
Group Sparsity: A Unified Framework for Network Pruning and Neural
Architecture Search

Avraam Chatzimichailidis1,2,5,Arber Zela3, Shalini Shalini1,4, Peter Labus1,5,
Janis Keuper1,6, Frank Hutter3,7, Yang Yang1,5

1Department of High Performance Computing, Fraunhofer ITWM
{avraam.chatzimichailidis, peter.labus, yang.yang}@itwm.fraunhofer.de

2Chair for Scientific Computing, TU Kaiserslautern
3Department of Computer Science, University of Freiburg

{zelaa, fh}@cs.uni-freiburg.de
4Department of Computer Science, TU Kaiserslautern

s shalini18@cs.uni-kl.de
5Fraunhofer Center Machine Learning, Germany

6Institute for Machine Learning and Analytics, Offenburg University
janis.keuper@hs-offenburg.de

7Bosch Center for Artificial Intelligence, Renningen

Abstract

We demonstrate how to exploit group sparsity in order to
bridge the areas of network pruning and neural architecture
search (NAS). This results in a new one-shot NAS optimizer
that casts the problem as a single-level optimization prob-
lem and does not suffer any performance degradation from
discretizating the architecture.

1. Introduction

Network pruning is a key technique to compress neu-
ral networks and reduce their computational complexity.
Among the various pruning techniques, group sparsity can
bring structured sparsity in the form of kernel/channel prun-
ing. A seemingly obvious but often overlooked perspective
of one-shot neural achitecture search (NAS) is that it is in
essence a pruning process. In this paper, we extend the
group sparsity approach to tackle the one-shot NAS prob-
lem. Because group sparsity is based on the nonsmooth
L2,1-norm regularization, the resulting training problem is
nonsmooth and cannot be solved by standard stochastic gra-
dient descent (SGD). In the proposed GSparsity method, we
use the recent ProxSGD algorithm [12] in combination with
group sparsity to efficiently converge to a sparse solution.

Contributions We make fundamental contributions to the
area of one-shot NAS:

• We unify the areas of network pruning and NAS.
We achieve this by grouping the trainable parameters
of kernels/filters/operations together and apply group
sparsity regularization directly to those groups.

• This approach renders the architectural parameters
typical of most one-shot methods superfluous, casting
the NAS problem as a standard single-level optimiza-
tion problem, which is much easier to solve optimally
than bi-level optimization problems.

• While the optimization problem with group sparsity
regularization is nonsmooth, we use the recent prox-
imal stochastic gradient descent (ProxSGD) [12] opti-
mizer to solve this problem efficiently. ProxSGD con-
verges to a sparse solution, where the weights of non-
important groups are exactly zero. As a result, while
previous methods, such as DARTS [6] and its suc-
cessors, show substantial performance degradation in
their discretization step, our approach avoids any such
performance degradation (verified in our experiments
for operation pruning).

Related work. DARTS [6] formulates the one-shot NAS
problem as a differentiable optimization problem, which
can be solved by standard low-complexity stochastic gra-
dient descent algorithms. However, several limitations

1

ŵk(t) = argmin
wk

{
(wk −wk(t))

Tvk(t) +
τk(t)

2
‖wk −wk(t)‖22 + µk ‖wk‖2

}
(1a)

=

1− µk

τk(t)
∥∥∥wk(t)− 1

τk(t)
vk(t)

∥∥∥
2

+(
wk(t)−

1

τk(t)
vk(t)

)
, k = 1, . . . ,K. (1b)

are still prevalent. Firstly, the importance of each oper-
ation is modelled by a learnable scalar parameter. Dis-
cretizing these continuous architectural parameters after
search is completed can lead to a performance degrada-
tion [13, 14, 7]. Secondly, the problem is framed as a bi-
level optimization problem [4], and it is indeed complex
and computationally intractable to solve exactly. Lastly, as
shown in [13], the behaviour of DARTS is not robust across
search spaces, often producing degenerate results with ar-
chitectures composed by only parameterless operations.

