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Abstract

Fault diagnosis is a critical task for autonomous opera-
tion of systems such as spacecraft and planetary rovers,
and must often be performed on-board. Unfortunately,
these systems frequently also have relatively little compu-
tational power to devote to diagnosis. For this reason, al-
gorithms for these applications must be extremely efficient,
and preferably anytime.

In this paper we introduce the Gaussian particle filter
(GPF), an efficient variant on the particle filtering algo-
rithm for non-linear hybrid systems. Each particle samples
a discrete mode and approximates the continuous variables
by a multivariate Gaussian that is updated at each time-step
using an unscented Kalman filter.

The algorithm is closely related to Rao-Blackwellized
Particle Filtering and equally efficient, but is more broadly
applicable. We show that given the same computation time
GPF performs diagnosis with a significantly lower rate of
incorrect diagnoses and with a much lower error on the con-
tinuous parameters. We also use the GPF to diagnose data
from the K-9 rover at NASA Ames Research Center.

1 Introduction

Fault diagnosis is a critical task for autonomous operation
of systems such as spacecraft and planetary rovers. The
diagnosis problem is to determine the state of a system
over time given a stream of observations of that system.
A common approach to this problem is model-based di-
agnosis [2, 3], in which the overall system state is repre-
sented as an assignment of a mode (a discrete state) to each
component of the system. Such an assignment is a possi-
ble description of the current state of the system if the set
of models associated with the modes is consistent with the
observed sensor values. One example of such a system is
Livingstone [19], which flew on the Deep Space One space-
craft as part of the Remote Agent Experiment [12] in May
1999. In Livingstone, diagnosis is performed by maintain-
ing a candidate hypotheses (in other systems more than one
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hypothesis is kept) about the current state of each system
component, and comparing the candidate’s predicted be-
haviour with the system sensors. Traditional model-based
diagnosis operates on discrete models only, and uses mon-
itors to translate continuous sensor readings into discrete
values. The monitors are typically only used once the sen-
sor readings have settled on a consistent value, and hence
these systems cannot generally diagnose transient events.

For many applications, e.g. planetary rovers, the com-
plex dynamics of the system make reasoning with a dis-
crete model inadequate. This is because too fine a dis-
cretization is required to accurately model the system; be-
cause the monitors would need global sensor information
to discretize a single sensor correctly; and because tran-
sient events must be diagnosed. To overcome this we need
to reason directly with the continuous values we receive
from sensors: Our model needs to be a hybrid system.

A hybrid system consists of a set of discrete modes,
which represent fault states or operational modes of the
system, and a set of continuous variables which model the
continuous quantities that affect system behaviour. We will
use the term state to refer to the combination of these, that
is, a state is a mode plus a value for each continuous vari-
able, while the mode of a system refers only to the discrete
part of the state. In many cases, not all of the hybrid system
will be observable. Therefore, we also have an observation
function that defines the likelihood of an observation given
the mode and the values of the continuous variables. All
these processes are inherently noisy, and the representation
reflects this by explicitly including noise in the continuous
values, and stochastic transitions between system modes.
We describe our hybrid model in more detail in Section 2.

There are several challenges to overcome to produce
an effective diagnosis algorithm for these types of hybrid
models. The algorithm we present here attempts to make
progress on all these problems, although primarily on the
first four:

Very low prior fault probabilities: Diagnosis prob-
lems are particularly difficult for approximation al-
gorithms based on sampling because of the low prob-
abilities of transitions to fault states. Because of
those low priors only a very small fraction of the
samples moves to a fault state even if this state per-
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fectly explains the system behaviour. This can lead
to incorrect diagnoses when no samples move to a
fault state at all, even though it has a high posterior
probability.

Restricted computational resources: For space applica-
tions, computation time is frequently at a premium,
and on-board real-time diagnosis is often necessary.
For this reason, diagnosis must be as efficient as pos-
sible.

Non-linear stochastic transitions and observations:
Many algorithms are restricted to linear models with
Gaussian noise. Our domains frequently behave non-
linearly, so we would prefer an algorithm without
this restriction.

