function guiding tharsé that differs from
the actual objective function. When a local optimuraf this evaluation function
is reached, the function is modified in order to steer awagnfroin the future.
DLS algorithms have been applied with especially greatesséor SAT [HTHOZ2]
and weighted Max-SAT [MTO00]. Here, we focus on a particul&rSalgorithm,
namely Guided Local Search (GLS) [Vou97]. ILS is a generahfework for
achieving high coverage of the search space as well as ifieehsearch in lo-
cal optima regions. ILS iterates a three-phase processhichva locally optimal
solution is slightly modified followed by a mostly greedy &search yielding a
new locally optimal solution. An acceptance criterion thlistides about contin-
uing the search from the old or the new local optimum. ILS athms are espe-
cially often used in the TSP domain and other domains promtimeOperations
Research [dBSDO01, LMS02, ACRO03], but ILS is also amongst theeEsdrming
approaches for Max-SAT [SHS03] and graph colouring [PS02].

SLS algorithms have been applied to the MPE problem befob®pb, Par02],
but none of the previous SLS algorithms pays sufficient sitiarto such important

3

concerns as algorithmic complexity per search step, sesdagnation, and thor-
ough parameter tuning. Consequentially, these previousaBidithms have been
shown to be outperformed by systematic search algorithteflranch-and-Bound
with Mini-Buckets heuristic [MKDO3]. In this thesis, we rem®the shortcomings
of previous SLS algorithms for MPE, improving their speedupyto six orders of
magnitude (i.e. by up to a factor &f 000, 000); this yields a performance signifi-
cantly higher than the one of the systematic search algosittBBMB (with opti-
mali-bound) and Anytime MB, an anytime variant of the prominenhiMBuckets
algorithm [DRO3]. Our novel algorithms also find variabletargiations which are
up to 280 orders of magnitude more likely than the ones found by theipusly
best-performing SLS algorithms. These enormous perfocegains are due to
a number of components we develop and study in this thesisorgst the main
contributions of this thesis are:

e Two novel caching schemes and the first detailed compleriyyais of sin-
gle search steps of SLS algorithms for MPE. This yields a dyedor all
SLS algorithms that lies between three drid in our experiments and in-
creases for harder problem instances.

e The first ILS algorithm for MPE. This algorithm outperfornigetpreviously
best-performing non-penalty based algorithm G+StS [KD98bup to 4
orders of magnitude and finds variable instantiations ob@0 brders higher
probabilitiy than the ones found by G+StS.

e A simple parameter tuning for GLS [Par02], the previouslgthgerforming
SLS algorithm for MPE. This enables GLS to find variable intttions that

are up to100 orders of magnitude more probable, and further enables it to

guickly solve many problem instances previously unsokabl

e Animproved version of GLS, called GL'Sthat incorporates the logarithmic
objective function into the evalutation function and oufpems our already
much improved version of GLS by orders of magnitude, bothemmss of
solution quality found and runtime to find the optimal sabuti

e A hybrid algorithm combining ILS, GLS, and a new variant of Mini-
Buckets we call MB. This exploits the fact that the performance of GLS
and ILS is not highly correlated, and that MBields very strong results for
networks of low induced width. We demonstrate this hybrigoathm to
consistently perform very well and show that, on averageutiperforms all
other algorithms, including systematic search algorithms

4 CHAPTER 1. INTRODUCTION

e A systematic empirical study of the impact various chansties of MPE
problem instances have on problem hardness for a number & ado-
rithms. Separate experiments for each characteristic statvg-BBMB with
low i-bounds scales poorly with the number of variables as weli@degree
of the independence graph; and that Anytime MB and s-BBMB wiig b
bounds scale poorly with the domain size. Finally, for aneasing induced
width, the empirical runtime of SLS algorithms is not affsttat all, while
the performance of s-BBMB and Anytime MB degrades considgrabl

We compare our new algorithms GLSILS, and the hybrid algorithm against
the best performing available complete algorithm s-BBMB [KR9MKDO03]) and
against Anytime MB [DRO03]. For this comparison, we employl+warld MPE
problem instances from the Bayesian network repositand random instances
created with BNGenerator [IC02, IC03]. On all real-world imstas but one with
high induced width, Anytime MB performs very well, only mhed in performance
by our hybrid algorithm. However, on the randomly generatsthnces, we show
Anytime MB'’s very poor performance on networks of maximalundd width20.
The performance of s-BBMB differs much from instance to inseanFor many
instances, especially such with high induced width, s-BBMBnly feasible with
low i-bounds but usually yields poor results in this case. Foirtstances for which
higheri-bounds are feasible, it generally yields better resulisoAor structured
instances, s-BBMB performs much better than for randomly geed ones.

The remainder of this thesis is structured as follows. In @drady we introduce
our notation and formally define the MPE problem. Chapter 2®g8ome general
principles of Stochastic Local Search and Chapter 4 intreslpcevious SLS algo-
rithms and other important algorithms for MPE. Then, we colre development of
our novel algorithms: Chapter 5 introduces all algorithmsmelemented, Chap-
ter 6 shows how they can be implemented efficiently, and Ch&ptecusses on
maximizing their performance by a thorough parameter wnithis is followed by
the experimtal evaluation of our novel algorithms. Chap@e®onstrates the enor-
mous improvements our SLS algorithms yield over the preshphbest-performing
SLS algorithms and studies the contribution of each novetipmnent in our al-
gorithms to this effect. Chapter 9 demonstrates our algostto outperform the
previous state-of-the-art in MPE solving, and shows pedfler scaling behaviour
with an increasing number of variables, domain size, deguee induced width of
the independence graph. Chapter 10 concludes the thesiadindtes promising
directions for future work.

http://www.cs.huiji.ac.il/labs/compbio/Repository/

Chapter 2

Problem Statement

In this chapter, we lay the foundation for the remainder efttiesis. We formally
introduce Bayesian networks and the MPE problem, cover egipins of MPE
and similar tasks in Bayesian networks, and describe thdeinstances we use
in our experimental analysis.

2.1 Bayesian Networks

Since the early days of Artificial Intelligence (Al) reselarenany different repre-
sentations of knowledge in computer systems have been atdb{Bib93]. One
classical representation are rule-based systems whiduehknowledge in a set of
deterministic if-then rules. Although this approach hachesuccess, researchers
became aware of the fact that many domains can not be mocahetepurely deter-
ministic fashion and require the capability of dealing wititertainty [RNO3]. The
use of probability theory was considered by Al researchpersat the time the dom-
inant interpretation of probability was the frequentispagach [CDLS99, RNO03]
which did not allow an application to the kind of uncertaireets Al research was
interested in. Moreover, there were no efficient algorithmsompute the prob-
abilities of interest and so probability theory was not ip@rated into early Al
systems. Instead, the Al community was lead to developreitee approaches
like rule-based systems with certainty factors [ST¥&] or fuzzy logic [Zad83].
The last two decades, however, have seen an increasinghgsupport for the
probabilistic point of view in the Al community, boosted bhy¢e developments:

e the growing support for the subjectivist approach to prdabglas opposed
to the frequentist interpretation [CDLS99, RNO3];

5

6 CHAPTER 2. PROBLEM STATEMENT

¢ the development of modular representations of high-dimoeasjoint prob-
ability distributions, such as Bayesian (belief) netwoiRe488]; and

e the development of efficient algorithms to manipulate pholsic net-
works and query probabilities of interest from them [Ped8838, Dec96,
CDLS99].

Bayesian (belief) networks [Pea88] have meanwhile becomeitime repre-
sentation for uncertainty in Al. They are at the core of thissis and we will define
them formally later in this section.

In the subjectivist probabilistic point of view, variablesthe real world can
be modeled as random variables even if their value is pé&yfdeterministic but
we simply do noknowit. Informally, arandom variable Ms an unknown variable
which can take on one of a domaih, of values! In this thesis, we will concentrate
on purely discrete variablés with finite domainD,,. Each random variablg has
a prior probability distribution P(1") which defines the probability’ (V' = v) for
each possible value € D). The probabilitiesP(V = v) are required to sum to
1 over all values) € Dy,. Assigning a value € Dy to V results in thevariable
instantiationV’ = v. If no confusion is possible, we will simply use the lowereas
letters to refer to variable instantiations.

A simple example for a random variable is the variaBlen with the domain
{yes,no} and the priorP(Rain = yes) = 0.5.2 The prior P(Rain) defines the
probability of rain in the absence of any other informatitiwe look up to the sky
and observe that it is cloudy (the random variableudy is instantiated tgjes),
our belief aboutRain is influenced, which can be represented bycbaditional
probability P(Rain|Cloudy = yes); this might be significantly different from the
prior, for exampleP(Rain = yes|Cloudy = yes) = 0.8. Since we are only deal-
ing with discrete random variables, we can represent condit probability distri-
butions as tables. Bonditional probability table (CPTP(V,,|V4, ..., V,_1) holds
for each variable instantiation, . . ., v,_; the conditional probabilitied(V,, =
vp|v1, ..., v,_1) for all valueswv, € Dy, of the dependent variablg,;® for each
instantiationv,, . . ., v,_1, the probabilitiesP(V,, = v,|v1,...,v,_1) are required
to sum tol over all possible values, of V,.

'Formally, a random variable is defined as a measurable imétom a probability space to
some measurable space, usually the real numbers with tletBatgebra. Since these concepts do
not aid our discussion, we refer the interested reader tottthematical literature [LW99].

2Since the probabilities over all the possible values of @oamvariable always sum to one, this
implies P(Rain = no) = 0.5. The rain example is based on the sprinkler network in [RNO3].

3Technically, it suffices for the CPT to hold all but one sucblbilities since the last one
computes as the difference of the sum over the others to 1.

2.1. BAYESIAN NETWORKS 7

c R | P(RIC) C R | PR, C)
¢ |PO f f 0.8 _ f f 0.4
f 0.5 X f t 0.2 - f t 0.1
t |05 t f 0.2 t f 0.1

t t 0.8 t t 0.4

Figure 2.1: Prior probability tabl&(Cloudy) (left), conditional probability table
P(Rain|Cloudy) (middle) and joint probability tablé&(Rain, Cloudy) (right).

Thejoint probability distributionP(V;, V;) is a function which assigns a prob-
ability to each instantiation;, v;. Like prior and conditional probability distribu-
tions, it can be represented in table form, in this case atleensumming to one.
Figure 2.1 shows the prior probability tabt Cloudy), the conditional probabil-
ity table P(Rain|Cloudy) and the joint probability tablé(Rain, Cloudy) which
computes af’(Cloudy) x P(Rain|Cloudy). The general concept of potentials
subsumes both conditional and joint probability tablesat ho restriction applies
to the sum over a potential’s entries:

Definition 2.1.1 (Potential). Given a set of variabley’, = {Vi,...,V,,}, a
potential ¢ over the variables/, is a function that assigns some real number
o[V = vs] > 0 to each instantiation, of its variables. The potential hasopeV,
and is said tepanthe variables in its scope. A potentiatzesS,, is the product of
its variables’ domain sizes:

Sy =11 1Dw.

VieVy

We use potentials in this thesis in order to prevent havirdigonguish the dif-
ferent normalizations of conditional and joint probalekt Potentials are heavily
used in the literature on junction trees (see e.g. [CDLS38py have also been
called factors [RNO3] or simply functions [Dec96] in otheeas of Al.

Every probabilistic query about a set of random varialfesan be answered
with the help of a joint probability distribution ové&v. The problem with joint
probability tables — or potentials in general — is that tmimber of entries (i.e.
their size), grows exponentially in their number of vareshl

Since we can neither store, nor efficiently manipulate, ntuitively grasp the
meaning of huge potentials, a modular representation m fdfrsmaller potentials
becomes necessary. This modularity can, for example, bewsthby organizing
the random variables in a structure called a Bayesian (beietivork [Pea88],
which we will define after the introduction of a few conceptsni graph theory
that are at the core of Bayesian networks.

8 CHAPTER 2. PROBLEM STATEMENT

Definition 2.1.2 (Graph Concepts).A graphG = (V, £) is a tuple consisting of a
set of vertices or nodasand a set of edges Graphs can be directed or undirected.
In this thesis, we concentrate on the directed version, &vaeedger = (V;,V;) €

€ represents a directed connection from nd¢é nodeV;. Acyclicity of a graph

G = (V,€) means that no pathy, ..., V, exists withV; € Vfori = 1,...,n,
(Vi,Vig1) e Efori=1,...,n—1,n > 1,andV; = V,,. TheparentspaV;) of a
nodeV; € V are the variables with direct edgesito pa(V;) = {V; € V|(V},V;) €

E}. A nodeV’s family fam(V;) containsV; itself and its parentpa(V;); and its
childrench(V;) are all noded/; has a direct edge t@h(V;) = {V; € V|(V},V}) €

£}. The set ofneighboursof a node is the union of its children and parents. The
descendantsf a variablel” are — in analogy to human relationships — recursively
defined as the union of the children Bfand the children’s descendants. Finally,
the Markov blankemb(V;) of a nodeV; is the union of its parents, its children and
its children’s parents ig: mb(V;) = pa(V;) U ch(V;) U pa(ch(V;)).

Bayesian networks use directed acyclic graphs to descriaitafive interac-
tions between a s&¥ of random variables of interest. Each variablec V is
associated with a node in the gragh= (V,). For sake of a light notation, we
identify graph nodes and variables here and in the rest afhihags, denoting the
graph directly byg = (V,). An edgeE = (V;,V;) € £ then represents a direct
dependency of variablg; on variableV/.

Definition 2.1.3 (Bayesian Network). A Bayesian network3 is a quadruple
(V,D, G, ®), where

V is an ordered set of random variables,

D is an ordered set of finite domaing,, for eachV; € V,

G = (V,&) is a directed acyclic graph (DAG), also called the network’s
independence grapland

® is an ordered set of CP¥s, = P(V;|paV;)), specifying the conditional
probability distribution of eacly; € V given its parents iy .

The semantic of a discrete Bayesian netwBrk- (V, D, G, ®) is that it com-
pactly represents a joint probability tal#eover its variabled/ in a factored way:

¢=P(V) =[] P(VilpaVi)) =] ¢v.

Viev VieV

Figure 2.2 on the next page shows the sprinkler network, @lsifBayesian
network from [RNO3], part of which we used in our previoligin example. Note

2.1. BAYESIAN NETWORKS 9

e}

P(SIC)

P(RIC)

- =~ =

— o —h —h

e Y Vo
~ =~ =g
o
[e¢)

P(WI|S, R)

1.00
0.00
0.10
0.90
0.10
0.90
0.01
0.99

~ o+ —h —h —h —h
~ =+~ |
- —h o+ =+ —h o~ —h

Figure 2.2: Simple Bayesian netwasgrinkler . Adapted from [RNO3].

that the probability for the grass being wet is not directigeted by whether it is
cloudy or not; if we already know the status of varialfResnandSprinkler, learn-
ing the status of variabl€loudydoes not change our belief d¥et this is because
Cloudycan only directly affect our beliefs dRainand Sprinkler, but we already
know their instantiations with certainty. This characéd is formally captured
by the concept otonditional independencalNetis conditionally independent of
CloudygivenRainandSprinkler.

The independence graghof a Bayesian network = (V, D, G,) compactly
encodes a set of conditional independence relationships@ifis variables (see,
e.g., [RNO3] for a more detailed explanation of these repults

e Arandom variable in a Bayesian network is conditionally ipeledent of its
non-descendants given its parents.

e Arandom variable in a Bayesian network is conditionally ipeledent of all
the other variables given its Markov Blanket.

In a Bayesian networl8 = (V,D, G, ®) the set of variables which occur to-
gether with a variablé; € V in any CPT¢ € @ is exactly its Markov blanket
mb(V;). This will become important in our discussion of cachingandl search

10 CHAPTER 2. PROBLEM STATEMENT

algorithms (see Chapter 6) since the effects of changingahe\of a variabld/;
remain local in the sense of directly affecting only the ahhkes inmh(V;).

2.2 The Most Probable Explanation Problem

Bayesian networks are used to represent joint probabilgiridutions over many
variables in a compact way. Although this representatioghinalready help re-
searchers in their work, this is not their main purpose. Rathey are constructed
in order to answer various probabilistic queries aboutrthariables efficiently.
They are very flexible in that they can incorporate evidehegis acquired for any
of their variables and answer questions about any subséeofuariables condi-
tional on this evidence. One particular problem in Bayesietnvorks is to deter-
mine the most likely instantiation of all variables that @sistent with some fixed
evidence variables.

Formally, two partial variable assignments = v;1,...,v;; and vy =
Uk2, ...,V 2 areconsistentf and only if v, andv, agree on their shared vari-
ables? A variable assignmenV = v which assigns a value to all variabl®s
of a potentialp (i.e. V, C V) is consistent with exactly one instantiation @$
variables. We denotg’s entry for this consistent instantiation byV = v|. This
is equal top]V,, = v,] whereu, is the unique instantiation af, that is consistent
with v.

Now we have the necessary ingredients to define the Most BieBaplanation
Problem formally:

Definition 2.2.1 (Most Probable Explanation Problem).Given a Bayesian net-

work B = (V,D, G, ®) and a set of evidence variablEs= e, theMost Probable

Explanation (MPE)roblem is to find an instantiatio = v with maximal proba-

bility [T, ¢[V = v] over all variable instantiations consistent with the evidence
5

e.

The MPE problem can also be defined for other graphical mdittel$/arkov
networks and chain graphs [CDLS99]. Basically, all that oredseds a set of vari-
ablesy and a set of potentials spanning subset®.of his generalization does not

“Here and in the rest of this thesis, we use bold font for set@oébles and variable instanti-
ations; we continue to use capital letters for variableslangr-case letters for variable instantia-
tions.

5The MPE problem has also been defined as finding the best fiastam of all non-evidence
variablesV \ E given the evidencE = e, but sinceP(V\ E,e) = P(V\E,el[E=¢) x P(E =
e) x P(V\ E|E = e), these formulations are equivalent.

2.3. APPLICATIONS OF MPE AND SIMILAR TASKS 11

conflict with our approaches for solving the problems anth&limethods suggested
in this thesis also apply for MPE in general graphical madels

Regarding computational complexity, MPE is a hard combmatoptimiza-
tion problem in the sense that finding the best instantiagdvi?-hard. The deci-
sion version, to decide whether there exists an instaotiatith probability greater
or equal to a given bound, i§"P-complete [SDO03].

2.3 Applications of MPE and Similar Tasks

Interesting problems in a variety of heterogeneous rekesgas can be modeled
as Bayesian networks, or, more generally, as graphical mo@dien, the problem
at hand can then be formulated as solving the Most Probalgagation problem
in the graphical model. We shortly cover two interestingregkes for this.

At IBM Research, Fault Diagnosis in computer networks has begmrased as
inference in Bayesian networks [RBM02b, RBMO02a]. In their modakth router,
server, or workstation can be either operational or matfonig, and each of these
is represented by an unobserved node in a Bayesian networlimier of routes
through the network are probed and failure or success o thiebes represent the
network’s Boolean evidence variables. The probability fa@rabe to succeed is
taken to be a noisy-OR of its parents in the Bayesian netwak,the computer
network nodes the probe had to pass. Together with priorgtmbty distributions
for the operational status of the network nodes and a twerl@glependence graph,
the Bayesian network is fully specified and finding the moslikaults is then
equivalent to solving the MPE problem.

Recently, it has been shown that an important subproblemateifrFolding
can also be cast as finding the MPE in a graphical model [YWO03jrd&ein con-
sists of a backbone of amino acid units connected by peptdds Each amino
acid unit, also calledesidue has aside-chainattached to it. In the side-chain pre-
diction problem, the protein backbone structure is givew, f@r each residue, the
spatial conformation of its side-chain is to be determirteatch conformation con-
sists of a quadruple of continuous angles, which is distedtio a small number
of preferred energy conformations, so-callethmers by means of a standard Ii-
brary. The protein’s residues then make up the variablegodphical model with
the rotamers as possible values. The standard van der Waaaitg/dunction yields
the free energy achieved by complete assignments of rosaiméine residues and
computes as a sum of pairwise interactions between resichiek are close in 3D
space. Denoting the interaction between two residwsasd j as a potential with
scope{i, j}, this yields a sparse graphical model with many small loéfisding

12 CHAPTER 2. PROBLEM STATEMENT

the most probable side-chain for the fixed backbone strecsuthen equivalent to
solving the MPE task in this model.

Other application areas of MPE includeedical diagnosigo find a patient’s
most likely disease given some clinical findings [JJ98%babilistic decodingo
find the most probable message transmitted over a noisy ehgiven the channel
output [DRO3]; computer vision to calculate stereo dispzsifTFO03]; biological
sequence analysis to find the most likely alignment of twaisaqes[DEKM98].

A straightforward generalization of MPE &/ -MPE [CDLS99, YWO04], the
task to find thel/ most probable instantiations consistent with the evidef¢e
algorithms we introduce for MPE in this thesis are easilyggyalizable ta\/-MPE
and perfectly set to challenge the state-of-the art forisglthis problem since the
only additional complexity in generalizing our algorithmsuld lie in some book-
keeping of thel/ best solutions found thus far. We plan to implement this tark
work.

Another generalization of MPE is tiMaximum a Posteriori Hypothesis (MAP)
problem, in which the task is to compute the most probablggbamstantiation of
a subsetW C V of variables, summed over all instantiations\of\ W. Note
that the MAP assignmer® = w is not necessarily consistent with the MPE
assignmen¥ = v, but may have a probability considerably higher than thé&gdar
assignment tdV that is consistent witlv. The novel algorithms we introduce in
this thesis can also be applied to search for a MAP assignWest w. However,
especially when there are many variabled/in, W, efficient methods need to be
employed to sum over all these variables in order to compégtobability of a
MAP assignment.

A problem in Bayesian networks for which we cannot apply tlg@athms in-
troduced in this thesis iselief updating the task to compute the joint probability
distribution over arbitrary subse C V of variables given evidencE = e.
High performing SLS algorithms are generally not suitabledmpute unbiased
probability distributions since for optimization problerike MPE, they usually
strive to predominantly sample very high-quality solusonThus, if used in a
sampling-based approximation they will always yield hyghiased estimates. Un-
biased approaches like Stochastic Simulation [Pea88pprnivell for this kind of
tasks, but show extremely weak performance for optimingpimblems (cf. Sec-
tion 4.1 on page 25).

2.4. BENCHMARK INSTANCES 13

2.4 Benchmark Instances

In order to evaluate our approaches for solving the MPE prakdnd to compare
them to previous algorithms, we created various sets oflpnoinstances.

Firstly, we use a set of real-world instancesyep , from the Bayesian net-
work repositor§. We employbnrep for our experimental analysis since it is
the closest to a standard benchmark set among all sets of MiPkem instances
researchers use to evaluate their algorithms, and sincenpigses real-world in-
stances of heterogeneous problem domains. Many other tfpsstworks have
been used for experimental analysis. Amongst those areonietvirom medical di-
agnosis [Hec90], protein folding [YW03, YWO04], networks frdault diagnosis in
computer networks [RBM02a], and coding networks (see, eg, BDROA priori,
it is not clear that the insights gained for some of these diosnzarry over to do-
mains with fundamentally different characteristics; warpto study this in future
work by applying our algorithms to networks in a variety oé taforementioned
areas.

As a first step, in this thesis, we systematically study thpaah single net-
work characteristics have on problem hardness for the waradgorithms. We
control these characteristics by generating appropriete&arks with BNGenera-
tor [IC02, IC03], a tool which creates random Bayesian netwaiikis a predefined
number of variables and constraints on maximal domain degree, and induced
width of the network’s independence graph. In Chapter 9, widpa scaling stud-
ies with sets of random networks in which only one of thesaup&ters changes
at a time. In separate experiments, we study the impact otweoniés number
of variables, its maximal domain size, degree, and induadthvef the network’s
independence graph. In order to be able to relate thesangcslidies to the re-
sults on problem sdinrep , we perform the same experiments as carried out on
bnrep on a representative set of randomly generated instancehwla refer to
as problem sagen.

We denote networks fromanrep by their name in the repository, for example
mildew . For the networks igen, we put all constraints used for their generation
into their name; e.g., networklOOv3d5iw5 denotes a network with00 vari-

Shttp://www.cs.huji.ac.il/labs/compbio/Repository/

“Unfortunately, many MPE problem instances are not freefylable. Also, often random MPE
instances are newly generated on the fly for each experimamtd probability distribution. While
on the positive side this allows the researcher to focus similitions of problem instances rather
than on just a few instances, it also much complicates thgpedson of results. Another point that
complicates comparison is that there exists an abundanieroéts for Bayesian networks. One
can only hope that some standard format like for example #hye8an interchange format will
displace the other formats someday.

14 CHAPTER 2. PROBLEM STATEMENT

ables, maximal domain siz& maximal degre& and maximal induced width.
All networks ingen have maximal degre® but vary in their number of variables
z, their maximal domain size, and their maximal induced widthw. Problem set
gen contains exactly one instance for each combination ef {100, 200,400},

v € {3,6}, andiw € {10,20}. In Table 2.1 on the next page and Table 2.2 on
page 16, we give an overview of several instance charattsrior all instances
in problem setdnrep andgen, respectively. Note that column “Min-Degree
Width” in these tables gives the induced width as computedusymplementation
of the Anytime Mini-Buckets algorithms described later irc&@n 4.3 on page 32.
For the generated instances in problemgast, this width in some cases grows
slightly larger than the constraint on induced width usedit® generation. We
attribute this to a different tie-breaking in otherwise mglent algorithms for com-
puting the induced width.

For each network irbnrep , we consider the original network as well as a
network with the original independence graph but randomalypgled CPTs. We
denote these modified variants by attachirsgnd to the network’s name. For the
networks ingen, we either use random CPTs (attachingnd to the name) or,
in order to approximate quantitative structure, sampleGRds from the original
networks inbnrep (in this case attachingtruc to the network name). In order
to sample the CP®y, for a variableV; with domain sizer, we independently sam-
ple the 1-dimensional probability distributiod¥V;|pa(V;)) for each instantiation
of pa(V;). We call such a 1-dimensional probability distributioroa of ¢y.. Each
such row is sampled uniformly from all rows of the CP#g of all variablesV’
with domain sizer in all original networks obnrep .

Problem instances for MPE are created for each of the aforeomed Bayesian
networks by topologically sampling all the network’s véulies given their parents
and then fixing 10 of these sampled variables as evidencs.pfbocedure guaran-
tees the evidence to be strictly positive.

Having introduced the MPE problem and the instances we gniptoour ex-
perimental evaluation, in the next Chapter we move on to desaur favourite
approach for solving the MPE problem, namely Stochasti@alL8earch methods.

8Note that computing the exact induced width of a graph is\éR-hard problem [Dec96].

Because of this, BNGenerator [IC03] uses the min-degreé&diieuto generate an ordering, the
induced width along which is used as an upper bound on thaldotluced width. The min-degree
heuristic greedily constructs an ordering by iterativadynoving the graph’s node with minimal
degree, connecting all neighbours of a node when it is rechovdthough our implementation
employs the min-degree heuristic to generate an orderingedis it is not guaranteed to yield
identical results. This is because frequently during thestroiction, there are several nodes with
equal minimal degree, and the algorithms may differ in thetbreaking mechanism.

2.4. BENCHMARK INSTANCES

15

Instance N Dom size | VV CPT size Pot. entries Degree | MB size Wic'\i/t”hn|_deg:§§
alarm | 27 2'5[3;',(3']73) 79 20['23’2%;']46) 549 2'?3%']35 4'5[’21’%']08 4 |8.10e+01
I P RN PP e L PP LR Lo P PP
diabetes| 403 11['33’4551']88) 4543 111([55'?%1566?3'48) 4.5e+05 25’12(214]71 4?37(59]65 6 |8.58e+07
vaitinger| 45 | SOLTA [g5 | SOBOUOAEDN |y 23020 LSURTON T g o
nourancd 17 | S0 [g5 | RIES | g, [SIQOTIR T e, o]
link 714 2'5[3,(3']83) 1806 28['23’2:%‘;']63) 20219 3§)1(f7?9 5[810(;12;10 20 |2.75e+1]
mildew | 25 17[50%3]01 262 156?; '222507030?5'1:)3.91%05 2.6[33(;.]54 5[527(120?5 4 |1.60e+05
muninl | 179 5[216(31?9) 960 102[.2?96((]5?)]2.70) 18437 2[918(55]26 4[17(59]75 11 |6.05e+07
munin2 | 993 5'[32(‘3(2%]67) 5335 83.[627((;.6[02].24) 83084 2[418(50?0 4;1(321]29 8 |5.76e+0§
munin [1034] SO [gge, S22 | oy (220 INASSM o 7, uod
munin4 | 1031 5{113(231(]54) 5567 94'[2?(61015]'81) 97240 2[618(:9]12 4[524(734;15 9 | 4.04e+07
sge | 401 | S00000 | 1pegl TOIIALZY [|2GBRST RSSO, g 51
waer | 22 | S0 H [g [RIS TSI TOEEN oo, o]

Table 2.1: Characteristics of instances in problenbseep . “Dom size”, “CPT

size”, “Degree”, and “MB size” summarize characteristi¢sath variables or po-
tentials. Their format is average(standard deviationhéfirst row and [minimum,
maximum] in the second row. “N” denotes the number of nomence variables
(we always use 10 variables as evidence); “Dom size” thebles’ domain sizes;
“VV” the total number of variable-value pairs;, ., |Dy|; “CPT size” the sizes
of the CPTs; “Pot. entries” the total number of potential iestr “Degree” the
variables’ degree in the independence graph; “MB size” the of the variables’
Markov blanket; and “Min-degree” “Width” and “Size” the inded width and size
along the min-degree ordering.

16 CHAPTER 2. PROBLEM STATEMENT

Instance N | Dom size| VWV CPT size Pot. entries Degree | MB size Wic’\i/:ir?{degsriis
z100v3d5iwld 90 25[27(?3]50 229 42['27’0522']91) 3843 43[;1((5)]81 8'[83?(3]21) 10 |5.90e+04
z100v3d5iw2Q 90 25[27(2]50 233 44['341(122']27) 4036 4?2((5)]67 9'[3;2’(]:_36}'4) 18 |1.29e+08
z100v6d5iwld 90 3?2(2]32 344 488['22’5&22]7'03 43943 43[;3((5)]83 9'[232’(13%?6) 13 |1.31e+1Q
z100v6d5iw2Q 90 4:I['22(]é]42 372 52‘[1;?1(:;3'13) 47214 4?2(2]55 10[';',(3£:;']48 20 |6.09e+14
z200v3d5iw1Q 190 25[2(2]50 483 44['26’651;2]11) 8485 4?;'(2]83 9'[0;(]:;]24) 12 |5.31e+05
z200v3d5iw2Q 190 25[5(2]50 479 40['22’75122']96) 7653 4?27(2]74 9'[23(’3(127'?7) 20 |3.49e+09
z200v6d5iw1Q 190 4([)28(2]48 781 53?231(2;"0702;32 1.01e+05 4?;(2]83 9'[038,(55'3]24) 12 | 2.18e+09
z200v6d5iw2d 190 4([)28(2]35 777 34?3081(2:LE)2:(?]81 65376 42[5(2]97 8'[1:135’(12%?9) 22 | 3.66e+1§
z400v3d5iw1(390 2?28(2]50 965 22[';"215’32']98) 8627 3?;3(]5']21 6'[822’(125]87) 15 |1.59e+06
z400v3d5iw2(d 390 2?29(?3]50 969 23['§f5?(’23']89) 9112 3?2(2121 7'[22?(3?9) 20 | 3.49e+09
2a00vsasmaq 350] B 1604|001 s | oL ST 1y 15eucd
z400v6d5iw2(d 390 3?3(2]44 1509 14?;:;(753513) 56602 3?17(;]27 6'[721’(3%?6) 24 | 7.90e+17

Table 2.2: Characteristics of instances in problemgsst. “Dom size”, “CPT

size”, “Degree”, and “MB size” summarize characteristié¢salh variables or po-
tentials. Their format is average(standard deviationh@first row and [minimum,
maximum] in the second row. “N” denotes the number of norence variables
(we always use 10 variables as evidence); “Dom size” thakbes’ domain sizes;
“VV” the total number of variable-value pairs, . |Dy|; “CPT size” the sizes
of the CPTs; “Pot. entries” the total number of potential iestr “Degree” the
variables’ degree in the independence graph; “MB size” the of the variables’
Markov blanket; and “Min-degree” “Width” and “Size” the inded width and size
along the min-degree ordering.

Chapter 3

Stochastic Local Search

In this chapter, we define the basic concepts of Stochastall®earch (SLS) in
general and for the Most Probable Explanation Problem itiquéar. The general
part is based on the recent book [HS04], where much morelsieggqiplications
and valuable insights for the development and analysis & &lgorithms can be
found.

3.1 Combinatorial Problems

Combinatorial problemssuch as finding assignments of discrete values to a fi-
nite set of objects, or finding groupings or orderings of otgearise in a variety
of fields, amongst others artificial intelligence, openasisesearch, and bioinfor-
matics [HS04, LMS02, AFH04]. In this chapter, next to MPE we use two very
prominent examples of combinatorial problems to illugtrdte concepts we in-
troduce. In thepropositional satisfiability (SATproblem, one is asked to assign
truth values to each variable in a finite set of Boolean vagsbsuch that a given
propositional formula involving these variables evalsdie true; in thetraveling
salesperson problem (TSRhe task is to find a shortest round-trip visiting each
of a finite set of cities exactly once. The TSP is an exampleafoombinatorial
optimizationproblem as — next to the hard constraint of visiting each e&xsctly
once — one strives tminimizethe total length of the round-trip.

Many combinatorial problems including MPE, SAT, and TSPamaputation-
ally hard, meaning that no algorithms are known to date whaale subexponen-
tially with problem size in the worst case. Like MPE, SAT ar8Prare\P-hard,
i.e., they are at least as hard as any problem in the complgaiss\/P. This class
consists of all problems which are solvable onandeterministicTuring machine
in a time polynomial in the problem size. However, a nondeieistic Turing ma-

17

18 CHAPTER 3. STOCHASTIC LOCAL SEARCH

chine is a fictitious construct that can so far only be siradawith exponential
overhead on current computer architectures. /F@-hard problems, no exact de-
terministic algorithm is known to date which solves all pbksproblem instances
in time less than exponential in the instance size. It is alssumed by many re-
searchers that such an algorithm can not exist in the firsepsance this would
imply the equivalence of complexity class&SP and P, whereP consists of all
problems that are solvable omaterministicTuring machine in time polynomial in
the problem size. The deterministic Turing machine is atransequivalent to cur-
rent programming languages in power, and it is assumedhbatdndeterministic
Turing machine is essentially more powerful.

One can distinguish two variants of combinatorial problethedecision vari-
ant, in which one is only asked to decide whether a solution gxisinot; and the
search variantwhich is to actually find a solution. For combinatorial opization
problems like MPE and TSP, the decision variant is defineceaglihg whether a
solution of a giverquality (probability or tour length, respectively) exists. Tihe-
cision version®f SAT, TSP, and MPE ar&/P-complete, which means that these
problems are members &f P and they aré\VP-hard.

The N"P-hardness of problems like SAT, TSP, and MPE does not medn tha
these problems are not solvable in practice. On the contragy successful algo-
rithms have been developed for these problems [SLM92, ZBU6{02, LMSO02,
Dec96, KD99a, RNO03]. This means that the general worst casdtrior the
whole class of possible instances of a problem does not s&Glgsapply for cer-
tain tractable subclasses. For MPE, this tractable subétesexample comprises
Bayesian networks with lownduced width a measure introduced later in Defini-
tion 4.2.1 on page 27. If a problem instance is at hand whiamea efficiently be
solved by current algorithms, one might settle for an apjpnate suboptimal solu-
tion. Alternatively, Stochastic Local Search (SLS) aljons can often be applied
with great success. They have been shown to be very effiareatypeat variety of
combinatorial problems in such heterogeneous domains a$8M92, HTHO02],
weighted Max-SAT [MTO00, SHSO03], TSP [LK73, ACR03, JM02], ghagolour-
ing [PS02], scheduling [dBSDO01], RNA secondary structureghefA\FH*04] and
protein folding [SAHHO02].

3.2 Basic Concepts of Stochastic Local Search

During the search for the optimal solution to a combinatgui@blem, we may
evaluate a lot of potential solutions, also caltzthdidate solutionsThese consist
of combinations okolution componentike instantiations of certain variables in

3.2. BASIC CONCEPTS OF STOCHASTIC LOCAL SEARCH 19

SAT and MPE or adjacency relationsships of particular gitrethe sequence of
cities describing a TSP round-trip. The definition of camadédsolutions depends
on the particular approach to search. In a local search tiiaewaluates complete
assignments, we would define the candidate solutions td berapletevariable in-
stantiations, whereas in a backtracking search for SATethesrarely encountered
andpartial variable assignments would be used as candidate solutistesad.

The search spaceonsists of all possible candidate solutions. It usualiyngr
exponentially with problem size, and the task of SLS aldponi is to move through
this huge search space using only local information for #etsions about their tra-
jectories. More specifically, SLS algorithms work by stagtthe search from some
initial candidate solution and iteratively moving throutpe search space by going
from a candidate solution to a neighbouring candidate mwlutThis neighbour-
hood of a candidate solution can be defined arbitrarily, buhost applications,
a k-exchange neighbourhood used which simply means that two neighbour-
ing solutions may differ in at most solution components. For SAT and MPE,
the 1-exchange neighbourhood is prominently used, whéneghs TSP 2- and 3-
exchange neighbourhoods yield better performance. FrenS&T domain stems
the expressionariable flipfor a 1-exchange move and we will adopt the term for
the MPE domain.

SLS algorithms do not tumble through the search space coehpltdindfolded.
Instead, they employ an evaluation function offering somiel@nce. In most SLS
algorithms, the evaluation function is simply taken to be tibjective functior.

In the TSP, the evaluation function to be minimized is usuiét the tour length,
given that the sequence of cities described by the adjagefatyonships is indeed
a roundtrip visiting each city exactly once.

In SAT, where the propositional formula usually is a conjunction of disjunc-
tions (i.e. F' = A, \/;‘;1 li;), the most prominent evaluation function is the number
of unsatisfied disjunctions, atauseswhich needs to be minimized. Note that this
is equivalent tanaximizingthe number ofatisfiedclauses. In MPE, the objective
function to be maximized over all assignmesmtsonsistent with some evidenee
is the probability] [,., #[V = v]. As an evaluation function either this function
is applied directly, or, for various reasons detailed int®ec3.6 on page 24, its
logarithm is used.

The most basic local search method, cabledt improvementdr greedy descent
simply determines the evaluation function value for allnésghbours and always

IHowever, there is a very promising subclass of SLS algostiunich dynamically changes the
evaluation function, taking into account the search ttajgc We call algorithms in this subclass
Dynamic Local Search algorithms and formulate the gengmadaach in Algorithm scheme 3.1 on
page 21.

20 CHAPTER 3. STOCHASTIC LOCAL SEARCH

moves to the neighbour with the best evaluation functiomealThis results in a
usually rapid improvement that ends itoaal optimuma candidate solution which
does not have a neighbour with better evaluation functidunevdf no special action
is taken to drive the search away from a local optimum, beptavement will be
stuck in it forever, although its objective function valuggint be much inferior to
that of the global optimum. This is a form ekarch stagnationand research in
SLS algorithms has come up with many approaches to prevemé itvill cover a
few of these in the next Section.

3.3 Escaping from Local Minima

While it is usually not a problem in SLS algorithms to reachalagptima quickly,

the key question is how to make the search explore the whalelsespace but
still keep a strong bias towards regions with good objedtinetion value. In most
applications, this can be achieved by a good balance betwissificatiorphases,

in which the search is guided by an evaluation function gfipnesembling the
objective function, andiversificationphases which help explore the search space.

Remarkably good results can already be obtained by regdhensearch once
a local optimum is reached, or — even much better — by introduoccasional
random movesalso callednoisg into an otherwise greedy search. Simple yet
effective these techniques have made the first generati@L8falgorithms for
SAT improve the state-of-the-art in SAT solving at the timfetlweir develop-
ment [SLM92, SKC94].

Another more recent development is based on augmentingbfbeetive func-
tion used for guiding the local search. This type of algonthas been called
Dynamic Local Search (DLHTHO02, HS04], as the function used for evaluat-
ing candidate solutions changes dynamically during theckedhe basic outline
of DLS algorithms is given in Algorithm scheme 3.1 on the ngage. For SAT
solving, the tradition of DLS algorithms dates back to thed&mut method devel-
oped in 1993 [Mor93] and since then DLS algorithms have redand became
the state-of-the-art [MT0O0, HTHOZ2].

Iterated Local Search (IL§5HO01] is a general framework for achieving high
coverage of the search space as well as intensified searobaihdptima regions.
ILS algorithms are especially often used in the TSP domadh @her domains
prominent in Operations Research [dBSD01, LMS02], but onedlgdrithm is
also amongst the best-performing algorithms for Max-SAH$B3]. Algorithm
scheme 3.2 on the facing page describes the general ILSvirarkeconsisting of
four adaptable components. The search is initialized erdr@domly or by some

3.3. ESCAPING FROM LOCAL MINIMA 21

Algorithm scheme 3.1 Dynamic Local Search

1 s « GeneratelnitialSolution
2 eval < Initial evaluation function
3 while Not TerminationCriterion(o
4 if sislocal optimum otval then
| eval — Modify(eval)
else
| s — Bestimprovemeni(eval)

N o O

Algorithm scheme 3.2 Iterated Local Search

8 so < GeneratelnitialSolution

9 s* « LocalSearchs)

10 while Not TerminationCriterion(do

11 s" « Pertubatioris*, history)

12 s* « LocalSearcks’)

13 s* « AcceptanceCriteriofy*, s*', history)

heuristic, followed by a basic local search. Following tlisiumber ofterations
are performed, where an iteration consists of changing Swh#ion components
of the current candidate solutioRdrtubatior), followed by a local search and the
decision to keep or reject the newly obtained candidatdisolAcceptanceCrite-
rion).

For LocalSearchin principle any local search can be used, such that one can
turn any local search algorithm into an ILS algorithm by glung it into the frame-
work and defining the other ILS operatioi®ertubationis best designed to achieve
a diversification of the search, ending up in a different lag@ima region after
applying a local search to the perturbed candidate solu#ateptanceCriterion
decides upon the usefulness of the newly obtained candsdateon, where candi-
date solutions with better objective function value thamltst one are considered
useful; but also worse new candidates can be useful in cogeevent search stag-
nation. An extreme yet possible way to make the algorithmaegpcompletely
different regions of the search space is to perform a randkstant in the accep-
tance criterion.

22 CHAPTER 3. STOCHASTIC LOCAL SEARCH

3.4 Caching: Exploiting Local Computations to Im-
prove Efficiency

One of the most important reasons for the success of locallsesathat it is simply
really fast. In many applications, hundreds of thousandseairch steps can be
performed per second, making a good coverage of huge sgagichsspossible in
the first place. This speed is to a large part due to only usiogl information to
decide about the next search step. Very often, the evaluliticction computes as
a sum or product only few terms of which are altered by chapgismall number
of solution components. Thus, often the evaluation of ahtegr of a candidate
solutions can be done much faster if one knows the evaluation functabmevof

5.2

Take as an example a 1-exchange neighbourhood for SAT. ;Ttreeechanges
the truth value of a single variablg at a time. This can only effect the satisfaction
status of the clauses containing such that the evaluation of flipping can be
done locally by only inspecting all clauses that contgainGoing one step further,
one can memorize the number of clauses satisfied and urestisfithe flip of
variablev; since this information only changes when a variablés flipped that
shares a clause with,.2 This way, the evaluation of a neighbouring candidate
solution can be done in constant time by just subtractingrtémorized number of
clauses a variable flip unsatisfies from the number it sagiskaally, one can then
cache the variables yielding an improvement in the numbesatitfied clauses,
bringing the time for evaluation of the whole neighbourhamivn to a constant
in practice since after an initial search phase typicallly dew variables yield an
improvement when flipped. In Chapter 6, we will develop nowhing schemes
for MPE which closely resemble the ones described here far SA

For some domains, no efficient caching of the evaluation tfancis pos-
sible. One example for this is the problem of RNA Secondarychire De-
sign [AFHT04], where the objective function to be minimized is the setzwy
structure’s free energy, computed by a dynamic programraiggrithm of com-
plexity ©(n?). Due to the non-applicability of caching in this domain,atmeans
of complexity reduction must be found. In [AF194], a hierarchical decompo-
sition of the RNA strand of length into smaller strands of lengtiv is applied,

2In fact, for many SLS algorithms, one does not even need tp kaek of the current evaluation
function value. This is because all decisions about thechestep to take from candidate solution
are based only on the differences in evaluation functionevaf s and its neighbours.

3These quantities have also been called the make-count aak-bount of a variable. For more
details on the efficient implementation of SAT algorithrmess §H0098].

3.5. SYSTEMATIC VERSUS LOCAL SEARCH 23

decreasing the complexity of single search steps fudno 3.4

3.5 Systematic versus Local Search

SLS algorithms areacompletealgorithms, meaning they are not guaranteed to find
the optimal solution to a given problem in finite time, andhgy find it, they
typically cannot proove its optimalifyCompletealgorithms, such as Branch-and-
Bound (BnB), are more powerful in principle since they can aehibe desirable
situation of finding a solution which they can proof to be o@l. More speci-
fically, we call an algorithm complete if and only if it is g@amteed to terminate
with the correct solution in finite time when given enoughcgaFor randomized
algorithms, there exists a weaker notion of completenesscail an algorithm4
probabilistically approximately complete (PAQH0099] if and only if the proba-
bility that A finds the optimal solution approacheas time goes to infinity.

Research in SLS algorithms is sometimes obstructed by théhaicone does
not know when the optimal solution has been found unlessthgist tight up-
per bounds on solution quality. However, the drawback obmpleteness is less
pronounced in practice, where time and space constraités oénder systematic
algorithms incomplete as well. Moreover, systematic apphes like BnB exten-
sively cover the parts of the search space they exploreewisbmplete SLS algo-
rithms usually explore larger parts of the search space madier. The small parts
of the search space explored by systematic algorithms miagombain very good
solutions, which can lead to very long runtimes to find solsi with a given not
even optimal quality; SLS typically find such solutions mdakter [HS04]. This
desirable feature of providing good solutions throughbetdearch clearly speaks
for the usage of SLS algorithms in anytime scenarios, in lvalgorithms are only
alloted a previously undefined runtime.

Another drawback which is often criticized with SLS algbnits is that the ran-
dom components and sometimes complicated heuristics ntakegetical analysis
hard. However, on the positive side, the heavy randomizaitows a straight-
forward parallelization of SLS algorithms; the analysissofcalled run-time dis-
tributions [HS99] suggests that performiig independent runs of a strong SLS
algorithm .4 on a hard problem instan@results in an expected solution time of
the N-th part of A’s original expected solution time (unless N is very larged a
initial search cost starts to skew the picture).

40f course, this hierarchical decomposition does not coméde. The catch is that there is no
guarantee for two good substrands to yield a good longeanctrdoen merged together.

SAn exception to this are SLS algorithms for decision prolsidike SAT, where if one finds a
variable instantiation satisfying all clauses, this isquably optimal.

24 CHAPTER 3. STOCHASTIC LOCAL SEARCH

3.6 MPE-Specific Issues of SLS

SLS algorithms can be applied to the Most Probable Explangtroblem in a
very straight-forward way. In this domain, the search spdemndidate solutions
consists of all complete variable instantiatiovis= v that are consistent with the
evidenceE = e, and we want to maximize the probabilfy,,, ¢[V = v] over
the assignments consistent withe. Since this product may become very small
(10759 for extreme problems), algorithms usually employ the logbability of an
assignment as an evaluation function to guide the locatkedihe log-probability
computes as the sum of single log-probabilitles _,, log(¢[V = v]), and if at
least one of the probabilities|V = v] is zero, it is—oo. Using this measure
as an evaluation function would create unsolvable problEm$SLS algorithms
since in the initial variable assignment typically quiteaggle number of the single
probabilities are zero; all candidate solutions in the hieaurhood then had equal
evaluation function value-co, such that the local search effectively became blind-
folded and at best performed a simple random walk. We prebéntndesirable
behaviour by a simple means: instead of using for a single log-probability of
probability zero, we use-10000, which dominates the summed log-probabilities
for all instances we consider in this thesis. Effectivetystmakes the local search
remove any zero probabilities first, still using the otheg-fwobabilities to break
ties.

In terms of notation, we us¥ = v|V; = v; to denote the variable instantiation
V = v with the single variabl®’; flipped tov;. WhenV = v is the current variable
instantiation [[, ¢[V = v|V; = v;] denotes the probability of the neighbouring
instantiation reached by flippinig to v;.

Chapter 4

Existing Algorithms for the MPE
Problem

This chapter summarizes previous algorithms for solvirgMPE problem. We
start with previous SLS algorithms and Mini-Bucket elimioatthat are both very
important for our work. Then, we introduce the complete dtgms based on
Mini-Buckets we compare against and finally shortly coveeotilgorithms we do
not compare against.

4.1 Stochastic Local Search

Probably the most prominent Stochastic Local Search dlgorfor inference in
Bayesian networks is a method cal®tbchastic SimulatiofPea88, KD99b]. This
Markov Chain Monte Carlo (MCMC) algorithm starts by randomliytiadizing the
Bayesian network’s variablég and then continues to sample variablésccord-
ing to the probability distributior?(V;|V \ {V;}), i.e. given the current instantia-
tion of all the other variables. After every variable flipetburrent assignment is
recorded. This approach has the property of beingiased meaning that the dis-
tribution of recorded assignments converges to the Bayestvork’s joint proba-
bility distribution in the limit of infinitely many variabldips. However, the perfor-
mance of this approach for MPE is much inferior to that of otheS approaches;
this is because for optimization problems like MPE, one duaswish for algo-
rithms to be unbiased, but instead requires a strong biearttsxgood solutions.