Many follow-up works have been proposed to improve
DARTS from the above aspects [10, 13, 1, 2, 7]. Closest
to our work is the HAPG algorithm recently proposed in
[9], where an additional group sparsity regularization is ap-
plied to the architectural parameters in order to reduce the
discretization gap after the search procedure. The core dif-
ference between our proposed algorithm and HAPG is that
we apply the group sparsity constraints directly to the one-
shot model weights. Therefore, the architectural parameters
are unnecessary in our framework and the problem reduces
to a single-level optimization. [8] propose an algorithm to
learn the connectivity pattern in neural networks by impos-
ing a constraint on the maximal number of edges that the
target network has to contain. In contrast, our algorithm
determines automatically what the connectivity pattern is
based on the group sparsity constraints over the parameters.
[7] revisit the discretization step in many one-shot NAS al-
gorithms and propose a new architecture selection method
by evaluating the one-shot model after pruning some op-
erations following a predefined post-hoc heuristic. This is
done implicitly with our method during the search routine
without the need to resolve to such heuristics.

2. Method

The vector w of trainable parameters of a neural network
is decomposed into subvectors w = (wk)

K
k=1, such that

wk represents a group of weights; we denote the number
of (non-overlapping) groups as K. Depending on the spe-
cific task at hand, a group could be a kernel or filter. In this
work, we notice that group sparsity also allows grouping of
operations in a NAS search space. Thus, operations that are
not important will be pruned away by the algorithm by set-
ting their parameter values to zero. Therefore, there is no

need to use architectural parameters and our new method,
dubbed GSparsity, can directly address differentiable NAS
as a single-level optimization problem. Benefits of this ap-
proach include that (1) we can use the whole dataset for
updating the operation’s weights and (2) we do not need to
use expensive second order optimization in order to approx-
imate the bi-level optimization as done in [6]; (3) we can
directly prove convergence; and (4) there is no performance
degradation from discretizing the architecture.

We formulate network training as the following opti-
mization problem, which aims at minimizing the loss func-
tion f augmented by group-sparsity regularization on w:

minimize
w

1

|X|
∑
x∈X

f(w,x) +

K∑
k=1

µk ‖wk‖2 , (2)

where x is a training example from the training dataset X
(with |X| denoting the number of training examples). Be-
sides, the L2 norm is defined as ‖w‖2 ,

√
wTw and

it is a nonsmooth convex function. The regularization∑K
k=1 µk ‖wk‖2 in (2) is usually referred to as the L2,1

norm (or the mixed norm), and it can promote a group-
sparse neural network, in the sense that most groups will
be zero and hence can be removed from the neural network
without incurring any performance loss.

We tackle this problem with the recent ProxSGD algo-
rithm [12], where the weights are updated iteratively as fol-
lows:

1. Compute the instantaneous gradient g(t) based on the
minibatch M(t):

g(t) =
1

|M(t)|
∑

x∈M(t)

∇wf(w(t),x).

2. Update the momentum:

v(t) = (1− ρ(t))v(t− 1) + ρ(t)g(t).

3. Compute ŵ(t) by solving the approximation subprob-
lem specified in (1) at the top of this page.

4. Update the weight:

w(t+ 1) = w(t) + ε(t)(ŵ(t)−w(t)).

2

Regularization
gain µ

Accuracy
before pruning Accuracy after pruning

pruning threshold
1e-6 1e-3 0.5

0.0001 96.50 96.50 96.50 92.08
0.0005 96.36 96.36 96.36 13.34
0.004 96.48 96.48 96.48 10

Table 1: Operation pruning: The accuracy before pruning
and after pruning (without retraining). In contrast to Figure
1, here we report accuracies obtained only through infer-
ence, without retraining the pruned network again.

ProxSGD converges almost surely to a stationary point
of the nonconvex nonsmooth optimization problem (2) un-
der standard assumptions on the loss function f , momentum
ρ(t) and learning rate ε(t). We refer to Theorem 1 of [12]
for more details.