Multimodal system behaviour: Even in a single discrete
mode, the observations are often consistent with sev-
eral values for the continuous variables, and so multi-
modal distributions appear. For example, when a
rover is commanded to accelerate, we are often un-
certain about exactly when the command is executed.
Different start times lead to different estimates of
current speed, and hence a multi-modal distribution.
Again, this is a problem for a number of algorithms,
particularly for Kalman filters.

High dimensional state spaces: As the number of possi-
ble faults grows, the number of discrete modes in the
system grows exponentially. The number of samples
required to accurately approximate the posterior dis-
tribution also grows exponentially with the dimen-
sionality of the continuous state.

Computing exact diagnoses for a probabilistic dynamic
model such as the one we describe above is computation-
ally intractable in the general case. There are exceptions the
most important of which is solved optimally and efficiently
by the Kalman filter [7]. We introduce Kalman filters in
Section 2.1. For more general cases a number of authors
have proposed approximate inference algorithms [16, 18].
The most general approach proposed is the particle filter
[9, 5] which sequentially computes an approximation to the
posterior probability distribution of the states of the sys-
tem given the observations. The posterior distribution is
approximated by a set of point samples or particles. We
discuss particle filters in Section 2.2, for a much more ex-
tensive review see [6].

An increasingly commonly used variant on particle fil-
ters is the Rao-Blackwellized particle filter (RBPF) [1],
which we describe in Section 2.3. Essentially, RBPF com-
bines a particle filter for the discrete system modes with
Kalman filters [7] to compute the distribution of the con-
tinuous state. This greatly reduces the computational re-
quirements of the algorithm by representing the continuous
state more efficiently, but it is restricted in its application to
problems in which the differential equations controlling the
continuous state variables are linear equations, and all noise

is Gaussian. To extend these computationally efficient ap-
proaches to non-linear systems we introduce the Gaussian
particle filter, which keeps samples over the discrete modes
and a distribution over the continuous state just as RBPF
does, but uses the unscented transformation to keep the dis-
tribution updated in non-linear models. We describe the
Gaussian particle filter in Section 3, and demonstrate its ef-
fectiveness in Section 4. On artificial data, we show that the
Gaussian particle filter (GPF) and GPF2, an efficient vari-
ant of it significantly outperform basic particle filters and
the unscented particle filter. We also show that these filters
enable us to do online diagnosis on real data.

2 Hybrid State Estimation

Following [8] and [10], we model the system to be di-
agnosed as a discrete-time probabilistic hybrid automaton
(PHA). A PHA is a tuple 〈Z,X, Y, F,G, T, P 〉, where:

• Z = z1, . . . , zn is the set of discrete modes the sys-
tem can be in.

• X = x1, . . . , xm is the set of continuous state vari-
ables which capture the dynamic evolution of the au-
tomaton.

• Y = Yc ∪ Yd is the set of observable variables. Yc is
the set of continuous observable variables, while Yd
is the set of discrete observable variables, typically
commands sent to the system.

• F = F1, . . . , Fn is, for each mode zi the set of dis-
crete time difference equations Fi that describe the
evolution of the continuous variablesX in that mode.
We write P(Xt|zt−1, xt−1) for the distribution over
X at time t given that the system is in state (z, x) at
t− 1.

• G = G1, . . . , Gn is, for each mode, the set of equa-
tions governing the relationship between the obser-
vational variables Y and the state variables X . We
write P(Yt|zt, xt) for the distribution of observations
in state (zt, xt).

• T is a probabilistic transition function over the dis-
crete modes that specifies P(Zt|zt−1, xt−1), the con-
ditional probability distribution over modes at time t
given that the system is in state (z, x) at t − 1. In
some systems, this is independent of the continuous
variables: P(Zt|zt−1, xt−1) = P(Zt|zt−1).

• P is the prior distribution P(Z0, X0) over states of
the system.

We denote a hybrid state of the system by s = (z, x), which
consists of a discrete mode z, and an assignment to the state
variables x.