A related approach iSimulated AnnealinfKGV83, KD99b], another MCMC
algorithm which accepts the flip of a particular variablehié tresulting instantia-
tion is betterin the sense of having higher probability in the Bayesian netw
otherwise, the new instantiation is accepted with a prditakhat depends on how

25

26 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

much worse it is and on a parameter calledtdraperature Inspired by annealing
processes in nature as they occur in the formation of cigstak temperature starts
off high and decreases over time such that in the beginniagafal search almost
any variable flip is accepted and later in the process almmsgtarsening variable
flip is accepted anymore. Thus, the search settles in a Igtahom which is
sometimes praised in the Machine Learning community asspee property of
convergence. In optimization problems, however, this priypis far from wanted.
It is a form ofsearch stagnatioand prevents an escape from the local optimum to
seek for new better local optima. Unlike in nature, compatet processes have
the ability to save a promising state and move on to find bstges without the
risk of loosing the current one. Concerning the performari&maulated Anneal-
ing, it has been found that with alternating temperaturel&vquite good local
search algorithms can be constructed. These start off witgratemperature, cool
down slowly, settle in a local optima region and then inceghag temperature again
to escape the local optima region [HKT95, HS04].

The main difference we see between the MCMC algorithms intted above
and current Stochastic Local Search algorithms is the prolthey focus on. While
MCMC algorithms have traditionally been developed for sangpbr estimation of
probabilities, SLS algorithms focus on optimization. Innpareas of study, in
which researchers frequently use MCMC algorithms, optitiopaproblems are
also of interest; thus, MCMC algorithms have also been aptie solving them.
SLS algorithms can in turn also be applied to sampling, butlassical optimiza-
tion problems such as SAT and TSP, only very seldomly thenetésest in unbi-
ased samples of the search space. Biased sampling, on théaiitke is applied in
search space analysis for optimization problems in ordeh&vacterize, e.g., the
average distance between local optima in the search $pace.

For optimization problems, more greedy SLS algorithms amegally suited
much better than simple MCMC algorithms. For the MPE probléms was
shown only in 1999 when Kalev Kask and Rina Dechter [KD99btodticed
the first explicit SLS algorithm for MPE. Name@reedy plus Stochastic Simula-
tion (G+StS) their approach is a simple hybrid of best improvement eiflips
in a 1-exchange neighbourhood and Stochastic Simulatepssin their empirical
evaluation, G+StS clearly outperformed Stochastic SitrariaSimulated Anneal-
ing, and a purely greedy algorithm. They also found that gadtil solutions, in

1Since both MCMC and SLS algorithms can be applied to samplittjoptimization, the ques-
tion of their generality arises. Since SLS algorithms alfowa more powerful set of techniques
such as various initializations and dynamic changes ofthkiation function, we tend to see them
as a superclass of MCMC algorithms. All the MCMC algorithras KIPE covered here are very
simple SLS algorithms.

4.2. BUCKET ELIMINATION AND MINI BUCKETS 27

this case gathered with the approximate Mini-Buckets atlgori(cf. Section 4.2),
can boost G+StS considerably, an effect found for many Sg&#hms in a variety
of problem domains [HS04].

In 2002, James Park described a reduction from MPE to Max-fPar02].
This opens the possibility to simply encode MPE problems ax-SAT and
use available optimized Max-SAT solvers to find the besttsmiu However, in-
stead of using this approach, Park presented MPE versidnsafell-performing
Dynamic Local Search algorithms for MAX-SAT, nameBiscrete Lagrangian
Method (DLM)[SW97] andGuided Local Search (GLMTO0O]. In an empiri-
cal evaluation, these algorithms outperformed G+StS, Bitls yielding mostly
better results than DLM. To our best knowledge, the direptaach of using Max-
SAT engines has thus far not been implemented. In prelimieaperiments we
conducted together with Kevin Smyth at the University of BhtColumbia, an
Iterated Robust Tabu Search [SHSO03] did not show very stremfppnance on
Max-SAT encodings of MPE problems. This may be overcome byaow pa-
rameter tuning, but due to time constraints, we did not paitkase studies furhter.

4.2 Bucket Elimination and Mini Buckets

Bucket Elimination [Dec96] is a general algorithmic framelvgeneralizing dy-

namic programming to accommodate algorithms for SAT, cairdt satisfaction

problems, linear equalities and inequalities, combinakaptimization and last
but not least probabilistic reasoning. Bucket Eliminatitgoathms are exact, and
their performance on a given problem can be predicted by asunedor graph

complexity called thénduced widthor a new measure we catiduced siz&

Definition 4.2.1 (Additional Graph Concepts). An ordering o of a graphg =
(V,€&) is an ordering/,,, ..., V, of G's nodesV. Thewidth of a nodel” € V

is the number of its neighbours preceding ibiand itssizeis the product of the
domain sizes of these neighbours. Thduced widthw*(G, o) and theinduced
sizes*(G, o) of a graphG along an ordering are defined in a constructive way:
process the nodds € V from V,_ to V,,, connecting all ofl”’s neighbours in
G that precedé’ in o; w*(G, o) is then defined as the maximal width amaiig
variables, and* (g, o) as the maximal size. ThHaduced widthw*(G) of a graph
G is its minimal induced width along any ordering of its nodésand thenduced
sizes*(G) is the minimal induced size.

2We actually do not expect that this measure is new; probablgast a similar measure already
exists somewhere in the literature. However, we did not fmdraention of it.

28 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

Bucket Elimination has time- and space-complexity expaaéimt the graph’s
induced width and can thus only be applied to relatively spayraphs with low
induced width. Of more interest to us is an approximativaavdrof Bucket
Elimination that can be applied to networks with arbitranguced width;Mini-
BucketdDRO03] can approximate probabilistic inference tasks sichNBRE, MAP
and belief updating (cf. Section 2.3 on page 11) in arbitBayesian networks.
In the following, we introduce the Bucket Elimination (BE) atghm for MPE; a
small modification will then yield the Mini Buckets (MB) algdinim.

The MPE problem, as introduced in Section 2.2 on page 10, fimdoan in-
stantiationV = v with maximal probability] [,.,, ¢[V = v] over all variable in-
stantiationsv consistent with the evidenee BE (see Algorithm 4.1 on the facing
page) maximizes this product by re-arrangement of the tefangen an ordering
Vouy ..., Vs, it first partitions the potentials € ® into so-calledbuckets putting
each potentiad into the bucketBy of the variablel” € V, which appears last in
the ordering. We call this buckets highest possiblbucket.

Next, BE processes the buckets from last to first in the ordefinvariableV
is an evidence variablé/ is removed from all potentials i3, only keeping the
entries withV/’s correct instantiation; then, each potentiakE By, is put into its
highest possible bucket (see lines 4-6 of Algorithm 4.1 @nrtaxt page). IV is
not an evidence variable, a max-product-operation is peed for the potentials
® 5, contained inBy. This max-product-operation yields a potentig| with scope
Vo = Usea,, (VI aNdon[Vs,, = vs,] = mazy [1eq, ¢Von = vs,]; Omis
then put into its highest possible bucket (lines 8-9). Attes phase, the optimal
MPE value can be retrieved by computimgx-productV,,, 5,).

The last step in BE processes the buckets from first to lastarifibleV” in
bucketBy, is an evidence variable, its observed valug assigned td". Otherwise,
the MPE value is assigned t&” that maximizes the product of all potentialsfy
given the instantiations of variables precedingn the ordering. It can be shown
that this procedure results in the correct MPE assigniwest v [Dec96].

The resource-critical phase in BE is its second step, prowe®e buckets from
last to first, building larger and larger potentials with seautive max-product op-
erations. Bucket Elimination on graghalong ordering builds at least one po-
tential withw*(G, o) variables and size*(G, 0). This is responsible for BE’s ex-
ponential time- and space-complexity, since potentiadgsexiponentially large in
their number of variables (cf. Definition 2.1.1 on page 7).niMBucket Elim-
ination (MB) [DRO3] solves this problem by bounding the maximamber of
variablesib per potential. Higher values for thidboundyield better approxima-
tions but higher computational complexity, andébifexceeds the network’s induced
width, MB is equivalent to BE.

4.2. BUCKET ELIMINATION AND MINI BUCKETS 29

Algorithm 4.1: Bucket Elimination for MPE
A potential¢’s “highest possible bucket” is the buckBy, of variableV € V with
highest index in ordering.
Operationmax-productV, ®) yields a potential that is the product of the potentials
in ®, maximized ovel; it is formally defined in the text.

Input: Bayesian networls = (V,D, G, @), orderingV,, , ..., V,,, i-boundi, evidence

E=e
Output: Optimal MPE assignme¥ = v

/I =====lInitialize buckets.
1 Partition potential®p into their highest possible buckets amaBg, , ..., By, .

n

/I =====Process backwards.
2 foreachV €V, ,...,V,, do

3 if (V=v) € (E=e)then

4 foreach¢ € ¢, do

5 RemoveV from ¢, keeping only entries consistent with= v.

6 Put¢ in its highest possible bucket.

7 else

8 ¢m — max-productV, @z,)

9 | Putg,, inits highest possible bucket.
/I =====At this point, max-produ¢t,, , @5,) yields the optimal MPE value.
[/l =====Process forwards.

10 foreachV,, € V,,,...,V,, do

11 if (V,, =v) € (E=e)then

12 | Vo, — v

13 else

14 L Voi — argma)% Hgbg(va d)[(VOl Yy VO«;) = (U017 B 7U)]

30 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

In Algorithm 4.2 on the next page, we present the MB algoritinat only
differs from BE in the second step, where it does not perforennttax-product-
operation for all potentials in a buckét,,, but approximates it by a number of
smaller max-products. Mini-Buckets with i-bourtn] MB(ib), uses a partitioning
P = {Pws,,,- -, Pws,, } Of the potentials) € ¢, into so-calledMini-Buckets
such that two potentialg;, 9, € ®p, are guaranteed to be in the same Mini-
Bucket if V,, € V,, and such that the potentials in any Mini-Bucket together
span no more thaib different variables. Using partitioning, MB approximates
BE’s max-product operatiomaxy H¢E¢BV ¢ for the whole bucket by the prod-

ucth)MBwep maxy H¢E¢MBW ¢ of max-products of the Mini-Buckets. Since this

yields an upper bound on the whole max-product, Mini-Buckeg#ds an upper
bound on the optimal MPE value next to the variable instéintigenerated in the
final forwards pass.

Mini-Buckets has been shown to perform well on a variety oivoeks, both as
a stand-alone technique [DR03] and in combination with SigBrathms [KD99b].
Since it yields both an upper bound and a variable assignMeatv whose prob-
ability bounds the optimal MPE value from below, MB’s perf@nte on an MPE
instance can be evaluated quite easily by comparing uppdoaer bound. If they
agree, MB solved the problem instance optimally.

Since the G+StS algorithm was shown to yield better perfoceavhen using
a Mini-Buckets initialization in [KD99b], we also implemet MB as an optional
initialization procedure. Thébound used for MB in [KD99b] was 10, but we can
not use this bound for our purposes. This is because in obtgrosets, there are
Bayesian networks with considerably different domain siZHsere are networks
like link with domain sizes between 2 and 4, for whichound 10 is feasible,
yielding potentials of maximal siz¢'® ~ 10°. However, there are also networks
like mildew having domain sizes of up to 100, with an average of 17.6. With
ani-bound of 10, this would yield potentials of si2e8 x 10'2 on average and
considerably larger in the extreme; potentials of thesesdsions would consume
terrabytes of memory to store and thus MB(10) is not feasible.

In order to prevent this kind of problems stemming from dif® domain sizes,
we suggest a new variant of MB which we cilB*. MB* relates to MB much like
induced size to induced width. In this variant, not the matinumber of variables
in a Mini-Bucket is controlled, but the maximal size of anygaial encountered
during the execution of Mini-Buckets. When processing a siMdjini-Bucket, the
first step is to multiply all its potentials, resulting in aopiuct potential whose size
is the product of the domain sizes of variables which occuh@Mini-Bucket’s
potentials; this is the only step where large potentialpaneluced, and if we can
bound the size of the product potentials of all Mini-Bucketsachieve our objec-

4.2. BUCKET ELIMINATION AND MINI BUCKETS 31

Algorithm 4.2: Mini-Bucket Elimination (MB/MB") for MPE
Very similar to Algorithm 4.1 on page 29, but in the second step, the max-grodu
operation is approximated as the product of a number of smaller max-psodnd
an upper bound on the optimal MPE value is computed.
GeneratePartitioning®) generates a partitioning = {®wg,,,--., Pms,, } Of
the potentialg) € @, such that two potentials;, 2 € ®p, are guaranteed to be in
the same Mini-Bucket iy, C Vy, and such that the potentials in any Mini-Bucket
together span no more tha&bound different variables. In our modified variant K|B
this latter constraint is changed to assert that not the number of sucllgaria
bound byi-bound, but that the product over their domain sizes is boungi by
bound.

Input: Bayesian networls = (V,D, G, ®), orderingV,, , ..., V,, , i-boundi, evidence

E=ce.
Output: Variable assignmer¥ = v with approximately optimal probability
[Isca ¢[V = v], upper bound on optimal MPE value.

/I =====lnitialize buckets.
1 Partition potential®p into their highest possible buckets amaBg, , ..., By, .

n

/I =====Process backwards.
2 foreachV eV, ,...,V,, do
if (V =v)e€ (E=e)then
foreach¢ € ¢, do
RemoveV from ¢, keeping only entries consistent with= v.
L Put¢ in its highest possible bucket.

else

P «— GeneratePartitioning® z)
foreach ®yg € P do

10 L dume — max-productV, ®yg)

© 00 ~ o g b~ W

11 Put¢ys in highest possible bucket.

12 upper« max-productVs, ®p,,)

/I =====Process forwards.
13 foreachV,, € V,,,...,V,, do
14 if (V,, =v) € (E=e)then
15 | Vo, <
16 else
17 t Vo, < argmax; H¢E<I>BV (b[(VOl IR VO'L) = (Uol Yo 7’0)]

32 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

Algorithm 4.3: Anytime Mini-Bucket Elimination for MPE (Anytime MB)

Input : Bayesian networl8 = (V, D, G, ®), orderingV,,, ..., V, , maximal i-bound
maxip, time bound, evidenceE = e
Output: Best variable assignmeM = v with approximately optimal probability
[I4ce [V = v] found with maximal i-boundnaxip and timet; upper bound on
optimal MPE value.

[l =====lnitialize upper bound, i-bound, and variable assignment.
1 upper« oo
2ib«0

w

Randomly initializev

[l =====Run with increasing i-bound until optimality proofed or aftresources.
while runtime< ¢t and ib < max;, do

[v, uppefib]] — M B(ib)

if [Tpea @IV =] > [l4ce #[V =v]then v ¥

if uppefib] < upperthen upper«— uppefib]

if upper= H¢e<1> [V = v] then break // optimality proven.

ib—ib+1

© 00 N o g b

tive of bounding all potential sizes. We ensure that this 8always smaller than a
parametesize-boundby partitioning the potentials in a Bucket such that for each
Mini-Bucket, the product of its variables’ domain sizes r@mamaller than the
size-bound. This replaces the constraint of having no more tHaound variables

in a Mini-Bucket® When using MB as an initialization procedure, we usee-
bound10°, meaning that for the largest Mini-Bucket potential we wiledl to save

at most 100000 double precision entries. With this paransetiting, MB' yielded
overall good results and had low complexity in our experitagalways finishing
within a second of CPU time.

4.3 Exact Algorithms based on Mini-Buckets

The Mini-Buckets scheme is quite efficient with low i-bounldgt higher i-bounds
yield better results. This immediately suggests an anytan@nt of MB that starts
off with low i-bound and iteratively increases it until thesources do not suffice
for higher i-bounds. Algorithm 4.3 shows this Anytime MB atghm, suggested
in [DRO3].

30f course it is possible to chooses&e-bound that is lower than the size of some potential
in the original problem. In this case, MBonly guarantess not to produce a larger potential than
¢. The same restriction applies to the original MB algorithwvhere one can set thebound lower
than the number of variables in some initial potential

4.3. EXACT ALGORITHMS BASED ON MINI-BUCKETS 33

While the Anytime MB is very efficient for problems with low inded width,
for larger induced widths it often does not find good apprations with feasi-
ble maximal i-bounds. However, since MB yields both uppet bBower bounds
on the optimal MPE value, it can be easily used as a subcompansystematic
search algorithms like Branch and Bound.4t [KD99a, RNO3]. The most re-
cent Branch and Bound algorithms based on Mini-BucketB&#® B andBBBT.
BBMB stands for Branch and Bound with Mini-Buckets heuristic andhes in
two variants. The static varians-BBMB introduced by Kask and Dechter in
1999 [KD99a] starts with a pass of Mini-Buckets. The functiaomputed in
this pre-processing step are then combined to form an upperdoon the prob-
ability achievable by extending any partial variable assignt. Since MPE is a
maximization problem, this approach yields an admissiblgristic that can be ap-
plied in A* or Branch-and-Bound. The dynamic variant of BBMBBBMB has
only just been developed [MDO04], but outperforms s-BBMB cdesably in the
experiments performed thus far. As opposed to s-BBMB, d-BBMB agegpthe
Mini-Buckets heuristic at every node in the search tree, tmmél on the node’s
partial assignment. This takes more time, but pays off eafyeevhen using small
i-bounds [MDO04].

The dynamic BBMB variant also outperforms the quite recent BBBjo-al
rithm [DKLO1], which combines Branch-and-Bound search witim\MCluster Tree
Elimination (MCTE), an approximate variant of Cluster Treerithation. MCTE
is applied at every node in the search tree to compute lowandsfor every pos-
sible extension of the node’s partial assignment with alsingriable instantiation.
The lower bounds for all possible extensions are computgxiallel by MCTE,
which is much faster than multiple calls to the Mini-Buckeltgosithm [DKLO1].

Some research has been done in comparing the described Braddbound
algorithms with SLS approaches. As mentioned in Sectiorod.bage 25, Kask
and Dechter suggested the SLS algorithm G+StS [KD99b] wivat able to im-
prove on many of the best solutions found with Mini-Bucketswéver, there were
also many instances on which G+StS was vastly inferior tof8urckets. In 2003,
Marinescu, Kask and Dechter published a paper claimingst&&MB and BBBT
outperform SLS algorithms [MKDO3]. More specifically, theyplemented the
Dynamic Local Search algorithms DLM [SW97] and GLS [MTOO]dilPark de-
scribed them for MPE [Par02] as well as the G+StS algorithd9Bb]. Their
experiments showed superiority of s-BBMB and BBBT with the bestqyming
i-bound (between 2 and 10) over their parameterless versiihe SLS algorithms
on most problem instances. However, GLS managed to coasiyeoutperform
s-BBMB/BBBT with any i-bound for some networks, especially forgbavith low
domain sizes. On all reported instances exceptrihgew network, GLS outper-

34 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

formed the other SLS algorithms, and faildew , G+StS performed considerably
better.

Since the optimal i-bound for the s-BBMB/BBBT algorithms cannogbessed
a-priorf*, a practitioner would need to run experiments for multiploinds in
parallel until the fastest one terminates. Consideringahdsthe fact that GLS was
implemented with fixed parameters, the superiority of s-BBMB/BB®E&r GLS
remains at least questionable.

4.4 Other Algorithms for MPE

Approximate Decomposition (ADar03] is a scheme very similar to Bucket Elim-
ination, or, more generally, Variable Elimination [ZP94The variablesV in a
Bayesian network3 = (V,D,G, ®) are eliminated iteratively along the min-
degree ordering, connecting the neighbawd/) of an eliminated variablg’ € V

in G by creating a new potentialas the max-product over all potentiglsspanning
V. This standard procedure from Variable Elimination is &aplintil connecting
nb(V') in G increases;’s width above a predefined bourtal Once this bound is
exceeded, the new edge with maximal sum of endpoint degsaedated until the
width is less than or equal b again. LetCy,...,C,, be the maximal cliques
of the subgraph induced hyb(V") after the deletion of edges; is then approxi-
mated by a produdt[;” , ¢; whereg, has scop€’;. The potentialg); are computed
with a linear program yielding either an upper or a lower b []", ¢; on
¢. In [Lar03], AD significantly outperformed Mini-Buckets irobinding solution
quality for the MPE task from above and below, but both akions found only
very poor bounds (e.g. upper bouhdfor random networks. Although AD seems
to be superior to MB, we do not compare against it since itscguaode is not
available; also, Mini-Buckets is by far the better-knownaaithm, easier to imple-
ment and demonstrated good performance on a variety of Bayesitworks; for
AD, there are only published results for two structured andesrandom networks.
Nevertheless, for structured networks, AD is a very prongisipproach and future
SLS algorithms might exploit it for initialization or to cqmte upper bounds in
order to proof optimality of solutions found with SLS.

Most commercial tools for reasoning in Bayesian networksaig@amework
called Junction TreedLS88, JLO90, CDLS99]. In this secondary structure for
Bayesian networks, a network’s potentials are organizeddntee structureC, S)
of so-calledclustersC connected by a set ;feparatorsS. Each clusteC’ € C

4Radu Marinescu advised me in email communication that "ldsd to predict an optimal
i-bound beforehand” and that thus always a range for theirtishould be reported.

4.4. OTHER ALGORITHMS FOR MPE 35

holds a cluster potential- that is the product of some of the Bayesian network’s
potentials®, such that each potentia@l € ® is placed into exactly one cluster.
We denote by, the scope of clustef’;'s potentialys,. The tree structure must
satisfy the so-calledunning intersection propertywhich for arbitraryC, andC,,
requires every cluster; on the pathCy, ..., C, in (C,S) to span at least the vari-
ablesVs, NVe, . In aconsistenjunction tree, each separat®rc S connecting two
clustersC; andC; holds a separator potential that equals the potentiadg:, and
$c;, marginalized to their shared variablés, N V. The joint probability distri-
bution$ encoded by a consistent junction tree is thea ([[... ¢c)/([[ses ¢s)-
Evidence is incorporated into a junction tree by modifyinmggke potentials, after
which consistency is restored by local message passingebatihe clusters via
the separators. By means of this simple message passingechiéthe Bayesian
network problems MPE, M-MPE, MAP, belief updating, and flaf@omputation

of all single marginals can be solved exactly in time and sdam®ar in thesize

of the junction tree However, the catch is that this size, which is the sum of the
sizes of the junction tree’s potentials, grows expondwtialthe network’s induced
width. Still junction trees have an important advantager &ecket Elimination

in that the computation oV marginals of single variables is parallelized making
them N times faster than Bucket Elimination.

The drawback of prohibitively large cluster potentialstamge networks in the
exact junction tree framework is addressed by several appation techniques
for junction trees [JA90, Kjae94, HNDO4]. The first approachtfos is a method
calledcompressionvhich exploits the possibly large number of zero entriehen t
potentials by a new representation that does not explisttiye zeros. Then, for
approximation, one can treat small entries as zero [JAQeqguently performing
compression, which can lead to considerable savings in lxityfor the price of
only approximative inference. Another way to approximatgé clusters is to split
them into two or more smaller clusters, connected by a sepdrgae94, HNDO4].
These smaller clusters might be subsumed by neighbounisgect in the junction
tree and can then be dropped, leading to considerable savifgnction tree size.

Another approach that employs local message passing is Retgl’s classic
belief propagation (BPplgorithm [Pea88]. BP has been developed as an exact
algorithm for singly-connected Bayesian networks, i.ewoeks for which the in-
dependence graph is a tree, but it can also be used as an iapgtiior scheme
for multiply connected networks, then callédopy belief propagation (LBP)
Quite recently, it has been shown that an extraordinarilyi performing error
correcting code scheme callddirbo Codesmploys an algorithm equivalent to
LBP [MMC98], which renewed great interest in the algorithm aganany re-
searchers. Subsequently [MWJ99], LBP has been shown to pevieny well for

36 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

more general types of Bayesian networks if it converges. hewdor some net-
works LBP oscillates, yielding very bad results.

Finally, there exists a subclass of Bayesian networks fockvhkact inference
is cheaper than for the general case. For networks with dayer-structure, noisy-
OR CPTs and Boolean evidence variables in the second layee ofettwork, the
Quickscorealgorithm described in [Hec90] has complexity only expdradin the
number of positive evidence nodes. This particular typeetiviorks can be found
in Bayesian networks used in medical diagnosis [JJ99] or coenmetwork diag-
nosis [RBMO02a].

Chapter 5
SLS Algorithms for MPE

In this chapter, we detail the SLS algorithms for MPE we impdaited. These
include the two best performing SLS algorithms for MPE deped to date,
G+StS[KD99b] and GLS [Par02] (cf. Section 4.1 on page 25)pa improved
version of GLS, which we call GLS the first Iterated Local Search (ILS) algo-
rithm for MPE; and a hybrid algorithm employing ILS, GtSand our adapted
Mini-Buckets variant MB (cf. Algorithm 4.2 on page 31).

5.1 Greedy plus Stochastic Simulation (G+StS)

In Algorithm 5.1 on the next page, we present our impleméonaif the G+StS al-
gorithm [KD99b]. G+StS employs a Mini-Buckets initializai, which was shown
to clearly outperform a random initialization in [KD99b] wh ani-bound of 10
is used. As detailed in Section 4.2 on page 27, we cannot use-tiound for
our experiments due to the large variance in domain sizess@ur problem sets.
Instead, we use our variant MBvith sizebound10?; for problems with Boolean
variables, MB with this sizebound is close to MB(17) whereas for problems
with constant domain size 10, it is equivalent to using MB(5).

The G+StS algorithm performs multiple tries, where a newdrstarted when
the current one did not find an improvement over its best sl = v for time
cf X topr, Wheretyy is the time in which it foundv = v. Within each try, the
MB* initialization is followed by a local search phase. In thisape, G+StS iter-
atively flips variables, at each time probabilistically wi#eg between stochastic
simulation steps (lines 7-8 in Algorithm 5.1 on the next paayed greedy steps in
a one-exchange-neighbourhood (line 10). Note that in therghm description

IMB*(131072) = MB*(2!7) is equivalent to MB(17) for Boolean variables.

37

38 CHAPTER 5. SLS ALGORITHMS FOR MPE

Algorithm 5.1: Greedy plus Stochastic Simulation (G+StS) for MPE
The algorithm starts a new “try” when it did not improve the best solutidound in
the current try for a time longer than a cutoff factdrmultiplied by the time the try
needed to find,. The best solution found across all tries is returned.
g(v | Vi = v;) abbreviatesy ;4 log(¢[V = v|V; = v;]); andg(v) abbreviates
Z¢eq> log(¢[V = v]).

Input : Bayesian networl8 = (V, D, G, ®), evidenceE = e, time bound;, noise

probabilitynp, cutoff factorcf
Output: Variable assignmer¥ = v with highest probabilitﬂ(b@ @[V = v] found in

timet

1 while runtime< ¢ do

/ =====|nitialize variable assignment.
2 Initialize V = v with MB*(10°).
3 opt «— —oo

[l =====Flip single variables until restart or time-out.
4 repeat
5 Draw z from uniform distributionu(0, 1)
6 if x < npthen
7 Randomly pickV; € V.
8 ‘ Samplev; from P(V; = v| [V \ {Vi} = v \ {v;}])
9 else
10 L Randomly pickV; € V \ E andv; € Dy, maximizingg(v|V; = v;).
11 Flip variableV; to valuev;. // this is even done ¥; is alreadywv;
12 if g(v) > optthen
13 opt — g(v)
14 L topt < runtime
15 until runtime > cf x tgp Or runtime> ¢

of G+StS and the other algorithms in this chapter, we useititelevel notations
“Randomly pickV; € V andv; € Dy, maximizingg(v|V; = v;)” (line 10) and
“Flip variableV; to valuev;.” (line 11). The actual implementation of these two op-
erations will be covered in great detail in our discussiowasfous caching schemes
in Chapter 6.

5.2 Guided Local Search (GLS and GLS)

Guided Local Search [Vou97] is a rather general Dynamic L&=arch algo-
rithm that has been applied successfully to many combir@fmoblems, including
TSP [VT99], SAT, and weighted Max-SAT [MTO0Q]. In its genefafm [Vou97],
GLS associates penalties with domain-dependent so-cadleton featuresprop-

5.2. GUIDED LOCAL SEARCH (GLS AND GLS) 39

erties true for a subset of candidate solutions. GLS itsratevo-phase process,
in which first a local search w.r.t. a particular evaluationdtion is performed and
when a local minimum of this function is reached, the evadwafunction is modi-
fied to make the next local search move on in the search spatembdification is
implemented by increasing the penalties of solution festresent in the current
solution.

For minimization problems, GLS’s evaluation function val(s) of a candi-
date solutions is the weighted sum of the objective function value of &), and
the penalties for solution features present.inThe evaluation function is used to
guide the local search and once one of its local minifnia reached, the overal
penalty ofs’ is modified as follows. For each solution featurpresent ins’, a
utility w; = ¢;/(1 + ;) is computed, whereg; is the penalty associated with so-
lution feature: andc; is its cost Like the solution features, the costs are domain-
dependent and represent the direct or indirect impact tico features have on
the objective function value (cf. [Vou97]). In local minimaw.r.t. the current
evaluation functiory, for each solution featurewith maximal utility «; present in
s', the penalty), is then increased by the constdntin order to prevent the penal-
ties from growing indefinitely, all penalties are regulastyjoothed by multiplying
them with a factop < 1 every N, local minima.

As an example, consider GLS for the weighted Max-SAT domdéascribed
in [MTOO]. There, the solution features present in a vagassignmenV = v are
the clauses unsatisfied by the assignment. The evaluathmtida in this domain
is the unweighted SU@CE@MMC + A¢ of the weightsws and the penaltiea.
associated with the currently unsatisfied clausgs: A clause’s weightu is also
used as the cost for computing its utility.

Park [Par02] introduced a reduction from MPE to weighted A&, in which
for every entrygp[V, = v,] in a potential one clause is created. Using the intuition
from this reduction, he also adapted GLS to the MPE problehe Solution fea-
tures in MPE are partial instantiations of the variablesré/gpecifically, for each
potentialyp € @, every instantiatiorV, = v, of its variables is a solution feature
with cost— log(4[V, = v,]).2 We will refer to the penalty value associated with
this solution feature as4[V; = v,]. Note that the number of solution features
present in any candidate solution for an MPE instance istaatisthis is because
every variable instantiatioN = v is consistent with exactly one (partial) instanti-
ationV,, = v,, of each potentiap, and thus the number of solution features present

2The cost of solution featur&; = v, is taken to be the negative logarithmic potential entry
—log(¢[Vy = vy]) following the intuitions gained from the reduction of MPE Max-SAT. In
Max-SAT, the weight associated with a clause for a poteetigty ¢[V,, = v,] is also its negative
log-probability— log(¢[Vy = vy]), and the cost of a clause is defined as its weight.

40 CHAPTER 5. SLS ALGORITHMS FOR MPE

in each instantiation is the total number of potentjdis

For maximization problems, GLS’s evaluation function faraadidate solution
s is its objective function valuef(s), minus the weighted sum of the penalties
associated with the solution featuressof For the MPE domain, this results in
the evaluation functiog(v) = [[,cq @[V = v] —w X 3,4 As[V = v], where
w is a weighting factor which is, for example, settton the Max-SAT domain.
However, Park [Par02] does not use exactly this evaluatiootfon; he notes that
the evaluation function to be minimized essentially becepge, _, \s[V = V]
and exploits this simplification in his implementatibmndeed, since probabilities
are bound byl and each penalty is incremented in intervalslpthe penalties
clearly dominate the evaluation function. Nevertheleag, might expect the small
objective function values still to have a potentially grempact since they might
beneficially break ties in the local search phases when tighheuring solutions
have equal penalties. Another consequence of omittinglijeetive function could
be larger plateaus in the search space, which could affeatftbctiveness of the
subsidiary local search process.

For interesting larger problem instances, the actual gadfiehe objective func-
tion we are dealing with are smaller thao—5°, sometimes0-°%, values which
are indistinguishable from numerical instabilities ustdayble precision represen-
tation. This may be overcome by multiplying the objectivadtion by some con-
stant. However, unless this constant be adapted duringtsetwill in most cases
imply complete domination by the evaluation function eithg the objective func-
tion or the penalties. Since domination of the objectivectiom would make the
search stagnate in the first local optimum encountered, Papproach of only
using the penalties as an evaluation function is very resden We implemented
GLS the same way and give pseudocode for it in Algorithm 5.therfacing page.

Although we argued above that when using the original GLB&work there
is no straightforward way to incorporate both objectivedtion value and penal-
ties in the MPE domain, our intuition is that some more greedg would be
highly beneficial for GLS. This intuition is partly based dmetobservation that
GLS needs considerable time to get started since initidlipenalties are set to
zero and only represent useful information after many lagaima have been vis-
ited. Another reason for this intuition is that for exampighe weighted Max-SAT
domain (in which GLS performs very well) there is a strongamrection between
objective function and penalties than for the MPE problemwvéighted Max-SAT,
the evaluation function is the sum of penalties forumbatisfiecclauses, and since
less clauses are unsatisfied in better variable assignnmbistgonstitutes an indi-
rect connection between objective function and applicpblealties. As discussed

3Many thanks to James Park for providing his implementation.

5.2. GUIDED LOCAL SEARCH (GLS AND GLS) 41

Algorithm 5.2: Guided Local Search (GLS) for MPE
M[Vy = vy] denotes the penalty associated with the partial variable instantiation
Vs = vy of potentialg; and\4[V = v] denotes the unique penalky [V = v, for
which v, is consistent withy.
g(v|[V; = wv;) abbreviatesy_,. 4 A\s[V = v[V; = wv;]; and g(v) abbreviates
>_sca o[V = v]. The default parameters from [Par02] &pe N,,) = (0.8, 200).

Input: Bayesian networl8 = (V, D, G, ®), evidenceE = e, time bound, smoothing

factor p, smoothing intervalV,.
Output: Variable assignmer¥ = v with highest probabilitﬂ¢e¢ ¢[V = v] found in

timet
[/l =====Initialize variable assignment, penalties, and local miaicounter.
1 foreachV; € V \ E do Randomly initializeV; to v; € Dy,
2 foreachV; € E do V; « v; consistent withe
3 foreach ¢ € ® and all instantiations/y = vy do Ay[Vy = vg] < 0
4 #(LM) <0
/I =====Flip single variables or update evaluation function unéfrination.
5 while runtime< ¢ do
6 Randomly pick; € V \ E andv; € Dy, minimizing g(v|V; = v;).
7 if g(v|V; =v;) > g(v) then
8 | Flip variableV; to valuev;.
9 else
[/l =====Local minimum, update evaluation function.
10 foreach¢ € ® do
11 if A\g[V = v] =maxgeca [—0[V =V]/(1+ [V = v])] then
12 \; L)\¢[V:V]<—)\¢[V:V]+1
[/l =====Regularly smooth penalties.
13 #(LM) — #(LM) + 1
14 if #(LM) moduloN, = 0 then
15 for ¢ € ® and all instantiations/; = v, do
16 L | AolVs = vg] — Xg[Ve = vg] % p

42 CHAPTER 5. SLS ALGORITHMS FOR MPE

above, in the MPE domain, there adg solution features present in each variable
instantiation, such that this additional connection doatsapply. Hence, the sole
interaction of objective function and penalties in this damis via the utilities: an
entry ¢[V,, = vy with high probability is assigned low utilify thus, its associated
penalty \;[Vs = v4] will be increased less often, leading to the desirable garti
variable instantiatioV, = v, to be aspired eventually, but possibly only after a
considerable delay.

Due to the described initial and persistent lack of greexfirvge expect the per-
formance of GLS for MPE to be boosted significantly when thective function
can be integrated into the search heuristic in some meaniwgly. We achieve this
by a simple change in GLS’s evaluation function. Our imprbversion of GLS,
which we callGLS', takes the logarithm of the objective function and addstthis
the appropriate penalties; since the objective functiapsoduct of probabilities,
this is equivalent to using the summed log-probabilitieskimg the new evaluation
function to be maximized_ ;_; log(4[V = v]) — w x Ay[V = v], wherew again
is a weighting factor. The second difference between GLSGIS" lies in a pos-
sibly different initialization. Since MB(10°) performed very well for G+StS, we
also consider it for GLS next to a random initialization. In Section 7.4 on page 77
on tuning GLS', we will demonstrate that this indeed considerably impsoie
performance of GLS for some instances. We detail GL$) Algorithm 5.3 on the
facing page.

The initial performance of GLS is weak due to its temporaspdentation until
the penalties represent meaningful information, and weeex@LS" to clearly
outperform GLS for short runtimes. Our experimenal evadumain Section 8.4 on
page 94 shows that this is indeed the case and that for maijepranstances
the initial advantage of GLSpersists for longer runtimes, while for some other
instances the algorithms behave virtually identical farger runs.

5.3 Iterated Local Search (ILS)

In this section, we introduce a novel Iterated Local SeattB)(algorithm for
MPE. To our best knowledge, this algorithm is the first of itekas the ILS frame-
work (cf. Algorithm scheme 3.2 on page 21) has not been puslyoapplied to
MPE.. At the heart of ILS algorithms are the four componédeseratelnitialSo-
lution, LocalSearchPertubation andAcceptanceCriterionFor the MPE problem,
we fixedLocalSearcho be greedy hill-climbing, and leave the other components

“4Recall that in MPE, the utility for potential entry[V,, = v,] is defined as-log(¢[Vy =
vg])/(A[Vo = vg] +1).

5.3. ITERATED LOCAL SEARCH (ILS) 43

Algorithm 5.3: Improved Guided Local Search (GLtBfor MPE

This algorithm differs from Algorithm 5.2 on page 41 only in the initialization and

in the evaluation function, where it additionally incorporates the log-pritibabf a

neighbouring variable instantiation.

g(v|Vi = v;) abbreviates _ ;4 1og(¢[V = v|V; = vj]) —w x X[V = v[V; =

v;]; andg(v) abbreviates) |, 4 log(¢[V = v]) — w x A\y[V = v]. Our default

parameters arp, N,) = (0.999,200) and initialization MB(10°).

Input: Bayesian networl8 = (V, D, G, ®), evidenceE = e, time bound, smoothing

factor p, smoothing intervalv,,.

Output: Variable assignmer¥’ = v with highest probability [, ¢[V = v] found in
timet¢

/I =====nitialize variable assignment, penalties, and local mmaicounter.
1 v — GeneratelnitialSolutiofi3)
2 foreach¢ € ® and all instantiations/y = vy do Ay [Vy = vg] < 0
3 #(LM) —0

/I =====Flip single variables or update evaluation function unétmination.
4 while runtime< t do

5 Randomly pickV; € V' \ E andv; € Dy, maximizingg(v|V; = v;).

6 if g(v|V; =v;) > g(v) then

7 | Flip variableV; to valuev;.

8 else
[/ =====Local minimum, update evaluation function.

9 foreach¢ € ® do

10 if A\p[V = v] = maxgea [-¢[V = v]/(1 + Xy[V = v])] then

11 \; L /\¢[V:V]<—)\¢[V:V}+1
/[=====Regularly smooth penalties.

12 #(LM) — #(LM) +1

13 if #(LM) moduloN,, = 0 then

14 for ¢ € @ and all instantiationd/;, = vy do

15 L L Xs[Vs = vg] — X[V = vg % p

44 CHAPTER 5. SLS ALGORITHMS FOR MPE

to be determined later. Algorithm outline 5.4 on the nextgsalgows the resulting
basic ILS algorithm for MPE. We also include a restart meg@rann this basic
ILS which is very similar to the one employed by G+St&henever ILS does not
improve its best solution for too many iterations of the eutrtry, the search is
continued from a new initial solution obtained usi@gneratelnitialSolutiof

Algorithm outline 5.4 on the facing page still leaves a lorodm for design
choices since fundamentally different algorithms resutrf choosing a different
pertubation or acceptance criterion. Equipped with anraated parameter op-
timization scheme described in Appendix A, we allowed foather large num-
ber of variants. FoGeneratelnitialSolutionwe tried a random initialization and
MB*(10°), just as we used it for G+StS in Section 5.1 on page 37. Fordbepa
tance criterion, we considered four alternatives in ouregxpents:

BETTER accepts a new solution if and only if it is better than or equal to the
last iterations’s solution*; otherwisev* is returned.

RW (for random walk) always accepts the new solution

BE/RW is a simple hybrid of BETTER and RW that always accepts imprgvi
new solutionsr, but also accepts new solutionghat are worse than* with
a certain acceptance probabildp; if v is not acceptedv* is returned.

LSMC is a simulated annealing type acceptance criterion thatysvaccepts im-
proving new solutions. For worse solutionsthe relative differencéd in ob-
jective function value between the new solution and thedastis computed
and the new solution is then accepted with probabitity(—d/T"), whereT
is a parameter called the temperaturev 1§ rejectedy™ is returned.

Acceptance criterion BETTER usually yields good resultssioort runs, but un-
fortunately shows search stagnation for some problem dmnaiowever, due to
the restart mechanism we employ, this problem is much lessopmced in our ap-
plication. As opposed to BETTER, acceptance criterion RW nexhibits search
stagnation but quite often simply performs very badly dugsttack of greediness.
For BE/RW, the greediness can be controlled by the acceptanbability ap; for

ap = 0 andap = 1, this is equivalent to BETTER and RW, respectively. LSMC
finally is also configurable in its greediness by the tempeeedat’; as’T” grows, the

5The only difference to the restart mechanism in G+StS isithéltS, we use the number of
iterations instead of the runtime to decide when to restertaigorithm. This yields reproducable
results on different architectures and machines.

5This restart mechanism became necessary since we wereledb abmove search stagnation
from the algorithm by any other means.

5.3. ITERATED LOCAL SEARCH (ILS) 45

Algorithm outline 5.4: Basic ILS for MPE
The algorithm starts a new try when it did not improve the best solutifmund in
the current try for more iterations than a cutoff factbrmultiplied by the number
of iterations the try needed to find. The best solution found across all tries is
returned.g(v|V; = v;) abbreviates ;4 log(¢[v|Vi = v;]); andg(v) abbreviates
queq) log(¢[V = v]).
Input: Bayesian networl8 = (V, D, G, ®), evidenceE = e, time bound, cutoff factorcf
Output: Variable assignmer¥ = v with highest probability [,. 5 #[V = v| found in

timet
1 while runtime< ¢ do
[l =====nitialization.
2 v < GeneratelnitialSolutiof3)
3 v* «— LocalSearclivg)
4 opt«— —oo
5 iteration < 0
Il =====lterate until restart or time-out.
6 repeat
7 iteration « iteration+ 1
8 v «— Pertubatior{v*, history)
9 v « LocalSearckv)
10 v* «— AcceptanceCriteriofv*, v, history)
11 if g(v*) > optthen
12 opt «— g(v*)
13 L itopt — iteration
14 until iteration > cf x itgp Or runtime> ¢
15 Function LocalSearcHv)
16 begin
[/l =====Flip best variables until in local minimum.
17 while true do
18 Randomly pickV; € V' \ E andv; € Dy, maximizingg(v|V; = v;).
19 if g(v|V; =v;) > g(v) then
20 | FlipV; towv,.
21 else
22 L return V = v // No improving step possible.

23 end

46 CHAPTER 5. SLS ALGORITHMS FOR MPE

probability of accepting a new solution goes:tp(0) = 1 like in RW, and as it de-
creases, the probability goesdop(—oo) = 0 like in BETTER. The actual values
we considered foap andT are given in Section 7.5 on page 79 which deals with
tuning the parameters of ILS.

For the pertubation, we considered two basic variants. Tingler variant
VARS randomly chooseg variables and changes their instantiation to some other
random value from their respective domain. A more localgedubation POTS is
achieved by randomly picking a potentiake ® and randomly changing the values
of all variablesV € V, to new values. This process is iterated, never changing
variables more than once per pertubation, until the valuatdéastp variables
has been changed. The numbpeosf perturbed variables is called tipertubation
strengthand is another parameter of the algorithm.

A priori, it is also not clear that the optimal pertubationesigth should be a
fixed number; to obtain best performance, it may be bettesttd §row, for exam-
ple, linearly with some measure of problem size, such asuh&er of variables or
the total number of potential entries. Here, we chose tta mtmber of possible
instantiations of single variable®V = ", _,, |Dy|. This is similar to using the
number of variables in the instance, but also considersAtiage domain size. The
main reason for choosingV was that it is the number of variables in a straight-
forward Max-SAT encoding of the instance. For a possiblywey pertubation
strength, we use the Boolean paramepeel(for relative pertubation) which when
true means that parameteis multiplied by0.01 x VV and rounded up.

A means of making the pertubation more target-driven is tdHexperturbed
variables after changing them, and to perform a local sedudhng the pertubation
phase in order to adjust the rest of the variables. Only #fisradditional local
search, the perturbed variables are released again. If thkie@oparametepfixis
true, such a constrained local search is executed at thef émel pertubation, using
an aspiration criterion to also flip fixed variables if thisgraves the best solution
found so far in the current try.

5.4 Hybrid Algorithm

Although our new SLS algorithms GLI'Sand ILS outperform the state-of-the-art
SLS algorithms GLS and G+StS by several orders of magnitudalloproblem
instances we tried, there still remains a number of inst&btoe hard for SLS al-
gorithms. In particular, theliabetes network and randomized versions of the
munin4 networks have not been solved by any SLS algorithm to dateveder,
these networks have very low induced width and, more imptstamanageable

5.4. HYBRID ALGORITHM 47

induced size. Thus, they can be solved exactly by the BlBorithm.

Another very interesting observation we made is that AngtMB sometimes
finds the optimal upper bound on solution quality very quiakhile it fails to find
a matching assignment. E.g., for thek network without evidence variables,
Anytime MB finds the optimal upper bound within a few millige@s. This is
particularly noteworthy since it is not able to find the cotriower bound even
with a memory constraint of 4GB and unlimited time. GL8n the other hand
consistently solves this problem instance within 200 sgdionds, such that GL'S
and Anytime MB together can find the optimal solution and prtsooptimality in
time well below a second.

As thelink example shows, it is possible to fruitfully combine Anytirfas
and SLS algorithms to proof optimality of solutions foundwsLS. Clearly, any
method that computes upper bounds can be plugged in for meyilB and any
method computing lower bounds can be substituted for SL&nlalgorithm port-
folio, it is also possible to use more than one algorithm tmpote upper and
lower bounds. Indeed, in our hybrid algorithm for MPE (segdklthm 5.5 on the
next page), MB, ILS, and GLS are used for lower bound computation, while only
MB* computes an upper bound. Our hybrid basically loops throlglalgorithms,
allocating more resources each iteration, computing uapétower bounds on so-
lution quality until the bounds coincide or it runs out ofsesces. As we demon-
strate in Chapter 9, it shows very stable performance acibsgas of instances
we considered. Overall, it is the best-performing algaonith

48 CHAPTER 5. SLS ALGORITHMS FOR MPE

Algorithm 5.5: Hybrid of MB*, ILS, and GLS for MPE (to be continued)
This hybrid algorithm loops through MBILS, and GLS', allocating more resources
each iteration and computing an upper bound on solution quality*jM& well as

a lower bound (all algorithms). Once lower and upper bound match, thetalgo
terminates. ILS and GLSare called with their default parameters, and are restarted
from scratch everytime they are called.

g(v) abbreviates _ ;4 log(¢[V = v]).

Input : Bayesian networl8 = (V, D, G, ®), evidenceE = e, time bound;, maximal size
boundsiz&,ax for Mini-Buckets
Output: Variable assignmer¥ = v with highest probabilitﬂ(b@ [V = v] found in
timet, upper boundib on solution quality

/l =====Initialize variable assignment, upper bound, and size f&"M
1 Initialize v randomly.
2 Ub+— o0
3 size«— 10000

/l =====Run with increasing size until optimality proofed, maxirsiak reached or
time-out.
while runtime< ¢ andsize < Sizénaxdo
[, ub[sizé] — MB*(size
if ub[sizé < ubthen ub — ub[sizé
if g(¥) > g(v) then
VeV
if g(v) = ubthen return [v, ub] // optimality proven.

© 00 N o 0 b

10 tsis < time taken by MB (size
12 if g(¥) > g(v) then

13 VeV

14 if g(v) = ubthen return [v, ub] // optimality proven.
15 V « GLS' (tg)

16 if g(v) > g(v) then

17 VeV

18 if g(v) = ubthen return [v, ub] // optimality proven.

19 size«— 2 x size

5.4. HYBRID ALGORITHM

Algorithm 5.5: Hybrid of MB*, ILS, and GLS for MPE (continued)
g(v) abbreviates _ 4 log(¢[V = v]).

/I =====Run ILS and GLS$ until optimality proofed or time-out.
20 while runtime< ¢ do

22 if g(¥) > g(v) then

23 VvV

24 | if g(v) = ubthen return [v, ub] // optimality proven.
26 if g(¥v) > g(v) then

27 VeV

28 | if g(v) = ubthen return [v, ub] // optimality proven.
29 Lsls < 2 X Lgis

30 return [v, ub] // Time-out, no optimality proven.

50

CHAPTER 5. SLS ALGORITHMS FOR MPE

Chapter 6

Efficient Implementation

In this chapter, we show how the algorithms introduced in @&rapcan be imple-
mented efficiently. We introduce two novel caching scherhasapply to general
SLS algorithms for MPE and yield a speed-up of up to two oraénsagnitude
over the caching scheme used so far in state-of-the-art &jo&tams for MPE.

In all algorithms presented in Chapter 5, we use two highHaperationspick-
ing a variable and its new value to maximize or minimize the esabun function;
andflipping the picked variable to its new value. This chapter is entiddvoted
to explaining how these operations can be implemented esftiyi The caching
schemes we introduce closely resemble the ones used in thd@nhain sketched
out in Section 3.4 on page 22.

Since the caching schemes we introduce here are not tieaheed to provide
descriptions at a technically detailed level. Note thahgamtentialy is generally
stored in a 1-dimensional array each entfy), = v,] of which represents the
probability for a particular instantiation of its variableEach variablé; € V, is
assigned a blocksizB, y;; ¢'s current indexl,, then computes aEVZ_GV(25 By, %
0;, whereo; denotes a unique value i, ..., |Dy.| — 1} V;'s current valuey; is
mapped td. When a variable is flipped from valug to v;, the index changes by
Byv, x (0; — 0;), which we abbreviate by s, ...

6.1 Caching Schem&aive

Straightforward implementations of SLS algorithms usudt not employ much
caching, mostly spending considerable time to determinetwtariable to flip
while the actual flip is done quickly. Our most basic impletadion variant

LAny bijective function fromDy; to {0, ..., |Dy,| — 1} can be used for this mapping.