3. Experiments
We now empirically show that (1) we can group the

parameters of the same operation and use group sparsity
in order to prune entire operations of a neural network,
and (2) using this operation pruning in our new Group
Sparsity NAS (GS-NAS) method yields very competitive
and robust results for various search spaces and datasets.
Throughout, we follow the NAS best practice checklist [5]
by using standard NAS benchmarks without any tweaks,
performing multiple runs, and making our code publicly
available at https://github.com/cc-hpc-itwm/
GSparsity, along with the logs of all runs.

Operation Pruning We first demonstrate that we can
group the parameters of the same operation and use group
sparsity in order to prune entire operations of a neural net-
work. To our best knowledge, this is the first work consid-
ering operation pruning.

As a base architecture to be pruned, we chose one of the
networks found in the original DARTS paper: DARTS-V2,
which has 3.3M parameters. We use ProxSGD to train this
architecture on CIFAR-10, varying the regularization gain
hyperparameter µk across runs that controls the amount of
regularization (and thus sparsification). We keep µk at the
same value for all groups (µk = µ for all k) and con-
sider values of µ ∈ {0.0001, 0.0002, 0.0005, 0.002, 0.004}.
After training, we prune the operations whose L2 norm is
smaller than 10−6, and retrain the pruned network by SGD
with momentum.

Figure 1 shows that the retrained architecture’s accuracy
remains nearly constant when up to 40% of weights are
pruned, and even up to the most aggressive pruning of 70%
of the weights performance only degrades gradually.

Table 1 shows the accuracies before and after pruning

Figure 1: Trade-off achieved between percentage of pruned
weights and accuracy (after retraining the pruned network)
that can be achieved by operation pruning.

without retraining. We readily see that the proposed group
sparsity approach incurs no discretization error at all, even
when the pruning threshold is only modestly small (1e-3).

Architecture Space and Search Settings We now evalu-
ate GS-NAS in a standard NAS setup. We use the DARTS
setting [6], where we train on a supernet that consists of 8
cells with 16 initial channels. To apply GS-NAS, we put the
same operation in different cells of the same type into the
same group.

We train the supernet for 100 epochs of ProxSGD, using
the full training set with 50k samples, with the following hy-
perparameters: (constant) learning rate 0.001, momentum
0.8, and τk(t) = 1 for all k and t. To deal with the different
number of parameters in each group, we normalize the regu-
larization gain µ by the size of the group: µk = µ/

√
|wk|,

where µ = 60, wk represents all weights in Group k and
|wk| is the size of wk. Note that µ is a hyperparameter
that needs to be tuned so that the desired sparsity level is
achieved. In practice, this can be done in a similar fashion
as bisection, as the larger µ is, the fewer nonzero groups
there are.

The final evaluation phase follows the original DARTS
protocol: the architecture (consisting of two cells) found in
the search phase are stacked in order to form a full network
with 14 cells. The number of initial channels is increased
to 36. The full network is trained for 600 epoch by SGD
with momentum. The hyperparameters are also chosen as
in DARTS [6].

Table 2 summarizes our results. We ran each NAS
method three times and evaluated each of the resulting three
architectures three times; we report means and standard
deviations over the resulting nine models. In this evalua-
tion, our GS-NAS method achieves the best performance,
alongside PC-DARTS. We note that we obtained the re-

3

https://github.com/cc-hpc-itwm/GSparsity
https://github.com/cc-hpc-itwm/GSparsity

sults for this table by re-running the authors’ original imple-
mentations, but that the results for most methods are some-
what worse than in the respective papers introducing them.
One reason for this is that we consider the average perfor-
mance based on all architectures (instead of the best archi-
tecture w.r.t. validation performance of four repetitions of
the search phase, as proposed in the DARTS paper [6] and
largely followed since).

Algorithm Accuracy Search Cost Params (M)
DARTS (second order) [6] 96.98 +/- 0.13 1.45 days 2.11 +/- 0.33
P-DARTS [3] 97.05 +/- 0.20 0.25 day 3.98 +/- 0.19
PC-DARTS [11] 97.13 +/- 0.16 0.125 day 2.98 +/- 0.04
DrNAS [2] 96.95 +/- 0.08 0.84 day 4.64 +/- 0.06
GS-NAS (ours) 97.17 +/- 0.11 1 day 4.54 +/- 0.17

Table 2: Network Architecture Search for CIFAR-10. The
performance is reproduced by using the authors’ implemen-
tation.