Diagnosis of a hybrid system of this kind is determin-
ing, at each time-step, the belief state P(St|y1:t), a distri-
bution that, for each state s, gives the probability that s is



the true state of the system, given the observations so far.
In principle, belief state tracking is an easy task, which can
be performed using the forward pass equation:

P(st|y1:t) = αP(yt|st)
∫

P(st|st−1)P(st−1|y1:t−1)dst−1

= αP(yt|zt, xt)∫
P(xt|zt, xt−1)P(zt|zt−1, xt−1)P(st−1|y1:t−1)dst−1

where α is a normalizing constant. Unfortunately, comput-
ing the integral exactly is intractable in all but the smallest
of problems, or in certain special cases. The most impor-
tant special case is a unimodal linear model with Gaus-
sian noise. This is solved optimally and efficiently by
the Kalman filter (KF). We describe the KF below; then,
we weaken the model restrictions and describe algorithms
for more general models, such as Particle Filters and Rao-
Blackwellized Particle Filters. We end with the most gen-
eral problem for which we propose the Gaussian Particle
Filter.

2.1 Kalman Filters

When the system we want to diagnose has only one dis-
crete mode, linear transition and observation functions for
the continuous parameters and Gaussian noise there exists
a closed form solution to the tracking problem. In this case,
the belief state is a multivariate Gaussian and can be com-
puted incrementally using a Kalman filter (KF). At each
time-step t the Kalman filtering algorithm updates suffi-
cient statistics (µt−1,Σt−1), prior mean and covariance of
the continuous distribution, with the new observation yt.
We omit details and the Kalman equations here, and refer
interested readers to [7].

The Kalman filter is an extremely efficient algorithm.
However, in the case of non-linear transformations it does
not apply; good approximations are achieved by the ex-
tended Kalman filter (EKF) and the unscented Kalman
filter (UKF) with the UKF generally dominating the
EKF [17]. Rather than using the standard Kalman filter
update to compute the posterior distribution, the UKF per-
forms the following: Given an m-dimensional continuous
space, 2m+1 sigma points are chosen based on the a-priori
covariance (see [17] for details). The non-linear system
equation is then applied to each of the sigma points, and
the a-posteriori distribution is approximated by a Gaussian
whose mean and covariance are computed from the sigma
points. The mean is set to the weighted mean of the tran-
sitioned sigma points and the covariance is taken to be the
sum of the weighted squared derivations of the transitioned
sigma points from the mean. This unscented Kalman fil-
ter update yields an approximation of the posterior whose
error depends on how different the true posterior is from
a Gaussian. For linear and quadratic transformations, the
error is zero.

1. For N particles p(i), i = 1, . . . , N , sample discrete
modes z(i)

0 , from the prior P(Z0).

2. For each particle p(i), sample x(i)
0 from the prior

P(X0|z(i)
0 ).

3. for each time-step t do

(a) For each particle p(i) = (z
(i)
t−1, x(i)t−1) do

i. Sample a new mode:
ẑ

(i)
t ∼ P(Zt|z(i)

t−1).
ii. Sample new continuous parameters:

x̂
(i)
t ∼ P(Xt|ẑ(i)

t , x
(i)
t−1).

iii. Compute the weight of particle p̂(i):
w

(i)
t ← P(yt|ẑ(i)

t , x̂
(i)
t ).

(b) Resample N new samples p(i) where:
P(p(i) = p̂(k)) ∝ w(k)

t

Figure 1: The particle filtering algorithm.

2.2 Particle Filters

While the success of the above approaches depend on how
strongly the belief state resembles a multivariate Gaussian,
the particle filter (PF) [9] is applicable regardless of the un-
derlying model. A particle filter is a Markov chain Monte
Carlo algorithm that approximates the belief state using a
set of samples (particles), and keeps the distribution up-
dated as new observations are made over time. The basic
PF algorithm is shown in Figure 1. To update the belief dis-
tribution given a new observation, the algorithm operates in
three steps as follows:

The Monte Carlo step: This step considers the evolution
of the system over time. It uses the stochastic model
of the system to generate a possible future state for
each sample. In our hybrid model (and Figure 1),
this is performed by sampling a discrete mode, and
then the continuous state given the new mode.