51

52 CHAPTER 6. EFFICIENT IMPLEMENTATION

Naive (see Caching scheme 6.1 on page 54) picks the best varidhkepair by
simply trying all possible flips and evaluating the resytinstantiations. Since ab-
solutely no caching has to be done in this variant, proceBljpenaive (which flips
the variable in the rige caching scheme) has time complexityl). However, a lot

of work remains for picking the variable: for each possil#e/variable-value com-
bination, the log probability of the resulting assignmentomputed from scratch,
which requires computing the current index of each potenbanoting the max-
imal domain size byDy | and the maximal number of variables in a potential by
|V, Pick-ndves time complexity iSO(| V| x | Dy | x |®| x |Vy|), because for each
possible new variable-value combination, each potentiahust be evaluated and
computinge;’s index I,, from scratch is linear in the number of variabl@s, |

in its scope. As we will see in our experimental comparisoditierent caching
variants at the end of this section, this is far too compleyietd an efficient local
search method; we only include thisima caching scheme here in order to estab-
lish a baseline for the assessment of the more efficient iimgrations discussed
in the following.

For the penalty-based approaches GLS and Gls®me additional work is
required when the penalties are updated in local minimahése algorithms, the
penalties associated with the current entries of potemivéth maximal utility are
increased in every local minimum. Denoting the number ohspetentials with
equal maximal utility by|®maxuti|, the complexity of this update 8 (|Pmaxutil|) if
the current potential indices, are cached an@(|®maxuil| % |V;|) otherwise. When
smoothing the penalties after a certain number of localmmniall penalties need to
be multiplied by the smoothing parameteyielding time complexityO(|®| x S,),
whereS,, denotes the maximal size of any potential in the network.

6.2 Caching Schemé&imple

Our second caching varia@imple(see Caching scheme 6.2 on page 55) is the
one used in all previous implementations of SLS algorithondfPE we are aware

of. In particular, this includes the best performing SLSoalthms for MPE to
date [KD99b, Par02, MKDO03]. There are two differences betwéhis caching
variant and the first one, namely caching of the potentiatesl, in the flip pro-
cedure; and the local evaluation of a new variable-value (p&iv;) by inspecting
only the potentialsby, = {¢ | V; € V,}, that sparV; and whose current index is
thus affected by changing3tin Bayesian networks, these potentials are the CPTs

2The equivalent to this method in SAT algorithms is to onlyadhfer changes in the satisfaction
status of clauses that contain the flipped variable.

6.3. CACHING SCHEMESCORES 53

of variableV; and its childrerch(V}).

We denote by|®y | the maximal number of potentials that span a particular
variable. When compared to the previous caching schemegpthplexity of Pick-
simplehas decreased O(|V| x |Dy| x |®y]|), whereas the complexity dflip-
simplehas increased t&(|®y,|) when variablél; is flipped. Since each of these
two actions is performed once per search step, the total lexmypof this approach
isO(|V] x |Dy| x |®y|) per search step. This is much lower tl@f V| x | Dy/| x
|@| x |Vy]), the search step complexity of caching schédaive but is still subject
to substantial further improvement.

6.3 Caching Schemé&cores

Our first novel caching schentcores(see Caching scheme 6.3 on page 58) im-
proves on the standard variant by caching the change inai@tufunction (the
scorg each possible variable flip yields.This reduces the time complexity for
picking a variable toO(|V| x |Dy|). Denoting the maximal number of vari-
ables in any potential by,|, the complexity of flipping a variabl&; increases
to O(|®v;| x |Vs| x |Dy|) since for each potential containingV;, the scores for
all values of all other variables it change wherV; is flipped and need to be
updated correspondingly. Neither the time complexity akpig a new variable-
value combination nor the one of flipping the variable novic8yr dominates the
other. However, since graphical models emphasize modtiylére number of po-
tentials a single variable occurs in as well as the numbeanébles per potential
is usually small as compared to the total number of variabldsais, the picking
still dominates time complexity in practice such that thereom for even further
improvement.

If the underlying SLS algorithm is penalty-based, this ¢gaglvariant requires
some additional work. In this case, we cache the change irdhstituents of
the evaluation function, i.e. the changé/|[v;] in log-probability and the change
P[V;][v;] in the summed applicable penalties. For GLS, the séog|[v;] to be
minimizedby every variable flip is simply’[V;][v;], and for GLS', the score to be
maximizeccomputes ag [V;][v;] — w x P[Vi][v;].

Whenever the penalty,[V = v] associated with a potential entpfV; = v,]
is increased byl in a local optimum, for all variable¥; € V, and all values
v; € Dy, \ {v;}, we need to decreage[V;][v;] by the same amount, wherg

3In the SAT domain, this compares to caching the number okelathe flip of a variable would
satisfy minus the number of clauses it would unsatisfy. €lgpsantities have also been called the
make-count and break-count of a variable. For more detaith® efficient implementation of SAT
algorithms, see [Ho098].

54 CHAPTER 6. EFFICIENT IMPLEMENTATION

Caching scheme 6.1Naive

Naive variant of picking the best variable-value pair by computing the logaiitiky

for each possible new variable-value pair from scratch. The potentises/ are
recomputed in every variable flip.

e = 107% is a small constant necessary for a stable comparison of real numbers. |
will be employed by all our caching schemes.

1 Function Pick-ndve
Input: Bayesian networl8 = (V, D, G, @), evidenceE = e, variable assignme¥ = v
Output: Variable-value paifV;, v;) maximizingz¢e¢ P[V = V|V, = vy]

2 begin

3 opt«+ —oo

4 Best— ()

5 foreachV; € V\ E andv; € Dy, \ {?;} do
Il =====Compute score fofV;, v;).

6 score— 0

7 foreach¢ € ® do

8 I¢ —0

9 foreachV; € V, do Iy « Iy + By,

10 score« score+ ¢[I,] '
I/ =====Compare score ofV;, v;) with other scores.

11 if score> opt— e then

12 if score> opt+ € then

13 opt — score

14 L Best— ()

15 Best— BestU {(V;,v;)}

16 return randomly sampled element fraest

17 end

18 ProcedureFlip-naive
Input: Bayesian networl8 = (V, D, G, ®), previous variable assignme¥t= v, new
variable-value paitV;, v;).
Effect: V; is flipped fromg; to v;.
19 begin
20 | Vi
21 end

6.3. CACHING SCHEMESCORES 55

Caching scheme 6.2Simple

This is like Caching scheme 6.1 on the facing page, but the potential infjjca®
cached and the score of each variabledlip~ v; is computed by its local effects on
the potentialsby; that contain variabl&’;. ¢[z] denotes the:th entry of potentiaty

in its array representation.

1 Function Pick-simple
Input : Bayesian networl8 = (V, D, G, ®), evidenceE = e, variable assignme¥ = v,
potential indexl,, for eachy € ®
Output: Variable-value paifV;, v;) maximizingy 4 o[V = v|V; = v;]

2 begin

3 opt«— —oo

4 Best«— 0

5 foreachV; € V\ E andv; € Dy, \ {7;} do
6 score« 0

7 foreach ¢ € @y, do score«— score+ (¢[1y + By 5, —v;] — ¢[1s])
8 if score> opt— e then

9 if score> opt+ e then

10 opt — score

11 L Best— ()

12 Best— BestU {(V;,v;)}

13 return randomly sampled element fraest
14 end

15 ProcedureFlip-simple
Input: Bayesian networl = (V, D, G, @), previous variable assignme¥t= v, new
variable-value pai(V;, v;), potential index 4 for each¢ € ®.
Effect: V; is flipped fromo; to v;, potential indices are updated.

16 begin
17 foreach¢ € @y, do Iy «— Iy + By s, -,
18 Vi — v;

19 end

56 CHAPTER 6. EFFICIENT IMPLEMENTATION

is V}’s current value. Thus, the time complexity required foisthpdate is now
O(|Pmaxut] X [Vs| x |Dy|). Since there are mostly only few or just one potential
with maximal utility, this additional complexity remainsamageable in practice.
Also, it only applies in local minima of the evaluation fuinet, albeit empirical
analysis shows that local minima are encountered as oftevexy third to fifth
search step. A similar behaviour has been observed for rdustate-of-the-art
Dynamic Local Search algorithms for SAT, such as SAPS [HTHO02

The smoothing operation in GLS-type algorithms also rexgusome additional
work for this caching type. When smoothing, all penalties ratdtiplied by p,
such that the difference in summed applicable penaltidsdarctirrent instantiation
and neigbouring instantiations is also multiplied/yin order to reflect this in the
cached differences of penalties, for all variablés= V and all values; € Dy,
P[V;][v;] is multiplied by p. The additional time complexity due to this caching
of the penalties in the smoothing is ord)(|V| x |Dy|), much smaller than the
complexity O(|®| x S,) caused by the smoothing anyways. The complexity of
single search steps decreases as we introduce more andopbigtisated caching
schemes. In practice, with caching scheBweresits complexity is already much
smaller than the one of smoothing all the penalties. Theseffor complexity
reasons it is central not to perform the smoothing in eacél lsinimum but only
every N, local minima?

6.4 Caching Schemémproving

Our second novel caching scheingprovingis detailed in Caching scheme 6.4 on
page 59. It further reduces the average time complexityakipg a new variable-
value pair considerably, while only marginally increasthg time complexity for
performing a flip. This is achieved by caching the variabigg, which when
flipped to some value actually lead to an improvement. Becaitse a short
initial search phaséVing| remains very low, considerable performance improve-
ments can be achieved since the time complexity for picking\wa variable-value
pair decreases tO(| Vinp| % |Dy|). Denoting the maximal cardinality of any vari-
able’s Markov Blanket bymb(17)|, the time complexity for flipping the variables
increases to)(| Py | x [Vy| x |Dy| + |mb(V)| x |Dy| x log |Vimp|). This is because

4The exact same observation in the SAT domain led to the deweat of SAPS [HTHO2],
which is amongst the state-of-the-art algorithms for SAie Thain difference between this algo-
rithm and its predecessor ESG is that the smoothing is ordgwgrd in local minima with a low
probability of around 5%; this simple change leads to SARSistently outperforming ESG by a
large margin. Recent subsequent work [THO4] showed thatahee effect persists if the smoothing
is carried out deterministically every, steps.

6.5. EXPERIMENTAL EVALUATION OF CACHING SCHEMES 57

after flipping a variablé’; like in caching schem8coreswe now additionally need
to check for each variabl&; in V;'s Markov Blanket whether the updated score
S[V;][v;] for any of its values); yields an improvement. If this is the cad¢,has

to be incorporated into the initially empty set of improvivariablesVi, unless it

is already contained in it; vice versa,lif was contained iV, but flipping it to
another value cannot lead to an improvement anynigraas to be removed from
Vmp-

For the GLS variants, the same additional work as in the lashiog scheme
Scoreghas to be performed again when changing the penalties. Rapleteness,
we mention that in GLS, the set of improving variabNg,, holds all variables
which when flipped to some valueducethe overall penalty and for GLiSthe
ones whichincreasethe log-probability minus the weighted overall penalty.- Ta
ble 6.1 on page 60 gives an overview of the complexities fokipg the best new
variable-value combination and flipping a variable to a nalm& for all our caching
schemes. For the caching of penalties in penalty-basedithigs, the additional
complexities in Table 6.2 on page 60 apply.

In our discussion of the complexities arising from each caglscheme, we
focussed on the complexity per search step and completetyeg the complex-
ity of initializing the employed data structures after aitia&h solution has been
determined. In caching schemdgive no initialization is needed, and in caching
schemeSimple only the indices of each potential need to be computed,imgus
complexity O(|®| x |V,|). For caching schem8coreswe also need to compute
the score for every possible variable flip, causing an aultili one-time cost of
O(|V| x|Dy| x |®| x |Vs|). The initialization of caching schenteprovingcauses
another small one-time cost 6f(|V| x |Dy| + |V] x log |Vimp|) since for each
valuev; of each variablé/;, we need to check whether the sc6ii#;]|[v;] is greater
than zero, and, if this is the case for any of the valuesJatiolthe set of improving
variablesViy,.

6.5 Experimental Evaluation of Caching Schemes

Having compared the various caching schemes with resptaitdheoretical time
complexity, we now give evidence from practice underlinthg significance of
these results. Table 6.3 on page 63 and Table 6.4 on page @4tsbaverage
number of steps per second performed by the algorithms G-€&tS, and ILS for

problem setbnrep andgen, respectively. For GLS, the number of steps for
each of the caching schemes is virtually identical to GLS)| &we omit it in the

tables. We observe an enormous effect of efficient cachingmes. On problem

58 CHAPTER 6. EFFICIENT IMPLEMENTATION

Caching scheme 6.3Scores

Thisis like Caching scheme 6.2 on page 55, but additionaltyres the scor€[V;][v;] of each
variable-value combinatiofV;, v;), i.e. the increase in log-probability whéd is flipped to
v;. The scoresS are updated when flipping a variable and the pick operatiomplsi picks
the best one.

1 Function Pick-scores
Input: Bayesian networl8 = (V, D, G, ®), evidenceE = e, variable assignmei = v,
2-dim. score arrays
Output: Variable-value paifV;, v;) maximizing , 4 o[V = v|Vi = vj]

2 begin

3 opt «— —oo

4 Best— ()

5 foreachV; € V\ E andv; € Dy, \ {?;} do
6 if S[V;][v:] > opt— e then

7 if S[V;][v:] > opt+ e then

8 opt — S[V;][vi]

9 L Best«— ()

10 Best— BestU {(V;,v;)}

11 return randomly sampled element fraest
12 end

13 ProcedureFlip-scores
Input: Bayesian networl8 = (V, D, G, ®), previous variable assignme¥t= v, new
variable assignmenit; = v;, potential index, for each¢ € @, 2-dim. score array
S.
Effect: V; is flipped fromd; to v;, indices and scores are updated.
14 begin
15 foreach ¢ € @y, do

16 I « I, Il I holds the index before flippirig, from; to v;.
17 I¢ <_I¢+B¢'ﬂ7i—>vi
/I =====The local change in log-probability for this potential arftetcurrent flip
V; — U; isLC = ¢[I¢] — QS[I(A ~
18 foreachv; € Dy, do S[Vi][v;] < S[Vi][vi] + ¢[Is] — ¢[Ly] I/ deal with LC
/I =====Before the flipy; — v;, the local change for other variable flipgg — v;

is ¢[f¢ + B(z,’{,j*wj] — (]5[.?4;}, afterwards, it IS(b[Id) + BCb,f)j*Wj} — ¢[I¢]
LC cancels out with two of these terms.

19 foreachV; € V4 \ {Vi} andv; € Dy, do

20 L SVillv] < SIVillvj] = Ly + Be,s;—u;] + 0L + Bpa;—u;]

21 end

6.5. EXPERIMENTAL EVALUATION OF CACHING SCHEMES 59

Caching scheme 6.4Improving
This is like Caching scheme 6.3 on the preceding page, butiadlly caches the set of
variablesVimp which yield an improvement in log probability when flippedsiome value.

1

© 0 N O OB~ WDN

=
o

11
12
13

14

15
16
17
18
19
20

21
22
23
24
25

26

Procedure Pick-improving
Input: Bayesian networls = (V, D, G, @), variable assignme¥ = v, 2-dim. score
array.S, setVimp of vars yielding an improvement when flipped to some value.
Output: Variable-value paifV;, v;) maximizing , 4 o[V = v|V; = v;]
begin
opt «— —oo0
Best— ()
foreach V; € Vinp andv; € Dy, \ {7;} do
if S[V;][vi] > opt— e then
if S[V;][vi] > opt+ e then
opt — S[Vi[vi
L Best«— ()

Best— BestuU {(V;,v;)}

return randomly sampled element fr@dest
end
ProcedureFlip-improving
Input: Bayesian networl = (V, D, G, @), evidenceE = e, previous variable assignment
V = ¥, new variable-value paifl;, v;), potential index(,; for eachg € @, 2-dim.
score arrays, setlin, of vars yielding an improvement when flipped to some value.
Effect: V; is flipped fromo; to v;, indices, scores, and improving variables are updated.
begin
/I =====The first loop is exactly the same as in procedure Flip-scor€saching
scheme 6.3 on the facing page
foreach ¢ € @y, do
I¢ — I¢ + B¢ﬂ71—>w
foreachv; € Dy, do S[Vi][vi] « S[Vil[vi] + ¢[Is] — ¢[I4]
foreachV; € V, \ {Vi} andv; € Dy, do
| SWillv;] = SVillvg) = 6lls + Bo,o,—v;] + 6lls + Bo,o, o]

foreachV; € mb(V;) \ E do
if Jv; € Dy, such thatS[V}][v;] > 0 then
| Vimp < Yimp U {VJ}
else
L Ymp < Ymp \ {V;}

Vi — v,

27 end

60 CHAPTER 6. EFFICIENT IMPLEMENTATION

| Caching schemiPicking best variable-value combinatidfiipping variableV; to new value

Naive O(|V] x |Dy| x |®] x |Vy]) o(1)
Simple O(|V| x |Dy| x |®v]) O(|Pv;)
Scores O(|V] x |Dv|) O(|®v,| x [Vg| x |Dv)
. O(|®v| x [Vg| x [Dy|
Improving O([Vimpl x [Dv'[) +|mb(V)| x | Dy| x 1og [Vimpl)

Table 6.1: Overview of computational complexitymtkingthe best neighbouring
variable-value combination aritipping variableV; to a new value. For GLS-type
algorithms, the additional complexities in Table 6.2 apply

| Caching schemgPenalty increase in local minimaSmoothing of all penaltie$

Naive O(|q>maxutil‘ X |V¢|) O(‘CI)| X S¢)

Simple 9(‘¢’maxutil|) O(\‘I’| X S¢)

Scores O(|Pmaxutill % [Vo| x |Dv|) |O(®] x Sy + V]| x |Dy])
Improving O(|Pmaxuiill X [Vo| x |Dv|) |O(®] x Sy + [V] x |Dy])

Table 6.2: Overview of computational complexity fiocreasingthe penalties as-
sociated with the current entries of potentials with madiotaity and smoothing
all penalties in GLS-type algorithms.

setbnrep , the speedup factor achieved by our caching schempeovingover the
previous state-of-the-art caching schesmaplereaches from 1.9 to 116 for G+StS,
from 2.5 to 39 for GLS, and from 1.16 to 110 for ILS. On probleet gen, this
speedup factor ranges from 6.26 to 46 for G+StS, from 5.9 forlGLS, and from
3.3to 34 for ILS.

There are small differences in the number of search step3Ssa&1 ILS ex-
ecute per second, with G+StS being slightly faster on aeersige attribute these
differences to two factors. Firstly, G+StS performs 40% tfcBastic Simulation
steps, the performance of which is not bound as tightly taccdehing schemes as
picking the best new variable-value combinatfoAnd secondly, a special situation
occurs in ILS when the acceptance criterion decides to gk tzaeuse the local
optimumv* of the previous step. In this very frequent caseS performs a series

SStochastic Simulation steps sample a varidfland then sample a value for this variable from
the distributionP(V; = v; | [V \ {Vi} = v \ {v:}]). Since this equals the change in overall
probability whenV; is flipped tov;, the new value fol; can be sampled from the exponentiated
scoresS[V;][.]. For caching schemBaive these scores are computed from scratch, for caching
schemesimple the cached indices are employed for the computation, artiémther two caching
schemes, the scores are readily available.

5The new locally optimal variable instantiationvery often has smaller probability than the

6.5. EXPERIMENTAL EVALUATION OF CACHING SCHEMES 61

of additional variable flips which simply redo the flips perfeed since leaving*.
Effectively, this leads to ILS performing almost twice asnydlip-operations as
pick-operations.

When comparing the CPU time per search step of GLS to G+StS &)dribre
significant differences can be found. For the large networkain2 to munin4g ,
GLS performs only approximately5% of the steps G+StS and ILS perform per
second. We attribute these differences to the additiorerh®ad in GLS stemming
from incrementing and smoothing its penalties. Intergéfinsmoothing seems
to contribute only a small part to this additional complgxgince in preliminary
experiments (not reported here), we observed a very sipdeormance of GLS
without smoothingd.

Note that for the small networkalarm , insurance , andwater , the ef-
fects of improved caching schemes are minimal, but thatplkedup factor grows
with the number of variables and the domain sizes, beingdsigtor the large in-
stancedliabetes , link , and themunin networks. This effect is highlighted
by the results for problem sgen, where we observe that the speedup factor con-
sistently grows with the number of variables and the domeiess We visualize
these increasing speedups for larger instances for eabl afgorithms separately
in Figures 6.1(a) on the next page, 6.1(b) on the followingepand 6.2(a) on the
next page, where every data point represents one instance.

Having substantially improved the time complexity SLS aithons for MPE
exhibit per search step, in the next chapter we move on tdhanehportant com-
ponent of efficient SLS algorithms for MPE, namely a thoropghameter tuning.

previous onev*. In this casey* is used with probability — ap, which per default i99.7%.

Although with an infinite smoothing intervaV,,, GLS’s number of performed search steps per
second was up to 30% faster for some instances, for othemicss, it was up to 20% slower. The
most likely reason for it being faster for some instancedaarty that it saves the complexity of
smoothing. We conjecture that the reason for it being sldareother instances is that without the
smoothing more potential entries might share the same nadxitility, which leads to a greater
number of penalty updates being performed.

62

CHAPTER 6. EFFICIENT IMPLEMENTATION

Steps per seconds executed by G+StS

Steps per seconds executed by ILS

10 10
. e “
5] 5 : °

L10F A 4 3. e 2 - Lo A4 L L LN SR
< . < A X a 3 LN}
5 a8 <] 4 %
S, 4 ° S10%) a
810 10 A
& © A4 g ® aq
o o A =) A
o ° EN a ° a
(S A (SR ® A
2107 f Aan 1 2107 ® © aAn 3
2 ° EN g ['
B2 ° B0 *
£10 210 LI
] e ° 3
3 1 ° 3 1 ° o
0 10 8o 010 e
& - Y ° o) . ° °
& ¢ Improving & ¢ Improving

100 Scores @ 100 u Scores

A Simple A Simple @
o o Naive _ o Naive
10 . 5 10 . 5
2 103 2 103

Number of variables times avg. domain size (equals VV) Number of variables times avg. domain size (equals VV)

(a) Effect of caching for G+StS (b) Effect of caching for ILS

Figure 6.1: The effects of improved caching schemes forrdlgus G+StS (a) and
ILS (b). Note the increasing effect of strong caching schemith an increasing
number of variables and domain size (here only the produitteofwo is plotted).

Steps per seconds executed by GLS Speedups of G+StS and ILS over GLS

10
X G+StS
1
5 o o n 10 e ILS Bl

10 . .]
= A 5 ° . o %
S A ° bl s ° $
210°L o - g x .
7 L] 7]
> i ad 7
o Ap a § x
St L ° A 5 .
= N I % o
3 ° a B x : %
8.2 = x %3 X
‘g 10 bl x % x ;§ o
] °s = X . X X X
2 S 0 X x, ¥ 5
[° 10 X Se
» 10 o ® 9 . . o o &
& 2 x
[« Improving ° ° g

10 Scores 2

A Simple ® n
-1 o Naive
10 2 103 2 103

Number of variables times avg. domain size (equals VV)

(a) Effect of caching for GLS

Number of variables times avg. domain size (equals VV)

(b) Speedup of G+StS and ILS over GLS

Figure 6.2: The effects of improved caching schemes forrdalgn GLS (a), and
the advantage in steps executed by algorithms G+StS and he® wompared to
GLS when all algorithms are using our improved caching sehemproving

Stats G+StS GLS ILS
~N | Dom c=0 c=1 c=2 c=3 c=0| c=1 c=2 c=3 c=0 | c=1 c=2 c=3
Instance stis.| stis. | stis. | stis. | ST |stis| stss.| stss. | stss. | Sf | stss.| stss.| stis. | stis. | Sf

alarm 27 | 2.78 | 7142 | 91904 | 141429 230507 2.51 |5081|60322| 108826| 177453 2.94 | 6553 | 87189| 128043| 199495/ 2.29
alarm-rand | 27 | 2.93 | 6831 | 84573| 136225 220847 2.61 |4723|56792| 104816 166824 2.94 | 6530 | 80038| 118695 182842 2.28
barley 38 | 9.45| 616 | 18741| 36912 | 77774| 4.15 | 574 | 12904 30499 | 82396 | 6.39 | 861 |18774| 35621 | 71245| 3.79
barley-rand | 38 | 9.03| 606 | 10210 | 24364 | 50678 | 4.96 | 658 | 13750| 30805| 70759 | 5.15| 941 |19212| 35144 | 65532 | 3.41
diabetes | 403 [11.33| 4.99 | 704 | 3897 | 36327 | 51.60| 3.26| 546 | 2486 | 17579|32.20| 4.39 | 644 | 3920 | 40708 | 63.21
diabetes-rand 403 |11.27| 4.72 | 648 | 3264 | 31602| 48.77 | 3.28| 539 | 2432 | 21234|39.40| 4.52 | 664 | 3848 | 42888 | 64.59
hailfinder 46 | 3.91 | 2106 | 50843 | 82890|201929 3.97 |1304|30422| 54829 | 136065 4.47 | 1799 | 45468 69994 | 161259 3.55
hailfinder-rand 46 | 4.02 | 1820 | 38035| 77417 |172865 4.54 |1141|22645| 52938120753 5.33 | 1558 | 30725 58823 | 108685/ 3.54
insurance | 17 | 3.24|12914| 94800 | 149009 196759 2.08 |9316|67159| 121247171379 2.55 | 12369| 92942 126519 152300 1.64
insurance-rangd 17 | 3.24 | 13640| 100415 159976| 217262 2.16 |9635| 71098| 130910 187092 2.63 | 10969| 90674| 131232/ 160499 1.77
link 714 | 2.53| 3.80 | 1310 | 6522 | 89915| 68.64 | 2.81| 1253 | 6788 | 47495|37.91| 4.59 | 1520| 7654 | 40080 | 26.37
link-rand 714 | 2.53| 3.48 | 1494 | 5908 | 77652 | 51.98 | 2.66| 1159 | 4021 | 15790|13.62| 4.26 | 1579 | 8892 | 50498 | 31.98
mildew 25 |20.72| 1044 | 16073 | 23396 | 45343 | 2.82 | 800 | 12801| 20356 | 33148 | 2.59 | 1084 | 17406| 25078 | 50753 | 2.92
mildew-rand | 25 |10.48| 2257 | 24854 | 54213 |104124 4.19 |1451|22124| 43800 | 103526 4.68 | 2128 | 31753| 48110| 91768 | 2.89
muninl 179 | 530 | 44 6404 | 14910| 79571 | 12.43| 33 | 5275| 13158 | 52968 |10.04| 59 | 7221 | 17078 | 76351 10.57
muninl-rand| 179 | 5.36 | 44 5722 | 12125| 67727 | 11.84| 38 | 5175| 12745| 57449|11.10] 60 | 6854 | 16658 | 82531 12.04
munin2 993 | 5.37| 0.72 | 539 | 2998 | 53790| 99.80| 0.34| 448 | 1204 | 6602 |14.74| 0.44 | 533 | 2785 | 49388 | 92.66
munin2-rand| 993 | 5.37| 0.74 | 600 | 2766 | 53998 | 90.00| 0.34| 384 | 1213 | 7391 |19.25| 0.45 | 533 | 2205 | 44028 | 82.60
munin3 1034| 5.36| 0.65 | 546 | 2492 | 53458 | 97.91| 0.31| 393 | 1058 | 5801 |14.76] 0.42 | 456 | 2228 | 44250| 97.04
munin3-rand | 1034| 5.37 | 0.60 | 539 1730 | 51009 | 94.64| 0.29| 364 | 1029 | 5842 |16.05| 0.46 | 494 | 2172 | 54719 110.77
munin4 1031| 5.43| 0.70 | 445 | 2185 | 51776|116.35/ 0.31| 358 | 1068 | 6549 |18.29| 0.49 | 494 | 2126 | 41879 | 84.78
munin4-rand | 1031| 5.40| 0.72 | 539 | 2541 | 52134 96.72| 0.31| 362 | 1109 | 7097 |19.60| 0.48 | 494 | 2186 | 36215| 73.31

pigs 431| 3.00| 13 3061 | 10761 | 94288 | 30.80| 8.54| 2322 | 8326 | 27965|12.04| 11 | 3702 | 14120| 90363 | 24.41
pigs-rand | 431 | 3.00| 11 3791 | 13002 | 99247 | 26.18 | 8.07| 2631 | 7387 | 26676|10.14| 12 | 3524 | 14369 |105773 30.02
water 22 | 3.59| 6986 | 79240|123185/ 168865 2.13 |4907|50213| 94355|156294, 3.11 | 7614 | 74867| 106093 134426/ 1.80

water-rand | 22 | 3.59 | 4043 | 75334 | 112485 143196 1.90 |4627|46053| 77390 | 108539 2.36 | 6880 | 66769 78393 | 77440| 1.16

SIAWTHIOS ONIHOVO 40 NOILYNTYAT TVLNIWNIHIdXT 'S9

Table 6.3:Steps performed per second for the algorithms G+StS, GL&|LBion problem sebnrep with caching schemeNaive (c=0),
Simple(c=1), Scores(c=2), andlmproving (c=3). For each algorithmsf denotes the speedup factor gained by our new superior gachin
schemdmprovingover the previously best simple caching scheimaple This speedup is higher for larger instances with many feembles
(column N) and/or high domain sizes (colunibom). GLS™ performs almost exactly as many steps per seconds as GLSveandhit it in

the table. G+StS and ILS used initialization MB0°), GLS random initialization. The other default parametessdifor the algorithms are
(cf,np) = (2,40) for G+StS,(N,, p) = (200,0.999) for GLS, and(acc, an, cf, p, pert, pfix, prel) = (HYBRID,0.003, 5,2, POTStrue, false) 8
for ILS. GLS with an infitinite smoothing intervaV, performed very similar to GLS with default parameters.

Stats G+StS GLS ILS
N | Dom c=0| c=1 | c=2 c=3 c=0| c=1 | c=2 | c=3 c=0| c=1 | c=2 c=3
Instance st/s)| st/s. | stfs.| stis. | St |stss| stss.| stis. | stis.| St |stis| stss.| stis.| strs. | Sf

z100v3d5iw10-rand 90 | 2.54 | 440 |20698| 53038| 141758 6.85 | 314 | 13985| 39771| 89620| 6.41 | 521 | 22067| 50989| 117445| 5.32
z100v3d5iw10-stru¢ 90 | 2.56 | 267 | 15656| 39678 105943 6.77 | 312 | 14575| 38462 85948 5.90 | 489 | 21092| 50966| 92900 | 4.40
z100v3d5iw20-rand 90 | 2.59| 249 | 14461 37311| 90523 | 6.26 | 293 | 14156| 37423| 84823| 5.99 | 454 | 12915| 21885| 42728 | 3.31
z100v3d5iw20-strug 90 | 2.61| 244 | 18534| 45344| 126959| 6.85 | 290 | 13941| 38352| 87051| 6.24 | 441|17999| 37524| 74066 | 4.12

z100v6d5iw10-rand 90 | 3.82| 180 | 13615| 34970| 107184 7.87 | 169 | 10421| 27913| 74115 7.11 | 315 | 14945| 34053 78783 | 5.27
z100v6d5iw10-stru¢ 90 | 3.87 | 179|12301| 31200| 76811 | 6.24 | 171|10007| 27577 69550 6.95 | 315 | 13013| 25707| 59174 | 4.55
z100v6d5iw20-rand 90 | 4.13| 159 | 12031| 32766| 87635| 7.28 | 173 | 9124 | 23841| 74758| 8.19 | 279 | 11750| 32369 70697 | 6.02
z100v6d5iw20-stru¢ 90 | 4.13| 157 | 14797| 36370| 86008 | 5.81 | 174 | 9159 | 26400| 72395 7.90 | 252 | 13079| 32041| 68592 | 5.24

z200v3d5iw10-rand190| 2.54| 60 | 6249 | 18879 80728 |12.92| 65 | 6693 | 20094| 55385 8.28 | 108 | 9871 | 28903| 89028 | 9.02
z200v3d5iw10-stru¢190| 2.54| 60 | 6580 | 18580(80510 |12.24| 65 | 6970 |21327| 55890 8.02 | 110 | 9793 | 26300| 32545 | 3.32
z200v3d5iw20-rand190| 2.52| 55 | 7165 |25307| 115693 16.15] 64 | 6725 | 20050/ 52133| 7.75 | 106 | 9836 | 29992| 101759 10.35
z200v3d5iw20-stru¢190| 2.52| 58 | 7092 | 20705| 103104f 14.54| 66 | 6759 |20481|55381| 8.19 | 111 | 9749 | 30013 102419| 10.51

z200v6d5iw10-rand190| 4.11| 37 | 4317 | 12756| 54433 |12.61| 39 | 4477 |13534| 46237 10.33| 65 | 6221 | 17154| 50358 | 8.09
z200v6d5iw10-stru¢190| 4.07 | 36 | 5336 | 13530| 63970 |11.99| 40 | 4227 | 13578| 44402| 10.50, 65 | 6665 | 18867 66418 | 9.97
z200v6d5iw20-rand190| 4.09| 40 | 6176 | 18306 98406 | 15.93| 41 | 4624 | 13792 47131]10.19| 65 | 6682 | 19004| 75570 |11.31
z200v6d5iw20-stru¢190| 4.08| 40 | 7651 | 20374| 90057 | 11.77| 40 | 4476 |13717|46893| 10.48| 59 | 6473 |18902| 70918 | 10.96

z400v3d5iw10-rand 390| 2.47| 16 | 4839 |11902| 85923 |17.76| 16 | 3114 | 9992 | 31047 9.97 | 23 | 4762 | 15851| 66065 | 13.87
z400v3d5iw10-strue390| 2.48| 15 | 4056 | 11754| 86576 |21.35| 16 | 3471 | 9856 | 32861 9.47 | 22 | 4553 | 13050 45580 | 10.01
z400v3d5iw20-rand390| 2.48| 14 | 4027 |11717| 82920|20.59| 16 | 3273 | 9790 | 30412 9.29 | 22 | 4787 |15901| 58763 |12.28
z400v3d5iw20-stru¢390| 2.49| 15 | 3347 |11180| 84085|25.12| 15 | 3443 | 9919 | 32798 9.53 | 24 | 4736 | 16437 78071 |16.48

z400v6d5iw10-rand 390| 4.11|9.91| 2314 | 8199 | 61500 | 26.58|9.16| 1772 | 6330 | 30602 17.27| 13 | 2534 | 9987 | 69514 | 27.43
z400v6d5iw10-stru¢390| 4.11|9.61| 2181 | 11059| 100137| 45.91| 9.46| 1892 | 6263 | 29451| 15.57| 13 | 2404 | 9978 | 81229 |33.79
z400v6d5iw20-rand390| 3.87| 10 | 2805 | 8521 | 65196 | 23.24| 9.81| 2066 | 6893 | 30029| 14.53| 14 | 2746 | 10406| 81992 | 29.86
z400v6d5iw20-stru¢390| 3.88| 10 | 2601 | 8167 | 66112 |25.42| 10 | 1981 | 6039 | 30947|15.62| 14 | 2780 | 10159| 83747 |30.12

Table 6.4: Steps performed per second for the algorithms G+StS, GL&)l® on problem segen with caching schemeNaive (c=0),
Simple(c=1), Scores(c=2), andlmproving (c=3). For each algorithmsf denotes the speedup factor gained by our new superior @achi
schemdmprovingover the previously best simple caching sch&imaple This speedup is higher for larger instances with many feembles
(column N) and/or high domain sizes (colunibom). GLS™ performs almost exactly as many steps per seconds as GLSyeandhit it in
the table. G+StS and ILS used initialization MBO0®), GLS random initialization. The other default parametessdifor the algorithms are
(cf,np) = (2,40) for G+StS,(N,, p) = (200,0.999) for GLS, and(acc, an, cf, p, pert, pfix, prel) = (HYBRID,0.003, 5, 2, POTStrue, false)

for ILS. GLS with an infitinite smoothing intervaV, performed very similar to GLS with default parameters.

¥9

NOILVLNINI TGNl LNFIDIH44T "9 ¥FLdVHO

Chapter 7
Tuning SLS Algorithms for MPE

In this chapter, we introduce our experimental methodolaggt show how we
tuned the parameters of the algorithms introduced in Ch&piteorder to achieve
high performance. We also demonstrate that tuning the peteamof the previ-
ously best-performing SLS algorithm GLS improves its perfance by several
orders of magnitude.

7.1 Experimental Methodology

In the remainder of this thesis, we will repeatedly face ttabfem to evaluate the
performance of an algorithm on a set of problem instancés For this purpose,
we let A run on all problem instances ifi for a given timé and keep track of
the solutions it finds. In order to evaluate how good the smhstit finds are, we
compare them to provably optimal solutions we obtained tithexact algorithms
s-BBMB and Anytime MB (cf. Chapter 4) for most of the instances stedy.

However, for some instances, especially for randomly gerdrnetworks with
high induced width, these algorithms were not able to findnagit solutions and
proof their optimality? We thus employjuasi-optimalsolutions, which we define
to be the best solutions we ever encountered in any run of lgoyitlhm we tried.

We use the term quasi-optimal solution in its most generalmmg, that is, we refer
with this term for each instance to the best solution we fowitd any algorithm.

tUnless explicitly stated otherwise, all algorithms are fant = 100 seconds on compute
servers each equipped with dual 2GHz Intel Xeon CPUs witliKBl@ache and 4GB RAM running
Linux version 2.4.20, build 28.9.

2For all instances ifnrep , we could find optimal solutions and proof their optimalior 5
of the networks irgen (all of them with maximal induced widtR0 and maximal domain sizé),
this was not the case. Detailed results for the exact algostcan be found in Chapter 9.

65

66 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

In particular, this includes provably optimal solutions.

After we ran algorithmA on problem sef, we compute a number of measures,
such asA’s ratio of solved problem instances and its average appratkon quality.
Moreover, we employ qualified run-time distributions as Ives distributions of
solution quality. These concepts are defined in the follgwgee also [HS04]).

Since SLS algorithms are randomized, the runtifg, , an algorithmA needs
to find a solution with quality; for a given problem instance is a random variable.
We perform multiple runs ofd in order to estimaterT, , for all qualitiesq of
interest, especially fay*, the quasi-optimal solution quality.

In each of R runs of A, we record for each quality of interest and rum =
1,..., R, the timeT7,, when the run first reached a quality greater or equal. to
An empiricalqualified run-time distribution (empirical QRTD) for quslig gives
for each timet the percentage of runswith 7,, < ¢; it yields an estimate of
the probability that algorithmi finds a quality greater or equal toin time less
than or equal ta.® Application areas of empirical QRTDs include visualizatio
of search stagnation and general characterization of itigobehaviour. When
plotting empirical QRTDs, the x-axis gives algorithm runé and the y-axis the
percentage of runs in which the quality of interest was a@ue In this thesis,
we only employ empirical QRTDs for quasi-optimal solutiamatjtiesq*. QRTDs
for optimal solution quality are simply called run-time wlibutions (RTDs); for
example, Figure 7.3 on page 74 shows empirical RTDs for rdiffe parameter
settings of GLS.

Like the runtime an algorithmi needs to reach a given solution quality, the
quality it achieves within a given timeis a random variable, and its probability
density function can be approximated by the sample sol@ialities reached in
runsi, ..., R of A within time¢t. Themean solution qualityat timet, a standard
tool in the analysis of anytime algorithms, is then just thesam of this sample. It
is especially useful when comparing algorithms with verfjedent performance
and can also be applied for deterministic algoritfnir hard problems, in prac-
tice, one might primarily be interested in which algorithmomises to find the
best solution for a particular instance or class of instargteen a certain time.
Mean solution quality at timegives the solution quality we expect an algorithm to
reach on average, and plotting it over time also shows wheattalgorithm shows

3This estimate naturally improves with the number of rundqrered, but doing many runs is
expensive in terms of CPU time. Thus, with a given limit on Cttde for an experiment, we
always face a trade-off between the number of runs per dhgorithe number of instances we run
the algorithm on, and the time each run is allowed to last.

“For deterministic algorithms, of course only one run is perfed and the mean solution quality
at any timet is simply the quality this run achieved in time

7.1. EXPERIMENTAL METHODOLOGY 67

strong performance in the beginning but improves more siowér time than oth-
ers? In plots of mean solution quality, the x-axis representsini@ and the y-axis
solution quality; Figure 7.1 on page 71 shows an examplehs: tRecall that
we use—10000 as the log-probability for probability zero; when plottiagerage
log-probabilities, these values are suppressed to prelaitered figures, and the
plot for a particular algorithmA only starts at the time for which all runs ofA
found an assignment with strictly positive probability. Wieger possible without
introducing clutter into the plots, we provide the minimaldamaximal solution
gualities achieved in all the runs of an algorithm as welle3dare plotted at every
time step, at which the underlying sample distribution dem i.e., whenever one
of the algorithm’s runs improves its best solution found ap fin order to pre-
vent clutter, we plot minimal and maximal solution quaktienly for the best- and
worst-performing algorithms if at all.

While RTDs and plots of mean solution quality facilitate aadled analysis of
algorithm performance on single problem instances, inrdalevaluate algorithms
on sets of problem instances we employ a number of statjg#icsistance. These
statistics include the ratio of successful runs, averaggoagmation quality and
average runtime. In order to ease reading, we generallygesummary tables of
our experiments. For each experiment, the full resultsdchgroblem instance are
given in Appendix B and are referenced in the respective sampable (see e.g.
Table 7.1 on page 69 for an example). Each summary tableineritee following
performance measures for each algorithm.

Avg. quality is short for an algorithm’s&pproximation qualityaveraged over all
its runs on all instances. We define the approximation quafitan algo-
rithm run as the ratio of the nonlogarithmic solution qualttreached and
the quasi-optimal one. We always state approximation tigsiin percent of
the quasi-optimal quality, i.e., a value td0 is optimal. (One can think of
this measure as the percentage of solved instances, plesagizhtional score
for instances for which solution qualities at least clos¢hs quasi-optimal
one are found.)

Avg. runtime gives the total time the algorithm needed to complete alttins in
an experiment divided by the total number of runs in whichghasi-optimal
solution quality was found. A run terminates when it finds asjtoptimal
solution or aftet = 100 CPU seconds.

SObviously, in practice, additional measures, such as thianee of achieved solution qualities
at timet¢, might play an important role as well.

5We employ this measure instead of averaged or median runtiiaetiles since the performance
of the algorithms we compare varies heavily and for manyimsts not even the 5% quantiles exist

68 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Successful runsgives the ratio of the number of runs which found a quasirogki
solution and the total number of runs performed.

Instances solvedgives the ratio of instances for which at least one of the-algo
rithm’s runs was successful, i.e. the ratio of instancew/fuch the algorithm
found a quasi-optimal solution in at least one of its runs.

amongst bestgives for each algorithm the number of instances for whigiert
formed best among the algorithms compared. Performandgarftms for
a particular instance is compared by first evaluating thie &tsuccessful
runs for this instance, in case of ties using the approxonaguality aver-
aged over the runs for this instance, and again in case oblyebe average
runtime on this instance. If all these characteristics gueakfor several al-
gorithms, they are all among the best performing algoritfonthis instance.

7.2 Tuning G+StS

The G+StS algorithm as introduced in [KD99b] and detailedsettion 5.1 on
page 37 has two free parameters, the cutoff factorand the noise probability
np. No default values for these parameters were mentioned DPgH], so we
tuned them manually. Note that here and in the following, \esaly employ our
new caching schemienprovingfor tuning the parameters of previous algorithms
in order to make the best use out of a restricted CPU time. Afteliminary ex-
periments, we discretized the possible parameter valugfs¢o{1.5, 2, 5,10, 100}
andnp € {5, 10, 20, 30,40, 50} (we measure the noise probability in percent), and
for each combination of these parameter values we ran G5tighes on all in-
stances in the problem sdisrep andgen. The overall best-performing parame-
ter combination when judging by the percentage of succkssis and the average
approximation quality wacf, np) = (2, 40).

With this setting of the noise probability9)% of the steps in G+StS are Stocha-
stic Simulation steps. In this case, G+StS’s sensibilitystoutoff factor is not very
high, which we demonstrate for problem sketsep andgen in Tables 7.1 on the
facing page and 7.2 on the next page, respectively. HowtS is still quite
sensitive to its noise parameter even with a low cutoff faofacf = 2. This can

for an algorithm because it cannot solve the instance. Hewyévis important to note that the
measure as we currently employ it strongly depends on theechttime bound = 100 since we
average runtimes over problems with vast differences ificdify, some of which are solved in
milliseconds and some of which are never solved. Howevemimbination with the percentage of
successful runs, average runtime can give very valuabberrdtion.

7.2. TUNING G+STS

69
G+StS
Statistics | cf=1.5| c¢f=2 | c¢f=5 | cf=10]cf=100
Avg. quality | 77.18 | 77.04 | 76.58 | 76.31 | 75.43

Avg. runtime | 55.46 | 55.89 | 58.43 | 60.27 | 62.90
Successful rung424/650 423/650 415/650 410/650 400/650
Instances solved 17/26 | 17/26 | 17/26 | 17/26 | 16/26
#amongst best 14 12 10 8 9

Table 7.1: Summary statistics for G+StS with initializatidB*(10°), noise proba-
bility np = 40, and varying cutoff factocf on problem sebnrep . All algorithms
are run25 times for100 CPU seconds each. Summary of Table B.1 on page 141.

G+StS
cf:1.5| cf=2 | cf=5 |Cf:10|cf:100
Avg. quality | 36.49 | 37.74 | 37.27 | 35.92 | 34.75
Avg. runtime | 326.34| 303.97| 295.09| 324.82| 358.41
Successful rung144/600 152/600 155/600 144/600 133/600

Instances solved 8/24 9/24 8/24 8/24 8/24
#amongst best 13 4 3 2 4

Statistics

Table 7.2: Summary statistics for G+StS with initializatiB*(10°), noise prob-
ability np = 40, and varying cutoff factocf on problem segen. All algorithms
are run2j times for100 CPU seconds each. Summary of Table B.2 on page 142

G+StS
np=>5 | np=10| np = 20| np =30| np=40| np =50
Avg. quality | 76.33 | 76.83 | 77.31 | 77.11 | 77.00 | 76.72

Avg. runtime | 60.08 | 58.57 | 55.50 | 55.73 | 56.08 | 56.04
Successful runs408/650 413/650 423/650

Statistics

4221650 423/650 422/650
Instances solved 17/26 | 17/26 | 17/26 | 17/26 | 17/26 | 17/26
#amongstbest 9 8 14 11 9 7

Table 7.3: Summary statistics for G+StS with initializatddB* (10°), cutoff factor

cf = 2, and varying noise probabilityp on problem sebnrep . All algorithms
are run2j times for100 CPU seconds each. Summary of Table B.3 on page 143.

70 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

G+StS
Statistics | np=5 | np=10| np = 20| np = 30| np = 40| np = 50
Avg. quality | 27.75 | 32.26 | 34.45 | 37.20 | 37.99 | 35.85
Avg. runtime | 449.56| 370.42| 343.87| 313.65| 289.55| 317.94
Successful runs111/600 131/600 138/600 148/600 159/60Q 147/60Q
Instances solved 7/24 7124 9/24 7124 9/24 6/24
#amongstbest 1 2 6 4 8 4

Table 7.4: Summary statistics for G+StS with initializatddB* (10°), cutoff factor
cf = 2, and varying noise probabilityp on problem segen. All algorithms are
run 25 times for100 CPU seconds each. Summary of Table B.4 on page 144.

only be guessed from the performance on problenbeetp (see Table 7.3 on
the preceding page), but can be seen clearly for problemese{see Table 7.4).
The picture becomes much clearer when considering plotseaihnsolution qual-
ity, such as the ones in Figure 7.1 on the facing page. Frosetpiets, the stronger
performance of relatively high noise values is very obvifawsoth structured and
randomly generated networks. For the structured instamggnl-rand |, initial-
ization MB*(10°) already finds a very high-quality initial solution. For tomw
noise probabilities, G+StS cannot improve much on thigahgolution, which
causes a very small variance in solution quality for too laysa values, such as
np = 5. For higher noise probabilities, improvements on the ahisolution are
found quickly in this example, and the variance in solutioalgy grows quickly
as well. For the randomly generated instar&@0v6d5iw20-struc , initial-
ization MB*(10°) does not yield an initial solution with positive probaljliThus,
for too low settings of the noise value, up30 seconds elapse before G+StS even
finds instantiations with positive probability in all itsns. The variance in solu-
tion quality decreases both for low noise probabilitieghsasnp = 5, and higher
ones, such asp = 40. Fornp = 40, after100 CPU seconds, G+StS has found the
optimal solution quality ir2 of its 25 runs.

As can be seen in the complete results in Table B.3 on page ld3an
ble B.4 on page 144, the optimal setting for the noise parameteot always
40%; however, for only one instance, a value smaller t@# yields clearly better
results than higher noise probabilities. The optimal dutdtor also varies from
instance to instance. In the case of randomly generateanioss, we observe a

"We suppose the unclear picture for problemtsaep is due to the fact that G+StS's Mini-
Buckets initialization already yields solutions of highadjty for structured instances, and that for
many of these instances the relatively weak local search+t& cannot improve much on these
initial solutions even with an optimal parameter setting.

7.3. TUNING GLS

-78.35

-78.4 |

Log probability of assignment

-78.65 -

-78.7

Instance muninl-rand

-78.45

-785

-78.55 -

-786

Log probability of assignment

-5

210 b

215 +

20 +

25

230 +

35 |

-40

Instance z100v6d5iw20-struc

71

1000 0.1 1 10 100
CPU time(sec)

(b) z100v6d5iw20-struc

0.1 1 10 100
CPU time(sec)

(a) muninl-rand

1000

Figure 7.1: Plots of mean solution quality f@b runs of G+StS with initial-
ization MB*(10°), cutoff factorcf = 2, and varying noise probabilitpp on
the structured instanaauninl-rand (a) and the randomly generated instance
z100v6d5iw20-struc (b). The estimation of mean solution quality is based
on 25 runs of the algorithms per parameter value. In both plotsttie worst-
performing parameter valuep = 5 and the best-performing parameter value
np = 40, we also provide the minimal and maximal solution qualigeieved

in any of their runs.

pattern in the full results in Table B.2 on page 142: for snradtances, large cut-
off factors tend to work well, whereas for large instancesshmallest considered
cutoff factorcf = 1.5 performs best. For the structured instances in Table B.1 on
page 141, the strong initialization skews the picture and¢amot infer any regu-
larities other than that in the few cases for which there ayeifccant differences
between the parameter settings, the smallest cutoff fatter 1.5 always works
best.

