HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO

Katharina Eggensperger

Philipp Müller

Neeratyoy Mallik

Matthias Feurer

René Sass

Aaron Klein

Noor Awad

Marius Lindauer

Frank Hutter

IBURG

Why should you care?

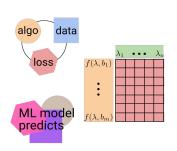
Applications of ML are growing.

Model size and complexity is growing.

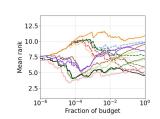
We need efficient hyperparameter optimization methods!

→ Multi-fidelity optimization

BUT

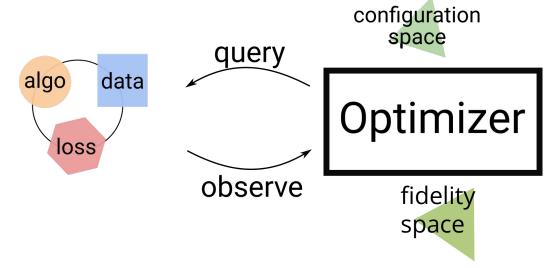

To develop, improve, understand and compare methods we need benchmark problems that are realistic, efficient and available for a long time.

Contributions


 The first collection of containerized multi-fidelity HPO benchmarks with 100+ benchmark problems

- The first set of HPO benchmarks that
 - are available as raw and tabular versions
 - which also support multi-objective
 optimization and transfer-HPO across datasets

An exemplary large-scale study evaluating
 >10 optimization methods on all benchmarks



HPO Benchmarks

Benchmark ingredients:

Ideal features:

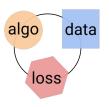
Efficiency

Reproducibility

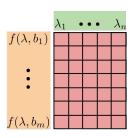
Flexibility

Photo by Federico Bottos on Unsplash

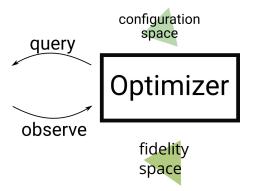
Photo by Edz Norton on Unsplas



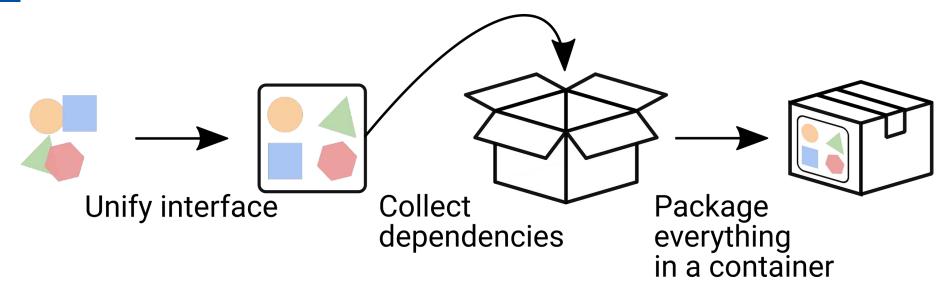
Efficiency

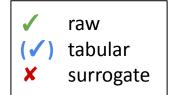


raw benchmark



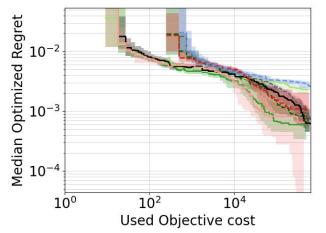
tabular benchmark

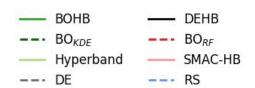

surrogate benchmark


Reproducibility

Flexibility

Family	#benchs	#cont(log) #int(log) #cat #ord				fidelity	type
Cartpole BNN	1 2	4(1) 3(1)	3(3) 2(2)		_	repetitions samples	1
Net	6	5	1	=:	·-	time	X
NBHPO	4	1-	-1	3	6	epochs	(✓)
NB101	3	21	1	26 14 5	-	epochs	(√)
NB201	3	-	-	6	18	epochs	(/)
NB1Shot1	3	- - -	- - -	9 9 11	2- 1-	epochs	(√)
LogReg SVM RandomFores XGBoost MLP	20 20 t 20 20 20 8	2(2) 2(2) 1 3(2) 2(2)	3(2) 1(1) 3(2)	51	-	iter data #trees #trees epochs	√, (√) √, (√) √, (√) √, (√) √, (√)





Empirical Study

We ran >10 optimization methods on all benchmarks and studied the following:

- Do advanced methods improve over random baselines?
- 2. Do multi-fidelity methods improve over single-fidelity methods
- \rightarrow Short answer: **Yes**

→ HPOBench provides >100 containerized benchmarks for multi-fidelity HPO

What else you can do with HPOBench:

- multi-objective optimization and transfer-HPO across datasets
- compare raw, tabular and surrogate benchmarks
- ...

Thank you!

Katharina Eggensperger¹

Philipp Müller¹

Neeratyoy Mallik¹

Matthias Feurer¹

You

René Sass²

Aaron Klein³

Noor Awad¹

Marius Lindauer²

Frank Hutter^{1,4}

- ¹ Albert-Ludwigs-Universität Freiburg
- ² Leibniz Universität Hannover
- ³ Amazon (work done prior to joining Amazon)
- ⁴ Bosch Center for Artificial Intelligence