The reweighting step: This corresponds to conditioning
on the observations. Each sample is weighted by the
likelihood of seeing the observations in the (updated)
state represented by the sample. This step leads sam-
ples that predict the observations well to have high
weight, and samples that are unlikely to generate the
observations to have low weight.

The resampling step: To produce a uniformly weighted
posterior, we then resample a set of uniformly
weighted samples from the distribution represented
by the weighted samples. In this resampling the
probability that a new sample is a copy of a particular
sample s is proportional to the weight of s, so high-
weight samples may be replaced by several samples,
and low-weight samples may disappear.

At any time t, the PF algorithm approximates the true
posterior belief state given observations y1:t by a set of



samples (or particles):

P(Zt, Xt|y1:t) ≈ P̂(Zt, Xt|y1:t)

=
1

N

N∑

i=1

w
(i)
t δ(Zt,Xt)((z

(i)
t , x

(i)
t ))

where w(i)
t , z(i)

t and x
(i)
t are weight, discrete mode and

continuous parameters of particle p(i) at time t, N is the
number of samples, and δx(y) denotes the Dirac delta func-
tion.

Particle filters have a number of properties that make
them a desirable approximation algorithm for diagnosis.
As we said above, unlike the Kalman filter, they can be ap-
plied to non-linear models with arbitrary prior belief distri-
butions. They are also contract anytime algorithms, mean-
ing that if you specify in advance how much computation
time is available, a PF algorithm can estimate a belief dis-
tribution in the available time—by changing the number of
samples, you trade off computation time for the quality of
the approximation. In fact, the computational requirements
of a particle filter depend only on the number of samples,
not on the complexity of the model.

Unfortunately, as we said in the introduction, diagno-
sis problems have some characteristics that make standard
particle filtering approaches less than ideal. In particu-
lar, on-board diagnosis for applications such as spacecraft
and planetary rovers must be performed using very lim-
ited computational resources, and transitions to fault modes
typically have very low probability of occurring. This sec-
ond problem leads to a form of sample impoverishment, in
which modes with a non-zero probability of being the ac-
tual state of the system contain no samples, and are there-
fore treated by the particle filter as having zero probability.
This is particularly a problem for diagnosis, because these
are exactly the states for which we are most interested in es-
timating the likelihood. There have been a few approaches
to tackling this issue, most notably [4] and [14].

Another traditional problem of particle filters is that the
number of samples needed to cope with high dimensional
continuous state spaces is enormous. Especially in the case
of high noise levels and widespread distributions, approx-
imations via sampling do not yield good results. If it is
possible to represent the continuous variables in a com-
pact way, e.g. in the form of sufficient statistics, this gen-
erally helps by greatly reducing the number of particles
needed. In the next section, we introduce one instance of
this, the highly efficient Rao-Blackwellized Particle Filter
which only samples the discrete modes and propagates suf-
ficient statistics for the continuous variables.

2.3 Rao-Blackwellized Particle Filters

Recent work on Rao-Blackwellized Particle Filter-
ing (RBPF) [1, 11] has focused on combining PFs and
KFs for tracking linear multimodal systems with Gaussian

1. For N particles p(i), i = 1, . . . , N , sample discrete
modes z(i)

0 , from the prior P(Z0).

2. For each particle p(i), set µ(i)
0 and Σ

(i)
0 to the prior

mean and covariance in state z(i)
0 .

3. For each time-step t do

(a) For each p(i) = (z
(i)
t−1, µ

(i)
t−1,Σ

(i)
t−1) do

i. Sample a new mode:
ẑ

(i)
t ∼ P(Zt|z(i)

t−1).
ii. Perform Kalman update using parame-

ters from mode ẑ(i)
t :

(ŷ
(i)

t|t−1, Ŝ
(i)
t , µ̂

(i)
t , Σ̂

(i)
t )

← KF (µ
(i)
t−1,Σ

(i)
t−1, yt, θ(z

(i)
t )).

iii. Compute the weight of particle p̂(i):

w
(i)
t ← P(yt|ŷ(i)

t|t−1
, Ŝ(i)) = N(yt; ŷ

(i)

t|t−1
, Ŝ(i)).