7.3 Tuning GLS

The GLS algorithm, as originally introduced for MPE by PaPaf02] and detailed
in Section 5.2 on page 38, has two parameters, the smoothaatgrf and the
smoothing intervalV,. Recall from our discussion in Section 5.2 that in this orig-
inal version for MPE, no weighting parameter for the pempalis necessary, since
the evaluation functiofi [,, #[V = v] —w x >4 As[V = v] is clearly dom-
inated by the penalties; also recall that, following PafRar02] implementation,
we use only the summed penalties as an evaluation functigoliciitly settingw to

72 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

GLS
Statistics p=0.7] p=0.8] p=0.9 \p = 0.99\ p= 0.999] p=1.00
Avg. quality | 40.70 | 44.09 | 48.63 | 63.96 | 75.52 | 75.45
Avg. runtime | 223.71| 200.13| 137.50| 85.46 | 59.32 | 52.06
Successful runs201/650 219/650 277/650 353/650 429/650|451/650
Instances solved 9/26 10/26 | 12/26 | 15/26 | 19/26 | 20/26
#amongstbest 1 5 1 0 3 19

Table 7.5: Summary statistics for GLS with smoothing inéér¥, = 200 and
varying smoothing factgs on problem sebnrep . All algorithms are rur25 times
for 100 CPU seconds each. Summary of Table B.5 on page 145.

GLS
Statistics p=0.7 | p=0.8 | p=0.9 |,0 = 0.99| p= 0.999| p=1.00
Avg. quality | 36.90 | 42.20 | 49.81 | 78.74 | 87.20 | 83.53
Avg. runtime | 355.65| 273.80| 197.71| 66.93 | 60.42 | 69.41
Successful runs134/600 164/600 203/600 383/600 400/600 | 372/600
Instances solved 7/24 8/24 | 10/24 | 17/24 | 20/24 | 21/24
#amongstbest O 0 1 6 12 5

Table 7.6: Summary statistics for GLS with smoothing inéé¥, = 200 and
varying smoothing factop on problem segen. All algorithms are rurk5 times
for 100 CPU seconds each. Summary of Table B.6 on page 146.

.

Based on experience with other Dynamic Local Search algostsuch as
SAPS [HTHO02], we expected the optimal parameter settindgn@fsimoothing pa-
rameterp and the smoothing intervaV, to be tightly coupled. Modifying the
smoothing intervalV, would lead to two separate effects, namely computational
savings due to the less frequent smoothing (cf. Chapter 6¢hadges in the tra-
jectory due to the penalties being smoothed less. On the bémel, modifying the
smoothing parametgrwould only lead to the latter effect of the trajectory being
changed. In order to study only one effect at a time, we deciddocus on the
smoothing parameterfirst, assuming a fixed smoothing interval gf = 200.

In Table 7.5 and Table 7.6, we give the results of tuning Gls&®othing pa-
rameterp with N, = 200 for problem setbnrep andgen, respectively. For the
structured instances ibnrep , parameter valug = 1.00 outperforms all other
settings, which means that performing any smoothing atsatletrimental. Fig-
ure 7.2 on the facing page presents two plots of mean solgpiatity that are
representative for the performance of GLS with differenuga of p for the in-

7.3. TUNING GLS 73

Instance mildew-rand Instance pigs
-18.5 T T T T -90

Log probability of assignment
Log probability of assignment

21 . . . -160 . . . I
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000

CPU time(sec) CPU time(sec)

(a) mildew-rand (b) pigs

Figure 7.2: Plots of mean solution quality for GLS with snong interval N, =
200 and varying values of the smoothing parametéor the structured instances
mildew-rand (a) andpigs (b). For instancemildew-rand , the plots for
parameter values € {0.9,0.99,0.999, 1.00} end early when the optimal solution
quality (—18.795) has already been reached in 2#l runs. For instanc@igs
and parameter valugs = 0.7 andp = 1.00, we also provide the minimal and
maximal solution qualities achieved in any of their runs. Forp = 0.7, we
see a clear indication of search stagnation since with @iarpeter setting, after
0.2 CPU seconds, the best overall solution found in2heuns of GLS does not
improve anymore until the algorithm is terminated ati@é® CPU seconds. For this
instance, we also observe a rather odd development of méaroeaquality over
time with some plateaus that need to be overcome; the plots fo 0.999 and

p = 1.00 again end early when &b runs have already found the optimal solution
quality (—95.125).

stances irbnrep . In these plots, the dominance of values foclose t01.00 is
very obvious; lower values gf, such as the default setting= 0.8 from [Par02],
lead to a performance that is orders of magnitude weakemtithrp = 1.00 at best
or to a complete inability to solve the instances at worst.

The empirical RTD for networkailfinder-rand in Figure 7.3(a) on the
next page is representative for many instances in problebmsep and once more
demonstrates the superiority of valuespoflose to1.00 for structured instances.
The empirical RTD for instancel00v6d5iw20-struc in Figure 7.3(b) on the
following page is similarly representative for problem gen: it shows gener-
ally much superior behaviour of values fprclose to1.00, but also suggests that
completely omitting the smoothing may lead to search stagmaAs opposed to

74 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Instance hailfinder-rand Instance z100v6d5iw20-struc
100

tho=0.7 #—

{ / th0=0.g e 1
80r th0=0.90) s .l
or tho=1;00 e 1

60 -

40
tho=0.7 ——

21 th0=0.9 «weeee 1

rh0=0.99 e

a
o
Percent of runs achieved solution quality -7.588

10 i
,,J":‘ tho=1.00 =
0 P . ;

0.01 0.1 1 10 100 1000 0.1 1 10 100 1000 10000
CPU time(sec) CPU time(sec)

(a) hailfinder-rand (b) z100v6d5iw20-struc

Percent of runs achieved solution quality -20.1622

Figure 7.3: Empirical RTDs for GLS with smoothing intervd), = 200 and vary-
ing values of the smoothing paramejefor instanceshailfinder-rand (@)
andz100v6d5iw20-struc (b); for both instances, the optimality of the found
solutions can be proven. The empirical RTDs for each pammwlue are based
on 100 runs of1000 CPU seconds.

what we experienced with problem d®irep , for a few instances frorgen, we
indeed observe search stagnation of the otherwise besiHpang parameter value

p = 1.00; this can, for example, be seen in Figure 7.4 on the next pagepa-
rameter valuep = 0.999, we never found evidence for search stagnation in our
experiments. For this reason, we use this value as a defesititd its slightly
inferior performance for the structured instances in pgobsetonrep .

As can be seen in the full results in Table B.5 on page 145 ankk Bb on
page 146, there are remarkably low differences in the bedopning parame-
ter value across the instances within each of the problem d&ir problem set
bnrep , GLS with p = 1.00 always finds the quasi-optimal solution if any of the
other parameterizations does, and for all other instandeig\ges the best average
approximation quality. For problem sgén, almost the same is true for parameter
valuep = 0.999, which is only outperformed by = 0.99 on two instances, and by
p = 1.00 on four other instances.

So far, we only tuned the smoothing parameieassuming a fixed smooth-
ing interval of N, = 200. Having determined valup = 0.999 to be optimal
for this smoothing interval, we now tune parametérgiven the fixed smoothing
parameterp = 0.999. For problem sebnrep , we have already seen that it is
detrimental to perform any smoothing at all. High smoothimtgrvals correspond
to little smoothing to be carried out, and Table 7.7 on pagéét@onstrates that,
matching our intuition, an infinite smoothing interval perhs best on problem set

7.3. TUNING GLS 75

Instance z200v3d5iw20-rand
100

tho=0.7 ——

rh0=0.9 -wweveee
80 rho=0.99

rho=1.00 «=weee
60 -

40

20 +

Percent of runs achieved solution quality -35.0499

0 et . BT T TP T B
0.1 1 10 100 1000 10000
CPU time(sec)

Figure 7.4: Empirical RTDs for GLS with smoothing intervs) = 200 and vary-
ing values of the smoothing paramegefor instancez200v3d5iw20-rand and
optimal solution quality. Clear search stagnation for patemvaluep = 1.00 can
be observed. For parameter valyes {0.7,0.8}, GLS did not find a solution in
any run, and fop = 0.9, one run succeeded aft& seconds. The empirical RTDs
for each parameter value are based otruns of1000 CPU seconds.

bnrep (for all measures except average approximation qualitgwever, for the
instances in problem sgen, smoothing plays an important role. As we demon-
strate in Table 7.7 on the next page, lower smoothing interald significantly
better performance in this case. Judging by average appatixin quality and av-
erage runtimeN, = 200 performs best, whereas a greater number of runs are suc-
cessful forV, = 50, andN, = 1000 solves more instances and is amongst the best
performing algorithms most often. In Figure 7.5 on the foilog page, we show an
example of empirical QRTDs of GLS with a varying smoothinggival for a struc-
tured instance and a randomly generated one. Similarly td wk observed when
varying the smoothing parameter, GLS performs poorly faucdtired instances
when too much smoothing is performed whereas it stagnateswismoothing on
randomly generated instances. Since non& &8 possible values clearly performs
better than its defaultV, = 200 from [Par02], we employ this value here as well,
making our default parameter configuratig¥,, p) = (200, 0.999).

We strongly expect that there exist other combinationd pandp which yield
comparable or even better performance. This is becausersiraple tuning of
one parameter at a time, we have merely found a local optinmuthe space of
possible parameter configuratichsEinding an equally strong parameter setting

8In Appendix A, we introduce a parameter tuning scheme whithraates the process we have
carried out in tuning GLS and explores other configuratidter @ local optimum in configuration

76

100

Percent of runs achieved solution quality -28.6279

CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Instance barley-rand

90 |
80 -
70 b
60 |
50 |
40+
30 -
20 b
10 b

_,-i:) N_rho=infinity -

N_rho=50
N_rho=1000

10 100

CPU time(sec)

(a) barley-rand

1000

Percent of runs achieved solution quality -27.2808

Instance z400v3d5iw20-struc
100

N_ h0=50 ——

90 -
N_rho=1000 «wweeee
80 N_rho=10000
N_rho=infinity -«
70 +
60 -
50 -
40
30 -
20 +
10 +
R —

100 1000

CPU time(sec)

(b) z400v3d5iw20-struc

1 10

10000

Figure 7.5: Empirical RTDs for GLS with smoothing parameier 0.999 and
varying values of the smoothing intervall, for instancesarley-rand

z400v3d5iw20-struc

(a) and
(b); for both instances, the optimality of the found so-

lutions can be proven. The empirical RTDs for each paranvetiele are based on
100 runs of1000 CPU seconds.

GLS with p = 0.999

Statistics | N, = 50\ N, = 200\ N, = 1000| N, = 10000| N,=00
Avg. quality | 70.31 | 75.28 76.02 76.47 75.43
Avg. runtime | 79.35 | 59.95 55.59 53.99 50.95

Successful rung373/650 425/650| 433/650 | 444/650 |459/650
Instances solved 17/26 18/26 19/26 20/26 20/26
#amongstbest 1 2 8 8 15

Instances> 0 | 26/26 | 26/26 26/26 26/26 26/26

Table 7.7: Summary statistics for GLS with smoothing partame = 0.999 and
varying smoothing intervaN, on problem sebnrep . All algorithms are rur25

times for100 CPU seconds each. Summary of Table B.7 on page 147.

7.4. TUNING GLS I

GLS with p = 0.999
Statistics | N, = 50| N, = 200] N, = 1000\ N,= 1000q N,=00
Avg. quality | 82.35 | 87.44 87.35 85.71 84.11
Avg. runtime | 55.97 | 58.97 63.14 69.13 72.68
Successful runs412/600 406/600| 395/600 | 375/600 |366/600
Instances solved 17/24 | 20/24 22/24 22/24 18/24
#amongstbest 6 5 8 4 1

Table 7.8: Summary statistics for GLS with smoothing partame = 0.999 and
varying smoothing intervaV, on problem segien. All algorithms are rur25 times
for 100 CPU seconds each. Summary of Table B.8 on page 148.

with a higher smoothing interval would be very importanthetcomplexity of
smoothing clearly dominated the total search cost and wéd gnificantly re-
duce the complexity of GLS without impairing its potenflaHowever, prelimi-
nary experiments (not reported here) suggest that evenanithfinite smoothing
interval the number of search steps executed per time ues dot significantly
grow. Thus, future work may be able to improve on our defaatameter setting
(N,, p) = (200,0.999), but we do not expect this to yield major savings due to a
reduced computational complexity.

7.4 Tuning GLS"

Our new variant of Guided Local Search, GiL%detailed in Section 5.2 on
page 38), has two additional parameters on top of the smmaptiaictor p and
the smoothing intervaN,, namely the penalty weighting parametewhich was
implicitly set to co in GLS, and the initialization. As detailed in Section 5.2 on
page 38, GLS employs the evaluation functiop, ;4 log(¢[V = v]) — w x
M|V = v]. In GLS for weighted Max-SAT with integer weights, is, for exam-
ple, set tol by default [MTOO], but in our case, the choice is not that denRecall
that frequently some potentiatshave zero-probability entriesfV = v] = 0 for a
variable instantiatiow, and that our evaluation function (the logarithmic objeeti
function) uses the value 10000 for each such zero-probability.

space has been reached. Applied to GLS, this parametegtaaireme found a configuration that
performs better thafV,, p) = (200, 0.999) if only one run per instance is used for the evaluation
of each parameter configuration. See Appendix A for details.

9A similar intuition has led to the development of SAPS [HTHQ state-of-the-art Dynamic
Local Search algorithm for SAT.

78 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Especially in the beginning of a search, many zero-proliegsilare encoun-
tered. Due to the large differences between log-probadsliior various assign-
ments resulting from these zero-probabilities, we needswaurather large value
for the penalty weighting factow. Otherwise, the log-probabilities would com-
pletely dominate the evaluation function, especially ia tieginning of the search.
This would lead to the search spending thousands of seaph st each encoun-
tered local optimum, incrementing the respective pergatiidy by1 each step.

In the limited scope of this thesis, we simply deal with thislgem by us-
ing a very high weighting factow = 10000 which makes even small penalties
comparable to the log-probabilities for zero-probabiktytries. Effectively, this
enables a mixture of penalties and log-probabilities gudhe search in the be-
ginning when there are still plenty zero-probabilities. tdrawhen not as many
zero-probabilities are encountered anymore, the pesalbeninate the search and
the log-probabilities are merely used for tie-breaking. wes will see in the ex-
perimental evaluation in Chapter 8, this simple integratbthe log-probabilities
into the evaluation function already yields consideralglégrmance improvements
over GLS. However, we will also see that in many cases, ordyititial perfor-
mance increases, while in later stages of the search GLS b8d Behave almost
identically.

We do not expect our fixed setting@f= 10000 to be optimal. On the contrary,
we assume that especially for later stages of the searchsadeoably stronger per-
formance can be gained using an adaptive setting thfat yields a balanced mix-
ture of log-probabilities and penalties in the evaluationdtion during the whole
course of the search. Due to the limited scope of this thesiglefer work on such
an adaptive version of GLiSto future work.

For the initialization, we considered the two possibiitiRANDOM and
MB*(10°). Our experiments for these variants suggest that withaiigation
MB*(10°), GLS" gets a significant head start over GL@ith random initializa-
tion. However, as illustrated in Figure 7.6 on the next papss initial advan-
tage does not necessarily lead to superior performanceofgyel runs. Never-
theless, there are a few structured instances, such asuths2 , munin3 , and
mildew networks, for which the MB(10°) initialization quickly finds optimal
solution quality whereas GLiSwith a random initialization shows rather poor per-
formance. For this reason, we use initialization M/B)°) as a default for GLS. In
our experimental evaluation in Chapter 8, we will revisit ibgue of different ini-
tializations and demonstrate that initialization MB0®) indeed yields much better
results for most instances.

7.5. TUNING ILS 79

Instance pigs-rand Instance pigs-rand

-115

100
2 |
80 |
70|
60
50 |
40 |
30

20 l/
10

=

GLS+, init MB*(100000) —— P
-120 + g =

125 |-
130
135 ¢
-140 -
-145 |-

Log probability of assignment

-150 -

-155 - GLS+, init MB*(100000) —=— [)_/
-160 0 ‘

0.01 0.1 1 10 100 1 10 100
CPU time(sec) CPU time(sec)

(a) Mean solution qualities (b) Empirical RTDs

Percent of runs achieved solution quality -119.3855

Figure 7.6: Performance of GL'Swith smoothing intervalV, = 200, smoothing
factorp = 0.999, penalty weighting factoww = 10000, and varying initialization
for instancepigs-rand . The plot of mean solution quality in (a) suggests vastly
superior behaviour of GLSwith initialization MB*(10°), but the RTD in (b) shows
that this superiority diminishes for longer runtimes anat thptimal solutions are
found equally fast when using a random initialization. Tk&reation is based on
100 runs for each initialization.

7.5 Tuning ILS

In Section 5.3 on page 42, we introduced an ILS algorithm f&tBMwith a few
degrees of freedom left to fill in. The procedural parameterse as follows:

e GeneratelnitialSolutiore {RANDOM, MB*(10°)};

AcceptanceCriterior {RW,BETTER BE/RW, LSMC};

Pertubation typept € {VARS, POTS};

Additional local search at the end of the pertubation phkeeseping perturbed
variables fix:pfix € {true, false}; and

Relative pertubation sizearel € {true, false}.

The algorithm’s numerical parameters are the cutoff factpthe pertubation
strengthp, as well as two conditional parameters that depend on the arseep-
tance criterion. In the case of BE/RW, the acceptance prbtyabp needs to be
set, and in the case of LSMC, the temperatiires an additional parameter. In

80 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

order to determine sets of possible discrete values foethamerical parameters,
we carried out initial experiments. The discrete values ase were:

e Cutoff factorcf € {1.5,2,5,10,100};

e Pertubation strength € {1, 2, 3,4};

e Acceptance probabilitgp € {0.003,0.01,0.03}; and
e LSMC temperaturd” € {0.01,0.03,0.1}.

Overall, there are different initializations,2 + 2 x 3 = 8 parameterized
acceptance criteriah possible values for the cutoff factor, adx 2 different
types of pertubations with x 2 possible pertubation strengths. Thus, there are
2 x 8 x b x 4 x 8 = 2560 possible parameter configurations. Evaluating a sin-
gle parameter configuration on problem detsep andgen for a single run of
t = 100 CPU seconds takeé® x 100 CPU seconds, and thus evaluating all possible
parameter configurations just for a single run on each igstamuld take almost
CPU months.

In order to speed up this process, we developed an automatacheter tuning
procedure that performs an Iterated Local Search in theesplggossible parame-
ter configurations. We call this procedure ParamILS andildeta Appendix A.
ParamlILS evaluates each parameter configuration for ILSelfppning a single
run of ILS with that parameter configuration on all instanaflsnrep andgen ;*°
it uses a combination of the percentage of solved instanmuktha average approx-
imation quality as an objective function to estimate thelitypiaf a parameter con-
figuration. ParamILS’s major advantage over the bruted@pproach to try out
all possible parameter configurations is that the searchickly driven towards
promising parameter configurations such that only a smatition of parameter
configurations needs to be evaluated. This fraction holyedontains the overall
best-performing parameter configuration, but at the veagtlés biased towards
well-performing parameter configurations.

We chose a very simple initial configuration for ParamILSwatceptance cri-
terion BETTER, initialization RANDOM, pertubation strength= 4, pertuba-
tion VARS, andpfix as well asprel set tofalse What we expected from prelim-
inary experiments and previous results from SLS algoritfiondVIPE [KD99b]
was that very quickly the initialization would be changedM8*(10°), and that

OparamlLS can also be applied to the problem sets separatelyen on an instance-by-instance
base. The smaller the problem sets are for which we optimézanpeters, the closer we get to
peak performance on the individual instances, which isidemnably higher than the performance
achieved with the overall best-performing set of paranseter

7.5. TUNING ILS 81

the acceptance criterion would be changed to either HYBRIDSWC. Based on
intuition from preliminary experiments, we also expectedtpbation POTS and
pfix = true to be chosen. What we still could not anticipate from our @hiéx-
periments was whether acceptance criterion HYBRID or LSMCla/urn out the
best, and which values should be used for the numerical peas

Table 7.9 on the next page provides a trace documenting tbenated param-
eter tuning process for the fir$® iterations. After7 iterations, ParamILS found
a parameter configuration that remained unbeaten for the2firgerations after
which we terminated the procedure.After iteration 12, no locally optimal pa-
rameter configuration was found anymore that had not beeouetered before.
This suggests that either the search in configuration spageates or that the total
number of local optima in the configuration space is rathealksm

ParamlILS already finds a very good local optimum in the fiestaition, and
after 6 more iterations escapes to the best local optimum founds [Beially op-
timal parameter configuration matches our expectationgl@nmg initialization
MB*(10°), acceptance criterion HYBRID, pertubation POTS, pfid= true. The
best-performing combinatiofcf, p, prel, ap) = (5, 2, false 0.003) of the other pa-
rameters did not greatly surprise us, but we had never loakéus configuration
before, which strengthens our intuition that local searctine configuration space
can greatly ease and improve the parameter tuning processofpleteness, we
present the entire final ILS algorithm with optimized proged parameters in Al-
gorithm 7.1 on page 83 and page 84.

In order to evaluate ParamlILS, we also tested its performdmctuning the
parameters of G+StS and GLS. It performed very well for thasks and we report
the results in Appendix A.

11The 25 iterations we executed ParamlLS for are not much for an ligrithm. However, we
could not afford a longer run due to limited computationabwgrces. For thes runs we performed,
ParamILS needed approximatelyCPU week. In contrast to the CPU months the brute force
approach would have taken, this was feasible and we congettiactually have found the globally
optimal configuration in parameter space. We hope to coraitieimprove the performance of
ParamliLS in the future by a faster way of ruling out inferiargmeter configurations.

82 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

. Parameters Avg.
Step| teration | | acc | an | b | cf |p| pert | pfix | prel Solved Quality
1 1 - |BETTER - RANDOM | 10 |4 | VARS | FALSE | FALSE | 32.00| 39.88
2 1 - |BETTER - MB 10 | 4| VARS | FALSE | FALSE | 48.00| 58.50
3 1 - |BETTER - MB 10 [4|VARS | TRUE |FALSE | 52.00| 68.91
4 1 - |BETTER - MB 10 |3|VARS | TRUE |FALSE | 54.00| 70.69
5 1 - |HYBRID | 0.01 MB 10 | 3| VARS | TRUE |FALSE | 56.00| 71.52
6 1 - |HYBRID | 0.01 MB 10 |1|VARS | TRUE |FALSE | 66.00| 75.26
7 2 - | HYBRID | 0.01 MB 100{ 1| VARS | TRUE | FALSE| 60.00 | 71.73
8 | 2-same| - | HYBRID | 0.01 MB 10 |1| VARS | TRUE | FALSE| 66.00| 75.26
9 3 - | HYBRID | 0.01 MB 10 |4| VARS | TRUE | FALSE| 50.00 | 68.03
10 | 3-same| - |HYBRID | 0.01 MB 10 |1| VARS | TRUE | FALSE| 66.00| 75.26
11 4 - RW - MB 2 |4|VARS| TRUE | FALSE| 38.00 | 48.39
12 4 0.01| LSMC - MB 2 |4|VARS| TRUE | FALSE| 52.00 | 68.95
13 4 0.1| LSMC - MB 2 |4|VARS| TRUE | FALSE| 56.00 | 71.32
14 4 -rej 0.1| LSMC - MB 2 |3|VARS| TRUE | FALSE| 58.00 | 73.66
15 5 - | HYBRID | 0.01 MB 5 |2|VARS| TRUE | TRUE | 52.00| 66.00
16 5 - | HYBRID | 0.01 MB 5 |2|VARS | TRUE | FALSE| 62.00| 72.37
17 5 - | HYBRID | 0.01 MB 5 |1|VARS| TRUE | FALSE| 66.00| 73.77
18 | 5-same| - |HYBRID | 0.01 MB 10 |1| VARS | TRUE | FALSE| 66.00| 75.26
19 6 - RW - MB 10 |4| VARS | TRUE | FALSE| 38.00| 50.15
20 6 0.01| LSMC - MB 10 |4|VARS | TRUE | FALSE| 52.00 | 68.94
21 6-rej 0.1| LSMC - MB 10 |4|VARS | TRUE | FALSE| 56.00| 74.71
22 7 - HYBRID | 0.03 MB 10 | 2| VARS | TRUE | TRUE | 50.00| 62.53
23 7 - | HYBRID | 0.03 MB 10 [2| VARS | TRUE | FALSE | 58.00| 69.85
24 7 - | HYBRID | 0.003 MB 10 [2| VARS | TRUE | FALSE | 64.00| 75.10
25 7 - |HYBRID |0.003 MB 10 [2| POTS| TRUE |FALSE | 64.00| 77.72
26 | 7-acc - |HYBRID [0.003 MB 5 |2|POTS| TRUE |FALSE | 68.00| 78.93
27 8 - | BETTER - MB 1.5|2| POTS| TRUE | TRUE | 44.00| 60.46
28 8 - | BETTER - MB 1.5|1| POTS| TRUE | TRUE | 50.00| 64.59
29 8 - | BETTER - MB 5 |1| POTS| TRUE | TRUE | 50.00 | 65.62
30 8 - | HYBRID [0.003 MB 5 |1| POTS| TRUE | TRUE | 66.00| 75.20
31 8 - | HYBRID [0.003 MB 5 |1| POTS| TRUE | FALSE| 68.00| 78.20
32 | 8-same| - | HYBRID |0.003 MB 5 |2| POTS| TRUE | FALSE| 68.00| 78.93
33 | 9-same| - | HYBRID |0.003 MB 5 |2| POTS| TRUE | FALSE| 68.00| 78.93
34 10 - | BETTER - MB 5 |1| POTS| FALSE | FALSE | 46.00 | 58.45
35 10 - | HYBRID | 0.003 MB 5 |1| POTS| FALSE | FALSE| 60.00 | 74.71
36 10 - | HYBRID | 0.003 MB 5 |1| POTS| TRUE | FALSE| 68.00| 78.20
37 |10-same - | HYBRID |0.003 MB 5 |2| POTS| TRUE | FALSE| 68.00| 78.93
38 11 - | HYBRID | 0.01 MB 1.5|1| POTS| TRUE | FALSE | 50.00| 67.15
39 11 - | HYBRID | 0.01 MB 5 |1| POTS| TRUE | FALSE| 60.00| 72.17
40 11 - | HYBRID | 0.003 MB 5 |1| POTS| TRUE | FALSE| 68.00| 78.20
41 |11-same - | HYBRID [0.003 MB 5 |2| POTS| TRUE | FALSE| 68.00| 78.93
42 12 - RW - MB 5 |2|VARS | FALSE | FALSE | 44.00 | 59.87
43 | 12-rej - RW - MB 5 |2|VARS | FALSE | TRUE | 48.00| 60.92

Table 7.9:Trace of ParamILS for tuning the parameters of ILS. Columief3gives the running
number of search steps, i.e. flips of parameter values peeidso far; “Iteration” gives the running
number of iterations, and in the case of local optima whetheoptimum is accepted (acc), rejected
(rej) or is the same as the previous one (same); “Parameajizes the current instantiation of ILS’s
parameters; “Solved” gives the percentage of instancesatfigm setdnrep andgen that are
solved by ILS with the current parameter instantiation img& runs of100 CPU seconds each;
and “Avg. Quality” gives the average approximation quadithieved on all instances. The rows of
search steps, in which the best performance so far is achiave printed in bold face.

7.5. TUNING ILS 83

Algorithm 7.1: Iterated Local Search (ILS) for MPE (to be continued)
Our default parameters arécf,p,ap) = (5,2,0.003). g(v|V; = v;) abbreviates
> sca 10g(¢[V = v|V; = v;]); andg(v) abbreviate$;4 log(¢[V = v).

Input: Bayesian networl8 = (V,D, G, @), evidenceE = e, time bound, cutoff factor
cf, pertubation strength, acceptance probabilityp
Output: Variable assignment with highest probability [, ¢[V = v] found in timet

1 while runtime< ¢ do

2 opt«— —oo

3 vo «— MB*(10°%)

4 v* « LocalSearchvy, ()

5 iteration < 0

6 repeat

7 iteration < iteration+ 1

8 v « Pertubatior{v*)

9 v « LocalSearckwv, ()

10 v* «— AcceptanceCriteriofv*, v)
11 if g(v*) > optthen

12 opt «— g(v*)

13 L itopt «— iteration

14 until iteration > cf x itgp Or runtime> ¢

15 Function AcceptanceCriteriofv*, v)

16 begin

17 if g(v*) > g(v) then return v*

18 Draw x from uniform distributionu (0, 1)
19 if x < apthen

20 | retun v*

21 else

22 | return v

23 end

84

CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Algorithm 7.1: Iterated Local Search (ILS) for MPE (continued)
Our default parameters arécf,p,ap) = (5,2,0.003). g(v|V; = v;) abbreviates
> sea l0g(#[V = v|V; = v;]); andg(v) abbreviate$ _ ;4 log(¢[V = v).

24
25
26
27
28
29
30
31
32

33
34
35

36
37
38
39
40
4
42
43
44
45
46
47

Function Pertubatior{v)
begin
Vpert — @
while |Vpert| < p do
Pick random potentiap € &
foreachV; € Vg \ (EU Vpert) do
Pick random value; € Dy, \ {v;}
L Flip V; to 9;
Vpert — Vpert U {‘/z}

v «— LocalSearchv, Vy;,)
return v

end

Function LocalSearch(v, Vi)
begin
while true do
Randomly pickV; € V andv; € Dy, maximizingg(v|V; = v;).
if g(v|V; = v;) > bestthen
| FlipV; towv,.
else
Randomly pickV; € V \ (E U Vsx) andv; € Dy, maximizingg(v|V; = v;).
if g(v|V; =v;) > g(v) then
| Flip V; tow;.
else
L return v // No improving step possible anymore.

48 end

Chapter 8

Experimenal Evaluation of SLS
Algorithms

In this chapter, we evaluate our new algorithms, ILS and GL&gainst the
previous state-of-the-art SLS algorithms for MPE solvi@StS [KD99b] and
GLS [Par02]. We demonstrate that our new algorithms findtswla that are or-
ders of magnitude better than those obtained from previlmggithms and are up
to six orders of magnitude faster in solving instances tesgaptimality. We also
provide an analysis of the contributions every new compboéour algorithms
has to their strong performance.

8.1 Reproduction of Previous Results

For the experimental evaluation in this chapter, we emplayawn implementa-
tions of the SLS algorithms G+StS [KD99b] and GLS [Par02]. Wuld have
much preferred to use the original implementations of tlagerithms, but these
are tied into the larger reasoning systems Sanland REES which obstructs a
direct comparisod. The original version of GLS is part of the Samlam system,
and the original version of G+StS is integrated into REES. Be#soning sytems

http://reasoning.cs.ucla.edu/samiam/

2http://www.ics.uci.edu/"radum/rees

3Both Samlam and REES generate MPE instances for an expeahesmluation on the fly,
and can neither be easily used with automatic scripts n@epaxternal instances in the standard
Bayesian interchange format (BIF). Further, Samlam istemitn Java, obstructing a fair compari-
son with our C++ implementation, and REES is bound to the \livgdoperating system, which is
incompatible with our infrastructure for larger experirteerMoreover, version 3.0.8 of REES as of
April 2004 had a (known but unresolved) bug yielding wrongBARIues on instances which were
not created by the system itself.

85

86 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

also provide independent implementations of the respedtilier algorithm, and
there is one article by each of the groups that lists comjmumaltexperiments com-
paring G+StS and GLS [Par02, MKDO3]. Both of these papersigeoresults for
real-world networks from the Bayesian networks reposit@yvall as for a class
of randomly generated instances (and some more in the cgd&k@03]). In
order to demonstrate that the performance of our implenientaof G+StS and
GLS closely resembles their original performance, we feptoduce these results
as closely as possible with our own implementations. We edpooduce further
results in [MKDO3] comparing G+StS and GLS to the systemsgarch algorithm
s-BBMB [KD99a].

Unfortunately, we cannot perform experiments on exacttysame MPE in-
stances as [Par02] and [MKDO3]. This is because the netwarkse Bayesian
network repository do not include any evidence. In all reslean the MPE do-
main we are aware of, evidence variables are sampled fromettweork on-the-fly,
i.e., for each experiment, the evidence is newly sampledetiperiment is carried
out, and then the evidence is discarded. This has the adjatitat research does
not concentrate on solving only an established set of beadhmstances, but al-
ways tries to optimize performance for all MPE instances$ tae result from a
network. However, it also means that although we can comgpp@@erformance
of our algorithms w.r.t. the previous algorithms’ performsa on a network in the
Bayesian network repository, the actual MPE instances toobed will not be
identical. This limits the conclusions we can draw from comparison. For ran-
dom instances, the situation is only more extreme. Therepnly the evidence
is sampled on-the-fly, but also the networks themselves emergted on-the-fly.
[Par02] and [MKDO3] use simple but different generators fandom networks
that are integrated into the respective reasoning syst&esemploy BNGenera-
tor [IC02, IC03], which allows us to control important paraerstof the networks,
especially their induced width. Despite the different gatien procedures, the rel-
ative performance of the algorithms we study seems to bastensacross the sets
of randomly generated networks used in [Par02], [MKDO3} amthis thesis.

For our “original” versions of G+StS and GLS, we use cachiclgesneSim-
ple, the state-of-the-art caching scheme for SLS algorithm&/BE prior to our
work. For GLS, we use the original parameter settipgV,) = (0.8, 200), and
for G+StS, since no default parameters are specified in afiK@99b, Par02,
MKDO3], we use our tuned parameter configuratioh np) = (2, 40).

The first article reporting results for both G+StS and GLShes one that in-
troduces GLS for MPE [Par02]. This article compares thegrarance of GLS
to the Discrete Lagrangian Method (DLM) and G+StS. Note thatimplementa-
tions used in this evaluation are all versions by Park whrehpart of the Samlam

8.1. REPRODUCTION OF PREVIOUS RESULTS 87

system. Our “original” version of GLS seems to outperformimplementation of
GLS. It manages to find solutions with strictly positive pabbity for each single
instance in problem sénrep , whereas in [Par02] none 26 runs finds a solution
with probability greater than zero for tlikabetes network within30 seconds;
in our experiments, all5 runs of GLS find a solution with positive evidence within
22.1 seconds. Also, for netwonkiunin4 , we always find solutions with positive
evidence withinl 1.5 seconds whereas onlg out of the20 runs reported in [Par02]
do so within30 seconds. We largely attribute these differences to thereifit pro-
gramming languages (Java vs. C++) and computational acthits used.

Our “original” version of G+StS also seems to clearly outpen the one used
in [Par02]; it finds instantiations with strictly positivegbability for more instances
and much faster. For thaildew network, [Par02] reports G+StS to find instantia-
tions with positive probability in9 of 20 second runs a30 seconds each, whereas
our implementation finds instantiations of positive prabibin all runs within
just0.08 seconds. For instaneeuninl , [Par02] reports G+StS to find no solution
with positive probability in any of the runs, while all of o&¥ runs find solutions of
positive probability, an@2 of them do so withir80 seconds. Finally, for thpigs
instance, [Par02] reports G+StS to find an instantiationasfitive probability in
only 1 of 20 runs, while our imlementation finds instantiations of p@siproba-
bility within 0.06 seconds in every run. We attribute the fact that G+StS pador
better in our experimental evaluation than in the one cdoigt in [Par02] to the
fact that we employ our optimized parameter setting for Gx8hich is likely to
be better than the one used in [Par®2].

The fact that our G+StS implementation performs much fatan the one
in [Par02] also has consequences for the comparison of GHS5a5tS. For the
structured instances frobmrep , our implementation of G+StS solves more prob-
lems than our implementation of GLS and has a higher avegmezmation qual-
ity (see Table 8.1 on the next page). Nevertheless, as caebarsTable 8.2 on the
following page, our “original” version of GLS still outpenfms our “original” ver-
sion of G+StS by a large margin for the randomly generate@mtes in problem
setgen. This is consistent with the results reported in [Par02].

The second article [MKDO3] on which our reproduction of poas results is
based compares a class of systematic search algorithme todél search algo-

4As mentioned in Chapter 7, all our experiments are carrigdoaual 2GHz Intel Xeon CPUs
with 512KB cache and 4GB RAM running Linux version 2.4.20ild28.9. We cannot relate this
to the machines used in [Par02] since this article does potrten the computational architecture.

SWe do not expect G+StS’s parameter setting in [Par02] to lienapsince the parameter setting
they employ for the GLS algorithm is very suboptimal althbubis algorithm is one of the main
contributions of their paper. In their experiments, G+St®ise probability was set 0%, and
the cutoff parameter is not reported.

88 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

G+StS GLS s-BBMB
Statistics | “original” | “original” | ib=2 | ib=6 |ib=10|ib=14|ib=18
Avg. quality 46.32 41.81 | 39.25|76.96) 82.09| 88.46| 88.46
Avg. runtime | 121.29 | 222.77 |166.43 32.57|29.07| 37.76| 39.28
Successful runs 300/650| 202/650 | 10/26 | 20/26| 21/26| 23/26| 23/26
Instances solved 12/26 9/26 10/26 | 20/26| 21/26| 23/26| 23/26
#amongstbest 3 2 4 11 9 13 7

Table 8.1: Summary statistics for s-BBMB with differeAbounds and our “orig-
inal” versions of G+StS and GLS on problem &etrep . The SLS algorithms
were run 25 times for00 CPU seconds, the deterministic s-BBMB algorithm once
for 100 CPU seconds for every i-bound. The SLS algorithms used a nariwie
tialization, simple caching, and parameter val(gs cf) = (40, 2) (G+StS), and
(N,, p) = (200,0.8) (GLS). Summary of Table B.9 on page 149.

G+StS GLS s-BBMB
Statistics | “original” | “original” |ib=2| ib=6 | ib=10 |ib=14|ib=18
Avg. quality 18.30 36.35 |0.03| 12.70| 51.82|75.84|67.51
Avg. runtime | 760.01 | 339.95 | oo |713.77/115.08 52.79| 95.05
Successful rung 72/600 | 140/600 | 0/24| 3/24 | 12/24|18/24| 16/24
Instances solved 4/24 7124 |0/24| 3/24 | 12/24|18/24|16/24
amongst best 1 3 0 0 11 7 3

Table 8.2: Summary statistics for s-BBMB with differeAbounds and our “orig-
inal” versions of G+StS and GLS on problem gen. The SLS algorithms were
run 25 times forl00 CPU seconds, the deterministic s-BBMB algorithm once for
100 CPU seconds for every i-bound. The SLS algorithms used a ranoitial-
ization, simple caching, and parameter valdep, cf) = (40,2) (G+StS), and
(N,, p) = (200,0.8) (GLS). Summary of Table B.10 on page 150.

8.1. REPRODUCTION OF PREVIOUS RESULTS 89

rithms G+StS, GLS, and DLM. It was published by the same grlp suggested
G+StS [KD99b], and, as far as we can tell, uses the origingtS+code. All
algorithms are implemented as part of the REES system.

Our results for G+StS also seem to be somewhat better thaontsereported
in [MKDO3]. However, unfortunately, [MKDO3] only reporthé percentage of
runs in which an algorithm found the optimal solution for astance. For instances
for which the optimal solution is not found, information ath¢éhe suboptimal solu-
tion quality reached would be helpful; a special case ofilusld be whether or not
an instantiation with positive evidence was found. For nobghe instances from
the Bayesian network repository, neither the original narimyplementation found
the optimal solution and only two instances remain for a nmegnl comparison,
namelybarley andmildew . While in [MKDO3], G+StS never found the opti-
mal solution for networlbarley within 30 seconds, our implementation always
finds it within 100 seconds and need$.22 seconds on average. Aftaéd seconds,
60% of the runs had found the optimal solutibfror networkmildew , [MKDO3]
reports90% completed runs withi0 seconds. For this instance, our implementa-
tion needsl0.52 seconds on average; aft¥ seconds92% of its runs had found
optimal solutions, approximately matching the previowsite For randomly gen-
erated networks, according to [MKDO3], GLS outperforms &-By a large mar-
gin which is consistent with our results.

In Table 8.1 on the preceding page and Table 8.2 on the fa@gg,pve also
reproduce the result from [MKDO03] that systematic seargiogihms are superior
to both G+StS and GLS on most but not all MPE instances. Ferabmpari-
son, we employ the original version of the Branch-and-BoundB(Badgorithm
s-BBMB [KD99a, MKDO03]. This algorithm is described in Sectidr8 on page 32
and we will revisit it in Chapter 9 which compares our SLS aildpons to exact
algorithms. The superiority of s-BBMB to both SLS algorithnssabvious for
the structured instances bmrep (see Table 8.1 on the facing page), for which
s-BBMB with i-bounds14 and 18 yields the best results. For the randomly gen-
erated instances igen (see Table 8.2 on the preceding page), GLS outperforms
s-BBMB for low settings of the-bound of2 and6, but withi-bound14, s-BBMB
consistently performs better than GLS. This dominance BBSB with optimal
settings of the-bound over GLS (and even more so G+StS) is consistent wéth th
experimental results from [MKDO3].

In summary, our “original” versions of G+StS and GLS closedgemble the
original implementations introduced in [KD99b] and [Pdr@2d there is some
evidence that our implementations may be slightly fastéis Thay be an artifact

SWe cannot compare our computational architecture to theusee in [MKDO3] since this
article does report on it. As our algorithms, the algorithmgviIKD03] are implemented in C++.

90 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

due to the different computational architecture we empl@ur implementation of
G+StS seems to be much faster than the (non-original) ingaation of G+StS
that [Par02] uses. From here on, we will omit the quotatiomknvehen we talk
about our “original” versions.

8.2 Experimental Methodology: Correlation Plots

In our experimental analysis in this and the following cleaptve visualize pair-
wise comparisons of algorithms by employing correlationtgpbf (a) the average
approximation quality they achieve for each instance irbj@m setdonrep and
gen, and (b) the average runtime they need to find quasi-optioiatiens. Each
correlation plot holds one data point for each instance ablem setbnrep and
gen. We visualize instances ibnrep by red colour and instances gen by
blue colour. Instances with random CPTSs are representeddgsiinstances with
structured CPTs by crosses; see Figure 8.1 on page 92 for axpkxaFor all cor-
relation plots in the remainder of this thesis,runs of100 CPU seconds each are
performed.

Two special cases can occur in the correlation plots. Kjrsthen plotting
average approximation quality, for some instances onetbrddgorithms may have
quality zero when they never found a solution with positivelqability. Since we
employ a logarithmic scale, in this case, instead of zeropleta small positive
valueg, which is significantly smaller than any positive quality ested by one of
the two algorithms on any instance; if applicable, we spegjfin the caption of
the figure® Secondly, in correlation plots of average runtime it hagfeequently
that one or both algorithms do not find quasi-optimal sohgim any of the5 runs
of 100 CPU seconds each. In this case, we plot the valué00 = 10* which is
greater than the maximal val@e500 that can be obtained if a solution is found in
1 of the 25 runs (recall that the average runtime is defined as the rerdiimmed
over all runs, divided by the number of successful runs).

Recall, that the approximation quality for a run of an alduoritis defined as
the ratio of the nonlogarithmic solution quality it achisvend the quasi-optimal

"However, we do not expect a major difference in the used tctires since the articles we
compare our results with have been published very receutijortunately, neither of the articles
reports the computational architecture used in their expmts.

8n different correlation plots for approximation qualitye employ different values fay, since
in the extreme it needs to be as lowlds 22°, whereas for some plots valueslof-2 suffice. Using
go = 107220 in these cases would compress the interesting parts of theefig a hundreth of the
space which would reduce clarity. For some plots, both @lyoss find positive probability for all
instances, in which casg does not apply.

8.3. G+STS VS. ILS 91

G+StS ILS
old caching new caching new caching
Statistics random | random| MB*(10°) | random| MB*(10°)
Avg. quality 46.32 46.91 77.08 57.96 85.59
Avg. runtime 121.29 | 117.62| 56.63 | 94.11 | 37.22
Successful runs 300/650 |300/650 421/650 |338/650 479/650
Instances solved 12/26 12/26 | 17/26 | 17/26 | 20/26
amongst best 0 1 10 4 18

Table 8.3: Summary statistics for non-penalty based algos on problem set
bnrep . All algorithms were run 25 times for00 CPU seconds each with their
default parameters. Summary of Table B.11 on page 151.

one. We present average approximation qualities in percentif an algorithm
has approximation quality00 for an instance, it finds quasi-optimal solutions for
the instance in every run. Note that from the correlationgptd average approx-
imation quality, we can infer the ratios of the average pbiliig of the variable
instantiations the algorithms find. If, for example, the tagorithms compared in

a correlation plot have average approximation qualitiesl0~1° and19.7, respec-
tively, this means that the latter algorithm on average fiatgable instantiations
with a probability roughlyl6 orders of magnitude higher than the average proba-
bility of the solutions found by the first algorithm.

8.3 G+StSvs. ILS

In this section, we compare the performance of ILS and owgirwal version of
G+StS. We demonstrate that ILS yields immensely bettettsesnd independently
study the effect of each component contributing to its higlHfgrmance. Table 8.3
and Table 8.4 on the following page summarize the experisnget performance
comparison in this section is based on. For the full resskg Table B.11 on
page 151 and Table B.12 on page 152.

In Figure 8.1 on the next page, we compare the performanceSahd our
original version of G+StS for the case when both algorithmmpley the same
initialization MB*(10°). ILS clearly outperforms G+StS, finding instantiations
of more than7 orders of magnitude higher probability, solving largertamees
to quasi-optimality up to two orders of magnitude faster aolving many in-
stances which are unsolvable for G+StS. This already shiogvslear superiority
of ILS, but for small and easy instances the picture is indetefsince the common
MB*(10°) initialization already yields very high-quality solutisnThis initializa-

92

CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

G+StS ILS
old cachin new caching new caching
Statistics random 1 random| MB*(10°) | random| MB*(10°)
Avg. quality 18.30 25.58 37.43 64.76 68.42
Avg. runtime 760.01 | 488.73| 309.69 | 118.06| 95.57
Successful runs 72/600 |104/600 150/600 |296/60Q0 332/600
Instances solved 4/24 6/24 7124 15/24 16/24
amongst best 0 0 1 13 11

Table 8.4: Summary statistics for non-penalty based algos on problem set
gen. All algorithms were run 25 times for00 CPU seconds each with their de-
fault parameters. All algos ran fer= 100 seconds. Summary of Table B.12 on
page 152.

Avg. approx. qual. of original G+StS and new ILS - init MB* Avg. CPU time (sec.) of original G+StS and new ILS - init MB*

’

g 510° [e gen-rana L]
3 XX g 3 9
8 » R A 8 X gen-struc °
S10° | N K S ; gnrepfrand .
b3 b3 nrep—orig
2 x P .
= =10" x 1
S S % 4
g s
= = x
5 E10°
5 5 o% x
£ £ b4
S o S »
g107° g v
= =z, -2
g g1or
= ® gen-rand = o
= X gen-struc = X
= 15 ® bnrep-rand =
Q1077 x gl 4
= X bnrep-orig 2
-15 -10 -5 0 10 —4 ~2 0 2

10

10 10 10 10 10 10
Original G+StS, old caching, initialization MB*(100000) Original G+StS, old caching, initialization MB*(100000)

(a) Approximation qualitygy = 10~1° (b) Runtime to find quasi-optimal solution

Figure 8.1: Performance differences between ILS and owinai version of
G+StS, both initialized with MB(10°). Average approximation quality (a) and
average runtime to find a quasi-optimal solution (b). Thealgms were run 25
times for100 CPU seconds each.

8.3. G+STS VS. ILS 93

Avg. CPU time (sec.) of original G+StS and new ILS - random init

Avg. approx. qual. of original G+StS and new ILS - random init

; 10* i ‘]
x x X2 e . Lle B2 N ® gen-rand
10° | - %% X x 1 X gen-struc ™
= X x - ® bnrep-rand
= X £ X bnrep-orig
£ 5| % £ 102 L 3 4
S10° 3 ¥
i=4 =4 .
s [X
210} 2 « i
5 S .0 x
g g10° ¢ b % i
S = . e X
10 °F]
e e
s = .
S g,
_20 10
2 10 7r ® gen-rand || 2 . . x
X gen-struc X x &
s e bnrep-rand
10 7F % X bnrep—orig || 4
. . 10 . . .
20 10710 o 107 -2 0 2 4
Original G+StS, old caching, random initialization Original G+StS, old caching, random initialization
. . . _or
(@) Approximation qualitygy = 10725 (b) Runtime to find quasi-optimal solution

Figure 8.2: Performance differences between ILS and owirai version of

G+StS, both initialized at random. Average approximatioaliy (a) and aver-
age runtime to find a quasi-optimal solution (b). The aldwnis were run 25 times
for 100 CPU seconds each.

tion partly obstructs the performance comparison of the algorithms since for
some instances it yields high initial solution qualitiesieththe local search part
of G+StS alone would never find. In Figure 8.2, where both rdigms employ a
random initialization, ILS performs much better for smatances as well, outper-
forming G+StS by up t@ orders of magnitude. Also, when initialized at random,
G+StS fails to find instantiations with positive probalyilior many instances for
which ILS succeeds in this task. For other instances, ILSsfingtantiations with
up to22 times higher probability than G+StS. Furthermore, the nemalbinstances
solved to quasi-optimality by ILS but unsolved by G+StS @ages considerably.

ILS and our original version of G+StS differ in two comporgnamely the
caching scheme used and the inner workings of the local Isehat follows the
initialization in every try of the algorithms. Both algonitis employ a very similar
restart mechanism. We now demonstrate how each of the t¥erid components
affects algorithm performance.

Figure 8.3 on the next page demonstrates the large perfeeygains our new
caching schembnprovingyields for G+StS when compared to the previous state-
of-the-art caching schent@imple Up to 20 orders of magnitude more likely in-
stantiations are found with our improved caching scheme.speedup over simple
caching for finding quasi-optimal solutions is up to a facbi0 and increases for
harder instances. Also, there are several instances fathvgnnple caching only
yields solutions with probability zero but the our improveathing yields positive
probabilities.