Results on subspaces of the DARTS search space and
on the Robustness of GS-NAS DARTS does not perform
well on different search spaces that only allow a subset of
operations from the original DARTS search space [13]. We
therefore test GS-NAS on spaces S1, S2 and S4 1 from [13].

Table 3 summarizes the performance of DARTS, ES-
DARTS (the robust early stopping version of DARTS from
[13]), and GS-NAS on the above search spaces. In this com-
parison, GS-NAS performs amongst the best for all of S1,
S2 and S4, with up to 1.53% absolute test error improve-
ment on S4 compared to ES-DARTS (and larger improve-
ments compared to DARTS).

4. Conclusion
In this work, we propose to use group sparsity in order

to bridge the gap between network pruning and differen-
tial NAS. We show that by reformulating NAS as a pruning
problem, we are able to reach superior performance without
suffering from overfitting or from performance degradation
after discretizing the architecture.

1The search space S3 in [13] is {3×3 SepConv, SkipConnect, Zero}.
We do not consider it as we would implicitly get the ZERO operation from
S2 when none of {3×3 SepConv, SkipConnect} is selected.

Search Space DARTS* ES-DARTS* GS-NAS
S1 4.66 +/- 0.71 3.05 +/- 0.07 3.06 +/- 0.14
S2 4.42 +/- 0.40 3.41 +/- 0.14 2.60 +/- 0.11
S4 6.95 +/- 0.18 4.17 +/- 0.21 2.64 +/- 0.12

Table 3: Performance (in terms of error) of DARTS, ES-
DARTS and the proposed GS-NAS on CIFAR-10 (*The
numbers are taken from Table 1 of [13]).

References
[1] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On

the convergence of a class of ADAM-type algorithms for
non-convex optimization. In International Conference on
Learning Representations, 2019. 2

[2] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xi-
aocheng Tang, and Cho-Jui Hsieh. DrNAS: Dirichlet neural
architecture search. In International Conference on Learning
Representations, 2021. 2, 4

[3] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1294–
1303, 2019. 4

[4] Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An
overview of bilevel optimization, 2007. 2

[5] Marius Lindauer and Frank Hutter. Best practices for scien-
tific research on neural architecture search. Journal of Ma-
chine Learning Research, 21(243):1–18, 2020. 3

[6] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 1, 2, 3, 4

[7] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi-
aocheng Tang, and Cho-Jui Hsieh. Rethinking architecture
selection in differentiable NAS. In International Conference
on Learning Representations, 2021. 2

[8] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari.
Discovering neural wirings. In 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), 2019. 2

[9] Yan Wu, Aoming Liu, Zhiwu Huang, Siwei Zhang, and Luc
Van Gool. Neural architecture search as sparse supernet. In
2021 AAAI Conference on Artificial Intelligence, 2021. 2

[10] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: Stochastic neural architecture search. In Interna-
tional Conference on Learning Representations, 2019. 2

[11] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo Jun
Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: Partial chan-
nel connections for memory-efficient differentiable architec-
ture search. In International Conference on Learning Repre-
sentations, volume 1, pages 1–13, 2020. 4

[12] Yang Yang, Yaxiong Yuan, Avraam Chatzimichailidis, Ruud
JG van Sloun, Lei Lei, and Symeon Chatzinotas. ProxSGD:
Training Structured Neural Networks under Regularization
and Constraints. In Proceedings of the International Confer-
ence on Learning Representations, 2020. 1, 2, 3

[13] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding and
robustifying differentiable architecture search. In Interna-
tional Conference on Learning Representations, 2020. 2, 4

[14] Arber Zela, Julien Siems, and Frank Hutter. NAS-Bench-
1Shot1: Benchmarking and dissecting one-shot neural ar-
chitecture search. In International Conference on Learning
Representations, 2020. 2

4