(b) Resample as in step 3.(b) of the PF algorithm
(see Figure 1).

Figure 2: The RBPF algorithm.

noise. In this kind of model, the belief state is a mixture of
Gaussians. Rather than sampling a complete system state,
in RBPF for hybrid systems, one combines a Particle Fil-
ter that samples the discrete modes zt, and a Kalman Filter
for each discrete mode zt ∈ Z that propagates sufficient
statistics (µ

(i)
t ,Σ

(i)
t ) for the continuous parameters xt. The

algorithm is shown in Figure 2. At each time-step t, first,
the discrete mode is sampled according to the transition
prior. Then, for each particle p(i) a Kalman filter is called
to compute the prior mean ŷ(i)

t|t−1 and covariance Ŝ(i)
t of the

observation and update the mean µ(i)
t and covariance Σ

(i)
t

for the continuous parameters. The variable θ(z(i)
t ) denotes

the parameters of the Kalman Filter belonging to mode z(i)
t .

Finally, the particle weight is computed as the observation
probability P (yt|ŷ(i)

t|t−1, Ŝ
(i)
t ) of yt given the prior observa-

tion mean and covariance. As in regular Particle Filtering,
a resampling step is necessary to prevent particle impover-
ishment.

As shown in [11], it is possible in Rao-Blackwellized
Particle Filtering to sample the discrete modes directly
from the posterior. It is also possible to resample before
the transition according to the expected posterior weight
distribution such that those particles get multiplied which
are likely to transition to states of high confidence. These
improvements result in an even more efficient algorithm
called RBPF2 [11].



3 Non-Linear Estimation

Since RBPF uses a KF for its continuous state estimation, it
is restricted to linear problems with Gaussian noise. Many
of the problems we are interested in do not have these prop-
erties. To overcome this, we propose the Gaussian particle
filter (GPF), an efficient variant of particle filtering for non-
linear hybrid models that is conceptually closely related
to RBPF. In general hybrid systems, there is no tractable
closed-form solution for the continuous variables, so we
cannot maintain sufficient statistics with every sample. It
is however possible to propagate an approximation of the
continuous variables. We sample the mode as usual and
for every particle update a Gaussian approximation of the
continuous parameters using an unscented Kalman filter.
Since the unscented Kalman filter only approximates the
true posterior distribution, the GPF is a biased estimator
in non-linear models; omitting the sampling of continuous
variables however greatly reduces the estimator’s variance.
However, PFs with a finite number of samples also yield a
biased estimator and the variance of the estimate is greatly
reduced in the GPF.

The GPF algorithm is very similar to the RBPF al-
gorithm presented in Figure 2. In both of these algo-
rithms particle p(i) represents the continuous variables
with a multivariate Gaussian N(µ

(i)
t ,Σ

(i)
t ). In the case

of linear models and RBPF, this Gaussian is a sufficient
statistic, in the case of non-linear models and GPF, it
is an approximation. In the algorithm, the only change
is in line 3.(a)ii of Figure 2, which is replaced by:

3.a(ii) Perform an unscented Kalman update using
parameters from mode ẑ(i)

t :

(ŷ
(i)
t|t−1, Ŝ

(i)
t , µ̂

(i)
t , Σ̂

(i)
t )

← UKF (µ
(i)
t ,Σ

(i)
t , yt, θ(z

(i)
t ))

This change is due to the non-linearity of transition
and/or observation function. A Kalman update is simply
not possible, but a good approximation is achieved with an
unscented Kalman filter. The approximation of continuous
variables in the GPF is a mixture of Gaussians rather than
the set of samples as in a PF. Since the expressive power
of every particle is higher, fewer particles are needed to
achieve the same approximation accuracy. This more than
offsets the small additional computational cost per sample.
Furthermore, this compact approximation is likely to scale
smoothly with an increase in dimensionality.