94 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Avg. approx. qual. of G+StS with old and new caching Avg. CPU time (sec.) of G+StS with old and new caching
- ™ =10 | e gen-rand =7
é 100 L Q(4 é X gen-struc x
S .« ° S ® bnrep-rand .
=] =]
< c X bnrep-orig
- x® o s ,
.10 . .-10
2 * 2
£ X £
3 o x X 3 &
ISPl s
g0 . E it
2 10 .
£ £
210 2 &
3 % 3 -
g’ ? -2
E 420 £10
é 10 ® gen-rand || é <
o X gen-struc ° *
2 . x ® bnrep-rand H x
Z10 x X bnrep-orig | z
-~ = 10 ~4 ~2 0 ‘4
10 10 10 10 10 10 10
Old caching scheme "Simple", random init Old caching scheme "Simple", random init
. . . _9r
(@) Approximation qualitygy = 10~2° (b) Runtime to find quasi-optimal solution

Figure 8.3: The performance differences due to our impraasthing scheme for
G+StS with random initialization. Average approximatiamatity (a) and average
runtime to find a quasi-optimal solution (b). The algorithwere run 25 times for
100 CPU seconds each.

Although with our new caching, G+StS performs much bettantim its orig-
inal version, this algorithm is still vastly inferior to I,Sve demonstrate this in
Figure 8.4 on the facing page, in which the only differing gament between the
algorithms is the local search strategy. ILS finds instaiotig of up to20 orders
higher probability than G+StS, is abou times faster in finding quasi-optimal
solutions for easy instances, and for harder instancesenB&6tS fails in finding
guasi-optimal solutions, ILS often succeeds in seconds.

Since ILS clearly employs a much stronger local search tha8t§, it might
not require a strong (and possibly time-consuming) in#&lon of the search any-
more. However, in Figure 8.5 on the next page, we show thatishiot the case
and that ILS still gains much from a strong initializationunistic. As opposed
to ILS with random initialization, ILS with MB(10°) always finds solutions with
strictly positive probability; it generally finds higher gjity solutions, often finds
quasi-optimal solutions several orders of magnitude faatel sometimes quickly
solves instances to quasi-optimality which remain unsbemploying a random
initialization.

84 GLSvs. GLS

In this section, we compare the performance of our impleatant of the original
GLS algorithm and our improved GHtSalgorithm. Figure 8.6 on page 96 demon-

84. GLSVS. GLS 95

Avg. approx. qual. of G+StS and ILS - both with new caching Avg. CPU time (sec.) of G+StS and ILS - c=3, random init
4
. X xgp ©em 10 e gen-rand L]
100 - o % x 1 X gen-struc =
X X e e bnrep-rand
x X bnrep-orig
107 | 5
= = »
£ £ .
£107% = x
s S #
k]]
g 8.0 oo
£ S N,
g g . x
2 10720 L Q .
107t
e gen-rand x
x X gen-struc x.. °
w e bnrep-rand X x
10 F % X bnrep-orig H L
A . . : 10
107 107 107 10° 107 107 10° 10° 10°*
G+StS with random init G+StS with random init
. . . o —30
(a) Approximation qualitygy = 10 (b) Runtime to find quasi-optimal solution

Figure 8.4: The performance differences due to the locathesrategy used after
the initialization. G+StS and ILS employ the same cachirgeetelmprovingand
are initialized at random. Average approximation qual&y gnd average runtime
to find a quasi-optimal solution (b). The algorithms were 26rtimes forl00 CPU
seconds each.

Avg. approx. qual. of ILS with different initializations Avg. CPU time (sec.) of ILS with different initializations

x ‘o’ 10° e genfran‘d o =
10° + xx}' 4 X gen-struc X
e bnrep-rand
x X bnrep-orig . hd
g g810° ¢ x®
8 8 .
S107% = $x x
o) %
= x = X4 .
= c10 x X
28 S .
F107%F s .
= = X
= S
= =10
® gen-rand x °
X gen-struc % x .
® bnrep-rand
107 X bnrep-orig ” xe e
. . . 10
10 107 107" 10° 10 107 10° 10° 10
Random initialization Random initialization
(a) Approximation qualitygy = 10~3° (b) Runtime to find quasi-optimal solution

Figure 8.5: The performance differences due to differdtitirzations of ILS: ran-
dom initialization and MB(10°). Average approximation quality (a) and average
runtime to find a quasi-optimal solution (b). The algorithwere run 25 times for
100 CPU seconds each.

96 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Avg. approx. qual. of original GLS and new GLS+ Avg. CPU time (sec.) of original GLS and new GLS+
T % T T

=0 s : -
§ 100 Kk X . v had § 10* e gen-rand ol
= S X gen-struc .
=3 =2 e bnrep-rand
o g @ X bnrep-orig
=10 = 2 ¥
E 10 H J
> >
£ £
510 7
g10 8 x !
10 x 1

3 S X X x g
c < X . X
o o 3
g0 g o, x
T S 10]
o e gen-rand o X - .
€ e X gen-struc £ x ee X
510 ® bnrep-rand A &
) X __bnrep-orig @ 10

107 107 10° 10 107 10° 10° 10

Original GLS, rho = 0.8, old caching, random init Original GLS, rho = 0.8, old caching, random init
(a) Approximation quality (b) Runtime to find quasi-optimal solution

Figure 8.6: Performance differences between the origins &lgorithm and our
new algorithm GLS. Average approximation quality (a) and average runtime to
find a quasi-optimal solution (b). The algorithms were rurntigfes for100 CPU
seconds each.

strates the enormous performance differences betweert @h& our original ver-
sion of GLS. GLS finds solutions with probability up t268 orders of magnitude
higher than those found by GLS, is updarders of magnitude faster in finding
quasi-optimal solutions and for a great number of instarficels quasi-optimal
solutions that GLS cannot find, some of them in milliseconds.

Our implementation of the original GLS algorithm and our noyed algorithm
GLS" differ in a number of components, namely the parametemnsgttiie caching
scheme, the evaluation function and the initializationthfollowing, we demon-
strate how each of these components contributes to the wegneerformance of
GLS". Table 8.5 on the next page and Table 8.6 on the facing pagmatine
the performance resulting from introducing the novel congts of GLS into
the original version of GLS one at a time. It shows the perfomoe of the orig-
inal version of GLS with the original parameter setting friifar02] and the al-
gorithm’s steadily increasing excellence when incremnitatroducing the tuned
smoothing parametes = 0.999, our improved caching schenmmproving the
evaluation function of GLS, and initialization MB (10°). For the full results, see
Table B.13 on page 153 and Table B.14 on page 154.

As in the previous section, we visualize the impact of eachgmmnent in corre-
lation plots of algorithm versions that only differ in onengponent. Figure 8.7 on
page 98 shows the great differences in performance achéetgbsimply tuning
the parameters of GLS better than in its original versiomrQPh where the de-
fault parameter setting from the Max-SAT domain [MTO00] waspéoyed for NV,

84. GLSVS. GLS 97

GLS, random intitialization GLS"
Statistics | “original” | p = 0.999 | p = 0.999,new caching random| MB*(10°)
Avg. quality 41.81 63.77 75.52 77.16 89.05
Avg. runtime | 222.77 81.05 59.32 43.22 37.61
Successful rungs 202/650| 375/650 429/650 476/65Q0 491/650
Instances solved 9/26 15/26 19/26 21/26 21/26
#amongstbest 0 0 1 11 16

Table 8.5: Summary statistics for penalty based algoritbmgroblem sebnrep .
All algorithms were run 25 times for00 CPU seconds each. Summary of Ta-
ble B.13 on page 153.

GLS, random intitialization GLS*
Statistics | “original” | p = 0.999 | p = 0.999,new caching random| MB*(10°)
Avg. quality 36.35 70.17 87.20 88.18 | 89.35
Avg. runtime | 339.95 | 107.96 60.42 57.06 49.96
Successful runs 140/600| 314/600 400/600 409/600 430/600
Instances solved 7/24 17/24 20/24 22/24 18/24
amongst best 0 0 2 12 10

Table 8.6: Summary statistics for penalty based algoritbmproblem segen.
All algorithms were run 25 times for00 CPU seconds each. Summary of Ta-
ble B.14 on page 154.

98

10° f

N
S
&

rho = 0.999

H
o\

1072

CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Avg. approx. qual. of GLS with original and optimal rho

H
o\

gen-rand
gen-struc

bnrep-rand

X
XeXe

bnrep-orig

rho = 0.999

10* |

=
o
N

[N
o
©

i
o
W

10

Avg. CPU time (sec.) of GLS with original and optimal rho

e gen-rand
X gen-struc
e bnrep-rand
X bnrep-orig

o XXKKee MOO X W
L L L

107 107 10° 10 107 10° 10° 10*
rho=0.8 rho=0.8

(a) Approximation quality (b) Runtime to find quasi-optimal solution
Figure 8.7: The performance differences only due to tupifgy GLS with simple
caching andV, = 200. Average approximation quality (a) and average runtime to
find a quasi-optimal solution (b). The algorithms were rurtigfes for100 CPU
seconds each.

andp. In his formulation of GLS, Park does not even treat theseialelements
of the algorithm as parameters, and indeed states GLS t@ “haparameters to
tune” [Par02]. Figure 8.7 contradicts this statement, shgihat by simply choos-
ing a higher smoothing parameter= 0.999, vastly stronger performance can be
achieved: for3 instances fronbnrep , the improved version finds instantiations
that are up td6 orders of magnitude more likely; for harder instances, igin
quasi-optimal solutions much faster than with the origipatameter setting for
which GLS frequently fails to find them at all.

In Figure 8.8 on the next page, we demonstrate the companaipisessive
impact of our new caching scheni@proving With this caching scheme, GLS
sometimes finds instantiations with a dramatically higliitezlihood than with the
previous caching schen®&mple For some structured instances, this difference is
up to80 orders of magnitude, and for instandi@abetes it is even191 orders of
magnitude. In terms of runtime to reach quasi-optimal sahg®, our new caching
scheme yields a speedup reaching frdrior easy instances to approximately
for harder instances. There are also some instances whichecsolved to quasi-
optimality with our improved caching scheme but not with ginevious one.

Figure 8.9 on page 100 shows the considerable performaiitcg gjaour new
version GLS over GLS with identical parameter setting, caching scheméini-
tialization. For six instances, GL!Sinds instantiations up td orders of magnitude
more likely than the ones found by GLS. It finds quasi-optis@utions of all in-
stances faster than GLS, sometimes outperforming it bytarfat up to10. It also

84. GLSVS. GLS 99

Avg. approx. qual. of GLS with old and new caching Avg. CPU time (sec.) of GLS with old and new caching

0 >e X T T
2 0 [x = 10* ® gen-rand =1
] ee® ° < X gen-struc 3
< < ® bnrep-rand
=] o X bnrep-orig
£.4750 | £, 2 x
-10 107 - P
=3 =3
£ £ . .
> >
g g_ xod
:E_ 10710 :E e 20 30
@) ™
£ £ P
2 2 "
S S x
12} 0
S o x
£107%% £107 .*
Q e gen-rand S
S X gen-struc o X
H e bnrep-rand H
=z X bnrep-orig = .,
. . 10
1 -150 -100 -50 100 lO-A 10—2 100 102 104
0Old caching scheme "Simple", rho = 0.999 Old caching scheme "Simple", rho = 0.999
(a) Approximation quality (b) Runtime to find quasi-optimal solution

Figure 8.8: The performance differences only due to our awpd caching scheme
for GLS with (p, N,) = (0.999, 200). Average approximation quality (a) and aver-
age runtime to find a quasi-optimal solution (b). The aldonis were run 25 times
for 100 CPU seconds each.

finds quasi-optimal solutions for four instances on whichS3ails.

The final new component in GL'Ss the different initialization MB(10°). We
demonstrate the impact of this in Figure 8.10 on the next paeh compares the
performance of GLS with different initializations. On the one hand, we observe
that for four instances, GL'Swith initialization MB*(10°) finds much more likely
instantiations than GLSwith a random initialization, and that it is much faster
on average; for some instances, the stronger initialinafields speedups of up
to a factor of80. However, on the other hand, we also observe that for sonte har
randomly generated instances, GLf#hds quasi-optimal solutions when initialized
at random, but not with initialization MB10°).° In total, however, initialization
MB*(10°) performs much better for GL'S

In summary, all of the four differing components between Gla®d our orig-
inal version of GLS lead to great improvements. For us, thetnmberesting com-
ponent is the new evaluation function of GL&s we see possibilities for improv-
ing it even further in future work. We now provide some moréewuce for the
strong performance of GL'S but we also demonstrate that although it consistently
shows stronger initial performance than GLS, for longesriine solution qualities
reached by both algorithms become virtually identical.

SHowever, for these instances, GL®vith random initialization is the only algorithm that finds
the quasi-optimal solutions we employ, and only does sban2 out of 25 runs. We are much in
doubt of the actual optimality of these quasi-optimal Sohs.

100 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Avg. approximation quality of GLS and GLS+ Avg. CPU time (sec.) of GLS and GLS+
4
10 1 e —rand P
F gen-ran
o x o X gen-struc =
10 ¢ bnrep-rand *
x X bnrep-orig x
2 X
s 10 »0
10 o g
8 8 & x x
i i &
£, .10 <€10° ’%
+ 0 . + %
%) (%)
2 . 2 &«
o - o x
X
107" . R 10” « .
® gen-rand (34
X gen-struc
%0 ® bnrep-rand o
10 T X bnrep-orig | 4
. . ; 10
107 107 10° 107 107 10° 10° 10
GLS, rho=0.999 GLS, rho=0.999
(a) Approximation quality (b) Runtime to find quasi-optimal solution

Figure 8.9: GL$0.999,200) vs. GLS"(0.999, 200, 10000), both with random ini-
tialization and caching schenh@proving Average approximation quality (a) and
average runtime to find a quasi-optimal solution (b). Thealgms were run 25
times for100 CPU seconds each.

Avg. approx. qual. of GLS+ with different initializations Avg. CPU time (sec.) of GLS+ with different initializations
.o . xg 10' [e gen-rand e x-
° L] X gen-struc .
10° ® bnrep-rand
X bnrep-orig
=) x S10% L X
S =3 10 [23 .
S S %X
S S X
. 5 =
2107 ¢ i x -,
s s, «x % e
S & x XX 7% x L] x
g E x
= 4a-10 = . .
S107°% S x
2 g .
= =10
& gen-rand x .®
X gen-struc o
X
-15 ® bnrep-rand
10 7 X bnrep—orig || "
. . . 10
107 107 10° 10° 10" 107 10° 10° 10
Random Initialization Random Initialization
(a) Approximation quality (b) Runtime to find quasi-optimal solution

Figure 8.10: The performance differences only due to dfieinitializations of

GLS": random initialization and MB(10°). Average approximation quality (a)
and average runtime to find a quasi-optimal solution (b). dlgerithms were run

25 times for100 CPU seconds each.

84. GLSVS. GLS 101

Instance munin2 Instance munin2-e1

100
2 |
80 |
70|
60
50 |
40 |
30 |
20 |

50 -
-100 -
-150 -

250 |-
-300 |-
-350 |-
-400 |-

Log probability of assignment

-450 GLS —— 1
-500

10 GLS — 1
0

Percent of runs achieved solution quality -36.0588

0.1 1 10 100 1000 1 10 100 1000
CPU time(sec) CPU time(sec)

(a) Mean solution quality (b) Empirical runtime distribution

Figure 8.11: Plots of mean solution qualities (a) and ero@ifiRTDs (b) of GLS
and GLS on instancenunin2 . Both algorithms employ a random initialization,
caching schemémproving and default parameter settiigy,, p) = (200, 0.999).
The estimation is based di®0 runs of 1000 CPU seconds each. In (a), the mean
solution quality plot for each algorithm ends when an optisadution was found in
all of its 100 runs; in (b), the target quality -36.0588 is the optimal soluquality.

Figure 8.11 shows a plot of mean solution qualities and aogiRTDs for
GLS and GLS with identical parameter settings for instanoenin2 . For this
instance, the initially stronger performance of GLSuffices to find the optimal
solution quality more than ten times faster. The empiricADRor GLS" sug-
gests that it may potentially suffer from search stagnatiomwe found no further
evidence for this.

Figure 8.12 on the next page shows plots of mean solutiontgdiad two other
real-world instancesjiabetes andmunin4-rand . For both networks, GLS
shows very strong initial performance, finding instantiagi of positive probability
virtually instantaneously whereas GLS needs considetabkefor this. It is also
very interesting to observe that once GLS starts to perfagm well for network
munind-rand , GLS' matches its performance closely. For netwdikbetes
with structured CPTSs, the initial performance of GL&S stronger than for network
munind-rand with random CPTs. This different behaviour for structured an
randomly generated CPTs can be observed for many other cestérombnrep .

It is also present for the instancesgen which employ a randomly generated
graph structure. Figure 8.13 on page 103 shows that for snetwaork with struc-
tured CPTs, GLS finds very good solutions quickly, whereas in the case ofsand
CPTs, GLS catches up more quickly and GL&gain closely matches its perfor-

102 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Instance diabetes-el Instance munind-rand-el

50 +
-100 -
-150 r

-450 |-

-460 |-

250 |-
-300 |-
-350 |-
-400 |-

-470 -

-480

Log probability of assignment
Log probability of assignment

-490 1
-450 |-

GLS —x— GLS —x—
-500 . L L -500 L . .
01 1 10 100 1000 0.1 1 10 100 1000

CPU time(sec) CPU time(sec)

(a) diabetes (b) munin4-rand

Figure 8.12: Plots of mean solution quality of GLS and GL& instances from
problem setbnrep . Both algorithms employ a random initialization, caching
schemdmproving and default parameter settifgy,, p) = (200, 0.999). The esti-
mation is based o5 runs of100 CPU seconds each.

mance after its initial head start.

8.5 ILSvs. GLS*

In the last two sections, we have demonstrated the muchhpgn®rmance of our
new algorithms ILS and GLSwhen compared to the previous state-of-the-art in
SLS algorithms for MPE.

To conclude our experimental analysis of SLS algorithmsM&E, we now
compare our new algorithms against each other. Like in tihepesison of G+StS
and ILS, strong initializations skew the picture and we tbarmpare ILS and GLS
two times, with a random initialization and with initializan MB*(10°). In Fig-
ure 8.15 on page 105, the fundamental differences betwegratid GLS (both
employing a random initialization) are quite obvious. Oe tne hand, GLS
finds instantiations with positive probability for all imstces whereas ILS fails to
do so for2 structured instances with structured CPTs. For instandissivuctured
CPTs, GLS generally performs much better than ILS; the differencesiproxi-
mation quality reacl26 orders of magnitude in this case. However, for four struc-
tured instances with random CPTs, ILS finds instantiatioas déine considerably
more likely than the ones found by Gt Sfor these four instances, the differences
are as big ad5 orders of magnitude. In terms of runtime to find quasi-optima
solutions, the picture is quite similar but more in favour &LS*. Instances with

8.5. ILSVS. GLS 103

Instance z100v6d5iw10_1-struc Instance z400v6d5iw20_1-rand
-5 T -100

Ao 4 f 1 -120

.15 L
-140 |-
.20 L

256
-30
-35
240 -
45t
50l | -240

-55 s 260 ‘ ‘ ‘ ‘
0.01 01 1 0.01 01 1 10 100 1000

CPU time(sec) CPU time(sec)

(a) z100v6d5iw10-struc (b) z400v6d5iw20-rand

-160 -

-180

-200

Log probability of assignment
Log probability of assignment

-220

Figure 8.13: Plots of mean solution quality of GLS and GL& instances from
problem segen. Both algorithms employ a random initialization, cachinpesme
Improving and default parameter settigy,, p) = (200, 0.999). The estimation is
based ore5 runs of100 CPU seconds each.

structured CPTs are solved to quasi-optimality up trders of magnitude faster
by GLS', and GLS also quickly solves many instances ILS cannot solve. For
instances with random CPTs, ILS and GLBoth outperform the respective other
algorithm on some instances; for a few instances, ILS is ugntorder of magni-
tude faster than GLS whereas for other instances, GL& almost up t® orders

of magnitude faster.

When ILS and GLS are initialized with MB(10°) (see Figure 8.15 on
page 105), the overall picture becomes less clear but the coaiclusions we can
draw from it remain unchanged. MBL0®) already generates high quality solu-
tions for all the instances for which ILS found much more @iolle solutions than
GLS" when both algorithms were initialized at random. Thus, vl MB*(10°)
initialization, GLS" now clearly performs much better in terms of approximation
quality than ILS. In terms of time needed to find quasi-optismutions, ILS still
sometimes outperforms GLSfor real world instances with randomized CPTs like
pigs-rand andmuninl-rand), but GLS" continues to outperform ILS by up
to two orders of magnitude for other instances, especiallydndomly generated
instances with structured CPTs. GL@lso still solves some instances to quasi-
optimality which ILS cannot solve, namelipk and some large randomly gener-
ated instance¥. Their low correlation of runtimes to find quasi-optimal dons

OFor a per instance comparison of ILS and Gl,See Tables B.17 and B.18 on pages 157 and
158.

104 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Avg. approximation quality of ILS and GLS+, random init Avg. CPU time (sec.) of ILS and GLS+ w/o MB
M ‘ ‘ XXX X 38 10* i ‘ ‘

x

gen-rand
gen—struc
bnrep-rand . -
bnrep-orig

=
o
XeXe

H
o\
"
o
>
o
X
.
X XX XX Xum W
. . |

GLS+, random init
L]
GLS+, random init
=
o
.
X
b3
X

=

o,
»
S

® gen-rand 10 . : 3
X gen-struc
. ® bnrep-rand §
10 r ;)) X bnrep-orig H 107))))
107 107 107 10° 10 107 10° 10° 10*
ILS, random init ILS, random init
(@) Approximation qualitygy = 10~3° (b) Runtime to find quasi-optimal solution

Figure 8.14: Comparison of our new algorithms ILS and G| ISoth with random
initialization. Average approximation quality (a) and eage runtime to find a
quasi-optimal solution (b). The algorithms were run 25 srfe 100 CPU seconds
each.

suggests the suitability of ILS and GE$o be combined in an algorithm portfolio.
In Section 5.4 on page 46, we combined them with our Mini-Bixkariant MB
to form a hybrid algorithm that alternates phases of thegargilhms. In Chapter 9,
we will demonstrate this algorithm to be the new state-efdht in MPE solving.

8.5. ILSVS. GLS

GLS+

10

-10|

105

Avg. approximation quality of ILS and GLS+ with MB Avg. CPU time (sec.) of ILS and GLS+ with MB
T T T 4 T T r
x XXX @ 10" {| e gen-rand . !
° .‘ X gen-struc .
e bnrep-rand
X bnrep-orig
10° .o] X
* %
+ L] 'Y x
D100 x 2
6 10" .(x % % X 4
b4 X
. ¥
&
107t
e gen-rand o®
X gen-struc X
® bnrep-rand X
X bnrep-orig 4
- - : 107k - . . .
107 107° 10° 107 107 10° 10° 10
ILS ILS

(a) Approximation quality

(b) Runtime to find quasi-optimal solution

Figure 8.15: Comparison of our new algorithms ILS and GLBoth with initial-
ization MB*(10°). Average approximation quality (a) and average runtimenib i
quasi-optimal solution (b). The algorithms were run 25 srfa 100 CPU seconds

each.

106 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Chapter 9

Comparison with Exact Algorithms

In this chapter, we evaluate a number of exact algorithmBH#eEE and compare our
new algorithms against the previously best-performingsoiée demonstrate that
our hybrid algorithm of ILS, GLS, and MB* shows better overall performance
than any of the other algorithms. We also show that our SLSrdlgns scale
much better in terms of a number of important instance chamatics, namely the
number of variables, the domain size, and the degree, andaadvidth of the in-
dependence graph. When compared to our new algorithms, s-BBithBavgmall
i-bound of6 scales poorly with number of variables, degree, and induadth;
and for higheri-bounds, it scales poorly with domain size and induced widtty-
time MB scales poorly with domain size and especially poailyr induced width.

9.1 Performance of Systematic Algorithms

In this section, we compare the performance of the system@IE algorithms
Anytime MB, s-BBMB, and d-BBMB. All these algorithms are describedec-
tion 4.3 on page 32. For Anytime MB, we employ our own C++ implatae
tion since we are not aware of any available implementatiéor s-BBMB and
d-BBMB, we employ a UNIX-based C++ implementation provided by iRktri-
nescut In compliance with his advice, we report results for a ranfyélmounds,
namelyib € {2,6, 10,14, 18}. We do not compare these algorithms to BBBT, the
other systematic search algorithm used in the experimstudy of [MKDO03], be-
cause BBBT is not included in the implementation provided by Rddunescu.
It is available as part of the REES reasoning system, but asevgiomed in Sec-
tion 8.1 on page 85, we experienced problems with this sydtemmost important

IMany thanks to Radu Marinescu for providing this impleméata

107

108 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

of which was a bug disallowing correct computations on ims¢s that are not gen-
erated by the system itself.

The very recently developed d-BBMB algorithm [MD04] has natibésted in
the experimental study of [MKDO3]. It has subsequently belaimed to outper-
form s-BBMPB?, but in our experiments we show it to perform considerablysgo
on the instances we study.

Tables 9.1 and 9.2 on the facing page summarize our expesmeétin deter-
ministic algorithms for problem sebswrep andgen, respectively. In these tables,
the row “Successful runs” is omitted since for these deteistic algorithms, it is
identical to “Instances solved”. The new row “Instances/p states how many
instances could be solved to optimality and their solutio®sn proven to be opti-
mal within the time bound and the row “Instances)” represents for how many
instances solutions with positive probability were foud. in the previous chap-
ters, all our experiments were carried out on dual 2GHz IKedn CPUs with
512KB cache and 4GB RAM running Linux version 2.4.20, build28

For the instances in problem dmirep , very good performing-bounds for s-
BBMB are 10 and14; i-bound18 yields exactly the same resultsialsound14, but
causes alonger runtime on average. For d-BBMBound6 yields the best results,
closely followed byi-boundsl0 and14. As can be seen in the full results for prob-
lem setbnrep in Table B.15 on page 155, there are significant differenceisan
optimali-bounds for each instance. For example, instdiméerand can only
be solved withi-bounds greater or equal 1d, whereas instanc@uninl causes
the algorithm to break with suchbounds but can be solved in seconds employing
ani-bound as low a8. Algorithm Anytime MB shows very strong performance on
the structured instances in problemigetep , leaving only instancénk-rand
unsolved.

The situation is similar for problem sgéen. In this case, the optimatbound
for d-BBMB is 14, as high as the optimal one for s-BBMB. We again observe a
large variability in the optimal-bound across the instances. For large instances,
high i-bounds tend to perform much better, but for networks witfhhinduced
size (networks with both high induced width and large dons#&e), highi-bounds
cause both algorithms to break down even for small instaniis100 variables.
On the randomly generated networks in problemgeet, Anytime MB does not
perform as well as for problem setirep . It only solves9 of the 24 instances and
cannot even find solutions with positive probability forahrof the others.

Like in Chapter 8, in the following we visualize the relativerfprmance of
two algorithms in correlation plots of their approximatiqoality and their run-

2This claim was expressed in email communication by Raduméadu and also follows from
the experimental results presented in [MDO04].

9.1. PERFORMANCE OF SYSTEMATIC ALGORITHMS

109

Statistics

ib=2 | ib=6 |ib=10|ib=14]ib=18

d-BBMB

s-BBMB

ib=2 | ib=6 |ib=10|ib=14]ib=18

Anytime
MB

Avg. quality

46.20

69.37/67.86

65.38

65.38

39.25

76.99

82.09

80.77

80.

77

97.69

Avg. runtime

122.94

48.07/63.05

63.38

63.39

166.43

32.57

29.07

28.36

29.

55

5.96

Instances solve|

d12/26

18/2617/26

17/26

17/26

10/26

20/26

21/26

21/26

21/26

25/26

Instances prove

dL0/26

18/2617/26

16/26

16/26

8

/26

20/2¢

21/26

21/26

20/26

25/26

Instances> 0

19/26

21/2618/26

17/26

17/26

19/26

23/26

23/26

21/26

21/26

26/26

amongst bes

[

1

3 3

3

3

4

10 | 6 9

6

15

Table 9.1: Summary statistics for exact algorithms on mwbketbnrep . All
algorithms were run for 100 CPU seconds. Summary of Table Enlfage 155.

Statistics

d-BBMB

ib=2 | ib=6 | ib=10|ib=14]ib=18

ib=2 | ib=6 | ib=10ib=14| ib=18

s-BBMB

Anytime
MB

Avg. quality

0.47

28.10| 35.26

41.49

29.17

0.03

12.70| 51.82

75.84

55.01

53.90

Avg. runtime

o

529.19252.11

196.79

264.97

o

713.77115.08

52.79

107.42

80.93

Instances solveldd/24

4/24 | 7/24

9/24

7124

0/24

3/24 | 12/24

18/24

13/24

9/24

Instances prove

/24

2/24 | 5/24

7124

7124

0/24

3/24 | 12/24

17/24

13/24

9/24

Instances> 0

16/24

24124\ 12/24

11/24

7/24

13/24

16/24| 23/24

18/24

13/24

21/24

amongst bes

t O

1 0

0

0

0

0 14

7

3

1

Table 9.2: Summary statistics for exact algorithms on mwbsetgen. All algo-
rithms were run for 100 CPU seconds. Summary of Table B.16 oa pa6.

110 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Avg. approximation quality of s—-BBMB(6) and d—-BBMB(6) Avg. CPU time (sec.) of s-BBMB(6) and d-BBMB(6)

gen-rand » L3
gen—struc

bnrep-rand
bnrep-orig

& gen-rand - 10* [
I %X gen-struc
& bnrep-rand x .
X bnrep-orig .

-
o
o

oo?
L]

XeXe

=
o
X

=
o

H

o\

L
N
o
»
x¥

s-BBMB, i-bound 6
B
O\

s-BBMB, i-bound 6

[N

S
y‘u
i
o
=
]
.

107 * x x X x x XX X
4

. ! - 107 -

10 10 10

107 10*

107 10° 10
d-BBMB, i-bound 6 d-BBMB, i-bound 6

(@) Approximation qualitygy = 10~2° (b) Runtime to find quasi-optimal solution

Figure 9.1: Performance comparison of BnB algorithms s-BBMB ésBBMB,
both with i-bound6. Average approximation quality (a) and average runtime to
find a quasi-optimal solution (b). The algorithms were rurtigfes for100 CPU
seconds each.

time to reach quasi-optimal solutions. As can be seen in dtineptete results in
Tables B.15 on page 155 and B.16 on page 156, these algorithemsaain proof
optimality of the solutions they find in virtually the samen@ they need to find
them. For few instances, such as timk network, some of the algorithms find
provably optimal solution qualities, but are not able togstheir optimality within
the time bound; and for one randomly generated instax#t@)v3iw20-rand
s-BBMB(14) finds the quasi-optimal solution quality, but none of thgoaithms
can proof its optimality.

We start by comparing the two related algorithms s-BBMB and d-BBM
Figure 9.1, we demonstrate that with lavbounds, such a§, d-BBMB outper-
forms s-BBMB in terms of achieved solution quality and also disdlutions with
positive probability for many more instances. Neverthgl@gen both algorithms
find quasi-optimal solutions, s-BBMB is faster in almost abes. When both al-
gorithms employ a higher and better-performingound, such as$4, the picture
changes and s-BBMB becomes clearly superior. It solves sostenices to quasi-
optimality for which d-BBMB does not even find solutions withsittve probabil-
ity, and it is faster on all instances both of the algorithimss. For9 instances, for
which d-BBMB does not find solutions with positive probabilityfinds optimal
solutions and proofs their optimality.

We now move on to determine the optimabound for s-BBMB on the in-
stances we study. In Figure 9.3 on page 112, we demonsti@ts-B8BMB(10)
clearly outperforms s-BBMBjY); s-BBMB(10) generally finds solutions of much

9.1. PERFORMANCE OF SYSTEMATIC ALGORITHMS 111

Avg. approximation quality of s—-BBMB(14) and d—-BBMB(14) Avg. CPU time (sec.) of s-BBMB(14) and d—-BBMB(14)

" T
10" [{ e gen-rand L
102 E = x o = 4 X gen-struc

® bnrep-rand
X bnrep-orig

.
(=]
N
A
L L

10" |

[
o
°

;%'S(.a(
X

s-BBMB, i-bound 14
o ®

s-BBMB, i-bound 14

[
o
o

XX &

gen-rand
gen-struc
bnrep-rand i
bnrep-orig

10° b = - X

XeXe

4
10 :
10° 10 107

10° 10*

10" 10° 10
d-BBMB, i-bound 14 d-BBMB, i-bound 14

(@) Approximation qualitygy = 10° (b) Runtime to find quasi-optimal solution

Figure 9.2: Performance comparison of BnB algorithms s-BBM8 ésBBMB,
both withi-bound14. For most instances, both algorithms either find optimal so-
lutions or fail completely (yielding zero-probability smions). Average approxi-
mation quality (a) and average runtime to find a quasi-ogtspaution (b). The
algorithms were run 25 times fa0 CPU seconds each.

higher quality and for a variety of randomly generated insés with structured
CPTs for which s-BBMBg) finds only solutions of probability zero, it finds solu-
tions with positive probability or even solutions it can pfd@o be optimal. Fur-
thermore, s-BBMBJ0) solves many instances to optimality s-BBMBdoes not
solve. In terms of runtime for instances which are solved oth lalgorithms, s-
BBMB(6) and s-BBMB(0) perform comparably.

In Figure 9.4 on page 113, we comparbounds10 and14 for the s-BBMB
algorithm. Recall that algorithm s-BBMB wititboundib first executes the ap-
proximate Mini-Buckets algorithm wititboundib, MB(ib), in order to compute a
static heuristic function to guide the subsequent BranchBandhd search. Far
bounds as high akt, this is often not feasible. For example, for instanmagninl ,
the initial call of MB(14) does not terminate within00 CPU seconds. For all
randomly generated instances with maximal induced wadtland maximal do-
main sizes, our limited memory oft GB renders MB{4) infeasible. However, for
instances, for which its initial call to MB{) succeeds, s-BBMB{) generally per-
forms better than s-BBMB(), solving many instances s-BBMB{) cannot solve.
Interestingly, whenever s-BBMB{) finds a non-zero probability for an instance,
it solves the instance to quasi-optimality in our experiteen terms of runtime,
the algorithms perform comparably. We conclude from thismiparison that there
is no clear winner between s-BBMB{) and s-BBMB(4): when MB(14) is feasi-

112 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Avg. approximation quality of s—-BBMB(6) and s—-BBMB(10) Avg. CPU time (sec.) of s-BBMB(6) and s—BBMB(10)

4 T r
10 gen-rand L3
gen—struc

bnrep-rand

bnrep-orig

- L] Xeoxes b
.

XeXe

.
-

10° t

X X X X
.
)
[
o

Xe
Xo Xm
L

5N
o
X
X
L
.
me
L

10° }

s-BBMB, i-bound 10
s-BBMB, i-bound 10

.
o
X

gen-rand
gen-—struc
bnrep-rand ||

XeXe

107 = !
bnrep-orig

4
10 :
10° 10 107

107 10*

10° 10°
s—BBMB, i-bound 6 s-BBMB, i-bound 6

(@) Approximation qualitygy = 10710 (b) Runtime to find quasi-optimal solution

Figure 9.3: Performance comparison;dfoundst and 10 for s-BBMB. Average
approximation quality (a) and average runtime to find a gopsimal solution (b).
The algorithms were run 25 times fod0 CPU seconds each.

ble, s-BBMB(14) performs better; otherwise, s-BBMBJ) obviously is the better
algorithm. The fact that the runtime of Mini-Buckets with aefikordering and-
bound can be estimated fairly accurately before the algoris executed suggests
a combination of these approaches.

In Figure 9.5 on the next page, we show that s-BBMB(dominates s-
BBMB(18). The only difference between the performance of theseridhgos
is that s-BBMB(8) breaks due to memory constraints for even more instances,
namely on all but one randomly generated instance with maixinduced width
20, and that it is slower than s-BBMB{) on the one remaining generated instance
with induced width20, as well as for networknk-rand which also has a rela-
tively high induced width.

We now compare algorithm Anytime MB against s-BBMB with the thast-
performingi-bounds10 and14. In Figure 9.6 on page 114, we demonstrate that,
despite the fact that both of the algorithms are based on tine Bdickets algo-
rithm, the performance of Anytime MB and s-BBMRB)) is not highly correlated.
The same holds true for the comparison of Anytime MB and s-BBMBIn Fig-
ure 9.7 on page 115. Either way, there are some instance$ &hacsolved and
proved optimal by one of the algorithms whereas the otherdmes not even find
a solution with positive probability. In terms of solutionajity, Anytime MB per-
forms much better on the structured instances foomep , whereas s-BBMB with
i-bound10 or 14 is faster for instances frogen. Since the different ways of em-
ploying the Mini-Buckets heuristic in Anytime MB and s-BBMB (agll as in

s-BBMB, i-bhound 14

10

107 |

9.1. PERFORMANCE OF SYSTEMATIC ALGORITHMS 113
Avg. approximation quality of s—-BBMB(10) and s—-BBMB(14) Avg. CPU time (sec.) of s-BBMB(10) and s-BBMB(14)
x % . e 10° [e gen-rand fead 1
X gen-struc
¢ bnrep-rand
10° L X bnrep-orig
2
<1077 5 .
g ¢ ¥
L10° X *1
5) & s

=
2 o

® gen-rand &

X gen-struc 1072 »

® bnrep-rand

X bnrep-orig - -

e « o o A
L L L 4 L L L
107° 107 10° 0 107 ° 10° 10*

s—-BBMB, i-bound 10

s—-BBMB, i-bound 10

(@) Approximation qualitygy = 10~1° (b) Runtime to find quasi-optimal solution
Figure 9.4: Performance comparisonigfoundsl0 and14 for s-BBMB. Average
approximation quality (a) and average runtime to find a gopsimal solution (b).
The algorithms were run 25 times fod0 CPU seconds each.

Avg. approximation quality of s—-BBMB(14) and s—-BBMB(18) Avg. CPU time (sec.) of s-BBMB(14) and s—-BBMB(18)

" T
10" [{ e gen-rand L
10° b = » 1 X gen-struc
® bnrep-rand
X bnrep-orig
2
10" -
S S & .
E e & x
3 3 . %
T ot < *
L1t b Lol
o 10 25
= = X
o @ -
o o .
& b
107t x
® gen-rand
0 X gen-struc
100 = ® bnrep-rand [=
X bnrep-orig "
0 : 1 2 10 ~-4 -2 ' 0 ’ 2 4
10 10 10 10 10 10 10

s-BBMB, i-bound 18

(@) Approximation qualitygy = 10°

s—BBMB, i-bound 18

(b) Runtime to find quasi-optimal solution

Figure 9.5: Performance comparisonidfoundsl4 and18 for s-BBMB. Average
approximation quality (a) and average runtime to find a gopsimal solution (b).
The algorithms were run 25 times fod0 CPU seconds each.

114

Avg. approximation quality of s—-BBMB(10) and Anytime MB

CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Avg. CPU time (sec.) of s-BBMB(10) and Anytime MB

=
o
©

r X

Anytime MB
-
ol

(N
o
iy

=
o
|
A
X

1070

x).("-x

-
.
.

XeXe

gen-rand |[]

gen-struc
bnrep-rand
bnrep-orig

x X 1

10* |

Anytime MB
B B
o ON

i
o
W

10

XeXe

gen-rand x x u
gen—struc

bnrep-rand
bnrep-orig

%
X® e XxXe&
L L

X x ®

10-20 10—10
s-BBMB, i-bound 10

10°

10

107 10*

10° 10
s-BBMB, i-bound 10

(a) Approximation qualityg, = 10~2° (b) Runtime to find quasi-optimal solution
Figure 9.6: Performance comparison of algorithms Anytini&hd s-BBMB(0).
Average approximation quality (a) and average runtime diguasi-optimal so-
lution (b). The algorithms were run 25 times fi0 CPU seconds each.

d-BBMB) yield this very different behaviour, a combination béttwo approaches
might be worthwhile. One could, for example, employ a BnB seg@hase in each
iteration of Anytime MB, or start BBMB with a smaltbound and increase it dur-
ing the search if some online criterion suggests that theently used bounds are
too weak to efficiently support the search.

9.2 Comparison of Best-Performing Algorithms

In this section, we compare the best-performing systensa@zch algorithms s-
BBMB(10), s-BBMB(14), and Anytime MB with our novel SLS algorithms ILS
and GLS', and with our hybrid of ILS, GLS, and MB‘(10°). We simply refer to
this latter hybrid algorithm as HYBRID. Tables 9.3 on the facpage and 9.4 on
page 116 summarize the performance of the various algosifiomproblem sets
bnrep andgen, respectively. We observe a consistently very strong pexdoce
of HYBRID which we mainly attribute to its MBcomponent for instances from
problem setnrep and to its GLS component for instances from problem set
gen. HYBRID's calls of MB* with increasingsizebound closely resemble Any-
time MB, the only difference being that not the number of Valea in a Mini-
Bucket is bounded but the size of the largest Mini-Bucket paaéen

In the following, we compare HYBRID to each of the other alduris, show-
ing that it outperforms all of them for most instances. Wetdig evaluating the
performance of HYBRID against each of its constituents. FeduB demonstrates

9.2. COMPARISON OF BEST-PERFORMING ALGORITHMS 115

Avg. approximation quality of s—-BBMB(14) and Anytime MB

!

%

Avg. CPU time (sec.) of s-BBMB(14) and Anytime MB

» 1 ® gen-rand (X - L
X gen-struc
e bnrep-rand

X bnrep-orig

5
T
[
o
©

Anytime MB
[
O\

Anytime MB

gen-rand
gen-struc
bnrep-rand
bnrep-orig

H
O\
5
.
"
(=]
b

XeXe

—20|

10 x

—4
: : 10
-10 lOU 10*4

"ZU 1
s-BBMB, i-bound 14

10 10 10*
s—BBMB, i-bound 14

(@) Approximation qualitygy = 1020 (b) Runtime to find quasi-optimal solution
Figure 9.7: Performance comparison of algorithms Anytini&hd s-BBMB(4).
Average approximation quality (a) and average runtime w &iguasi-optimal so-
lution (b). The algorithms were run 25 times fai0 CPU seconds each.

GLS* ILS s-BBMB MB |HYBRID

Statistics | default| default| ib=2 | ib=6 |ib=10|ib=14|ib=18| anytime default
Avg. quality | 89.05 | 82.41 | 39.25|76.96|82.09/80.77|80.77| 97.69 | 98.38
Avg. runtime | 37.61 | 41.64 |166.43 32.57|29.07|28.36|29.55| 5.96 13.04

Successful rung491/650 471/650 10/26 | 20/26| 21/26|21/26|21/26| 25/26 | 625/650
Instances solved 21/26 | 19/26 | 10/26|20/26|21/26|21/26|21/26| 25/26 | 25/26
Instances> 0 | 26/26 | 26/26 | 19/26|23/26| 23/26|21/26| 21/26| 26/26 | 26/26

#amongstbest 3 4 3 8 5 7 5 10 2

Table 9.3: Summary statistics for best-performing algpong on problem set
bnrep . All algorithms were run 25 times fdi0)0 CPU seconds each. Summary of
Table B.17 on page 157.

116 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

GLS" ILS s-BBMB MB |HYBRID
Statistics | default| default| ib=2 | ib=6 | ib=10 |ib=14| ib=18 |anytime| default
Avg. quality 89.35 | 63.22 | 0.03| 12.70| 51.82|75.84| 55.01| 53.90 | 80.75
Avg. runtime | 49.96 | 115.85| oo |713.77/115.08 52.79|107.42 80.93 | 72.52
Successful runs430/600 299/600 0/24 | 3/24 | 12/24|18/24| 13/24| 9/24 | 384/600
Instances solved 18/24 | 15/24 | 0/24 | 3/24 | 12/24|18/24| 13/24| 9/24 18/24
Instances> 0 | 24/24 | 24/24 |13/24| 16/24 | 23/24 |18/24| 13/24 | 21/24 | 24/24
#amongst best 11 1 0 0 3 5 3 0 2

Table 9.4: Summary statistics for best-performing algpong on problem segen.
All algorithms were run 25 times for00 CPU seconds each. Summary of Ta-
ble B.18 on page 158.

that HYBRID clearly outperforms ILS. It finds instantiationt lagher or equal
probability for every instance, is considerably faster miling quasi-optimal solu-
tions and solves many instances to quasi-optimality ILS1ois0lve.

Figure 9.9 on the facing page shows that in the case of'Gtte case is not that
simple. For few structured instances HYBRID finds solutionsigher quality, and
for many randomly generated ones, GLfinds slightly better solutions. In terms
of runtime to find quasi-optimal solutions, GitS®utperforms HYBRID in most
cases, usually by a factor between two and ten; only for fetamces, HYBRID is
faster. The only advantage of HYBRID over GL that it finds optimal solutions
for a number of large structured networks with low inducedtwiwhich GLS
cannot solve. For example, tligabetes network with403 free variables of
average domain sizel.34 poses an impossible challenge to GL.Svhereas due
to its low induced width of6 and the resulting low induced size 858 x 107,
HYBRID can quickly solve it to optimality with its MBcomponent.

When compared to Anytime MB (see Figure 9.10 on page 118), HYBRID
clearly performs better on the randomly generated instafroengen. For most
instances frontbnrep , Anytime MB is about three times faster than HYBRID, but
for some other instances, HYBRID is also faster. We primatityilaute is better
behaviour on these instances to its GL&mponent.

In Figures 9.11 on page 119 and 9.12 on page 119, we dementiedtHY-
BRID outperforms s-BBMB withi-bounds10 and 14, respectively. It especially
solves more instances to quasi-optimality and is fastervenage. The improve-
ments in achieved solution quality HYBRID yields over s-BBMB) (see Fig-
ure 9.12(a) on page 119) appear to be somewhat smaller thie icase of s-
BBMB(10) (see Figure 9.11(a) on page 119). This is an artifcact siaghfrom
the fact that s-BBMBJ[4) breaks for most of the instances for which s-BBM8

9.2. COMPARISON OF BEST-PERFORMING ALGORITHMS

iy
o

Hybrid of ILS, GLS+, and MB*
=
o

-
O\

|
&

5
T

&
T

Avg. approximation quality of ILS and Hybrid

Avg. CPU time (sec.) of ILS and Hybrid

117

4
x x x X ou 10 || e gen-rand -
o ® X gen-struc .
¢ bnrep-rand x
5 R X bnrep-orig x
= L 4
UlO - .
S . u =
A x]
L
O, 0 xX X
10 1
%] l§‘ x
= . b 4
i ¥
k=
5 o~
>10 "1
e gen-rand * 5
X gen-struc || %X
® bnrep-rand
X bnrep-orig 4
L15 L;LO ‘75 i 0 10 —4 ‘72 ’ 0 : 2 : 4
10 10 10 10 10 10 10 10 10
ILS ILS

(a) Approximation quality

(b) Runtime to find quasi-optimal solution

Figure 9.8: Performance comparison of pure ILS and HYBRID.rAge approx-
imation quality (a) and average runtime to find a quasi-ogtisolution (b). The
algorithms were run 25 times fan0 CPU seconds each.

10° |

Hybrid of ILS, GLS+, and MB*

Avg. approximation quality of GLS+ and Hybrid

Avg. CPU time (sec.) of GLS+ and Hybrid

10* |

x 3 oo 4 ® gen-rand
)£ X gen-struc 3
® bnrep-rand x
5 X bnrep-orig ®* x
. =102 L 4
= 10 . .
. s “ % ® -
> X % .
& o x
O, 0
w 10 x &
= .
S X
o
E, - «
il >10 “r
® gen-rand = e
X gen-struc %
® bnrep-rand
X bnrep-orig 4
‘*1 : 0 1 2 10 ~4 ‘*2 ! 0 ’ 2 ’ 4
10 10 10 10 10 10 10 10 10
GLS+ GLS+

(a) Approximation quality

(b) Runtime to find quasi-optimal solution

Figure 9.9: Performance comparison of pure GL&hd HYBRID. Average ap-
proximation quality (a) and average runtime to find a quasireal solution (b).
The algorithms were run 25 times fod0 CPU seconds each.

118 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Avg. approximation quality of Anytime MB and Hybrid Avg. CPU time (sec.) of Anytime MB and Hybrid

[
o
S

gen-rand -
gen—struc
bnrep-rand
bnrep-orig

¥ x o & X008
. .

=
o
©
XeXe

[
o
N

[
o
&
X Xe0 XeX [¢
L L

[N
o
©

Hybrid of ILS, GLS+, and MB*
B
o

i
OI
Hybrid of ILS, GLS+, and MB*
X

o
o
W

gen-rand . »
gen-—struc % o
bnrep-rand
bnrep-orig]

XeXe

N
o
»

4
10 :
10° 10 107

107 10*

10 10° 10
Anytime Mini-Buckets Anytime Mini—Buckets

(@) Approximation qualitygy = 10720 (b) Runtime to find quasi-optimal solution

Figure 9.10: Performance comparison of Anytime MB and HYBRMZerage ap-
proximation quality (a) and average runtime to find a quasiroal solution (b).
The algorithms were run 25 times fod0 CPU seconds each.

finds suboptimal qualities, yielding probability zero irefie cases. Thus, the top
left data point in Figure 9.12(a) on the facing page subsumestances for which
s-BBMB(14) breaks and HYBRID finds quasi-optimal solutions.

9.3 Scaling Studies

In this section, we study how s-BBMB, Anytime MB, and our novel Sil§o-
rithms ILS and GLS scale with important instance characteristics, such as the
number of variables, the maximal domain size of the varghiee maximal de-
gree of any node in the independence graph, and the maxichaded width of the
independence graph. For each of these instance charticsgr@sseparate experi-
ment is carried out in which all other characteristics anet k&, thereby isolating
the effects of the characteristic of interest. Since atgoriHYBRID alternates
independent phases of ILS, GL&nd Anytime MB, its scaling behaviour is com-
pletely determined by the scaling of these components. \Weeastrate on studying
the behaviour of each component and omit the hybrid algorittom the scaling
studies.

Using BNGenerator [IC02, IC03], we created a new set of problestances
for each experiment. We defined a number of possible valugbdacharacteristic
and generated0 networks for each such value, leading to problem sets @ith
to 100 instances. When generating the problem set for an instararaatristic,
we chose the rest of the characteristics such that we canfimgbtamal solution

9.3. SCALING STUDIES 119

Avg. approximation quality of s—-BBMB(10) and Hybrid Avg. CPU time (sec.) of s-BBMB(10) and Hybrid

4

100 e genfran‘d b4
" x X x &® %o X gen-struc
¢ . ® bnrep-rand x
50 10° 5 X bnrep-orig e
= =10% | 4
2 2" H
& < e x;
+ + x %
] 9 % ® X
O] Q.50 X
) -10 »®
~ x
2 107° 2 ° . x.
s s} X e
) °
g S0 -
10 “r
T e gen-rand T 2
X gen-struc - %
1070 ® bnrep-rand ||
X bnrep-orig "
. . 10
107 10° 10° 10 107 10° 10° 10
s-BBMB, i-bound 10 s-BBMB, i-bound 10
(a) Approximation qualitygy = 10720 (b) Runtime to find quasi-optimal solution

Figure 9.11: Performance comparison of s-BBM®B(and HYBRID. Average ap-
proximation quality (a) and average runtime to find a quasireal solution (b).
The algorithms were run 25 times fod0 CPU seconds each.

Avg. approximation quality of s—-BBMB(14) and Hybrid Avg. CPU time (sec.) of s-BBMB(14) and Hybrid

gen-rand bad
gen-struc
bnrep-rand x
bnrep-orig

10* fi
10° | =

XeXe

- oxi

[
(=}
™

X
«K®e X
L

»

Hybrid of ILS, GLS+, and MB
<)
Hybrid of ILS, GLS+, and MB*
5
)
X

P4
O\

gen-rand

gen-struc

bnrep-rand ||

bnrep-orig 4

: 0 : 1 i 2 10 ~4 ‘72 : 0 : 2 : 4

10 10 10 10 10 10 10 10
s-BBMB, i-bound 14 s—-BBMB, i-bound 14

.
o
XeXs®

(@) Approximation qualitygg = 10° (b) Runtime to find quasi-optimal solution

Figure 9.12: Performance comparison of s-BBNMB(and HYBRID. The top left
data point in (a) subsumé&snstances for which s-BBMB{) breaks and HYBRID
finds quasi-optimal solutions. Average approximation yé&a) and average run-
time to find a quasi-optimal solution (b). The algorithms evarn 25 times foi 00
CPU seconds each.

120 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

and proof its optimality for all instances. In all experinierexcept the one varying
the induced width, we kept the maximal induced width at a matgevalue ofi5.3
For each characteristic and each possible value of the dieaistic, we ran all
algorithms once fot 00 CPU seconds on the applicalil@éinstances and report the
average runtime. If none of thi) instances was solved, we plot the valw®00
instead.

In our scaling experiments, we observe that instances aitdom CPTs are
much harder to solve for GLS than instances with structuretisGRthe difference
in average solution time for otherwise equal charactesss as large as up to
an order of magnitude. For algorithm s-BBMB, this effect cam dde observed
in some of our scaling experiments. We therefore split egealing experiment
in one experiment for random CPTs and one for structured CP&s;esults are
always reported side-by-side.

Before we describe the individual scaling experiments, vp®mea common
characteristic of all of them. In order to be able to compyggnoal solutions for
all the instances in the scaling experiments, we had to kesp tather easy. For
the very fast GLS algorithm, this means that it seldomly takes longer thana fe
hundred milliseconds to solve any of the problems. The*MB’) initialization
usually takes some longer only for the initialization, sulsht for the small and
easy instances studied in our scaling experiments,'G& Sonsistently much faster
when simply employing a random initialization.

Figure 9.13 on the next page shows that instances becomigleaidy harder
to solve as the number of variables increases. In this exeeati, GLS is the
best performing algorithm for instances with structured eandom CPTSs, but for
structured ones the margin by which it outperforms the seédmast algorithm, s-
BBMB(14), is much larger. For s-BBMBi-bound6 performs clearly inferior to
higheri-bounds and also shows a very poor scaling with an increasintper of
variables: for small instances widd and40 variables, s-BBMBg) is only between
zero and one orders of magnitude slower than GUsut for larger instances with
200 variables it is four orders of magnitude slower than GL&r structured CPTs
and cannot solve any instance with random CPTs. For the alsdypscaling s-
BBMB(10), this effect is not as dramatic but still considerableg#ds to GLS
outperforming s-BBMB{0) by over two orders of magnitude for larger instances.
In previous experiments (not reported here) we carried @wompare our SLS
algorithms against d-BBMB, we found that the factor by which Gldsitperforms

3We also carried out some preliminary experiments with a makinduced width o080, but the
performance of the systematic algorithms in these expeisngas too poor for meaningful scaling
studies (often, they did not solve any instance even for Isvahles of the instance characteristic
studied in an experiment).

9.3. SCALING STUDIES 121

Scaling with number of variables - structured CPTs Scaling with number of variables — random CPTs

10 . 10 :
- GLS+, rand - GLS+, rand
, | =% GLS+ MB* =% - GLS+, MB*
10" ILS, rand E ILS, rand
ILS, MB*) ILS, MB*
1 s-BBMB(6) o 107 s-BBMB(6) O
o0 1 & s-BBMB(10) i o ' s-BBMB(10)
£ O s-BBMB(14) £ ' s-BBMB(14) o
Z.9° l| -©- Anytime MB O = -O- Anytime MB I
10 .
2 --g 8 2. O o-iq
S ﬂ,{%_- % 010 A
c & c e
(] 27 © -
£ 10 o < 8 £ X
z Y o =
10 : .
° »;f’/é’ 107
_3 A / -
100 O & O
10'4 - n n 10"‘ G/ n n n
0 50 100 150 200 0 50 100 150 200
Number of variables Number of variables
(a) Structured CPTs (b) Random CPTs

Figure 9.13: Scaling of solution time with varying numbevafiables for instances
with domain size2, degreet, and induced widthi 5. Results for the previous sys-
tematic algorithms Anytime MB, d-BBMB(2), d-BBMB(6), and d-BBMB(1@nd
for our algorithms ILS and GL§ both with random and MB10°) initialization.
Instances with structured CPTs (a) and randomly generated GR.T

all variants of d-BBMB grows considerably with an increasingnber of variables.
While for small problems GLSwas only about .5 orders of magnitude faster than
d-BBMB(6) and d-BBMB(10), for larger problems the difference was up to three
orders of magnitude. Since s-BBMRB)) scales roughly comparably to our SLS
algorithms, we conclude that d-BBMB also scales worse than s-BEN).

For increasing maximal domain sizes, Figure 9.14 on thevietlg page shows
that our SLS algorithms scale much better than Anytime MB, s-BiM), and s-
BBMB(14), whereas s-BBMB{) shows a scaling behaviour comparable to our SLS
algorithms and outperforms the other s-BBMB variants. Algon s-BBMBQ) is
not reported in the Figure, but it yielded the worst perfang®in this as well as
in all other experiments. GL'Scontinues to be the best-performing algorithm in
this scaling experiment. In the case of structured CPTs, ahtoif by which it
outperforms s-BBMBJ4) increases from two orders of magnitude for domain size
2 to four orders of magnitude for maximal domain sizefor random CPTs, the
factor reaches from one to three orders of magnitude. Thgimay which GLS
outperforms Anytime MB grows by approximately one order afgnitude from
domain size2 to maximal domain siz&. In previous experiments, we found d-
BBMB with low i-bounds of2 or 6 to scale comparably to our SLS algorithms,
which suggests that it scales better with increasing dorsaies than s-BBMB
does with highi-bounds. However, with highérbounds, d-BBMB did not scale

122 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Scaling with domain size - structured CPTs Scaling with domain size - random CPTs

10°

—— GLS+, rand —>— GLS+, rand
=% - GLS+, MB* =% - GLS+, MB*
10" Y ILS, rand <O 4 ILS, rand

ILS, MB* O 10" H ILS, MB*) ,9
s-BBMB(6) s-BBMB(6) o o
w1 || @ S-BBMB(10) B C R 4 o O s-BBMB(10)
2 & s-BBMB(L4) |- O L g | & s-sBMB(2) - S
= - Anyime M8 | o e 510" -O- Anytime MB | ¢y oo
G0 0 o S
c B L lx- c
8 = Sl 8
3 4 e E
2108 0 =
§-7
107
1072 3 4 5 4 5
Maximal domain size Maximal domain size
(a) Structured CPTs (b) Random CPTs

Figure 9.14: Scaling of solution time with varying maximalndain size for in-
stances witty0 variables, degre¢, and induced width 5. Results for the previous
systematic algorithms Anytime MB, d-BBMB(2), d-BBMB(6), and d-BBMB|j1
and for our algorithms ILS and GL'S both with random and ME&10°) initializa-
tion. Instances with structured CPTs (a) and randomly gései@PTs (b).

well either. We attribute this to the fact that the compuatatf the Mini-Buckets
heuristic (which both s-BBMB and d-BBMB employ) grows more coexplvith
an increasing domain size and fixedound?

For an increasing degree of the independence graph, ind=&yib on the next
page we observe a very poor scaling behaviour of s-BBMB with 4dwounds.
The performance of s-BBMB{) scales comparably to the one of our SLS al-
gorithms, whereas s-BBMB() and especially s-BBMB)) exhibit much inferior
scaling behaviour. Compared to s-BBMBYJ, s-BBMB(6) is approximately three
times faster in solving problems with maximal degBesvhereas for maximal de-
gree7, it is over an order of magnitude slower for structured CPT@ almost
three orders of magnitude slower for random CPTs. Once mdr8; @& the best-
performing algorithm in this experiment. It is consistgrabout one order of mag-
nitude faster than s-BBMB{), slightly more for structured CPTs and slighty less
for random CPTs. Previous experiments we carried out for d-BEW&wved it to
degrade rather rapidly with increasing degree foi-bibunds.

Finally, for an increasing induced width of the independegiaph, we observe
that algorithm Anytime MB degrades rapidly. We expectedcédyahis behaviour

“4Recall that MB{b) computes potentials of size up|tB|, where by D| we denote the domain
size of the variables. With higitbounds, this number quickly becomes very large yieldingglo
runtimes or even infeasibility for large domain sizes.

9.3. SCALING STUDIES 123

Scaling with degree - structured CPTs Scaling with degree — random CPTs

10°

—— GLS+, rand — GLS+, rand
-% - GLS+, MB* -%- GLS+, MB*
" ILS, rand <>) ILS, rand
10" { ILS, MB* E 10" § ILS, MB*
s-BBMB(6) s—-BBMB(6)
©) s-BBMB(10) o) s-BBMB(10)
E o |0 s-BBMB(14) £ .|| O s-BBMB(14) o
S10° § -O- Anytime MB O @ 210" | -O- Anytime MB q
5 QU SR g 9
c -7 A c
%10,17 ;(}.:,‘c,»— | %100 <O _0O-.
L} . e O @ o [5)]
= P sttas = -z Y S ¢
é: 27 O Ay -
: //
1073 L L L L L L L

3 3.5 4 4.5 5 55 6 6.5 7 3 35 4 4.5 5 55 6 6.5 7
Maximal degree Maximal degree

(a) Structured CPTs (b) Random CPTs

Figure 9.15: Scaling of solution time with varying maximalde degree for in-
stances with100 variables, domain size, and induced widthl5. Results for
the previous systematic algorithms Anytime MB, d-BBMB(2), d-BBNMB(and
d-BBMB(10); and for our algorithms ILS and GLS both with random and
MB*(10°) initialization. Instances with structured CPTs (a) and manly gen-
erated CPTs (b).

since in the worst case Anytime MB builds potentials thatexponential in the
networks’s induced width. While for small induced widthspfAnytime MB and
the (again) best-performing algorithm Gt$ave very similar runtimes, for in-
duced widths ofl0, the differences in runtime are betwe&h and five orders of
magnitude for random and structured CPTs, respectively. aMiBBMB is not
affected by the increasing induced width as badly as Anytie its runtime still
scales much worse than the one of GL&hd ILS with random initialization. This
effect is stronger for smallbounds. For instances with maximal induced wiglth
s-BBMB(6) and GLS perform almost identically, whereas for induced widith s-
BBMB(6) is about three orders of magnitude slower than GLEor s-BBMB(10),
this speed difference is two and three orders of magnitudstfactured and ran-
dom CPTs, respectively; and for s-BBMBY), the difference is approximately two
orders of magnitude.

For our SLS algorithms with initialization MB10°), the MB*(10°) initializa-
tion quickly finds optimal solutions for the low induced whdt and10. For larger
induced widths, due to its bounded size, its runtime remam®st constant which
can be seen by the fact that for induced widths higher ftsathe runtime of ILS
and GLS with MB*(10°) initialization only increases by a small margin in the
case of ILS and not at all for GL'S

124 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Scaling with induced width - structured CPTs Scaling with induced width — random CPTs

10* , . o) 10 . .)
= GLS+, rand J = GLS+, rand .
5 I| - GLs+, MB* K 5 I| - GLs+, MB*
10" ILS, rand P 10" ILS, rand P
ILS, MB* / ILS, MB* .-
2 s-BBMB(6) o > s-BBMB(6) 02

o0 1O s-BBMB(10) o o0 1O s-BBMB(10) - 3
£) s-BBMB(14) R £ - s-BBMB(14) R .
S 10" [L-©- Anytime MB @ 510! [O~ Anytime MB .9 o O
o ’ o - 3
¢} L o
810° . Q o £
I - § g8 Q- E
s ,g,_» et " st SRR =

107 e

10'2M

0° ‘ ‘ ‘ ‘ ‘ ‘ W ‘ ‘ ‘ ‘ ‘

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Maximal induced width Maximal induced width
(a) Structured CPTs (b) Random CPTs

Figure 9.16: Scaling of solution time with varying inducedith for instances with
100 variables, domain siz&, and maximal degreg Results for the previous sys-
tematic algorithms Anytime MB, d-BBMB(2), d-BBMB(6), and d-BBMB(1@d
for our algorithms ILS and GL§ both with random and MB10°) initialization.
Instances with structured CPTs (a) and randomly generated GHB-T

Previous experiments with d-BBMB showed that, like s-BBMB, thgoathm
also scales poorly with increasing induced width. For stmed CPTs, GLS out-
performs d-BBMB(¢) and d-BBMB(0) by approximately one order of magnitude
for networks with induced width and by three orders of magnitude for networks
with induced width40. For random CPTSs, these factors are approximatéiyand
three, respectively.

In summary, our scaling experiments indicate that

e for the type of instances considered here, GLS always the best-
performing algorithm and shows the best scaling behaviouall instance
characteristics;

e s-BBMB(10) and especially s-BBMBj)) scale poorly with an increasing
number of variables;

e Anytime MB, s-BBMB(10), and especially s-BBMB{) scale poorly with
an increasing domain size;

e s-BBMB(6) scales poorly with an increasing degree;

e s-BBMB scales poorly with an increasing induced width, esgdgcior small
i-bounds; and

9.3. SCALING STUDIES 125

e Anytime MB scales very poorly with an increasing induced tiwid

The scaling experiments in this section especially underihe strong perfor-
mance of our SLS algorithms for instances with high inducedtiw Furthermore,
they show that for every-bound, the previous exact algorithms s-BBMB and d-
BBMB exhibit poor scaling behaviour with some instance chiarstic. For ex-
ample, while s-BBMB{(4) seems to scale well with number of variables for other-
wise unchanged instance characteristics, it scales padtthydomain size. On the
other extreme, s-BBMBj)) scales poorly with degree of the graph and number of
variables. A compromise is s-BBMB(10), which, however, scalesse than our
new SLS algorithms with every instance characteristic weist.

In conclusion of this chapter, we note that for structurestances with many
variables and low induced width, systematic algorithme likanch and Bound
Algorithms or Anytime Mini-Buckets show very strong perfante, but that their
performance degrades rapidly with increasing inducedwiiotit causes the Mini-
Buckets heuristic with feasiblebounds to become exceedingly inaccurate.

126 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Chapter 10

Conclusions and Future Directions

In this thesis, we have developed and studied novel Stachastal Search (SLS)
algorithms for solving the Most Probable Explanation (MPE)blem in graphical

models. We use Bayesian networks as a motivating exampldsmtbaour exper-

imental evaluation, but the novel algorithms we introdueeapplicable to general
graphical models, including Markov Random Fields and fagtaphs.

SLS algorithms have been applied to the MPE problem befarethe best-
performing SLS algorithms G+StS [KD99b] and GLS [Par02]énaeen shown to
be outperformed by systematic search algorithms that auerl®ianch-and-Bound
with the Mini-Buckets heuristic [MKDO03]. However, none ofetbe previous SLS
algorithms pays sufficient attention to such important eons as algorithmic com-
plexity per search step, search stagnation, and thorougimgser tuning. In this
thesis, we removed these shortcomings of previous SLSitdigw for MPE, im-
proving their efficiency by up td orders of magnitude for non penalty-based al-
gorithms (cf. Figure 8.2 on page 93) aédrders of magnitude for penalty-based
algorithms (cf. Figure 8.6 on page 96). As demonstratederettperimental eval-
uation of Chapter 8, this enormous speedup is due to a numbsepafrate im-
provements. These include our novel caching schemes etktiailChapter 6, a
thorough parameter tuning described in Chapter 7, and thelizétion with our
new Mini-Buckets variant MB(10°) (cf. Section 4.2 on page 27).

For penalty-based algorithms, we demonstrated how thectgefunction
can be integrated into the evaluation function that is gugdhe previously best-
performing SLS algorithm GLS. This improvement led to a nelaSGrariant we
call GLS". All other components being equal, GLSubstantially outperforms
the previously best-performing SLS algorithm for MPE, GIc& (Figure 8.9 on
page 100); it is the the new state-of-the-art SLS algoritbmMPE. By introduc-
ing the first Iterated Local Search (ILS) algorithm we alsgngicantly improved

127

128 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

the state-of-the-art in non penalty-based SLS algorithigmin, all other compo-
nents being equal, ILS outperforms the previously besisp®ing non penalty-
based algorithm G+StS [KD99b] by several orders of mageiiiafl Figure 8.4 on
page 95). The performance of the penalty- and non penaitgebalgorithms GLS
and ILS is not tightly coupled and we combined both of thegerthms and our
Mini-Buckets variant MB in a new hybrid algorithm. This hybrid simply loops
through independent executions of MBLS, and GLS. MB* is called with in-
creasing bounds on maximal cluster size, and in each berdiiS and GLS are
executed for the time MBrequired to run to completion.

In Chapter 9, we demonstrated improved overall performamadgi® hybrid
algorithm when compared to our SLS algorithms ILS and GLthe systematic
search algorithm s-BBMB with optimalbound, and Anytime MB, an anytime
version of Mini-Buckets. For all these algorithms, we alsodgd the scaling
of solution time with a number of important instance chaggstics, namely the
number of variables, domain size, degree, and induced wifdine network’s in-
dependence graph. When compared to our new algorithms, s-BBithBavgmall
i-bound of6 scales poorly with an increasing number of variables, degred in-
duced width, whereas for highébounds, such af) and14, it scales poorly with
an increasing domain size and induced width. Anytime MBescaborly with an
increasing domain size and especially poorly with an irgireginduced width.

Based on our experiments, we expect our novel SLS algoritlinsutper-
form the current state-of-the-art in MPE solving for a largenber of problem
domains, especially for problem instances which exhibgdanduced widths and
domain sizes. However, we have not yet compared our algasitto loopy be-
lief propagation [Pea88], an algorithm that has recentlynagh much popular-
ity [MMC98, MWJ99]. Another interesting algorithm we plan ttudy is Graph
cuts [BVZ01]. We intend to carry out a comparison with bothhefge algorithms in
the near future and to broaden our experimental analysicctode MPE instances
from fault diagnosis in computer networks [RBM02a], computision [TFO03],
medical diagnosis [Hec90], and probabilistic decoding [BRO

Other interesting directions we see for future work in theBvilmain can be
grouped into four categories:

A better characterization of the behaviour of different MPE algorithms
In this thesis, we have studied the scaling behaviour obuarMPE algo-
rithms with a number of important instance characteristicé many more
interesting studies remain to be done. A systematic studlyeo$earch land-
scape for MPE instances from different domains may aid odetstanding
of which features make instances hard for SLS algorithmsthEtmore, a
study of empirical hardness distributions both for SLS axatealgorithms

129

may shed some light on the relation between the two apprsdohsolving
MPE.

It would also be worthwhile to further study the approachméading MPE

instances into weighted Max-SAT problems with real-valuesights, espe-
cially in order to evaluate how the results GLS for Max-SATabs on these
encodings compare to the results we achieve with GLS and"GiSthe

original MPE instances.

Further improvements of the currently best-performing SLS agorithms
Since GLS performs best in most of our experiments, a worthwhile direc
tion for future research is to improve its performance ferttwe expect that
by an adaptive version of GLiSthat controls the weighting of the penal-
ties in the evaluation function significant speedups candmeegl over the
current version of GLS. More advanced parameter tuning (for example by
employing ParamILS) for these GLS variants may also leadibstantial
improvements. We further expect that significant improvetsef ILS are
possible based on a more detailed study of its search behavio

A combination of various approaches for MPE solving
One straight-forward combination of the various approache studied in
this thesis is to employ the solution qualities found in losaarch algo-
rithms as lower bounds in systematic search algorithmsdobaseBranch-
and-Bound.

There is also a variety of possibilities to combine appreacim order to
improve the local search algorithms themselves. Since ouvelrSLS al-
gorithms ILS and GLS move through the search space in a very different
fashion, it may be possible to fruitfully combine them in agdée algorithm
that alternates phases of ILS and GL&h a single search trajectory. While
such an approach holds great promise, so far we have notrmepled it due
to the limited scope of this thesis. One particular possjbdf combining
the two approaches is to employ GLS or GL&B the pertubation phase of
ILS. This idea is based on the intuition that ILS algorithregally benefit the
most from pertubations which transform a very high-quaitjution into a
very good starting point for a local search, and that exaguELS/GLS" for

a number of steps could yield such a pertubation. GLS/GinSurn shows
a lack of greediness which might be complemented nicely byatiditional
local search phases such a hybrid of ILS and GLS/Gw8uld perform. We
would like to implement this is future work, but we expect maubtleties
to need consideration when constructing such a hybrid ihgor

130 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

Another promising idea we had was to use the strong liBorithm in the
pertubation phase of ILS. We fixed a subset of the variablesvidence and
let MB* determine the value of the rest of the variables. In ordeutrgntee
not to end up in the same local optimum again, before fixingethdence,
we flipped a few of these evidence variables. In preliminaqyegiments,
this approach performed well in terms of the number of iterst needed to
find the optimal solution, but due to the considerable comipieof MB*,
executing it in every local minimum lead to very slow runten&ixing cen-
tral variables in the network, or even cutsets of variabtesy substantially
improve the performance of this approach.

Similarly, one could perform a local search on a restricigasetW of the
variables, which could be a cutset or simply a set of centiahbles in the
network that, when conditioned on, yield low induced widfttree remain-
ing network. The extension AiV’s instantiationw to a complete variable
instantiationv could in this case be done by a subsidiary exact or approxi-
mate MPE algorithm, such as variable elimination or loopyeb@ropaga-
tion. This approach would much resemble Kask’s and Dech@B8AT+CC
algorithm for SAT [KD96] which executes a local search on ssetiof SAT
variables and optimizes the rest of the variables with aididrg specialized
local search algorithm for trees. We see much promise fdr anapproach
in the domain we studied. Due to the modularity of graphicadeis, their
variables are typically much sparser connected than intivadl SAT prob-
lems. It may thus suffice to condition on a small number ofalalgs in order
to render exact inference for all remaining variables faasi

An extension of our algorithms to more general problems
As mentioned in Section 2.3 on page 11, our SLS algorithmgradally
extensible to the more general problem of finding Ademost likely instan-
tiations (M -MPE). To our best knowledge, this has not been done so far,
and with adapted versions of our new algorithms we expedgtafantly
enhance the state-of-the-art for this important problem.

Another promising generalization of our new algorithmsisadlve the MAP
problem (cf. Section 2.3 on page 11) by applying local searcthe MAP

variables only and compute the probabiliy of their instatnins with a sub-
sidiary inference algorithm. Such a generalization coiddexample, follow
the approach taken in [PDO1], where loopy belief propagasaised to ap-
proximate the inference task.

A final very promising line of future research is not directglated to solv-
ing the MPE problem, but deals with the problem of automatadumeter tuning.

131

Since we needed to tune many parameters for our new ILS #iggrwe developed
ParamlILS, a novel approach that performs an Iterated Loeatch in parame-
ter configuration space, searching for the best-performpargmeter configuration.
Future work in this research area may involve the applioadiostatistical tests in
ParamILS in order to prevent an unnecessarily detailedystfidhe algorithm’s
performance with inferior parameter settings. Once theshieen implemented, we
can afford to perform a substantial number of runs per welfggming parameter
configuration and instance. With this improved evaluatiamction and its current
performance, we expect ParamILS to become a general awdmetcedure for
parameter tuning, applicable in any research area whereetitbto tune or fit many
discrete or discretized parameters arises.

To conclude this thesis, let us take a bird’s eye view on wieahave done. Our
motivation for studying SLS algorithms for solving MPE weveo-fold. Firstly,
due to the close similarity between MPE and Max-SAT [Par0f] the state-of-
the-art status of SLS algorithms for Max-SAT, we expectediaimgreater potential
for SLS algorithms than reported in [MKDO3], and we wantegtiady the reasons
for this discrepancy; by speeding up the state-of-thera®LS algorithms for MPE
by many orders of magnitude, we resolved the disagreemants€xond motiva-
tion was to construct an efficient anytime algorithm for MRivgg in Bayesian
networks with induced widths prohibitive for exact algbnts. As demonstrated
in our experiments, our new SLS algorithms achieve this:gbaly are inherently
anytime, yield high-quality solutions very quickly, andifEsmoothly with induced
width.

In the course of our research, we found that there are mamy iotteresting and
promising application areas for algorithms with these abtaristics, most interest-
ing of which we find early computer vision. In this researabeaithe development
of efficient algorithms is very important since hard probéeinave to be solved in
an online fashion within fractions of seconds. A variety obldems in this do-
main can be cast as solving the MPE problem in a grid-stradtpairwise Markov
Random Field, a graphical network with high induced width aftdn comparably
large domain sizes [FHO4]. The next step in our researchoeitb apply our algo-
rithms to these problems, and to compare and possibly cambem with current
state-of-the-art algorithms in the field.

132 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

Appendix A

Parameter Tuning by Iterated Local
Search in Configuration Space

The problem of tuning some algorithm’s parameters for maxkiperformance on
a class of problem instances is ubiquitious in the designeandirical analysis
of algorithms. Especially in the development of high-parimng SLS algorithms,
sometimes considerable effort is required to find a defarfumeter configuration
that yields high and stable performance across all or at haast instances of a
problem set. If there are only few parameters, it is oftencthgiest way to allow a
certain number of values for each parameter and then tryaanhbination, ocon-
figuration, of these parameter values; this approach is cdilédactorial design
However, if an algorithm has too many parameters, full faataesign is not feasi-
ble since the number of possible configurations grows expaaily in the number
of parameters. One method researchers often use in thigscasatart with the
configuration that intuitively makes most sense to them at hthe “easiest” in
some sense. From this initial configuration on, they ofteange one parameter at
a time and keep the resulting configuration if performangeroves, ending their
optimization if no change of a single parameter yields arrowement anymoré.
Having read Chapter 3 about the basic principles of Stochastial Search,
this should sound familiar. Although most researcherstmag the approach we
just described are probably not familiar with the princgpt# Local Search algo-
rithms, they actually perform a manual Local Search theweselThe search space
for this Local Search is the space of possible configuratithresobjective function
is a configuration’s performance (however it be defined),itiit&l configuration
is the one the researcher starts with, the neighbourhoodligxhange neigh-

LIn this thesis, we have applied this approach ourselvesderdo tune the parameters of GLS.
We have also applied it in previous work [HTH02, AFB4].

133

134 APPENDIX A. PARAMETER TUNING BY ITERATED LOCAL SEARCH

bourhood (changing one parameter at a time), and the setathgy is simple
first-improvement. In order not to spend our valuable timtéhlab basically ex-
ecuting a manual Local Search in configuration space, wd@ja»@ an automated
general procedure that does the job.

Given an algorithmA, its parameter set and possible discrete values for each
parameter, a set of problem instan&sand the runtime for which optimal per-
formance shall be reached, it searches for the configuratitmoptimal overall
performance on the instances®when run for timef. We will refer to algorithm
A with parameter configuratiofi and runtimet asA(C, t).

Probably the hardest part to automate is the automatica&waibuof different pa-
rameter configurations. In the tool we developed, methodsntpute and compare
objective function values are accepted as parameters thestions are called for
the evaluation of configurations during the optimizationgass such that the tool
be generally applicable. In our particular parameter ogation for MPE algo-
rithms, we compute the objective function value for a comfigjon C' by executing
a predefined number of rung of A(C,t) on each problem instance € S. For
each run, the approximation quality is recorded and whatHeund an optimal
solution or not. The objective function value is then a tupleual), representing
the ratio of successful runs, and the average approximgtiatity, respectively.
We define a configuratiofi; with objective function valuér,, qual,) to be bet-
ter than a configuratiot, with objective function valuér,, qual,) if and only if
(r1/r2 +qual, /qual)/2 > 1.2

Explicating the aforementioned approach to parametenguas a Local Search
in configuration space and automating it does not only help laziness but
also suggests the use of more powerful SLS schemes, suckeratedt Local
Search (ILS). When employing only one pass of greedy hithblng in configura-
tion space, we end up in a local optimum, from where no singtampeter change
yields an improvement. However, due to the interaction betwarious parame-
ters, it may well be that changing two or more parameters aha tesults in an
improvement. For our implementation, we chose the genexaddwork of ILS (cf.
Algorithm scheme 3.2 on page 21). The initialization pragedsimply uses the
algorithm’s default parameters if available and otheringgalizes the parameters
at random. The basic local search is greedy hill-climbihg,dcceptance criterion
accepts a new parameter configuration if and only if its dbjedunction value is

2]f most of the problem instances in a problem class can beedaéfficiently by an algorithm,
the runtime it needs to find the solution is another very Uge@asure. If most instances are solved,
one can also for example employ 0.95 quantiles to detect mwpt search stagnation.

3Due to statistical variance in the results, we experienbatidombining- andqual yielded a
more stable measure than first comparirand only in case of ties judging lmual.

135

at least as good as the previous one, and the pertubatiogeh#imree parameter
values at random. We call this automated ILS in configurajmaceParamILSand
detail it in Algorithm A.1 on page 137.

We employed ParamlLS in order to tune the parameters of daralgorithm
and describe its results in Section 7.5 on page 79. In shardnfLS found a very
well-performing parameter configuration of ILS)gparameters already in its first
iteration althouglb of the 9 parameters needed to be flipped to reach it from the
initial simple parameter configuration. This parameteffigomation remained the
best for six iterations after which ParamILS found a bepierforming one which
differs in the setting oft parameter values from the previous one. We terminated
the procedure after an additiond iterations in which it did not improve its best
parameter configuration anymore. In total, only three l@gima different from
the two very well-performing ones were encountered. Duééacbstly evaluation
of search states, the 25 iterations of ParamlILS already éo@ekCPU weekK. In
contrast to the five CPU months a full factorial design wouldehi@ken, this was
still feasible.

In order to evaluate ParamiILS further, we also tested itlopmance for tun-
ing the parameters of G+StS and GLS. These algorithms engibytwo pa-
rameters each, such that a full factorial approach to détertie global opti-
mum is feasible. In the case of G+StS, starting with a ranglothiosen ini-
tial configuration(cf,np) = (10, 20), ParamILS found the optimal configuration
(cf,np) = (2,40) in the first iteration. For GLS, starting with the originalrco
figuration(p, N,) = (200, 0.8) from [Par02], it found the parameter configuration
(p, N,) = (10000,0.99) within the first iteration which yielded much better re-
sults than the original configuratigp, N,) = (200, 0.8). When the evaluation of
a parameter configuration is done by executing exactly onernuevery instance
with a fixed seed{p, N,) = (10000, 0.99) actually yields slightly better results
than (p, N,) = (10000, 0.99); it is indeed the globally optimal parameter config-
uration in this case. However, these results are subjedgtodtatistical variance
since only one run is executed per instance. When a parantéguration is
evaluated by running the algorithm 25 runs on each instance, the globally op-
timal parameter configuratiofp, V,) = (200, 0.999) performs slightly better than
(p, N,) = (10000, 0.99).

While these results demonstrate that ParamILS quickly fihalsadly optimal
parameter configurations w.r.t. its objective functioml#o highlights the currently
biggest weakness of ParamILS. In order to quickly find optipaaameter configu-
rations with as little computational overhead as possi®éeamILS needs to imple-

4Although one CPU week is rather long, we could parallelizeuals necessary for evaluating
each of the search states, such that with eight idle CPUsktl&ss than one day.

136 APPENDIX A. PARAMETER TUNING BY ITERATED LOCAL SEARCH

ment a method to focus on high-performing parameter cordtgurs and carry out
a greater number of runs for these to reduce the statisticance inherent when
dealing with randomized algorithms.

One alternative to employing ParamILS would be to use a gaaigorithm to
remove configurations that are significantly worse thanrstbased on statistical
tests [BSPV02]. However, racing algorithms require evengls parameter con-
figuration to be run at least on a few instances, and this guiEcomes infeasible
for larger numbers of algorithm parameters as they fredyatcur in SLS al-
gorithms. Moreover, during the development of a new albatitone often allows
substantially more parameters than in the final versions iBa clear drawback for
racing algorithms for which an additional parameter withossible values results
in ad-times slower optimizatiof.

Finally, another advantage of ParamlLS is its similarityite human approach
of parameter tuning. The results of a few iterations alreadid very good intu-
itions about well-performing parameter combinations arekmvintroducing new
algorithm parameters we routinely ran a quick experimergleying shorter runs
of t = 5 CPU seconds. We also discretized the continuous paraméi&S vsing
the intuition gained from shorter runs of ParamlILS thatwadd for a much larger
number of discrete values than our final experiments.

A very promising line of future research is the combinatidriLocal Search
and statistical methods. ParamlILS could, for example, #tepevaluation of a
parameter configuration once it has gained sufficient ecieldéar the fact that it
performs significantly better or worse than the one it is aiompared to. This
may solve the problem that ParamILS currently uses equiv&eU time for the
evaluation of each parameter configuration’s performareggrdless of how well
the configuration performs. In optimization, however, tkaa performance of an
inferior parameter configuration is of much less interesnttine exact performance
of a new promising parameter configuration. The quality & liter estimate
may decide whether we actually identify the best parametefiguration, whereas
the quality of the former estimate has barely any consemseatall. Hence, the
allocation of resources should mirror our interest. Achigwhis goal would yield
a great speedup of ParamlILS since there exist many cledsypsmal parameter
configurations for whose exact evaluation ParamILS cuyesptends most of its
time.

SAlthough for our final algorithm, an optimization using nagialgorithms would have been
of comparable CPU cost as our optimization with ParamILScau@d not employ this approach
during the development of ILS. We considered using raciggrithms, but our version of ILS at
that time had five additional non-boolean parameters, ramgleacing algorithms infeasible but still
allowing for an efficient optimization with ParamILS.

137

ParamILS

This algorithm performs an Iterated Local Search in the spEossible parameter con-
figurations. For initialization, default parameters aredigor, if no default parameters are
available, the parameters are initialized at random), tiicblocal search is greedy hill-
climbing, the pertubation randomly changes 3 parametatsilae acceptance criterion only
accepts better or equal parameter configurations.

FunctioncmpCy, C2) compares two configuratiors; andCs by executingA(C1,t) and
A(Cy,t) with a fixed seed for all instances in problem Seind comparing the results as
described in the text. Previous results for the same cordfigur, time, and instance are
reused in order to prevent multiple executions of identsgleriments.

Input: Algorithm A, parameter®, parameter domaib p for eachP € P, time per rury,
setS of problem instances, functiammpcomparing two parameter configurations,
time ¢ available for parameter optimization.

Output: Parameter configuratiof with best overall performance of(C, t) found for

problem setS.

if default parameter setting availabtken

| Init C with default parameters
else
L Init C with random parameters

Ciis «+ LocalSearckC)
while runtime < tqp do
C «— Pertubatior{Cjs, 3)
C — LocalSearchC)
if Cch, Cils) > 0then Cjs +— C

© 00 N o O A W NP

10 Function LocalSearcH(C)
11 begin

12 Chest— C

13 repeat

14 Clast < Chest

15 for P € Pandp € Dp do

16 Cimp <+ Clast With P changed t@.

17 L if cmp(Cimp, Ches) > 0 then Chest — Cimp
18 until Chest= Clast

19 return Chest

20 end

21 Function Pertubation(C, strength)

22 begin

23 for i = 1..strengthdo

24 P «— Draw random parameter froff.

25 p < Draw random value fronDp \ {5}, wherep is P’s current value.
26 C «— C with P changed tg.

27 return C
28 end

138 APPENDIX A. PARAMETER TUNING BY ITERATED LOCAL SEARCH

Appendix B

Detailed experimental results

In this appendix, we present the complete results for alkegrpents for which
summary tables were presented in this thesis. For SLS #igwsj we provide
three values per instance:

Solved gives the number of runs which found quasi-optimal solutjoality for
this instance, as well as the total number of runs.

Quality avg gives the average approximation quality at the time therdlgo was
terminated. If no solution with positive probability wasufad, we print the
symbol “(-)".

Time gives the average runtime to solve the instance, that isioffaé runtime
divided by the number of successful runs. If none of the ruas successful,

we print the symbol 8c”.

For deterministic algorithms only one run is carried out.ohder to be able
to compare results for many algorithms in one table, we cesgall information
about this run into one column. Whenever a run finds the quashal solution,
we provide information in the formafihd/proof”, wherefind is the time the algo-
rithm took to find the quasi-optimal solution apobof is the time it needed to proof
optimality! If the algorithm does not proof optimality, we print the infieation as
“find/-".

For instances, for which a deterministic algorithm doesreath quasi-optimal
solution quality, we provide information in the formagt(al)”, wherequal is the
approximation quality the run reached. If no solution wittsjive probability is
found, we print “(-)".

Note that these times coincide very often. This happensxXample, if a tight upper bound on
solution quality has already been found before the solutidound.

139

140 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

In each table, for each instance we highlight the entry ob#st-performing al-
gorithm. Like in the summary tables used throughout theishdsest-performing”
is defined in terms of the percentage of successful runseicdlse of ties by the
average approximation quality, and again in the case obyigéke average runtime.
If all these measures are identical for several algorithirey are all amongst the
best-performing algorithms for this instance.

For the summary tables provided throughout the thesis xactealgorithms the
average runtime on a set of instances is computed usingtiedhiey needed to find
guasi-optimal solutions per instance, not the time theyledeo proof optimality.

G+StS
cf=15 cf=2 cf=5 cf=10 cf=100

Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality
Instance avg avg avg avg avg

alarm 25/25 | 100.00{ 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0004| 25/25 | 100.00{ 0.0008
alarm-rand | 25/25 | 100.00(0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008
barley 25/25| 100.00| 0.65 | 25/25| 100.00| 0.87 | 25/25| 100.00| 4.25 | 25/25| 100.00| 4.25 | 25/25| 100.00| 4.24
barley-rand | 25/25 | 100.00| 0.10 | 25/25| 100.00{ 0.10 | 25/25| 100.00| 0.10 | 25/25| 100.00{ 0.10 | 25/25| 100.00| 0.10
diabetes 0/25 | 6e-30| oo 0/25 | 6e-32| oo 0/25 | 3e-39| oo 0/25 | 5e-45| oo 0/25) o9

diabetes-rand 0/25 | 76.28 | oo 0/25 | 7449 | oo 0/25 | 70.29 | oo 0/25 | 69.62| oo 0/25 | 67.88 | oo
hailfinder | 25/25 | 100.00| 0.001 | 25/25 | 100.00| 0.002 | 25/25 | 100.00| 0.001 | 25/25 | 100.00| 0.002 | 25/25 | 100.00| 0.0008
hailfinder-rand 25/25 | 100.00| 0.003 | 25/25| 100.00| 0.002 | 25/25 | 100.00| 0.002 | 25/25| 100.00| 0.002 | 25/25 | 100.00| 0.002
insurance | 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008
insurance-rangl 25/25 | 100.00| 0.0004| 25/25 | 100.00| 0.0004| 25/25 | 100.00| 0.0004| 25/25 | 100.00| 0.0004| 25/25 | 100.00| 0.0004
link 0/25 | 0.50 00 0/25 | 0.50 00 0/25 | 0.50 oo 0/25 | 0.50 00 0/25 | 0.50 oo
link-rand 0/25 | 3477 | oo 0/25 | 3334 | o 0/25 | 30.37 | oo 0/25 | 28.00 | oo 0/25 | 2143 | oo
mildew 25/25| 100.00{ 0.03 | 25/25| 100.00| 0.03 | 25/25| 100.00| 0.03 | 25/25| 100.00| 0.03 | 25/25| 100.00| 0.03
mildew-rand | 25/25 | 100.00| 0.004 | 25/25 | 100.00| 0.003 | 25/25| 100.00| 0.004 | 25/25 | 100.00| 0.004 | 25/25 | 100.00| 0.004
muninl 25/251100.00f 0.21 | 25/25| 100.00| 0.21 | 25/25| 100.00{ 0.21 | 25/25| 100.00| 0.21 | 25/25| 100.00| 0.21
muninl-rand| 0/25 | 28.58 | oo 0/25 | 29.73| oo 0/25 | 28.17| oo 0/25 | 26.90| oo 0/25 | 2852 | oo
munin2 25/25| 100.00| 0.74 | 25/25|100.00| 0.74 | 25/25| 100.00{ 0.74 | 25/25|100.00| 0.74 | 25/25| 100.00| 0.81
munin2-rand| 0/25 | 97.43 | oo 0/25 | 97.43 | oo 0/25 | 97.43| oo 0/25 | 97.43| oo 0/25 | 9743 | oo
munin3 25/25| 100.00| 0.82 | 25/25|100.00| 1.03 | 25/25| 100.00{ 0.82 | 25/25| 100.00| 0.82 | 25/25| 100.00| 0.81
munin3-rand| 0/25 | 61.26 | oo 0/25 | 59.87 | oo 0/25 | 58.79 | oo 0/25 | 5756 | oo 0/25 | 57.31| oo
munin4 0/25 | 0.003| oo 0/25 | 0.005| oo 0/25 | 0.005| oo 0/25 | 0.005| oo 0/25 | 0.004 | oo
munin4-rand| 0/25 | 8.15 00 0/25 | 8.16 00 0/25 | 8.02 o0 0/25 | 8.07 00 0/25 | 7.91 o0
pigs 25/25|100.00{ 0.10 | 25/25| 100.00| 0.10 | 25/25| 100.00{ 0.10 | 25/25| 100.00| 0.11 | 25/25| 100.00| 0.10
pigs-rand | 24/25| 99.82 | 37.37 | 23/25| 99.63 | 44.03 | 15/25| 97.42 | 105.07| 10/25| 96.06 | 204.25 0/25 | 80.29 | oo
water 25/25] 100.00| 0.003| 25/25| 100.00| 0.003| 25/25 | 100.00| 0.003 | 25/25 | 100.00| 0.003 | 25/25 | 100.00| 0.003
water-rand | 25/25 | 100.00{ 0.05 | 25/25| 100.00| 0.05 | 25/25| 100.00| 0.05 | 25/25| 100.00| 0.05 | 25/25| 100.00| 0.05

Time

Table B.1: Results of G+StS with initialization MBL0®), noise probabilitynp = 40, and varying cutoff factocf on
problem sebnrep . All algorithms are rure5 times for100 CPU seconds each. Summarized in Table 7.1 on page 69.

T

G+StS
cf=1.5 cf=2 cf=5 cf=10 cf=100
Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality Time
Instance avg avg avg avg avg

z100v3d5iwl0-rand 25/25 | 100.00| 0.02 | 25/25| 100.00| 0.02 | 25/25|100.00| 0.02 | 25/25|100.00| 0.02 | 25/25| 100.00{ 0.02
z100v3d5iwl10-stru¢ 16/25 | 82.62 | 96.88 | 22/25| 93.03 | 42.47 | 25/25| 100.00| 13.91 | 25/25| 100.00| 13.62 | 25/25| 100.00| 13.49
z100v3d5iw20-rand 25/25 | 100.00| 0.23 | 25/25| 100.00/ 0.23 | 25/25|100.00| 0.24 | 25/25|100.00| 0.24 | 25/25|100.00{ 0.24
2100v3d5iw20-stru¢ 25/25 | 100.00| 7.38 | 25/25|100.00| 4.70 | 25/25|100.00| 5.03 | 25/25|100.00| 5.04 | 25/25| 100.00| 5.01
z100v6d5iwl0-rand 1/25 | 62.69 |2490.57| 2/25 | 67.69 |1203.71 4/25 | 75.92 | 552.76| 2/25 | 68.85 |1170.21] 4/25 | 78.79 | 581.28
z100v6d5iwl0-stru¢c 0/25 | 26.74 oo 0/25 | 29.60 oo 0/25 | 21.81 oo 0/25 | 31.18 oo 1/25 | 26.83 |2469.79
z100v6d5iw20-rand 0/25 | 32.27 oo 0/25 | 32.14 oo 0/25 | 31.97 oo 0/25 | 34.21 oo 0/25 | 32.33 oo
z100v6d5iw20-stru¢c 0/25 | 9.30 oo 1/25 | 21.64 |2478.36 1/25 | 24.34 |2468.81] 1/25 | 14.60 |2442.19 0/25 | 22.70 oo
z200v3d5iwl0-rand 0/25 | 74.26 oo 0/25 | 71.62 oo 0/25 | 66.04 oo 0/25 | 63.72 oo 0/25 | 60.49 oo
z200v3d5iw10-stru¢ 25/25 | 100.00| 9.75 | 25/25|100.00| 11.50 | 25/25| 100.00| 22.22 | 16/25| 88.11 | 92.92 | 3/25 | 65.89 | 797.01
z200v3d5iw20-rand 0/25 | 19.55 00 0/25 | 24.95 00 0/25 | 31.44 00 0/25 | 27.95 oo 0/25 | 28.92 o0
z200v3d5iw20-stru¢ 0/25 | 0.77 0o 0/25 | 0.89 oo 0/25 | 0.60 oo 0/25 | 0.55 oo 0/25 | 0.44 oo
z200v6d5iwl0-rand 0/25 | 1.36 oo 0/25 | 1.12 oo 0/25 | 0.96 oo 0/25 | 0.79 oo 0/25 | 0.45 oo
z200v6d5iw10-stru¢ 0/25 | 0.008 oo 0/25 | 0.007 oo 0/25 | 0.004 oo 0/25 | 0.001 oo 0/25 | 2e-06 oo
z200v6d5iw20-rand 0/25 | 0.13 oo 0/25 | 0.48 oo 0/25 | 0.47 oo 0/25 | 0.36 oo 0/25 | 0.44 oo
z200v6d5iw20-stru¢ 0/25 | 3e-06 oo 0/25 | 2e-06 oo 0/25 | 4e-07 oo 0/25 | 3e-07 oo 0/25 | 8e-07 oo
z400v3d5iwl0-rand 25/25 | 100.00| 0.46 | 25/25|100.00| 0.49 | 25/25|100.00| 0.48 | 25/25|100.00| 0.48 | 25/25| 100.00{ 0.48
z400v3d5iwl10-stru¢ 2/25 | 44.56 |1205.84 2/25 | 43.82 |1205.45 0/25 | 25.57 oo 0/25 | 18.02 oo 0/25 | 6.82 oo
z400v3d5iw20-rand 0/25 | 19.52 oo 0/25 | 17.02 oo 0/25 | 14.30 oo 0/25 | 12.77 oo 0/25 | 9.38 oo
z400v3d5iw20-stru¢ 0/25 | 1.40 oo 0/25 | 1.18 oo 0/25 | 0.73 oo 0/25 | 0.69 oo 0/25 | 0.45 oo
z400v6d5iw10-rand 0/25 | 0.02 00 0/25 | 0.01 00 0/25 | 0.01 0 0/25 | 0.008 o 0/25 | 0.001 oS
z400v6d5iw10-stru¢ 0/25 | 4e-22 00 0/25 | 3e-22 00 0/25 | 2e-22 0 0/25 | 2e-23 o 0/25 | 3e-23 oo
z400v6d5iw20-rand 0/25 | 0.56 00 0/25 | 0.47 0o 0/25 | 0.33 oo 0/25 | 0.26 oo 0/25 | 0.05 oo
z400v6d5iw20-stru¢ 0/25 | 7e-09 0o 0/25 | 5e-09 oo 0/25 | 8e-10 oo 0/25 | 3e-10 oo 0/25 | 3e-13 oo

A4

Table B.2: Results of G+StS with initialization MBL0®), noise probabilitynp = 40, and varying cutoff factocf on
problem segen. All algorithms are rur25 times for100 CPU seconds each. Summarized in Table 7.2 on page 69.