Like RBPF, the GPF can be improved by sampling di-
rectly from the posterior distribution and resampling be-
fore the transition. We call the resulting algorithm GPF2
and detail it in Figure 3. For each particle, before actually
sampling a discrete mode, we look at each possible mode
m, update our approximations of the continuous parame-
ters assuming we had sampled m, and compute the obser-
vation likelihood for those approximations. This and the
transition prior give the posterior probability of transition-

ing to m. Then for each particle we sample a new discrete
mode from the posterior we computed for it.

At each time-step t, for every particle p(i), first we enu-
merate each possible successor mode m, i.e. each mode
m ∈ Z such that P (m|z(i)

t−1) > 0. For each m, we per-
form an unscented Kalman update, and compute analyt-
ically the observation likelihood P (yt|m,µ(i)

t−1,Σ
(i)
t−1) =

P (yt|y(i,m)
t|t−1, S

(i,m)
t ). Then, we compute the unnormalized

posterior probability Post(i,m) of transitioning to mode
m with particle p(i); this is given simply by the product of
the transition prior to m and the observation likelihood in
m. Next we compute the weight of each particle p̂(i) as the
sum of the posterior probabilities of it’s successor modes
and resample N particles according to this weight distribu-
tion. Note, that Post(i,m), µ(i,m)

t and Σ
(i,m)
t also need to

be resampled, i.e. when particle p(i) is sampled to be parti-
cle p̂(k), then Post(i,m)← P̂ ost(k,m), µ(i,m)

t ← µ̂
(k,m)
t

and Σ
(i,m)
t ← Σ̂

(k,m)
t for all m.

Finally, for every particle p(i), a successor mode m is
sampled according to the posterior probability; this mode is
used as z(i)

t ; µ(i)
t and Σ

(i)
t are set to the already computed

value µ(i,m)
t and Σ

(i,m)
t .

GPF2 only differs from the RBPF2 algorithm in that it
is calling an unscented Kalman filter update instead of a
Kalman update due to the non-linear character of the trans-
formations. It is a very efficient algorithm for state estima-
tion on non-linear models with transition and observation
functions that transform a Gaussian distribution to a distri-
bution that’s close to a Gaussian. Very low fault priors are
handled especially gracefully by GPF2 since it samples the
discrete modes from their true posterior distribution. When
there is strong enough evidence the fault will be detected
regardless of how low the prior is.

4 Experiments

We performed experiments on a simple model of the sus-
pension system of the K-9 rover at NASA Ames Research
Center. K-9 is a six wheeled rover with a rocker-bogey
suspension, and we model the suspension’s response to
driving over rocks and other obstacles to anticipate situa-
tions where the rover’s scientific instruments could collide
with an obstacle, or where the rover could become “high-
centered” on a rock. The model has six discrete modes
and six continuous variables, two of which are observable.
The continuous parameters follow non-linear trajectories
(trigonometric functions) in three of the modes, and are
linear in the others. As well as tracking the discrete mode
of the system, we are also interested in estimating the val-
ues of one of the unobservable state variables, which cor-
responds to the height of the obstacle being traversed, and
hence to the clearance between the rover and the obstacle.

Figure 4 shows the rate of state estimation errors for



1. For N particles p(i), i = 1, . . . , N , sample discrete modes z(i)
0 , from the prior P(Z0).

2. For each particle p(i), set µ(i)
0 and Σ

(i)
0 to the prior mean and covariance in state z(i)

0 .

3. For each time-step t do

(a) For each p(i) = (z
(i)
t−1, µ

(i)
t−1,Σ

(i)
t−1) do

i. For each possible successor mode m ∈ succ(z(i)
t−1) do

A. Perform unscented Kalman update using parameters from mode m:

(ŷ
(i,m)

t|t−1
, Ŝ

(i,m)
t , µ̂

(i,m)
t , Σ̂

(i,m)
t )

← UKF (µ
(i)
t−1,Σ

(i)
t−1, yt, θ(m)).