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

G+StS

np=5 np =10 np =20 np =30 np =40 np =50
Solved Quality Time {Solved Quality Time {Solved Quality Time Solve%Quallty Time Solve% Quality Time |Solved Quality Time
Instance avg avg avg avg avg avg

alarm 25/25|100.000.0008 25/25|100.000.0008 25/25|100.000.0008 25/25|100.00,0.0008 25/25| 100.000.0004 25/25|100.00/0.0008
alarm-rand | 25/25|100.000.0008 25/25|100.00/0.0008 25/25|100.000.0008 25/25|100.00/0.0008 25/25|100.000.000§ 25/25|100.00,0.0008
barley 25/25|100.00 2.39 | 25/25|100.00 1.10 | 25/25|100.00 0.71 | 25/25|100.00 0.77 | 25/25|100.00 1.13 | 25/25|100.00 1.45
barley-rand | 25/25{100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10
diabetes | 0/25 | (-) oo | 0/25 | 4e-26| oo | 0/25| 1le-25| oo | 0/25 | 3e-27| oo | 0/25| 8e-32| oo | 0/25 | 4e-44| o
diabetes-rand 0/25 | 75.01| oo | 0/25| 78.34| oo | 0/25| 78.35| oo | 0/25| 75.62| oo | 0/25| 72.99| oo | 0/25| 71.33| oo
hailfinder | 25/25|100.00 0.002| 25/25|100.00 0.002| 25/25|100.00 0.002| 25/25|100.00 0.001| 25/25|100.00 0.001| 25/25|100.00 0.002
hailfinder-rangl 25/25| 100.00 0.003| 25/25|100.00 0.002| 25/25|100.00 0.002| 25/25|100.00 0.002| 25/25|100.00 0.003| 25/25|100.00 0.002
insurance | 25/25|100.000.0008 25/25|100.000.0008 25/25| 100.000.0004 25/25|100.00/0.0004 25/25|100.00[0.0008 25/25|100.00/0.0008
insurance-rand25/25| 100.00/0.0004 25/25|100.00/0.0004 25/25|100.00/0.0004 25/25|100.000.0004 25/25|100.000.0004 25/25|100.00/0.0004
link 0/25| 050 | oo | 0/25| 050 | oo | 0/25| 050 | oo | 0/25| 050 | co | 0/25| 050 | co | 0/25| 050 | oo
link-rand 0/25 | 28.16| oo | 0/25|3141| oo | 0/25|32.23| oo | 0/25|32.45| oo | 0/25|32.49| oo | 0/25| 33.37| oo
mildew 25/25|100.00 0.03 | 25/25|100.00 0.03 | 25/25|100.00 0.03 | 25/25|100.00 0.03 | 25/25|100.00 0.03 | 25/25|100.00 0.03
mildew-rand | 25/25|100.00 0.004| 25/25|100.00 0.004| 25/25|100.00 0.004| 25/25|100.00 0.004| 25/25|100.00 0.004| 25/25|100.00 0.004
muninl 25/25|100.00 0.20 | 25/25|100.00 0.20 | 25/25]{100.00 0.21 | 25/25|100.00 0.20 | 25/25|100.00 0.21 | 25/25|100.00 0.20
muninl-rand| 0/25 | 22.54| oo | 0/25 | 23.44| oo | 0/25|30.02| oo | 0/25|30.79| oo | 0/25|29.74| oo | 0/25| 27.23| oo
munin2 25/25|100.00 0.81 | 25/25|100.00 0.74 | 25/25/100.00 0.75 | 25/25(100.00 0.75 | 25/25|100.00 0.81 | 25/25|100.001 0.81
munin2-rand| 0/25 | 97.43| oo | 0/25|97.43| oo | 0/25|97.43| oo | 0/25|97.43| oo | 0/25| 97.43| oo | 0/25 | 97.43| oo
munin3 25/25|100.00 0.82 | 25/25|100.00 0.76 | 25/25/100.00 0.82 | 25/25|100.00 0.81 | 25/25(100.00 1.02 | 25/25|100.001 0.81
munin3-rand| 0/25 | 59.82| oo | 0/25| 61.99| oo | 0/25|64.01| oo | 0/25|60.33| oo | 0/25| 61.16| oo | 0/25 | 57.31| oo
munin4 0/25 | 0.003| oo | 0/25| 0.003| oo | 0/25| 0.005| oo | 0/25|0.004| oo | 0/25|0.004| oo | 0/25| 0.003| oo
munind-rand| 0/25 | 8.00 | oo | 0/25| 807 | oo | 0/25| 815 | oo | 0/25| 822 | oo | 0/25| 813 | oo | 0/25| 801 | oo
pigs 25/25|100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10 | 25/25|100.00 0.10
pigs-rand | 8/25 | 93.16 (235.08 13/25| 96.47|122.11 23/25| 99.39 | 38.12| 22/25| 99.50| 41.27| 23/25| 99.66 | 47.61| 22/25| 99.55| 46.07
water 25/25|100.00 0.003| 25/25|100.00 0.003| 25/25|100.00 0.003| 25/25|100.00 0.003| 25/25|100.00 0.003| 25/25|100.00 0.003
water-rand | 25/25|100.00 0.05 | 25/25|100.00 0.05 | 25/25|100.00 0.04 | 25/25|100.00 0.05 | 25/25|100.00 0.05 | 25/25|100.00 0.05

Table B.3: Results of G+StS with initialization MBL0°), cutoff factorcf = 2, and varying noise probabilityp on
problem sebnrep . All algorithms are rure5 times for100 CPU seconds each. Summarized in Table 7.3 on page 69.

evt

G+StS
np=5 np =10 np =20 np =30 np =40 np =50
Solve% Quality Time |Solved Quality Time |Solved Quality Time |Solved Quality Time |Solved Quality Time |Solved Quality Time
Instance avg avg avg avg avg avg

z100v3d5iw10-ranfi25/25{100.00 0.02 | 25/25/100.00 0.02 | 25/25{100.00 0.02 |25/25|100.00 0.02 |25/25|/100.00 0.02 |25/25|100.00 0.02
z100v3d5iw10-struc 2/25 | 42.03|1200.68 7/25 | 55.56 | 310.84| 9/25 | 65.11| 214.93| 22/25| 93.40| 38.79 | 25/25|100.00 29.76 | 22/25| 93.57 |47.60
z100v3d5iw20-ranfi25/25{100.000 0.23 | 25/25/100.00 0.23 | 25/25|100.00 0.24 |25/25|100.00 0.24 | 25/25|/100.00 0.24 | 25/25|100.00 0.24
z100v3d5iw20-struic 8/25 | 81.46 | 253.81| 22/25| 97.53| 48.49 | 25/25|100.00 13.99 | 25/25|100.00 7.41 |25/25|/100.00 5.86 |25/25|100.00 4.63

z100v6d5iw10-rangd 0/25 | 14.90| oo 0/25 | 31.90| oo 1/25 | 49.86|2417.84 0/25 | 61.07| oo 3/25 | 64.93| 787.52| 0/25 | 56.41| oo
2100v6d5iw10-struc 0/25 | 5.56 00 0/25 | 26.90| oo 1/25 | 22.85|2426.35 0/25 | 32.28| oo 0/25 | 20.40| oo 0/25 | 14.17| oo
z100v6d5iw20-rangd 0/25 | 8.58 00 0/25] 16.83| oo 0/25] 25.39| oo 0/25]29.10| oo 0/25| 32.08| oo 0/25 | 27.39| oo
z100v6d5iw20-struic 0/25 | 0.003| oo 0/25| 0.32 00 0/25 | 5.49 00 0/25 | 16.46| oo 2/25 | 24.59|1208.47 0/25 | 8.75 | oo

z200v3d5iw10-ranf 0/25 | 63.28| oo 0/25| 70.23| oo 0/25 | 73.54| oo 0/25 | 68.71| oo 0/25 | 73.29| oo 0/25 | 68.48| oo
z200v3d5iw10-struc25/25|100.00 19.99 | 25/25|100.00 13.85 | 25/25|100.00 16.80 | 25/25|100.00 14.83 | 25/25|100.00| 17.94 | 25/25|100.00/19.58
z200v3d5iw20-rang 0/25 | 7.07 00 0/25 | 11.39| oo 0/25 | 14.57| oo 0/25] 20.92| oo 0/25 | 26.63| oo 0/25 | 31.50| oo
z200v3d5iw20-struic 0/25 | 0.27 00 0/25 | 0.38 00 0/25| 0.76) 0/25| 0.63 00 0/25 | 0.85 00 0/25| 0.61 | oo

z200v6d5iw10-rangd 0/25 | 1.18 00 0/25 | 1.45 00 0/25 | 1.65 00 0/25 | 1.53 oo 0/25 | 1.22 00 0/25 | 0.89 | oo
z200v6d5iw10-struc 0/25 | 0.008| oo 0/25 | 0.01 00 0/25 | 0.01 00 0/25 | 0.009| oo 0/25 | 0.008| oo 0/25 | 0.003| oo
z200v6d5iw20-rand 0/25 | 0.002| oo 0/25 | 0.008| oo 0/25 | 0.05 0o 0/25| 0.17 o) 0/25 | 0.31 00 0/25 | 0.32 | oo
z200v6d5iw20-struc 0/25 | 6e-13| oo 0/25 | 4e-08| oo 0/25 | 6e-07| oo 0/25 | 9e-07| oo 0/25 | 1e-06| oo 0/25 | 5e-07| oo

7400v3d5iw10-ranfi25/25] 100.00 0.49 | 25/25]100.00, 0.49 | 25/25|100.00 0.49 | 25/25|100.00 0.48 | 25/25]100.00 0.46 | 25/25|100.00 0.49
Z400v3d5iw10-struc 1/25 | 25.00 |2407.07 2/25 | 42.00 |1177.24 2125 | 47.17|1163.41 1/25 | 47.46|2434.4¢ 4125 | 46.76 | 586.75| 0/25 | 39.31| oo
Z400v3d5iw20-ranfl 0/25 | 15.17| oo | 0/25 | 17.83| oo | 0/25 | 18.14| oo | 0/25| 19.12| oo | 0/25 | 18.95| oo | 0/25 | 17.44| oo
Z400v3d5W20-struc 0725 | 0.99 | oo | 0/25 | 1.34 | oo | 0/25] 1.69 | oo | 0/25 | 1.41 | oo | 0/25 | 1.28 | oo | 0/25| 1.30 | oo
Z400V6d5iw10-ranfl 0/25 | 0.008] oo | 0/25| 001 | oo | 025 0.01 | oo | 0/25] 0.0 | oo | 0/25] 0.01 | oo | 0/25] 0.009] oo
Z400V6d5WI0-StUc0/25 | () | oo | 025 | () | oo | 0/25 | 2e-23| oo | 0/25 | 2624| oo | 0/25 | 26-23| oo | 0/25 | 3e-21| oo
Z400v605iw20-ranfl 0/25 | 0.47 | oo | 0/25 | 0.64 | oo | 0/25| 0.73 | oo | 0/25| 051 | oo | 0/25| 043 | oo | 0/25| 0.28 | oo
Z400V6d5W20-struc 0725 | 3e-09| oo | 0/25 | 3e-09| oo | 0/25 | 3e-09| oo | 0/25 | 26-08| oo | 0/25 | 56-09| oo | 0/25 | 1e-09| oo

Table B.4: Results of G+StS with initialization MBL0O®), cutoff factorcf = 2, and varying noise probabilitgp on
problem segen. All algorithms are rur25 times for100 CPU seconds each. Summarized in Table 7.4 on page 70.

144"

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

GLS

p=07 p=08 p=09 p=0.99 p=0.999 p=1.00
alit) ali . ali . ality| _. ali) alit .
Solve%Qu Y Time Solvec{Qu Ity Time Solve%Qu ' Time Solve%Qu Y Time Solvec{Qu Ity Time SolvedQu Y Time
Instance avg avg avg avg avg avg

alarm 25/25/100.00 0.001 | 25/25|100.00 0.001| 25/25|100.00 0.002 | 25/25|100.00 0.002| 25/25|100.00 0.001 | 25/25|100.00 0.002
alarm-rand | 25/25/100.00 0.01 | 25/25/100.00 0.009| 25/25/100.00 0.01 |25/25(100.00 0.01 | 25/25|100.00 0.01 |25/25|100.00 0.009
barley 0/25| 1.03 00 0/25 | 12.50| oo | 0/25| 48.00| oo |25/25{100.00 1.36 | 25/25/100.00 1.29 |25/25/100.00 1.08
barley-rand | 0/25 | 16.07| oo 0/25 | 27.19| oo | 0/25| 33.43| oo 3/25 | 78.83|751.41 25/25/100.00 10.56 | 25/25{100.00 7.98
diabetes | 0/25 |4e-162 oo 0/25 |2e-143 oo | 0/25|5e-112 oo 0/25| 1e-38| oo | 0/25]| 6e-07| oo 0/25| 0.04 00
diabetes-rang 0/25 | 4e-48| oo 0/25 | 4e-45| oo | 0/25| 3e-39| oo 0/25 | 8e-25| oo | 0/25]| 1e-20| oo 0/25 | 3e-11| oo
hailfinder | 25/25/100.00 0.03 | 25/25/100.00 0.02 | 25/25/100.00 0.02 | 25/25|100.00 0.02 | 25/25|100.00 0.02 | 25/25|100.00 0.02
hailfinder-rand 1/25 | 94.95|2452.63 15/25| 99.09|103.67 25/25/100.00 3.94 |25/25|100.00 0.22 | 25/25/100.00 0.19 |25/25|100.00 0.16
insurance | 25/25/100.00 0.001 | 25/25|100.000.0008 25/25|100.00 0.001 | 25/25|100.00 0.001| 25/25|100.00 0.0008| 25/25|100.00 0.001
insurance-rand25/25(100.00) 0.007 | 25/25|100.00 0.006| 25/25|100.00/ 0.008 | 25/25|100.00 0.007| 25/25|100.00 0.008 | 25/25|100.00 0.007
link 25/25/100.00 0.32 | 25/25|100.00 0.31 | 25/25|100.00 0.26 | 25/25|100.00 0.32 | 25/25|100.00 0.32 | 25/25|100.00 0.34
link-rand | 0/25 | 1e-20| oo 0/25 | 1e-18| oo | 0/25| 9e-13| oo 0/25| 0.74 | oo | 1/25| 84.47|2484.21 3/25 | 88.08 | 816.32
mildew 0/25 | 34.22| oo 0/25 | 47.06| oo | 2/25 | 82.32|1173.79 25/25/100.00 9.94 | 25/25|100.00 7.32 | 25/25|100.00 7.39
mildew-rand| 0/25 | 84.61| oo 4/25 | 88.83|565.53 25/25/100.00 3.74 | 25/25{100.00 0.70 | 25/25|/100.00 0.52 | 25/25|100.00 0.48
muninl 0/25 | 27.44| oo 0/25 | 71.67| oo |25/25/100.00 21.47 | 25/25{100.00 2.94 | 25/25]/100.000 1.56 |25/25|100.00 0.88
muninl-rand| 0/25 | 2e-10| oo 0/25| 3e-09| oo | 0/25]| 2e-06| oo 0/25| 2.61 | oo |17/25| 99.65|108.58| 25/25|100.00 27.09
munin2 0/25 |3e-123 oo 0/25 | 2e-94| oo | 0/25| 9e-32| oo 0/25 | 86.13| oo |11/25| 98.76| 216.65| 21/25| 99.86 | 87.89
munin2-rand| 0/25 |9e-101] oo 0/25 | 4e-94| oo | 0/25]| 2e-88| oo 0/25 | 1e-43| oo | 0/25]| 9e-14| oo 0/25 | 4e-08| oo
munin3 0/25 |1le-117 oo 0/25 | 1e-88| oo | 0/25| 2e-60| oo 0/25 | 3e-05| oo | 0/25| 0.71 00 0/25 | 0.89 00
munin3-rand| 0/25 |2e-112] oo 0/25 |2e-107 oo | 0/25| 1e-98| oo 0/25 | 2e-47| oo | 0/25]| 3e-17| oo 0/25 | 4e-12| oo
munin4 0/25 |2e-11§ oo 0/25 |5e-102 oo | 0/25| 1e-84| oo 0/25 | 12.64| oo | 0/25| 79.97| oo 2/25 | 72.83|1228.32
munind-rand| 0/25 |2e-110 oo 0/25 |4e-10§ oo | 0/25| 2e-95| oo 0/25 | 2e-48| oo | 0/25| 5e-18| oo 0/25 | 1e-10| oo
pigs 0/25 | 7e-19| oo 0/25| 0.001| oo | 0/25| 0.01 oo | 25/25(100.00 0.88 | 25/25/100.00 0.77 |25/25/100.00 0.62
pigs-rand | 0/25| 0.009| oo 0/25| 0.06 | oo | 0/25| 0.50) 0/25 | 81.97| oo |25/25/100.00 26.70 | 25/25]/100.00 23.04
water 25/25(100.00 0.002 | 25/25|100.00 0.001| 25/25{100.00 0.002 | 25/25|100.00 0.002| 25/25|100.00 0.002 | 25/25|100.00 0.002
water-rand | 25/25/100.00 0.10 | 25/25/100.00 0.10 | 25/25/100.00 0.16 |25/25/100.00 0.16 | 25/25/100.00 0.14 | 25/25/100.00 0.09

Table B.5: Results of GLS with smoothing interve), = 200 and varying smoothing factgron problem sebnrep .
All algorithms are rur25 times for100 CPU seconds each. Summarized in Table 7.5 on page 72.

14!

GLS
p=0.7 p=0.8 p=0.9 p=0.99 p=0.999 p=1.00

SolvedQuallty Time SolvedQuallty Time SolvedQuallty Time SolvecQuallty Time SolvedQuallty Time SolvedQuallty
Instance avg avg avg avg avg avg

z100v3d5iw10-ranf25/25(100.00 12.88 | 25/25/100.00 0.71 |25/25/100.00 0.19 | 25/25/100.00 0.23 | 25/25/100.00 0.27 |25/25{100.00 0.19
z100v3d5iw10-struc25/25] 100.000 0.10 | 25/25[100.000 0.06 | 25/25]/100.00 0.05 |25/25[100.00 0.05 | 25/25[100.00 0.06 | 25/25/100.00 0.07
z100v3d5iw20-ran@d25/25|100.00 13.92 | 25/25|100.00 1.70 | 25/25|100.00 0.38 | 25/25|100.00 0.14 | 25/25|100.00 0.15 | 25/25|100.00 0.15
z100v3d5iw20-struc25/25] 100.000 0.69 | 25/25[100.000 0.30 | 25/25]100.00 0.10 |25/25[100.00 0.11 | 25/25[100.000 0.09 | 25/25/100.00 0.11

z100v6d5iw10-rand 0/25 | 44.79| oo 0/25 | 52.15| oo 0/25 | 55.28| oo |25/25/100.000 7.40 | 25/25|100.00 6.57 |24/25| 99.72| 12.58
z100v6d5iw10-struc25/25]100.000 1.93 | 25/25[100.000 0.80 |[25/25]100.00 0.30 |25/25[100.00 0.24 | 25/25[100.000 0.24 | 25/25/100.00 0.29
2100v6d5iw20-rand 0/25 | 4.09) 0/25| 7.30 00 0/25 | 17.07| oo |23/25] 98.78|34.82| 25/25/100.000 6.89 |25/25|100.00 7.69
z100v6d5iw20-struc 8/25 | 81.99] 251.82] 25/25/100.00 27.69 [25/25]/100.000 5.09 | 25/25[100.00 0.93 | 25/25[100.000 1.66 | 24/25| 99.73| 7.24

z200v3d5iw10-rand 0/25 | 46.86| oo 0/25 | 74.89| oo 2/25 | 94.79]1216.84 25/25|100.00 19.58| 25/25|100.00 17.05 | 22/25| 99.69| 40.18
ZZOOVSdSinO—Struk:O/ZS 72.39| oo |12/25| 95.33| 147.62| 25/25(100.00 3.31 | 25/25]100.00/ 0.40 | 25/25|100.00 0.34 | 25/25|100.00 0.44
z200v3d5iw20-rand 0/25 | 21.97| oo 0/25 | 32.99| oo 0/25 | 63.44| oo |24/25] 99.86|37.29| 24/25| 99.84 | 33.44 | 16/25| 97.44| 74.01
2200v3d5iw20-struk: 1/25 | 69.61 (2404.11 2/25 | 87.07|1175.07 25/25|100.000 2.02 | 25/25|100.00 0.48 | 25/25|100.00 0.48 | 25/25|100.00 0.63

z200v6d5iw10-rangd 0/25 |0.0003 oo 0/25 {0.0009 oo 0/25 | 0.008| oo 0/25 | 17.75| oo | 0/25| 70.47| oo 1/25 | 64.59|2439.31
z200v6d5iw10-struc 0/25 | 41.55[oo 0/25 | 53.98| oo 1/25 | 99.42|2415.36 25/25/100.00 1.97 | 25/25|100.000 1.62 |25/25|100.00 2.06
z200v6d5iw20-rand 0/25 | 2e-06| oo 0/25 | 1e-05| oo 0/25 |0.0003 oo 0/25 | 243 | oo | 1/25| 56.83|2452.50 0/25 | 44.55| oo

z200v6d5iw20-struc 0/25 | 5e-05[oo 0/25 | 0.007| oo 0/25 | 1.26 oo | 23/25| 96.96 | 40.21| 18/25| 82.38| 70.14 | 13/25| 67.25| 109.79

z400v3d5iw10-rand 0/25 | 0.02 00 0/25 | 0.09 00 0/25| 1.44 00 4/25 | 94.04 |568.37 18/25| 98.48 | 83.38 | 14/25| 97.23 | 109.80
z400v3d5iw10-struc 0/25 | 1.80 00 0/25 | 8.16 00 0/25 | 55.81| oo |25/25/100.00 14.11| 25/25{100.00| 19.41 | 21/25| 99.20| 41.87
z400v3d5iw20-rand 0/25 | 0.15 00 0/25| 0.15 00 0/25 | 1.04 00 0/25|68.31| oo | 0/25|83.11| oo 1/25 | 79.74|2445.11
z400v3d5iw20-struc 0/25 | 0.29 00 0/25 | 0.57 00 0/25 | 5.81 00 9/25 | 94.01|233.14 12/25| 94.07| 150.35| 8/25 | 83.32 | 247.34

z400v6d5iwl10-rand 0/25 | 8e-14| oo 0/25 | 5e-13| oo 0/25 | 7e-12| oo 0/25 | 0.002| oo | 0/25| 14.01| oo 0/25 | 14.44| oo
Z400V6d5inO-Strukz 0/25 | 4e-09| oo 0/25 | 1e-06| oo 0/25 {0.0002 oo 0/25 | 53.80| oo | 1/25| 82.87(2496.85 1/25 | 62.76|2456.27
z400v6d5iw20-rand 0/25 | 3e-15| oo 0/25 | 2e-13| oo 0/25 | 2e-11| oo 0/25| 0.01 | oo | 1/25]| 40.89(2477.871 2/25 | 38.45|1161.35
z400v6d5iw20-struc 0/25 | 5e-07[oo 0/25 | 3e-05| oo 0/25 | 0.003| oo 0/25 | 63.73| oo | 0/25| 69.75| oo 0/25 | 56.55| oo

Time

Table B.6: Results for GLS with smoothing intervg} = 200 and varying smoothing fact@gron problem segen. All
algorithms are ru5 times for100 CPU seconds each. Summarized in Table 7.6 on page 72.

vt

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

GLS with p = 0.999
N, =50 N, =200 N, =1000 N, = 10000 N, =00

li li li li li
Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality
Instance avg avg avg avg avg

alarm 25/25|100.00| 0.002 | 25/25| 100.00| 0.001 | 25/25 | 100.00| 0.0004| 25/25 | 100.00| 0.001 | 25/25| 100.00| 0.002
alarm-rand | 25/25| 100.00| 0.01 | 25/25| 100.00| 0.01 | 25/25| 100.00| 0.009 | 25/25 | 100.00| 0.009 | 25/25| 100.00| 0.009
barley 25/25|100.00| 1.12 | 25/25|100.00| 1.38 | 25/25| 100.00| 1.32 | 25/25| 100.00{ 1.07 | 25/25| 100.00| 1.00
barley-rand | 11/25| 96.77 | 176.20| 25/25 | 100.00| 10.46 | 25/25| 100.00{ 9.98 | 25/25| 100.00| 11.66 | 25/25| 100.00| 6.81
diabetes 0/25 | 3e-23 oo 0/25 | 2e-07| oo 0/25 | 0.22 oo 0/25 | 1.18 oo 0/25 | 0.22 oo
diabetes-rand 0/25 | 1e-22) 0/25 | 5e-21| oo 0/25 | 2e-17| oo 0/25 | 9e-16 [eS) 0/25 | 1e-09| oo
hailfinder 25/25|100.00| 0.02 | 25/25|100.00| 0.02 | 25/25| 100.00| 0.02 | 25/25| 100.00{ 0.02 | 25/25| 100.00| 0.02
hailfinder-rand 25/25 | 100.00{ 0.22 | 25/25| 100.00{ 0.18 | 25/25| 100.00| 0.20 | 25/25| 100.00| 0.16 | 25/25|100.00| 0.15
insurance | 25/25| 100.00| 0.0008| 25/25 | 100.00| 0.001 | 25/25 | 100.00(0.0008| 25/25 | 100.00| 0.001 | 25/25 | 100.00| 0.0008
insurance-rang 25/25 | 100.00| 0.008 | 25/25 | 100.00(0.007 | 25/25 | 100.00| 0.006 | 25/25| 100.00| 0.006 | 25/25| 100.00| 0.006
link 25/25|100.00| 0.30 | 25/25|100.00| 0.28 | 25/25| 100.00| 0.28 | 25/25| 100.00{ 0.30 | 25/25| 100.00| 0.32
link-rand 0/25 | 37.89 0o 0/25 | 71.63| oo 5/25 | 88.14 |482.81| 11/25| 94.40 | 199.93| 8/25 | 88.13 |284.37|
mildew 25/25|100.00| 8.32 | 25/25|100.00| 7.44 | 25/25| 100.00| 6.59 | 25/25| 100.00 11.60 | 25/25| 100.00| 7.84
mildew-rand | 25/25 | 100.00| 0.76 | 25/25| 100.00| 0.50 | 25/25|100.00{ 0.51 | 25/25| 100.00{ 0.43 | 25/25| 100.00| 0.51
muninl 25/25|100.00| 2.02 | 25/25|100.00| 1.52 | 25/25|100.00| 1.17 | 25/25| 100.00{ 0.85 | 25/25| 100.00| 0.85
muninl-rand| 0/25 | 46.86 oo 13/25| 99.51 | 142.15| 25/25| 100.00| 24.95| 25/25 | 100.00| 24.65 | 25/25| 100.00| 26.01
munin2 1/25 | 91.55 |2499.65 12/25| 98.48 | 202.85| 3/25 | 98.52 |815.11| 7/25 | 98.88 | 342.14| 19/25| 99.63 | 106.56)
munin2-rand| 0/25 | 2e-24 oo 0/25 | 3e-13| oo 0/25 | 7e-13| oo 0/25 | 6e-10 oo 0/25 | 6e-08| oo
munin3 0/25 | 0.52 oo 0/25 | 1.06 oo 0/25 | 1.14 oo 0/25 | 1.15 oo 0/25 | 2.04 oo
munin3-rand | 0/25 | 2e-27 o) 0/25 | 1e-17| oo 0/25 | 2e-14| oo 0/25 | 8e-17 oo 0/25 | 3e-11| oo
munin4 0/25 | 55.33 00 0/25 | 86.61| oo 0/25 | 88.61| oo 1/25 | 92.69 |2486.76 7/25 | 71.08 | 343.85
munin4-rand| 0/25 | 7e-30 0o 0/25 | 1e-17| oo 0/25 | 1e-13| oo 0/25 | 2e-17 oo 0/25 | 4e-11| oo
pigs 25/25|100.00| 0.96 | 25/25|100.00| 0.75 | 25/25| 100.00| 0.61 | 25/25| 100.00| 0.62 | 25/25| 100.00| 0.59
pigs-rand | 11/25| 99.19 | 210.00| 25/25 | 100.00| 25.19 | 25/25| 100.00| 22.72 | 25/25| 100.00| 24.11 | 25/25| 100.00| 22.97
water 25/25| 100.00| 0.002 | 25/25| 100.00| 0.002 | 25/25 | 100.00| 0.002| 25/25| 100.00| 0.002 | 25/25 | 100.00| 0.002
water-rand | 25/25| 100.00{ 0.18 | 25/25| 100.00{ 0.13 | 25/25| 100.00{ 0.12 | 25/25| 100.00| 0.08 | 25/25| 100.00| 0.08

Time

Table B.7: Full results for GLS with smoothing parametet 0.999 and varying smoothing interva¥, on problem set
bnrep . All algorithms are rure5 times for100 CPU seconds each. Summarized in Table 7.7 on page 76.

LYT

GLS with p = 0.999)
N, =50 N, =200 N, = 1000 N, = 10000 N, =00

Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality
Instance avg avg avg avg avg

2100v3d5iw10-rand 25/25 | 100.00| 0.20 | 25/25| 100.00| 0.25 | 25/25|100.00| 0.22 | 25/25| 100.00| 0.24 | 25/25| 100.00| 0.19
2100v3d5iw10-stru¢ 25/25 | 100.00| 0.06 | 25/25 | 100.00| 0.05 | 25/25|100.00| 0.06 | 25/25| 100.00| 0.07 | 25/25| 100.00| 0.07
z100v3d5iw20-rand 25/25 | 100.00| 0.16 | 25/25| 100.00| 0.15 | 25/25|100.00| 0.14 | 25/25| 100.00f 0.16 | 25/25| 100.00| 0.15
z100v3d5iw20-strug¢ 25/25 | 100.00| 0.09 | 25/25| 100.00| 0.08 | 25/25|100.00| 0.09 | 25/25|100.00| 0.11 | 25/25|100.00| 0.10

z100v6d5iw10-rand 25/25 | 100.00| 7.29 | 25/25| 100.00| 6.11 | 25/25|100.00| 7.39 | 25/25| 100.00| 6.97 | 25/25| 100.00| 11.69
2100v6d5iw10-strug¢ 25/25 | 100.00| 0.22 | 25/25| 100.00| 0.24 | 25/25|100.00/ 0.18 | 25/25| 100.00| 0.24 | 25/25| 100.00| 0.26
2100v6d5iw20-rand 25/25 | 100.00| 8.28 | 25/25| 100.00| 6.62 | 25/25|100.00| 11.08 | 25/25| 100.00| 5.86 | 25/25| 100.00| 6.96
2100v6d5iw20-stru¢ 25/25 | 100.00| 1.86 | 25/25| 100.00| 1.62 | 25/25|100.00| 1.98 | 25/25| 100.00| 2.81 | 24/25| 99.73 | 7.54

z200v3d5iw10-rand 25/25 | 100.00| 13.63| 25/25 | 100.00| 16.49 | 23/25| 99.67 | 28.11 | 22/25| 99.77 | 37.69 | 24/25| 99.75 | 32.44
z200v3d5iw10-stru¢ 25/25 | 100.00| 0.33 | 25/25| 100.00| 0.32 | 25/25|100.00| 0.32 | 25/25|100.00| 0.42 | 25/25|100.00| 0.42
z200v3d5iw20-rand 25/25 | 100.00| 22.17| 24/25| 99.84 | 33.57 | 16/25| 98.04 | 79.60 | 13/25| 97.17 | 114.54| 17/25| 97.33 | 70.29
z200v3d5iw20-stru¢ 25/25 | 100.00| 0.51 | 25/25| 100.00| 0.46 | 25/25|100.00| 0.51 | 25/25|100.00| 0.60 | 25/25|100.00| 0.61

2200v6d5iw10-rand 0/25 | 3452 | oo | 0/25 | 67.63 o) 1/25 | 76.92 |2488.73 0/25 | 72.58 00 0/25 | 72.10 00
z200v6d5iw10-strug¢ 25/25 | 100.00| 2.45| 25/25| 100.00| 1.55 | 25/25|100.00f 1.50 | 25/25| 100.00| 1.59 | 25/25| 100.00| 1.65
z200v6d5iw20-rand 0/25 | 14.59 | oo 1/25 | 56.74 | 2436.20 1/25 | 58.69 | 2426.06| 5/25 | 61.84 | 473.53| 0/25 | 48.33 00
z200v6d5iw20-strug¢ 21/25 | 89.57 | 42.00(20/25| 87.51 | 71.85 | 11/25| 64.30 | 167.61| 10/25| 60.04 | 162.22| 9/25 | 58.07 | 210.39

z400v3d5iw10-rand 21/25| 99.46 | 73.66| 21/25| 99.11 | 56.52 | 20/25| 98.50 | 57.75 | 14/25| 98.27 | 108.14| 14/25| 96.45 | 114.73
z400v3d5iw10-strug¢ 25/25 | 100.00| 12.65| 25/25 | 100.00| 18.84 | 25/25| 100.00| 27.44 | 23/25| 99.67 | 41.38 | 22/25| 99.51 | 38.40
z400v3d5iw20-rand 0/25 | 78.82 | oo | 0/25 | 83.50 00 2/25 | 80.77 [1192.93 1/25 | 75.60 | 2447.04f 0/25 | 77.49 00

z400v3d5iw20-stru¢ 20/25 | 98.33 (69.12| 12/25| 93.88 | 155.81| 15/25| 90.72 | 110.10| 7/25 | 85.38 | 280.16| 5/25 | 76.33 | 428.36

z400v6d5iwl0-rand 0/25 | 0.74 | oo 0/25 | 15.42 oo 0/25 | 22.38 oo 0/25 | 20.60 00 0/25 | 18.09 00
z400v6d5iw10-stru¢ 0/25 | 81.53 | oo 1/25 | 82.45|2441.400 1/25 | 79.60 | 2461.420 2/25 | 74.93 | 1187.44 1/25 | 69.03 | 2406.19
z400v6d5iw20-rand 0/25 | 1.94 | oo 2/25 | 41.65|1223.30 5/25 | 59.03 | 467.16| 1/25 | 45.30 |2448.01 0/25 | 45.80 0o
z400v6d5iw20-stru¢ 0/25 | 77.01| oo 0/25 | 70.91 00 0/25 | 67.71 00 2/25 | 65.90 [1221.78 0/25 | 60.62 00

Time

Table B.8: Full results for GLS with smoothing parametet 0.999 and varying smoothing interva¥, on problem set
gen. All algorithms are rur25 times for100 CPU seconds each. Summarized in Table 7.8 on page 77.

8T

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

G+StS GLS BBMB

“original” “original”
solved| 2“3 Time | soived| QU3| Time b=2 ib=6 ib=10 ib=14 ib=18
Instance avg avg

alarm 25/25 | 100.00| 0.01 | 25/25| 100.00| 0.003 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00
alarm-rand | 25/25 | 100.00| 0.10 | 25/25| 100.00| 0.03 | 0.02/0.02 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00

barley | 25/25 | 100.00| 29.22| 0/25 | 8.39 | oo (007) | 1.21/2.01 | 1.21/2.89 | 1.21/2.94 | 1.28/5.38
barley-rand | 25/25 | 100.00] 9.93 | 0/25 | 21.10 | oo 28.60- | 1.23/1.23 | 1.02/1.22 | 1.22/1.22 | 1.23/1.23
diabetes | 0/25 | () | oo | 0/25 | 36-268] oo @) 4.23/4.23 | 4.2214.22 | 4.2414.24 | 4.2314.23

diabetes-rand 0/25 | 3e-06 | oo | 0/25 | 3e-51 00 (5e-17) 3.80/3.80 | 3.82/3.82 | 3.80/3.80 | 3.81/3.81
hailfinder | 25/25| 100.00| 0.51 | 25/25| 100.00| 0.10 | 4.33/4.33 | 0.00/0.00 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01
hailfinder-rand 25/25 | 100.00| 4.74 | 2/25 | 97.22 |1177.87 (18.92) 0.01/0.01 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00
insurance | 25/25| 100.00| 0.001| 25/25| 100.00| 0.002 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00
insurance-rand 25/25 | 100.00| 0.01 | 25/25| 100.00| 0.02 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00

fink 0/25 | () | oo | 25/25|100.00] 5.30 | (9e-37) | (6e-06) | (0.003) | 17.10/- | 17.29
link-rand | 0/25 | 2e-09| oo | 0/25 | 6e-19| oo (3e-19) (0.69) (34.26) | 36.14/36.14 58.57/58.51
mildew | 25/25 | 100.00] 10.52| 0/25 | 34.03| oo (1.39) | 0.72/0.72| 1.08/1.08| 0.72/0.72 | 0.71/0.71
mildew-rand | 25/25 | 100.00| 0.42 | 0/25 | 85.61| oo |28.67/31.74 0.01/0.01 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01
muninl | 0/25 | 3e-18| oo | 0/25 | 40.68| oo 1.03)- | 1.17/2.20 | 24.93/24.93 368.52- | 377.83/-
muninl-rand| 0/25 | 4.40 | oo | 0/25 | 1e-09| oo (0.03) | 1.23/13.96|42.08/42.08 104.39/- | 104.96/-

munin2 0/25) (9] 0/25 | 1e-158| oo
munin2-rand | 0/25 | 1le-18| oo 0/25 | 8e-100| oo
munin3 0/25) 9 0/25 | 2e-161| oo
munin3-rand| 0/25 | 3e-18 | oo 0/25 | 4e-114| oo))))
munin4 0/25 () oo | 0/25 | 1e-181| oo (0.15) |22.76/22.7621.54/21.71 23.78/23.79
munind-rand| 0/25 | 2e-22| oo | 0/25 | 3e-112| oo (- -)) “) “)
pigs 0/25 | 5e-14| oo | 0/25 | 0.0003| oo (2e-05) | 0.11/0.11| 0.38/0.38 | 0.53/0.53 | 0.53/0.53
pigs-rand 0/25 | 0.01 | oo | 0/25 | 0.02 00 (1e-08) 2.08/2.08 | 0.41/0.41| 0.83/0.83 | 0.83/0.83
water 25/25| 100.00(0.005| 25/25 | 100.00{ 0.003 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01
water-rand | 25/25 | 100.00| 0.02 | 25/25| 100.00| 0.27 | 1.54/1.54 | 0.01/0.01 | 0.17/0.17 | 0.17/0.17 | 0.17/0.17

D) 7.51/8.25 | 3.55/3.55 | 3.47/3.47 | 3.54/4.93
0) @) ())
28.07/28.73 4.51/5.88 | 4.51/4.51 | 4.54/5.77

—~|~|—~|—~]—~
P NG NG N

Table B.9: Comparison of s-BBMB with differeitbounds and our “original” versions of G+StS and GLS on peabl
setbnrep . The SLS algorithms were run 25 times @0 CPU seconds, the deterministic s-BBMB algorithm once for
100 CPU seconds for every i-bound. The SLS algorithms used a mamgidalization, simple caching, and parameter
values(np, cf) = (40, 2) (G+StS), and N, p) = (200, 0.8) (GLS). Summarized in Table 8.1 on page 88.

6T

04T

G+StS GLS BBMB
“original” “original”
Solved Quality Time | Solved Quality Time ib=2 ib=6 b=10 b=14 b=18
Instance avg avg
z100v3d5iwl10-rand 11/25| 91.24 |164.58 25/25| 100.00(5.11 | (0.05) | 4.17/73.11] 0.07/0.07 | 0.08/0.08 | 0.08/0.08
z100v3d5iw10-stru¢ 11/25 | 68.77 | 167.15 25/25| 100.00| 0.35) 12.46/37.46 0.16/0.16 | 0.25/0.25| 0.26/0.26
z100v3d5iw20-rand 25/25 | 100.00| 6.19 | 25/25| 100.00| 14.06 | (0.57) (2.51) 0.51/0.51 | 5.38/5.38 | 35.46/35.44
z100v3d5iw20-stru¢ 25/25 | 100.00| 36.65 | 25/25| 100.00| 2.18 “) (0.67) 4.38/5.38 | 5.66/5.66)
z100v6d5iwl0-rand 0/25 | 38.93 [e'S) 0/25 | 32.76) (0.002) (1.22) 8.71/8.71 | 8.81/8.81 | 8.77/8.78
z100v6d5iw10-stru¢ 0/25 1.93 [e'S) 25/25|100.00| 6.40) 24.67/25.03 14.15/14.15 14.45/14.45 14.22/14.22 >
z100v6d5iw20-rand 0/25 | 17.55 | oo | 0/25 | 3.30 | oo |(0.0001) (0.04) (1.08) @) 6] T
z100v6d5iw20-stru¢ 0/25 | 1.34 | oo | 12/25| 89.70 | 168.95 (1e-14) @) 33.82/42.56 ®) 8])
z200v3d5iwl0-rand 0/25 | 11.93 | oo 0/25 | 62.04| oo (2e-06) (0.33) 1.02/1.02 | 0.49/0.49 | 0.48/0.48 an
z200v3d5iw10-stru¢c 0/25 | 0.05 [e%S) 3/25 | 78.25|787.80, (-)) 0.37/0.37 | 0.45/0.45 | 0.45/0.45]
z200v3d5iw20-rand 0/25 | 7.29 [e%S) 0/25 | 18.86) (6e-07) (0.07) (5.15) 7.01/7.01| 113.93/- >\<
z200v3d5iw20-stru¢ 0/25 | 0.02 | oo | 0/25 | 61.36| oo ®) ®) @) 8.13/8.13 | 157.06/- o
z200v6d5iw10-rand 0/25 | 0.03 0 0/25 | 0.0002| oo (9e-12)| (5e-07) |35.48/36.08 44.53/44.53 45.48/45.48 .
z200v6d5iw10-stru¢ 0/25 | 9e-16 | oo | 0/25 | 23.75| oo @) @) 40.22/40.23 64.87/64.87 64.78/64.78 w)
z200v6d5iw20-rand 0/25 | 0.02 oo 0/25 | 1e-06 | oo (1e-16)| (6e-09) (0.19))) m
z200v6d5iw20-stru¢ 0/25 | 3e-13 | oo 0/25 | 0.0003| oo)) (1e-07))) :T>|
z400v3d5iwl10-rand 0/25 | 0.002 [e'S) 0/25 | 0.02) (8e-15)| (0.004) |42.01/70.83 0.81/0.81 | 0.90/0.90 =
z400v3d5iw10-stru¢ 0/25 | 6e-10 | oo | 0/25 | 2.03 | oo @) @) (5.24) 1.12/112 | 1.12/1.12 m
z400v3d5iw20-rand 0/25 | 0.007 | oo | 0/25 | 0.03 | oo | (5e-18)| (0.0003) (0.26) 49.06/- O O
z400v3d5iw20-stru¢ 0/25 | (-) oo | 025 | 018 | oo @) @) (7.21) |14.73/1558 153.33/- m
z400v6d5iwl0-rand 0/25 | 1e-09 | oo 0/25 | 6e-15| oo (1e-24)| (4e-08) (24.33) |68.88/68.88 68.81/68.82 %
z400v6d5iw10-stru¢ 0/25 | () oo | 0/25 | 1e-08| oo ®) (6e-19) (0.25) | 55.48/55.48 55.68/55.68 m
z400v6d5iw20-rand 0/25 | 2e-07 | oo | 0/25 | 5e-15| oo | (3e-25)| (1e-07) (0.02) ®) 0] by
z400v6d5iw20-stru¢c 0/25) 0 0/25 | 2e-07| oo)) (0.02))) E
Table B.10: Comparison of s-BBMB with differeftbounds and our “original” versions of G+StS and GLS on pzobl 3{
setgen. The SLS algorithms were run 25 times f0 CPU seconds, the deterministic s-BBMB algorithm once fo'r:E
100 CPU seconds for every i-bound. The SLS algorithms used a namaitialization, simple caching, and parametery
values(np, cf) = (40, 2) (G+StS), and N, p) = (200, 0.8) (GLS). Summarized in Table 8.2 on page 88. "(g
c
5
)

G+StS ILS
random init, old cachingrandom init, new cachingMB*(103) init, new caching random initialization | MB*(10%) initialization

Solved Quality Time | Solved Quality Time | Solved Quality Time Solved Quality Time | Solved Quality
Instance avg avg avg avg avg

alarm 25/25] 100.00] 0.01 | 25/25] 100.00] 0.004 | 25/25 | 100.00] 0.0008 | 25/25] 100.00] 0.0008] 25/25] 100.00] 0.0004
alarm-rand | 25/25 | 100.00| 0.10 | 25/25 | 100.00] 0.03 | 25/25| 100.00| 0.0008 | 25/25| 100.00| 0.002 | 25/25 | 100.00| 0.0004
barley | 25/25 | 100.00| 29.22| 25/25 | 100.00| 4.13 | 25/25| 100.00] 1.26 | 25/25| 100.00| 2.67 | 25/25 | 100.00| 1.50
barley-rand | 25/25 | 100.00 9.93 | 25/25 | 100.00| 2.25 | 25/25 | 100.00] 0.10 | 25/25| 100.00] 0.70 | 25/25| 100.00| 0.10
diabetes | 0/25 | () o | 025 | () oo | 025 | 8e-32 oo 025 | 9e-28| oo | 0/25 | 3e-14| oo
diabetes-rand 0/25 | 36-06 | oo | 0/25 | 0.02 | oo | 0/25 | 76.32 oo 1725 | 73.32 | 2440.48 4/25 | 89.10 | 585.05
hailfinder | 25/25 | 100.00| 0.51 | 25/25 | 100.00| 0.16 | 25/25 | 100.00] 0.002 | 25/25 | 100.00] 0.005 | 25/25 | 100.00] 0.002
hailfinder-rand 25/25 | 100.00| 4.74 | 25/25 | 100.00| 1.62 | 25/25 | 100.00] 0.003 | 25/25 | 100.00] 0.04 | 25/25 | 100.00] 0.002
insurance | 25/25 | 100.00| 0.001 | 25/25 | 100.00] 0.0008| 25/25 | 100.00] 0.0008 | 25/25 | 100.00] 0.0008| 25/25 | 100.00] 0.0008
insurance-ranfl 25/25 | 100.00| 0.01 | 25/25 | 100.00| 0.006 | 25/25 | 100.00| 0.0004 | 25/25 | 100.00| 0.001 | 25/25 | 100.00| 0.0004
link 025 | O oo | 0/25 | 8e-07| oo | 0/25 | 0.50 oo 0/25 | 0.004| oo | 0/25 | 050 | oo
link-rand | 0/25 | 2e-09| oo | 0/25 | 0.0002| oo | 0/25 | 32.85 oo 0/25 | 3855| oo | 0/25 | 6059 | oo
mildew | 25/25 | 100.00| 10.52| 25/25 | 100.00| 3.11 | 25/25 | 100.00] 0.03 | 25/25| 100.00| 1.34 | 25/25 | 100.00| 0.03
mildew-rand | 25/25 | 100.00| 0.42 | 25/25 | 100.00| 0.12 | 25/25 | 100.00] 0.004 | 25/25 | 100.00] 0.38 | 25/25 | 100.00| 0.004
muninl | 0/25 | 3e-18 | oo | 0/25 | 7e-08| oo | 25/25|100.00] 021 | 10/25| 0.06 | 171.48| 25/25 | 100.00| 0.21
munini-rand| 0/25 | 4.40 | oo | 0/25 | 18.48| oo | 0/25 | 30.05 oo 25/25 | 100.00| 6.54 | 25/25 | 100.00| 8.33

Time

munin2 0125 | () ~ | 025 (O oo | 25/25|100.00] 0.75 | 0/25 | () oo | 25/25| 100.00| 0.78
munin2-rand| 0/25 | 1e-18| oo 0/25 | 2e-09 00 0/25 | 97.43 00 0/25 3.63 00 0/25 | 97.43 00
munin3 0/25) 00 0/25) oo 25/25 | 100.00 0.80 0/25) 00 25/25100.00 0.81
munin3-rand| 0/25 | 3e-18 | oo 0/25 | 3e-10| oo 0/25 | 59.91 % 0/25 | 2.20 5% 0/25 | 68.01| oo
munin4 0/25) 00 0/25) oo 0/25 | 0.003 % 0/25) 5% 25/25100.00| 4.72
munin4d-rand | 0/25 | 2e-22| o~ 0/25 | 4e-12 S 0/25 | 8.10 %) 0/25 | 0.53 oo 0/25 | 9.77 oo
pigs 0/25 | 5e-14| oo 0/25 | 1e-08| oo 25/25 | 100.00 0.10 1/25 | 23.65 [2411.99 25/25| 100.00| 0.10

pigs-rand 0/25 | 0.01 00 0/25 | 1.09 o0 21/25| 98.89 57.91 1/25 | 65.13 | 2448.12) 25/25 | 100.00 1.93
water 25/25| 100.00(0.005| 25/25| 100.00| 0.002 | 25/25| 100.00| 0.003 | 25/25| 100.00| 0.0008| 25/25| 100.00| 0.003
water-rand | 25/25 | 100.00| 0.02 | 25/25| 100.00| 0.009 | 25/25 | 100.00 0.05 25/25| 100.00{ 0.002 | 25/25| 100.00{ 0.05

Table B.11: Results for non-penalty based algorithms on prolsetonrep . All algorithms were run 25 times far00
CPU seconds each with their default parameters.

TGT

G+StS ILS
random init, old caching random init, new cachingMB* (10°) init, new caching random initialization | MB*(105) initialization
Quality Quality Quality Quality Quality

Solved Time | Solved Time | Solved Time Solved Time | Solved
Instance avg avg avg avg avg

z100v3d5iw10-rand 11/25| 91.24 | 164.58) 25/25| 100.00| 12.29 | 25/25| 100.00 0.02 25/25| 100.00| 0.82 | 25/25|100.00| 0.02
z100v3d5iw10-strug¢ 11/25| 68.77 | 167.15 25/25| 100.00| 17.59 | 23/25| 95.61 40.33 | 25/25|100.00f 0.95 | 25/25|100.00| 2.16
z100v3d5iw20-rand 25/25 | 100.00 6.19 | 25/25| 100.00{ 0.77 | 25/25| 100.00 0.23 25/25| 100.00{ 0.30 | 25/25| 100.00| 0.23
z100v3d5iw20-strug 25/25 | 100.00| 36.65 | 25/25| 100.00| 6.00 | 25/25| 100.00 6.11 25/25|100.00{ 0.30 | 25/25| 100.00| 0.59

z100v6d5iw10-rand 0/25 | 38.93 | oo 3/25 | 70.38 | 806.79| 0/25 | 68.93 00 23/25| 99.43 | 34.96 | 23/25| 99.43 | 39.94
z100v6d5iw10-stru¢ 0/25 | 1.93 00 0/25 | 22.34 00 0/25 | 28.05 00 25/25| 100.00| 5.90 | 25/25|100.00| 8.12

z100v6d5iw20-rand 0/25 | 17.55| oo 0/25 | 33.22 00 0/25 | 29.89 00 8/25 | 78.92 | 256.97| 7/25 | 76.96 | 298.94
z100v6d5iw20-stru¢ 0/25 | 1.34 00 1/25 | 17.92 {2490.86 0/25 | 14.64 00 25/25| 100.00| 18.63 | 25/25| 100.00| 19.37
z200v3d5iw10-rand 0/25 | 11.93 | oo 0/25 | 40.14 00 0/25 | 74.73 00 11/25| 93.21 | 159.56| 15/25| 95.94 | 111.39
z200v3d5iw10-stru¢ 0/25 | 0.05 00 0/25 | 1.24 00 25/25|100.00| 14.66 | 25/25|100.00| 9.50 | 25/25| 100.00| 7.94

z200v3d5iw20-rand 0/25 | 7.29 00 0/25 | 26.81 00 0/25 | 24.19 00 25/25| 100.00| 6.25 | 25/25|100.00| 12.46

Time

z200v3d5iw20-stru¢ 0/25 | 0.02 00 0/25 | 0.38 00 0/25 | 0.82 00 18/25| 84.04 | 67.78 | 17/25| 83.02 | 92.04
z200v6d5iw10-rand 0/25 | 0.03 oo 0/25 | 0.19 o0 0/25 | 1.32 00 0/25 | 58.13 00 0/25 | 54.23 o0
z200v6d5iw10-stru¢ 0/25 | 9e-16 | oo 0/25 | 8e-10 oo 0/25 | 0.007 00 0/25 | 1.16 00 0/25 | 2.46 o0
z200v6d5iw20-rand 0/25 | 0.02 o) 0/25 | 0.37 o) 0/25 | 0.36 00 21/25| 96.50 | 61.58 | 19/25| 86.07 | 82.03
z200v6d5iw20-stru¢ 0/25 | 3e-13| oo 0/25 | 1le-07 o) 0/25 | 1le-06 00 0/25 | 0.69) 0/25 | 0.58)

z400v3d5iw10-rand 0/25 | 0.002 | oo 0/25 | 0.25 00 25/25| 100.00| 0.49 14/25| 95.85 | 128.87| 25/25| 100.00| 0.47
z400v3d5iw10-stru¢ 0/25 | 6e-10| oo 0/25 | 9e-05 00 2/25 | 39.76 | 1217.07 | 0/25 | 22.31 00 25/25| 100.00| 5.64

z400v3d5iw20-rand 0/25 | 0.007 | oo 0/25 | 0.78 o0 0/25 | 18.20 00 1/25 | 72.41 |2448.06 0/25 | 74.32 o)
z400v3d5iw20-stru¢ 0/25 () oo 0/25 | 2e-06 o0 0/25 | 1.22 00 0/25 | 29.86 00 1/25 | 46.49 | 2483.89
z400v6d5iwl0-rand 0/25 | 1e-09 | oo 0/25 | 1le-05 oo 0/25 | 0.02 0o 0/25 | 4.80 oo 0/25 | 3.66 o)
z400v6d5iw10-stru¢ 0/25) o9 0/25 | 1le-23 9] 0/25 | 6e-23 00 0/25 | 0.0003| oo 0/25 | 0.0005| oo
z400v6d5iw20-rand 0/25 | 2e-07 | oo 0/25 | 0.0001| oo 0/25 | 0.55 00 0/25 | 16.78 00 0/25 | 18.58 00
z400v6d5iw20-stru¢ 0/25) 00 0/25 | 5e-18 00 0/25 | 6e-09) 0/25 | 0.04 00 0/25 | 0.20 00

Table B.12: Results for non-penalty based algorithms on proldetgen. All algorithms were run 25 times far00
CPU seconds each with their default parameters.