B. Compute posterior probability of mode m as:

P̂ ost(i,m) ← P(m|z(i)
t−1, yt)

= P(m|z(i)
t−1)N(yt; y

(i,m)

t|t−1
, S

(i,m)

t|t−1
).

ii. Compute the weight of particle p̂(i): w(i)
t ←

∑
m∈succ(z(i)

t−1
)
P̂ ost(i,m)

(b) Resample as in step 2.(b) of the PF algorithm (see Figure 1) (also resample Post, µt and Σt).

(c) For each particle p(i) do

i. Sample a new mode:
m ∼ P(Zt|z(i)

t−1, yt).

ii. Set z(i)
t ← m, µ(i)

t ← µ
(i,m)
t and Σ

(i)
t ← Σ

(i,m)
t .

Figure 3: The GPF2 algorithm.

the GPF, GPF2 and traditional particle filters, as well as
the unscented particle filter, discussed below. The model
was used to generate data for which ground truth was avail-
able as to the true values of the mode and continuous vari-
ables, and the algorithms were applied to this artificial data.
The diagnosis of every filter is taken to be the maximum a
posteriori (MAP) estimate for the discrete modes; we de-
fine a discrepancy between this MAP estimate and the real
discrete mode as an error. Figure 4 shows the error rates
( #diagnosis errors

#time steps ) achieved by the algorithms with differ-
ent numbers of samples; the x-axis is the CPU time the
algorithms needed for the computation. The graph shows
that GPF is a better approximation than PF given the same
computing resources, particularly as the number of sam-
ples increases and the discrete states become adequately
populated with samples. GPF2 is considerably slower per
sample but its approximation is superior to PF or GPF.

We also compare our results with the unscented parti-
cle filter (UPF) of [15]. The GPF and UPF have a number
of similarities. Both use a set of particles each of which
performs an unscented Kalman update at every time step.
In UPF, the Kalman update approximation N(mut,Σt) of
the posterior is used as a proposal for the particle filter, in
GPF this approximation is used as the filter result. By sam-
pling from the continuous distributionN(mut,Σt), the un-
scented particle filter introduces extra variance on its esti-
mation. The GPF is giving up theoretical convergence in
order to reduce this variance. In online diagnosis, there are
cases where we can only use a few particles for diagnosis.
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Figure 4: Performance for the GPF, the GPF when sam-
pling from the posterior, the UPF, and traditional particle
filters. Estimation based on 50 runs.

In this case, a low variance is clearly more important than
theoretical convergence. Moreover, in practice the UPF is a
biased estimator as well since it can only use a finite num-
ber of particles.

In some cases we are not only interested in diagnosing
the discrete modes, but also the continuous parameters of a
hybrid system. As an example we might want to know the
steepness of a hill, or the size of a rock we are driving over.
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Figure 5: Mean squared errors of the four algorithms, av-
eraged over 50 runs. Note the logarithmic scale for both
the X- and Y- axes. At real time (ca. 1/3s per time step),
the MSE of GPF2 is about six times lower than of GPF, ten
times lower than that for UPF and 106 times lower than for
PF.

In other applications, these continuous parameters might
be crucial, particularly when diagnosing sensor defects and
calibration problems. Figure 5 shows the mean squared
error (MSE) of the PF, UKF, GPF and GPF2 algorithms
on artificial data where ground truth is available. The Y-
scale is logarithmic to fit the extreme differences between
standard particle filters and the other algorithms. With a
mean squares estimation error of the continuous parameters
which is about 106 times higher than that of GPF2, it is
clearly outperformed. The difference between UPF, GPF
and GPF2 is less significant, although still a factor of ten
between UPF and GPF2.

In our experiments there is little difference between the
results of GPF and UPF. GPF is generally faster by a con-
stant factor since it does not need to sample the continu-
ous state, and the weight computation is faster. We would
expect the UPF to yield better results when the shape of
the posterior distribution is very different from a Gaussian
and would expect the GPF to do better when there is a big
posterior covariance Σt such that the sampling introduces
high variance on the estimate. In this case, the UPF will
need more particles to yield the same results. Since neither
of these conditions applies in our domain, both algorithms
show similar performance, with GPF being slightly faster.

We also applied the GPF to real data from the K-9 rover.
In Figure 6, we show the two observed variables, differen-
tial angle (Y2) and bogey angle (Y1) as well as the dis-
crete mode estimates PF and GPF2 yield. State 1 repre-
sents flat driving, state 2 driving over a rock with the front
wheel, state 3 with the middle wheel and state 4 with the
rear wheel. State 5 represents the rock being between the
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Figure 6: Discrete mode estimates on real data.

front and the middle wheel and state 6 between the mid-
dle and the rear wheel. There is no ground truth for this
data, although it is fairly clear from the data when the rover
drives over the three rocks. Both filters successfully detect
the rocks, but the GPF2 detects all of the rocks before PF
detects them. For the third rock in the data, GPF2 correctly
identifies that the back wheel passed over the rock, while
the particle filter only tracks the first two wheels. Again,
we only show the most probable mode at each time-step in
the figure.

5 Conclusions and Future Work

We are currently testing these algorithms on larger mod-
els, which should better show the performance gain from
GPF over the standard particle filter. We are developing a
model of the entire K-9 rover locomotion system, and plan
to use these algorithms as part of our diagnosis effort for
that system.

The most significant challenge for diagnosis on-board
a planetary rover is limited computational resources. Diag-
nosis is one small part of the overall rover software, and
gets a small percentage of the rover’s computational re-
sources. Particle filter-based approaches are very attractive
because of their anytime properties. The GPF algorithm
performs much better than the standard PF with small num-
bers of samples because it increases the representational
power of each sample. We anticipate that GPF will be very
useful for on-board diagnosis on the K-9 rover where mod-
els can’t be easily linearised, and even when the models are
linear, as it performs very comparably with RBPF, the best
particle filter variant for this case.

Sampling from the true posterior distribution (the GPF2
variant) considerably outperforms GPF in terms of diagno-
sis errors, even with just a single particle. However, this



comes at a large computational cost due to the expense of
enumerating the possible modes of the system, and this
cost will only worsen as system complexity grows. This
may make the algorithm too expensive for on-board diag-
nosis on the rover, especially as we’re generally interested
in more than just the most likely diagnosis, and therefore
we need a number of samples in the filter. If it is too ex-
pensive for general use, it may be useful in situations where
an accurate diagnosis is extremely important, and the rover
is prepared to spend additional computational resources to
ensure that the diagnosis is correct. In this scenario, we
might use the GPF algorithm most of the time, but when de-
cisions have to be made that depend crucially on the rover
state, GPF2 can be used to refine the current state estimate.

We are also currently investigating efficient variants of
GPF2 that do not need to compute the posterior probabil-
ity for every successor mode. When we consider a system
with N faults with very low priors, we conjecture it to be
sufficient to consider only a subset of all the 2N possible
successor modes for each particle. One possible approach
is to assume that only one or two faults happen at the same
discrete time step. This would reduce the number of possi-
ble successor modes toN orN 2. The number of faults that
are active at any given time would not be bounded, only the
number of faults that actually occur at the same time step.
Another alternative would be to use a more abstract diagno-
sis system—possibly even a traditional discrete approach—
to reduce the set of possible successor states.

Furthermore, the close relationship between Rao-
Blackwellized particle filtering and the Gaussian particle
filter opens the possibility for hybrid filters employing the
more efficient RBPF algorithm in modes with linear equa-
tions and the more general GPF in modes with non-linear
equations. The identical representation of the belief state
makes it possible to switch algorithms without any compu-
tational overhead.

Finally, we are looking at other particle filter-based al-
gorithms such as [13] that divide the system into indepen-
dent parts, perform diagnoses of each part, and then com-
bine the results into a global diagnosis. Factoring the di-
agnosis in this way is another important tool for making
on-board hybrid diagnosis possible.
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