[As])

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

GLS, random initialization GLST
“original” “original”, p = 0.999 | p = 0.999, new caching| random initialization | initialization MB*(10%)

Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality
Instance avg avg avg avg avg

alarm 25/25] 100.00{ 0.003 | 25/25| 100.00{ 0.002| 25/25 | 100.00{ 0.001 | 25/25| 100.00| 0.0004 | 25/25 | 100.00| 0.0008
alarm-rand | 25/25| 100.00| 0.03 | 25/25| 100.00| 0.03 | 25/25| 100.00| 0.01 | 25/25| 100.00| 0.006 | 25/25 | 100.00| 0.0008
barley 0/25 | 8.39 oo 25/25 | 100.00| 8.02 | 25/25| 100.00| 1.29 | 25/25| 100.00| 0.90 | 25/25]| 100.00| 0.53
barley-rand | 0/25 | 21.10 oo 25/25 | 100.00{53.79| 25/25 | 100.00| 10.56 | 25/25| 100.00| 6.93 | 25/25| 100.00| 0.10
diabetes 0/25 | 3e-268| oo 0/25 | 4e-198| o 0/25 | 6e-07 00 0/25 0.03 00 0/25 0.02 00
diabetes-rand 0/25 | 3e-51 o) 0/25 | 9e-52 | 0/25 | 1le-20 00 0/25 | 3e-13 00 0/25 | 67.78 00
hailfinder 25/25| 100.00| 0.10 | 25/25| 100.00| 0.09 | 25/25 | 100.00f 0.02 | 25/25| 100.00{ 0.008 | 25/25 | 100.00{ 0.002
hailfinder-rand 2/25 | 97.22 |1177.87| 25/25| 100.00| 1.24 | 25/25| 100.00| 0.19 | 25/25| 100.00f 0.22 | 25/25| 100.00{ 0.003
insurance | 25/25| 100.00| 0.002 | 25/25| 100.00{ 0.002| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008| 25/25 | 100.00| 0.0008
insurance-rangl 25/25 | 100.00| 0.02 | 25/25| 100.00| 0.02 | 25/25| 100.00| 0.008 | 25/25| 100.00| 0.004 | 25/25 | 100.00| 0.0004
link 25/251100.00f 5.30 | 25/25| 100.00| 6.26 | 25/25| 100.00{ 0.32 | 25/25| 100.00| 0.18 | 25/25]| 100.00| 1.06
link-rand 0/25 | 6e-19 o) 0/25 0.01 00 1/25 | 84.47 | 2484.21] 2/25 | 84.61 | 1245.07| 1/25 | 85.48 | 2497.44
mildew 0/25 | 34.03 oo 25/25 | 100.00{18.70| 25/25 | 100.00| 7.32 | 25/25| 100.00| 3.92 | 25/25| 100.00| 0.03
mildew-rand | 0/25 | 85.61 oo 25/25 | 100.00| 2.30 | 25/25| 100.00{ 0.52 | 25/25| 100.00| 0.40 | 25/25]| 100.00| 0.004
muninl 0/25 | 40.68 o) 25/25| 100.00| 15.72| 25/25| 100.00| 1.56 | 25/25| 100.00| 0.12 | 25/25| 100.00{ 0.21
muninl-rand| 0/25 | 1e-09 o) 0/25 | 68.23 | 17/25| 99.65 | 108.58| 20/25| 99.79 | 78.91 | 15/25| 99.84 | 117.22
munin2 0/25 | 1e-158| oo 0/25 | 1e-62| ~ 11/25| 98.76 | 216.65| 25/25| 100.00| 9.21 | 25/25| 100.00| 0.79
munin2-rand| 0/25 | 8e-100| oo 0/25 | 3e-96 | o~ 0/25 | 9e-14 00 0/25 | 2e-11 00 0/25 | 97.43 00
munin3 0/25 | 2e-161| oo 0/25 | 3e-73| oo | 0/25 | 0.71 00 4/25 | 21.64 | 598.17| 25/25| 100.00| 0.84
munin3-rand| 0/25 | 4e-114| oo 0/25 | 2e-105| oo | 0/25 | 3e-17 % 0/25 | 7e-14 % 0/25 | 57.31 %
munin4 0/25 | 1e-181| oo 0/25 | 5e-85| oo | 0/25 | 79.97 % 25/25|100.00 17.30 | 25/25| 100.00| 34.30
munin4-rand | 0/25 | 3e-112| oo 0/25 | 2e-100] oo 0/25 | 5e-18 %) 0/25 | le-15 oo 0/25 | 7.54 oo
pigs 0/25 | 0.0003| oo 25/25 | 100.00| 9.14 | 25/25| 100.00| 0.77 | 25/25| 100.00{ 0.56 | 25/25|100.00| 0.11
pigs-rand 0/25 | 0.02 oo 0/25 | 89.84 | oo | 25/25|100.00| 26.70 | 25/25| 100.00| 24.69 | 25/25 | 100.00| 30.46
water 25/25| 100.00| 0.003 | 25/25| 100.00| 0.003| 25/25 | 100.00{ 0.002 | 25/25| 100.00| 0.0004| 25/25 | 100.00{ 0.003
water-rand | 25/25| 100.00| 0.27 | 25/25| 100.00| 0.41 | 25/25| 100.00| 0.14 | 25/25| 100.00f 0.01 | 25/25| 100.00{ 0.06

Time

Table B.13: Results for penalty based algorithms on probletorsep . All algorithms were run 25 times fdi00 CPU
seconds each. Summarized in Table 8.5 on page 97.

€at

GLS, random initialization GLS*
“original” “original”, p = 0.999 p = 0.999, new caching| random initialization | initialization MB*(10%)

Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality Time | Solved Quality
Instance avg avg avg avg avg

z100v3d5iw10-rand 25/25 | 100.00| 5.11 | 25/25| 100.00{ 1.36 | 25/25|100.00| 0.27 | 25/25|100.00f 0.11 | 25/25| 100.00| 0.02
z100v3d5iw10-strug¢ 25/25 | 100.00{ 0.35 | 25/25| 100.00| 0.22 | 25/25|100.00| 0.06 | 25/25|100.00| 0.03 | 25/25|100.00| 0.22
z100v3d5iw20-rand 25/25 | 100.00| 14.06 | 25/25 | 100.00| 0.88 | 25/25|100.00| 0.15 | 25/25|100.00| 0.10 | 25/25| 100.00 0.24
z100v3d5iw20-strug¢ 25/25 | 100.00{ 2.18 | 25/25| 100.00| 0.48 | 25/25|100.00| 0.09 | 25/25|100.00| 0.08 | 25/25|100.00| 0.44

z100v6d5iwl0-rand 0/25 | 32.76 | oo | 24/25| 99.72 | 33.14 | 25/25| 100.00| 6.57 | 25/25|100.00| 4.87 | 25/25| 100.00| 3.60
2100v6d5iw10-strug¢ 25/25 | 100.00| 6.40 | 25/25| 100.00| 1.57 | 25/25| 100.00| 0.24 | 25/25|100.00| 0.14 | 25/25| 100.00| 0.47
z100v6d5iw20-rand 0/25 | 3.30 co | 24/25| 98.30 | 55.04 | 25/25| 100.00| 6.89 | 25/25|100.00| 7.20 | 25/25| 100.00| 2.94
z100v6d5iw20-strug¢ 12/25 | 89.70 | 168.95 24/25| 99.43 | 22.69 | 25/25| 100.00| 1.66 | 25/25| 100.00| 1.33 | 25/25| 100.00| 1.43

z200v3d5iwl10-rand 0/25 | 62.04 | oo 12/25| 96.27 | 157.10| 25/25 | 100.00{ 17.05 | 25/25 | 100.00{ 12.89 | 25/25| 100.00 2.12
z200v3d5iw10-stru¢ 3/25 | 78.25 | 787.80| 25/25| 100.00| 3.19 | 25/25|100.00| 0.34 | 25/25|100.00| 0.25 | 25/25|100.00| 0.58
z200v3d5iw20-rand 0/25 | 18.86 | oo 7/25 | 94.22 | 300.68| 24/25| 99.84 | 33.44 | 24/25| 99.95 | 42.14 | 25/25| 100.00| 52.55
z200v3d5iw20-stru¢ 0/25 | 61.36 | oo 25/25| 100.00| 5.00 | 25/25|100.00| 0.48 | 25/25|100.00f 0.45 | 25/25| 100.00| 1.31

z200v6d5iwl10-rand 0/25 | 0.0002| oo 0/25 | 13.44 00 0/25 | 70.47 00 0/25 | 74.23 o0 0/25 | 7460 | oo

z200v6d5iw10-stru¢ 0/25 | 23.75| oo 25/25|100.00 15.88 | 25/25| 100.00f 1.62 | 25/25|100.00{ 1.72 | 25/25| 100.00| 3.06
z200v6d5iw20-rand 0/25 | 1e-06 | oo 0/25 | 5.62 00 1/25 | 56.83 |2452.50 2/25 | 65.24 | 1243.03 25/25| 100.00| 54.85
z200v6d5iw20-stru¢ 0/25 | 0.0003| oo 5/25 | 38.17 | 453.85| 18/25| 82.38 | 70.14 | 18/25| 83.32 | 64.13 | 21/25| 88.74 | 54.32

z400v3d5iw10-rand 0/25 | 0.02 00 4/25 | 77.51 | 590.08| 18/25| 98.48 | 83.38 | 21/25| 99.32 | 60.35 | 25/25| 100.00| 0.47
z400v3d5iw10-stru¢ 0/25 | 2.03 00 13/25| 94.07 | 147.72| 25/25| 100.00| 19.41 | 25/25| 100.00| 18.14 | 23/25| 99.68 | 20.07
z400v3d5iw20-rand 0/25 | 0.03 00 0/25 | 59.88 00 0/25 | 83.11 00 2/25 | 83.56 [1194.24 0/25 | 87.97| oo
z400v3d5iw20-stru¢ 0/25 | 0.18 00 1/25 | 62.43 | 2484.46/ 12/25| 94.07 | 150.35| 13/25| 94.41 | 125.80| 11/25| 92.84 | 161.18
z400v6d5iwl0-rand 0/25 | 6e-15| oo 0/25 | 0.002 00 0/25 | 14.01 00 0/25 | 15.32) 0/25 | 17.30 | oo
z400v6d5iw10-stru¢ 0/25 | 1e-08 | oo 0/25 | 18.16 00 1/25 | 82.87 |2496.85 1/25 | 82.53 |2417.76| 0/25 | 83.98 | oo
z400v6d5iw20-rand 0/25 | 5e-15| oo 0/25 | 0.09 00 1/25 | 40.89 | 2477.87 1/25 | 44.29 | 2451.07) 0/25 | 29.79 | oo
z400v6d5iw20-stru¢ 0/25 | 2e-07 | oo 0/25 | 26.66 00 0/25 | 69.75 00 2/25 | 74.20 |1172.01] 0/25 | 69.53 | oo

Time

Table B.14: Results for penalty based algorithms on problergese. All algorithms were run 25 times far00 CPU
seconds each. Summarized in Table 8.6 on page 97.

121"

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

d-BBMB s-BBMB Anytime
Instance ib=2 | ib=6 | ib=10 | ib=14 | ib=18 ib=2 | ib=6 | ib=10 | ib=14 | ib=18 MB
alarm 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01| 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00
alarm-rand | 0.03/0.03 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.02/0.02 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00
barley (0.07) 3.20/14.64| 3.20/13.63| 2.05/7.19 | 2.05/7.24 (0.07) 1.21/2.91 | 1.21/2.89 | 1.21/2.94 | 1.28/5.38 | 0.22/0.22
barley-rand 7.171- 3.47/6.83 | 3.46/6.79 | 3.54/3.54 | 3.45/3.45| 28.69/- 1.23/1.23 | 1.22/1.22 | 1.22/1.22 | 1.23/1.23 | 0.20/0.20
diabetes)))))) 4.23/14.23 | 4.22/4.22 | 4.24/4.24 | 4.23/4.23 | 4.70/4.70
diabetes-rand (9e-09) 8] O @) ®) (5e-17) | 3.80/3.80 | 3.82/3.82 | 3.80/3.80 | 3.81/3.81 | 3.95/7.82
hailfinder 0.40/0.40 | 0.02/0.02 | 0.03/0.03 | 0.02/0.02 | 0.02/0.02 | 4.33/4.33 | 0.00/0.00 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01 | 0.00/0.00
hailfinder-rand 51.20/97.28 0.03/0.03 | 0.02/0.02 | 0.03/0.03 | 0.03/0.03 (18.92) 0.01/0.01 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01
insurance 0.01/0.01 | 0.01/0.01| 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01
insurance-rang 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01
link (3e-31) (0.003) (0.50) 96.13/- 96.11/- (9e-37) (6e-06) (0.003) 17.10/- 17.29/- |50.05/50.03
link-rand (4e-11) (3.71) (63.80))) (3e-19) (0.69) (34.26) |36.14/36.1458.57/58.571 (39.81)
mildew 3.07/30.00| 4.29/4.50 | 3.65/3.65| 3.69/3.69 | 3.70/3.70 (1.39) 0.72/0.72 | 1.08/1.08 | 0.72/0.72 | 0.71/0.71 | 0.06/0.06
mildew-rand | 7.16/8.24 | 0.07/0.07 | 0.07/0.07 | 0.06/0.06 | 0.07/0.07 |28.67/31.74 0.01/0.01 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01 | 0.00/0.01
muninl 1.02/- 2.17/8.56 (0.15)) () 1.03/- 1.17/2.20 | 24.93/24.93 -)) 0.08/7.39
muninl-rand| (1.04) | 2.12/49.95/88.91/9450 (-) ®) (0.03) | 1.23/13.96|42.08/42.08 (- 8] 38.84/38.84
munin2) 27.51/30.06 40.77/40.77 40.11/40.11 40.34/40.34) 7.51/8.25 | 3.55/3.55| 3.47/3.47 | 3.54/4.93 | 0.80/3.17
munin2-rand Q) Q) Q) Q) Q) Q) Q) Q) Q) Q) 3.27/3.27
munin3) 20.02/23.14 27.31/27.31 26.55/26.55 26.60/26.60) 28.07/28.72 4.51/5.88 | 4.51/4.51 | 4.54/5.77 | 0.85/3.63
munin3-rand Q) Q) Q) Q) Q) Q) Q) Q) Q) Q) 4.05/4.05
munin4 ®) (0.0001) 8] 0] ®) 8] (0.15) [22.76/22.76 21.54/21.71 23.78/23.79 18.70/18.70
munin4-rand))))) (-)))) 21.36/21.36
pigs (0.02) 1.03/1.05| 1.66/1.66 | 1.80/1.80 | 1.79/1.79 | (2e-05) | 0.11/0.11 | 0.38/0.38 | 0.53/0.53 | 0.53/0.53 | 0.26/0.32
pigs-rand (0.008) 1.02/3.68 | 2.00/2.00 | 2.73/2.73 | 2.72/2.72 | (1e-08) | 2.08/2.08 | 0.41/0.41 | 0.83/0.83 | 0.83/0.83 | 1.40/1.40
water 0.07/0.07 | 0.03/0.03 | 0.04/0.04 | 0.03/0.03 | 0.04/0.04 | 0.01/0.01 | 0.01/0.01| 0.01/0.01 | 0.01/0.01 | 0.01/0.01 | 0.01/0.01
water-rand | 5.12/5.62 | 0.21/0.21| 0.77/0.77 | 0.78/0.78 | 0.76/0.76 | 1.54/1.54 | 0.01/0.01| 0.17/0.17 | 0.17/0.17 | 0.17/0.17 | 0.19/0.19

Table B.15: Full results for exact algorithms on problemls®ep . All algorithms were run for 200 CPU seconds.
Summarized in Table 9.1 on page 109.

GaT

d-BBMB s-BBMB Anytime
Instance ib=2 | ib=6 | ib=10 | ib=14 | ib=18 ib=2 | ib=6 | ib=10 | ib=14 | ib=18 MB
z100v3d5iw10-rand (5.27) |1.02/48.53 1.05/1.26| 0.97/0.97 | 0.98/0.98 | (0.05) | 4.17/73.11| 0.07/0.07 | 0.08/0.08 | 0.08/0.08 | 0.07/0.07
z100v3d5iw10-stru¢ (5.38) |6.14/30.05 2.12/2.75| 2.41/2.41 | 2.41/2.41 () 12.46/37.46 0.16/0.16 | 0.25/0.25 | 0.26/0.26 | 0.52/0.52
z100v3d5iw20-rand (0.22) | 56.35/- |4.25/13.1121.75/21.75 64.01/64.01 (0.57) (2.51) 0.51/0.51 | 5.38/5.38 | 35.46/35.46 55.16/55.16
z100v3d5iw20-stru¢ (0.29) | 53.25/- 19.67/- 66.79/-) (-) (0.67) 4.38/5.38 | 5.66/5.66) (5.49)
z100v6d5iwl10-rand (0.06) | (92.97))) “) (0.002) (1.22) 8.71/8.71 | 8.81/8.81 | 8.77/8.78 | 52.58/92.24
z100v6d5iw10-stru¢ (0.01) | (72.53)))) () 24.67/25.03 14.15/14.18 14.45/14.45 14.22/14.273 -)
z100v6d5iw20-rand (0.06) (0.54))) “) (0.0001) (0.04) (1.08) “)) (0.37)
z100v6d5iw20-struc (2e-08) | (2e-09)))) (le-14)) 33.82/42.56)))
z200v3d5iw10-rand (0.008) | (20.03) |7.58/43.84 8.56/8.56 | 8.59/8.59 | (2e-06) (0.33) 1.02/1.02 | 0.49/0.49 | 0.48/0.48 | 1.04/1.04
z200v3d5iw10-stru¢ () (2.32) | 4.83/4.83| 5.36/5.36 | 5.35/5.35 (-)) 0.37/0.37 | 0.45/0.45 | 0.45/0.45 | 1.02/1.02
z200v3d5iw20-rand (0.0001) (0.10) (41.54) 91.14/-) (6e-07) (0.07) (5.15) 7.01/7.01) (37.15)
z200v3d5iw20-stru¢ (8e-07) | (0.0001) | (0.002) ()) ()) () 8.13/8.13) (0.80)
z200v6d5iw10-rand (9e-07)| (0.67)))) (9e-12)| (5e-07) |35.48/36.08 44.53/44.53 45.48/45.48 (95.99)
z200v6d5iw10-strug (4e-19) | (le-10)) ()) ()) 40.22/40.23 64.87/64.87 64.78/64.78 92.90/92.9(
z200v6d5iw20-rand (1e-10)| (0.07)))) (1e-16)| (6e-09) (0.19))) (0.02)
z200v6d5iw20-struc (-) (9e-15)))))) (1e-07))) (1e-15)
z400v3d5iw10-rand (4e-08)| (3.64) (69.51) |33.44/33.4433.15/33.15 (8e-15)| (0.004) |42.01/70.83 0.81/0.81 | 0.90/0.90 | 0.97/3.14
z400v3d5iw10-stru¢ (-) (69.37) | 25.28/- |40.70/40.70 40.28/40.28 (-)) (5.24) 1.12/1.12 | 1.12/1.12 | 1.84/7.05
z400v3d5iw20-rand (1e-08)| (10.79) | (11.50) (71.52)) (5e-18)| (0.0003) (0.26) 49.06/-) (76.25)
z400v3d5iw20-stru¢ (-) (0.27) (23.80) (24.23)) ()) (7.21) |14.73/15.58) (89.09)
z400v6d5iw10-rand (le-14)| (0.27) () ()) (1e-24)| (4e-08) (24.33) |68.88/68.8868.81/68.82 (72.04)
z400v6d5iw10-stru¢ () (2e-11) () (-)) (-) (6e-19) (0.25) |55.48/55.48 55.68/55.68 (16.29)
z400v6d5iw20-rand (3e-12)| (0.80))) -) (3e-25)| (1e-07) (0.02))) (0.08)
z400v6d5iw20-stru¢c (-) (3e-06))) “)) -) (0.02) “) “) -)

9GT

Table B.16: Full results for exact algorithms on problemgen. All algorithms were run for 100 CPU seconds.
Summarized in Table 9.2 on page 109.

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

GLST ILS s-BBMB MB HYBRID

default default default
Solvec{Quallty Time SolvedQuallty Time ib=2 b=6 b=10 ib=14 b=18 MB Solved Quality Time
Instance avg avg avg

alarm 25/25|100.00 0.0008| 25/25|100.000.0008 0.00/0.00| 0.00/0.00| 0.01/0.01| 0.00/0.00| 0.00/0.00| 0.00/0.00 | 25/25|100.000.0004
alarm-rand | 25/25|100.00 0.0008| 25/25|100.00/0.0008 0.02/0.02| 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.00/0.00 | 25/25|100.00/0.0004
barley 25/25|100.00 0.53 |25/25|100.00 0.51 (0.07) 1.21/2.91| 1.21/2.89| 1.21/2.94| 1.28/5.38| 0.22/0.22 | 25/25|100.00 0.66
barley-rand | 25/25/100.00 0.10 |25/25{100.00 0.10 | 28.69/- | 1.23/1.23| 1.22/1.22| 1.22/1.22| 1.23/1.23| 0.20/0.20| 25/25|100.00 0.10
diabetes | 0/25 | 0.02 00 0/25 | 4e-17| oo) 4.23/4.23| 4.22/14.22| 4.24/4.24| 4.23/4.23| 4.70/4.70| 25/25|100.00 25.87
diabetes-rang 0/25 | 67.78| oo 0/25 | 85.54| oo (5e-17) | 3.80/3.80| 3.82/3.82| 3.80/3.80| 3.81/3.81| 3.95/7.82| 25/25|100.00 23.66
hailfinder | 25/25/100.00 0.002 | 25/25|100.00 0.002| 4.33/4.33| 0.00/0.00| 0.01/0.01| 0.01/0.01| 0.01/0.01| 0.00/0.00 | 25/25|100.00 0.001
hailfinder-rangl 25/25|100.00 0.003 | 25/25|100.00 0.003| (18.92) | 0.01/0.01| 0.01/0.01| 0.00/0.00| 0.00/0.00| 0.01/0.01 | 25/25|100.00 0.003
insurance | 25/25|100.00 0.0008| 25/25|100.000.0008 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.01/0.01| 25/25|100.000.0008
insurance-rand25/25| 100.00 0.0004| 25/25|100.000.0004 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.00/0.00| 0.01/0.01 | 25/25|100.000.0004
link 25/25|100.000 1.06 | 0/25 | 0.50 | oo (9e-37) (6e-06) (0.003) 17.10/- 17.29/- |50.05/50.0525/25|100.00 13.23
link-rand 1/25 | 85.48(2497.44 0/25 | 42.88| oo (3e-19) (0.69) (34.26) |36.14/36.1458.57/58.57 (39.81) | 0/25 | 57.75| oo
mildew 25/25{100.00 0.03 |25/25|100.00 0.03 (1.39) 0.72/0.72| 1.08/1.08| 0.72/0.72| 0.71/0.71| 0.06/0.06 | 25/25|100.00| 0.03
mildew-rand | 25/25|100.00 0.004 | 25/25|100.00 0.004|28.67/31.74 0.01/0.01| 0.01/0.01| 0.01/0.01| 0.01/0.01| 0.00/0.01 | 25/25|100.00 0.004

muninl | 25/25|100.00 0.21 | 25/25(100.00 0.21 | 1.03/- | 1.17/2.20|24.93/24.93 () O 0.08/7.39| 25/25/100.00 0.22
muninil-rand| 15/25| 99.84| 117.22| 24/25|100.00 30.32| (0.03) | 1.23/13.9642.08/42.08 () () |38.84/38.8425/25|100.00 27.22
munin2 | 25/25]100.00] 0.79 | 25/25|100.00 0.78 O 751/8.25| 3.55/3.55| 3.47/3.47| 3.54/4.93| 0.80/3.17| 25/25|100.00 0.82
munin2-rand| 0/25 | 97.43| oo | 0/25 | 97.43| oo O 0 O &) &) 3.27/3.27| 25/25| 100.00 12.59
munin3 | 25/25|100.00 0.84 | 25/25/100.00 0.82 () |28.07/28.72 451/5.88| 4.51/4.51| 4.54/5.77| 0.85/3.63 | 25/25|100.00 0.76
munina-rand| 0725 | 57.31| oo | 0/25 | 68.20] oo &) 0 &) 0 &) 4.05/4.05| 25/25/100.00 10.87
munind | 25/25|100.00 34.30 | 22/25| 39.40|50.93| () (0.15) |22.76/22.7621.54/21.7123.78/23.7918.70/18.70 25/25| 100.00 24.96
munind-rand| 0725 | 7.54 | oo | 0/25 | 8.76 | oo & 0 8 0 (O |21.36/21.3625/25/100.00 77.69

pigs 25/25/100.00 0.11 |25/25|100.00 0.10 | (2e-05) | 0.11/0.11| 0.38/0.38| 0.53/0.53| 0.53/0.53| 0.26/0.32| 25/25|100.00 0.11
pigs-rand | 25/25{100.00 30.46 | 25/25|100.00 7.13 | (1e-08) | 2.08/2.08| 0.41/0.41| 0.83/0.83| 0.83/0.83| 1.40/1.40| 25/25|100.00 2.80
water 25/25|100.00 0.003 | 25/25|100.00 0.003| 0.01/0.01| 0.01/0.01| 0.01/0.01| 0.01/0.01| 0.01/0.01| 0.01/0.01 | 25/25|100.00 0.003
water-rand | 25/25|100.00 0.06 |25/25|100.00 0.05 | 1.54/1.54| 0.01/0.01| 0.17/0.17| 0.17/0.17| 0.17/0.17| 0.19/0.19| 25/25|100.00| 0.56

Table B.17: Full results for best-performing algorithms a@olem setonrep . All algorithms were run 25 times for
100 CPU seconds each. Summarized in Table 9.3 on page 115.

LGT

GLST ILS s-BBMB Anytime HYBRID
default default default
SC)Ive%Quahty Time Sc)M#Quahty Time | =2 ib=6 ib=10 ib=14 ib=18 MB |soned U@ 1ine
Instance avg avg avg

z100v3d5iw10-rand25/25|100.00 0.02 | 25/25{100.00 0.02 | (0.05) | 4.17/73.11 0.07/0.07| 0.08/0.08| 0.08/0.08| 0.07/0.07 | 25/25(100.00 0.02
z100v3d5iw10-struc25/25(100.00 0.22 | 25/25/100.00 1.72 (-) |12.46/37.46 0.16/0.16| 0.25/0.25| 0.26/0.26| 0.52/0.52 | 25/25|100.00 1.55
z100v3d5iw20-ran25/25{100.000 0.24 | 25/25{100.000 0.24 | (0.57) (2.51) 0.51/0.51| 5.38/5.38(35.46/35.4(65.16/55.1625/25| 100.00| 0.23
z100v3d5iw20-struc25/25(100.00 0.44 | 25/25/100.00 0.70) (0.67) 4.38/5.38| 5.66/5.66) (5.49) |25/25/100.00 5.29
z100v6d5iwl0-rangd25/25{100.00 3.60 | 23/25| 99.43| 48.17 | (0.002)| (1.22) 8.71/8.71| 8.81/8.81| 8.77/8.78(52.58/92.2825/25(100.00 26.63
z100v6d5iw10-struc25/25|100.00 0.47 | 25/25|100.00 13.46) 24.67/25.0814.15/14.1%514.45/14.4514.22/14.22) 25/25|100.00 6.40
z100v6d5iw20-ranfi25/25| 100.00 2.94 | 2/25 | 63.71|1169.41(0.0001] (0.04) (1.08) @) O (0.37) | 25/25[100.00 35.91
z100v6d5iw20-struc25/25] 100.00 1.43 | 24/25| 98.56| 35.45 | (1e-14)| () |33.82/142.56 () @) @) 25/25(100.00 14.67
z200v3d5iw10-rangd25/25{100.00 2.12 | 8/25 | 93.00| 255.30| (2e-06)| (0.33) 1.02/1.02| 0.49/0.49| 0.48/0.48| 1.04/1.04| 25/25|100.00 3.99
z200v3d5iw10-struc25/25(100.00 0.58 | 25/25/100.00 21.51)) 0.37/0.37| 0.45/0.45| 0.45/0.45| 1.02/1.02| 25/25|100.000 3.90
2200v3d5iw20-ranfi25/25] 100.00 52.55| 24/25] 99.84| 29.00 | (6e-07)] (0.07) (5.15) | 7.007.01] (9 (37.15) | 21/25] 99.06| 62.87
z200v3d5iw20-struc25/25]100.00 1.31 | 17/25] 85.42| 88.18| () ®) 8] 8.13/8.13 8] (0.80) | 25/25[100.00 16.77
z200v6d5iw10-rand 0/25 | 74.60| oo 0/25 | 30.01 fe'e) (9e-12)| (5e-07) |35.48/36.0844.53/44.5345.48/45.48 (95.99) | 0/25 | 51.05 o)
z200v6d5iw10-struc25/25(100.00 3.06 | 0/25 | 0.44 [e's))) 40.22/40.2864.87/64.8164.78/64.7892.90/92.9025/25| 100.00 26.63
2200v6d5iw20-ranfi25/25] 100.00 54.85| 1/25 | 42.45 |2458.55 (1e-16)| (6e-09) | (0.19) O O (0.02) | 4/25 | 50.96| 605.54
2200v6d5iw20-struc21/25] 88.74| 54.32| 0/25 | 0.21 | oo ®) ®) (1e-07) ®) 8] (1e-15) | 7/25 | 52.29 | 368.62
z400v3d5iw10-rangd25/25|100.00 0.47 | 25/25/100.00 0.49 | (8e-15)| (0.004) |42.01/70.88 0.81/0.81| 0.90/0.90| 0.97/3.14| 25/25|100.00 0.46
z400v3d5iw10-struc23/25| 99.68| 20.07| 25/25|100.000 7.28)) (5.24) 1.12/1.12| 1.12/1.12| 1.84/7.05| 25/25|100.00 9.96
z400v3d5iw20-ranfl 0725 | 87.97| oo | 0/25 | 69.17| oo | (5e-18)] (0.0003) | (0.26) | 49.06/- 8] (76.25) | 0/25 | 71.46| oo
z400v3d5iw20-struc11/25] 92.84 [161.1§ 0/25 | 25.42| oo 6] ®) (7.21) |14.73/1558 (9 (89.09) | 2/25 | 83.71]1210.31
z400v6d5w10-ranfl 0725 | 17.30] oo | 0/25 | 1.15 | oo | (le-24)] (4e-08) | (24.33) |68.88/68.8868.81/68.80 (72.04) | 0/25| 552 | oo
z400v6d5iw10-struc 0/25 | 83.98| oo | 0/25 | 1e-05| oo O (6e-19) | (0.25) |55.48/55.4855.68/55.68 (16.29) | 0/25 | 57.12| oo
z400v6d5iw20-ranfl 0/25 | 29.79| oo | 0/25 | 849 | oo |(3e-25) (le-07) | (0.02) O O (0.08) | 0/25 | 13.80]| oo
z400v6d5iw20-struc 0/25 | 69.53| oo | 025 | 0.03 | oo ®) ®) (0.02) ®) 8] ®) 0/25 | 53.13| oo

84T

Table B.18: Full results for best-performing algorithms oalgjem segen. All algorithms were run 25 times far00
CPU seconds each. Summarized in Table 9.4 on page 116.

S171NS3Y TVLNIWIHTIAXT d3T1IV.LId "9 XIANIddY

Bibliography

[ACRO3]

[AFH+04]

[Bib93]

[BJO2]

[BSPV02]

[BVZ01]

[CDLS99]

[dBSDO1]

David Applegate, William J. Cook, and Andre Rohe. Chaihed
Kernighan for large traveling salesman probleii¢=ORMS Journal
on Computing15(1):82—-92, 2003.

Mirela Andronescu, Anthony P. Fejes, Frank Hutter, lolg. Hoos,
and Anne Condon. A new algorithm for RNA secondary structure de
sign. Journal of Molecular Biology336(3):607-624, February 2004.

Wolfgang Bibel. Wissensregsentation und Inferen/ieweg, Wies-
baden, Germany, 1993. In German.

Francis R. Bach and Michael I. Jordan. Thin junctiondrea T. G.
Dietterich, S. Becker, and Z. Ghahramani, editédyances in Neural
Information Processing Systems 13 (NIPS;(@Hges 569-576. MIT
Press, Cambridge, MA, USA, 2002.

Mauro Birattari, Thomas &tzle, Luis Paquete, and Klaus Var-
rentrapp. A racing algorithm for configuring metaheuristic In
W. B. Langdon et al., editoRroceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-20023ges 11-18. Mor-
gan Kaufmann Publishers, San Francisco, CA, USA, 2002.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approate en-
ergy minimization via graph cutsPattern Analysis and Machine In-
telligence 23(11), 2001.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzeand David J.
Spiegelhalter.Probabilistic Networks and Expert Systen$tatistics
for Engineering and Information Science. Springer, 1999.

Matthijs den Besten, Thomasu&tle, and Marco Dorigo. Config-
uration of iterated local search: An example applicatiorth® sin-
gle machine total weighted tardiness problem. In W. Egbegdr8o

159

160

[Dec96]

[DEKM98]

[DKLO1]

[DRO3]

[FHO4]

[Hec90]

[HKTO5]

[HNDO4]

[Ho098]

BIBLIOGRAPHY

J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E. Hart, G.RdRai
and H. Tijink, editorsApplications of Evolutionary Computingages
441-451. Springer Verlag, 2001.

Rina Dechter. Bucket elimination: A unifying framewdor proba-
bilistic inference. InProceedings of the Twelfth Conference on Un-
certainty in Artificial Intelligence (UAI'96) pages 211-219. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 1996.

Richard Durbin, Sean R. Eddy, Anders Krogh, and Gra&#itchison.
Biological Sequence Analysis : Probabilistic Models of teims and
Nucleic Acids Cambride University Press, Cambride, UK, 1998.

Rina Dechter, Kalev Kask, and Javier Larrosa. A gahscheme for
multiple lower bound computation in constraint optimipati InPrin-
ciples and Practice of Constraint Programming (CP’Opages 346—
360, 2001.

Rina Dechter and Irina Rish. Mini-buckets: A generalesuole for
bounded inferencelournal of the ACM50(2):107-153, 2003.

Pedro F. Felzenszwalb and Daniel P. HuttenlocheficiEnt belief
propagation for early vision. I€onference on Computer Vision and
Pattern Recognition (CVPR-04)ages 261-268. IEEE Computer So-
ciety, Washington, DC, USA, 2004.

David Heckerman. A tractable inference algorithon diagnosing
multiple diseases. IRroceedings of the Sixth Conference on Uncer-
tainty in Artificial Intelligence (UAI'90) Morgan Kaufmann Publish-
ers, San Francisco, CA, USA, 1990.

Te C. Hu, Andrew B. Kahng, and Chung-Wen A. Tsao Tsao. Old
bachelor acceptance: A new class of non-monotone thresicokept-
ing methods ORSA Journal on Computing(4):417-425, 1995.

Frank Hutter, Brenda Ng, and Richard Dearden. Incraalehin junc-
tion trees for dynamic Bayesian networks. Technical repotgllec-
tics Group, Darmstadt University of Technology, GermaiQ4£

Holger H. Hoos Stochastic Local Search — Methods, Models, Appli-
cations PhD thesis, TU Darmstadt, FB Informatik, Darmstadt, Ger-
many, 1998.

BIBLIOGRAPHY 161

[Ho099]

[HS99]

[HS04]

[HTHO2]

[1C02]

[1C03]

[JA90]

[JJ99]

[JLO90]

Holger H. Hoos. On the run-time behaviour of stotitdecal search
algorithms for SAT. InProceedings of the Sixteenth National Confer-
ence on Artificial Intelligence (AAAI'99pages 661-666. AAAI Press
/ The MIT Press, Menlo Park, CA, USA, 1999.

Holger H. Hoos and Thomasiftle. Towards a characterisation of
the behaviour of stochastic local search algorithms for SXfTificial
Intelligence 112:213-232, 1999.

Holger H. Hoos and Thomasifitle. Stochastic Local Search - Foun-
dations & ApplicationsMorgan Kaufmann Publishers, San Francisco,
CA, USA, 2004.

Frank Hutter, Dave A.D. Tompkins, and Holger H. HooScaling
and probabilistic smoothing: Efficient dynamic local séafar SAT.
In P. Van Hentenryck, editoRrinciples and Practice of Constraint
Programming (CP’02) volume 2470 ofLecture Notes in Computer
Sciencepages 233-248. Springer Verlag, Berlin, Germany, 2002.

Jaime S. Ide and Fabio G. Cozman. Random generation ofsizaye
networks. InProceedings on 16th Brazilian Symposium on Artificial
Intelligence (SBIA-02), Advances in Artificial Intelligenpages 366—
375. Springer Verlag, Berlin, 2002.

Jaime S. Ide and Fabio G. Cozman. Generation of randone$ay
networks with constraints on induced width, with applioas to the
average analysis od d-connectivity, quasi-random saigind loopy
propagation. Technical report, University of So Paulo, Bfap03.

Frank Jensen and Stig Andersen. Approximations ineBmn belief
universes for knowledge based systems.Ptaceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence (UADP pages
162-169. Morgan Kaufmann Publishers, San Francisco, CA,,USA
1990.

Tommi S. Jaakkola and Michael I. Jordan. Variatiggrababilistic
inference and the QMR-DT networBournal of Artificial Intelligence
Research10:291-322, 1999.

Finn V. Jensen, Steffen L. Lauritzen, and KristiarQBesen. Bayesian
updating in causal probabilistic networks by local compates. Com-
putational Statistics Quater)y:269-282, 1990.

162

[IMO02]

[KD96]

[KD99a]

[KD99b]

[KGV83]

[Kjee94]

[Lar03]

[LK73]

[LMS02]

BIBLIOGRAPHY

David S. Johnson and Lyle A. McGeoch. Experimentalgsis of
heuristics for the STSP. In G. Gutin and A. Punnen, edifbing, Trav-
eling Salesman Problem and its Variationsages 369-443. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2002.

Kalev Kask and Rina Dechter. A graph-based methodrfgrbving
gsat. InProceedings of the Thirteenth National Conference on Arti-
ficial Intelligence (AAAI'96)pages 350-355. AAAI Press / The MIT
Press, Menlo Park, CA, USA, 1996.

Kalev Kask and Rina Dechter. Branch and bound with fbingket
heuristics. InProceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI'99pages 426—435. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 1999.

Kalev Kask and Rina Dechter. Stochastic local sedociBayesian
networks. InProceedings of the 7th International Workshop on Atrtifi-
cial Intelligence and Statistics (AISTATS-9%anuary 1999.

Scott Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Qpization by
simulated annealing. Science, Number 4598, 13 May 19820,
4598:671-680, 1983.

Uffe Kjeerulff. Reduction of computational complexity Bayesian
networks through removal of weak dependencePrtiteedings of the
Tenth Conference on Uncertainty in Artificial IntelligendgA(’94),
pages 374-382. Morgan Kaufmann Publishers, San Frand&p,
USA, 1994.

David Larkin. Approximate decomposition: A methfmt bounding
and estimating probabilistic and deterministic queries.Pfoceed-
ings of the Nineteenth Conference on Uncertainty in Artifioi|li-
gence (UAI'03) pages 346—353. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 2003.

S. Lin and B.W. Kernighan. An effective heuristic algghm for the
travelling salesman problemOperations Resear¢21(2):498-516,
1973.

Helena Ramalhino Lourenco, Olivier Martin, and ThasrSiitzle. It-
erated local search. In F. Glover and G. Kochenberger, rsdiiand-
book of Metaheuristicpages 321-353. Kluwer Academic Publishers,
2002.

BIBLIOGRAPHY 163

[LS88]

[LW9O]

[MDO4]

[MKDO3]

[MMC98]

[Mor93]

[MTO0]

[MWJ99]

[Par02]

Steffen L. Lauritzen and David J. Spiegelhalter. #&locomputa-
tions with probabilities on graphical structures and ttagiplication
to expert systemsJournal of the Royal Statistical Society, Series B
50(2):157-224, 1988.

Jurgen Lehn and Helmut WegmannEinfuhrung in die Statistik
B.G.Teubner Stuttgart - Leipzig, 3rd edition, 1999. In Gemma

Radu Marinescu and Rina Dechter. AND/OR tree searcbtimiza-
tion in graphical models. Submitted to CP-04, 2004.

Radu Marinescu, Kalev Kask, and Rina Dechter. Systemss.
non-systematic algorithms for solving the MPE task. Rroceed-
ings of the Nineteenth Conference on Uncertainty in Artifitidél-
ligence (UAI'03) pages 394-402. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 2003.

Robert J. McEliece, David J. C. MacKay, and Jung-Fu Chéngbo
decoding as an instance of Pearl’s “belief propagation'd@lgm.
Journal on Selected Areas in Communicatidi®(2):140-151, Febru-
ary 1998.

Paul Morris. The breakout method for escaping frocal minima. In
Proceedings of the Eleventh National Conference on Artificitlli-
gence (AAAI'93)pages 40-45. AAAI Press / The MIT Press, Menlo
Park, CA, USA, 1993.

Patrick Mills and Edward P. K. Tsang. Guided localsdefor solving
SAT and weighted Max-SAT problems. In I. P. Gent, H. van Maare
and T. Walsh, editor§SAT2000 — Highlights of Satisfiability Research
in the Year 2000pages 89-106. I0S Press, Amsterdam, The Nether-
lands, 2000.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. dpy-belief
propagation for approximate inference: An empirical stutty Pro-
ceedings of the Fifteenth Conference on Uncertainty in Adifintel-
ligence (UAI'99) pages 467—475. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1999.

James D. Park. Using weighted Max-SAT engines teesiIPE. In
Proceedings of the Eighteenth National Conference on Adifici-
telligence (AAAI'02) pages 682—687. AAAI Press / The MIT Press,
Menlo Park, CA, USA, 2002.

164 BIBLIOGRAPHY

[PDO1] James D. Park and Adnan Darwiche. Approximating nspgulocal
search. IrProceedings of the 17th Conference in Uncertainty in Arti-
ficial Intelligence pages 403—-410. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 2001.

[Pea88] Judea Pearrobabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference Morgan-Kaufmann Series In Representation
And Reasoning. Morgan Kaufmann Publishers, San Franciscg, CA
USA, 1988.

[PS02] Luis Paquete and Thomasdi@te. An experimental investigation of
iterated local search for coloring graphs. In S. Cagnoni,qitli@&b,
E. Hart, M. Middendorf, and G. Raidl, editospplications of Evolu-
tionary Computingvolume 2279 ofLecture Notes in Computer Sci-
ence pages 122-131. Springer Verlag, Berlin, Germany, 2002.

[RBMO2a] Irina Rish, Mark Brodie, and Sheng Ma. Accuracy vs. &fficy
trade-offs in probabilistic diagnosis. Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI'Q2ages 560—
566. AAAI Press / The MIT Press, Menlo Park, CA, USA, 2002.

[RBMO2b] Irina Rish, Mark Brodie, and Sheng Ma. Efficient faulignosis using
probing. InProceedings of 2002 AAAI Spring Symposium on “Infor-
mation Refinement and Revision for Decision Making: Modefor
Diagnostics, Prognostics, and Predictiorjages 16-23, 2002.

[RNO3] Stuart Russell and Peter NorvidArtificial Intelligence: A Modern
Approach Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition,
2003.

[SAHHO02] Alena Shmygelska, Rosalia Aguirre-Hernandez, ldotyer H. Hoos.
An ant colony optimisation algorithm for the 2d HP proteindiag
problem. InProceedings of the 3rd International Workshop on Ant
Algorithms (ANTS-02)pages 40-52. Springer Verlag, 2002.

[SDO3] Solomon E. Shimony and Carmel Domshlak. Complexity robp-
bilistic reasoning in directed-path singly connected Bayetsvorks.
Artificial Intelligence 151:213 — 225, December 2003.

[SDA*75] Edward H. Shortliffe, Randall Davis, Stanton G. Axline,idg&r G.
Buchanan, C. Cordell Green, and Stanley N. Cohen. Computer-based

BIBLIOGRAPHY 165

consultations in clinical therapeutics: Explanation aak racquisi-
tion capabilities of the MYCIN systemComputers and Biomedical
Research8:303-320, 1975.

[SHO1] Thomas 2itzle and Holger H. Hoos. Analysing the run-time be-
haviour of iterated local search for the travelling salesrmpeoblem.
In P. Hansen and C. C. Ribeiro, editoEgsays and Surveys on Meta-
heuristics pages 589-611. Kluwer Academic Publishers, Boston,
MA, USA, 2001.

[SHS03] Kevin Smyth, Holger H. Hoos, and Thomasit3ke. Iterated robust
tabu search for Max-SAT. In Y. Xiang and B. Chaib-draa, edjtads
vances in Artificial Intelligence, 16th Conference of the Ghiaa So-
ciety for Computational Studies of Intelligence (AI'08plume 2671
of Lecture Notes in Computer Sciengages 129-144. Springer Ver-
lag, Berlin, Germany, 2003.

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise grasefor
improving local search. IRroceedings of the Twelfth National Con-
ference on Atrtificial Intelligence (AAAI'94pages 337-343. AAAI
Press / The MIT Press, Menlo Park, CA, USA, 1994.

[SLM92] Bart Selman, Hector J. Levesque, and David G. Mitche\ new
method for solving hard satisfiability problems. In Paul Rddeom
and Peter Szolovits, editorBroceedings of the Tenth National Con-
ference on Artificial Intelligence (AAAI'92pages 440-446. AAAI
Press / The MIT Press, Menlo Park, CA, USA, 1992.

[SWI7] Yi Shang and Benjamin W. Wah. Discrete Lagrangian-tbasarch
for solving Max-SAT problems. In M. E. Pollack, editd?Proceed-
ings of the Fifteenth International Joint Conference on fhaitl In-
telligence (IJCAI'97) volume 1, pages 378-383. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1997.

[TFO3] Marshall F. Tappen and William T. Freeman. Comparisbgraph
cuts with belief propagation for stereo, using identicaf parame-
ters. InProceedings of the Ninth IEEE International Conference on
Computer Vision (ICCV’03)volume 2, pages 900 — 906. IEEE Com-
puter Society Press, 2003.

[THO4] Dave A. D. Tompkins and Holger H. Hoos. Warped langssaand
random acts of sat solving. IRroceedings of the Eighth Interna-

166 BIBLIOGRAPHY

tional Symposium on Atrtificial Intelligence and MathemsijaIMA-
04), 2004. To appear.

[Vou97] Cristos VoudourisGuided Local Search for Combinatorial Optimiza-
tion Problems PhD thesis, University of Essex, Department of Com-
puter Science, Colchester, UK, 1997.

[VT99] Cristos Voudouris and Edward P. K. Tsang. Guided L&érch and
its application to the travelling salesman problelBuropean Journal
of Operational Resear¢ii13(2):469-499, 1999.

[YWO03] Chen Yanover and Yair Weiss. Approximate inference pratein-
folding. In S. Thrun S. Becker and K. Obermayer, editérdyances
in Neural Information Processing Systems 14 (NIPS-payes 1457—
1464. MIT Press, Cambridge, MA, USA, 2003.

[YWO04] Chen Yanover and Yair Weiss. Finding the m most proba&blefig-
urations in arbitrary graphical models. In Sebastian Thhawrence
Saul, and Bernhard Sotkopf, editors,Advances in Neural Informa-
tion Processing Systems 15 (NIPS-0@)T Press, Cambridge, MA,
USA, 2004.

[Zad83] Lotfi A. Zadeh. The role of fuzzy logic in the managernef uncer-
tainty in expert systemd-uzzy Sets and Syster:199-228, 1983.

[ZP94] Nevin L. Zhang and David Poole. A simple approach todsign net-
work computations. Iidvances in Atrtificial Intelligence, 10th Con-
ference of the Canadian Society for Computational Studiestefli
gence (Al-94) Lecture Notes in Computer Science, pages 171-178.
Springer Verlag, Berlin, Germany, 1994.

[Z2S00] Hantao Zhang and Mark E. Stickel. Implementing theiB&utnam
method.Journal of Automated Reasonirigg(1/2):277-296, 2000.

