The Complexity of Rummikub Problems

Jan N. van Rijn Frank W. Takes Jonathan K. Vis

LIACS, Leiden University

BNAIC 2015 — November 5, 2015
Rummikub game

- Start with 14 tiles
- Pool of remaining tiles
- Two types of sets of at least three tiles:
 - Groups: same value, different suit
 - Runs: same suit, consecutive values
- Game ends when a player gets rid of all his tiles
Groups and runs

Figure: Two valid groups and two valid runs.
Inspired by . . .

Benelux Algorithm Programming Contest
Various Rummikub assignments

- 2006 Main contest
 - 50 teams
 - 19 submissions
 - 3 correct solutions
- 2015 Preliminaries
 - The “easy” problem
Rummikub puzzle

Tileset parameters
- Numbers n (default: 13)
- Suits/colors k (default: 4)
- Duplicates m (default: 2)

Set size constants
- Minimal set size (3)
Problem statement

- **Rummikub puzzle**
 Given a subset of the Rummikub tile set of $n \times k \times m$ tiles with n values, k suits and m copies of each tile, form valid sets of runs and groups such that the score (sum of used tile values) is maximized.
Previous and related work

- Hand-making games
- ILP by den Hartog et al.
 - Mostly used for NP-hard problems
 - Complexity of Rummikub Puzzle undetermined
- Can we do something better?
Algorithm

- Backtracking algorithm
- From low tile values to high tile values
- For value $v = 1$ to $v = n$
 - Partition tiles with value v in runs and groups
Algorithm

First forming groups and then forming runs

- Colors (k) and duplicates (m)
- $m = 1$: 6 options
- $m = 2$: 27 options
- Exponential increase
- Memory size

![Image showing 3s in different colors]
Towards a polynomial algorithm

- Number of groups for a given number of suits k and set size parameter s:

$$G(k, 1) = 1 + \sum_{i=s}^{k} \binom{k}{i}$$

- Adding the number of duplicates m:

$$G(k, m) \leq G(k, 1)^m$$

- Not polynomial . . .
Towards a polynomial algorithm

- Number of groups for a given number of suits \(k \) and set size parameter \(s \):

\[
G(k, 1) = 1 + \sum_{i=s}^{k} \binom{k}{i}
\]

- Adding the number of duplicates \(m \):

\[
G(k, m) \leq G(k, 1)^m
\]

- Not polynomial . . .

- First forming runs and then forming groups (focus of the remainder of this talk)
Algorithm

Forming runs

- Decide for each tile which run to continue
- Try both and save the one with highest score
State space

- Only runs of length 0, 1, 2 and 3 or longer have to be distinguished.

- For $m = 2$, the number of different configurations of runs for a particular suit is 10: \{0, 0\}, \{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 1\}, \{1, 2\}, \{1, 3\}, \{2, 2\}, \{2, 3\}, and \{3, 3\}.

- For any m, we use the multinomial coefficient:

$$f(m, s) = \binom{s + 1}{m}^m$$

- With $s = 3$, this is equal to the tetrahedral numbers:

$$f(m) = \binom{4}{m} = \frac{(m + 1) \cdot (m + 2) \cdot (m + 3)}{6}$$

- State space is at most $n \times k \times f(m)$ (polynomial in n, k, and m).
Algorithm

1: input: \textit{value, runs}[k \times f(m)] \quad \text{(the state)}
2: output: maximum score \quad \text{(given the input state)}

3: if \textit{value} > n then
4: \quad return 0
5: end if
6: if \textit{score}[\textit{value, runs}] > -\infty then
7: \quad return \textit{score}[\textit{value, runs}]
8: end if

9: for \textit{runs'}, \textit{runscores} \in \text{MAKE\textsc{RUNS}}(\textit{runs}) do
10: \quad \textit{groupscores} \leftarrow \text{TOTAL\textsc{GROUP\textsc{SIZE}}}(\textit{hand} \setminus \textit{runs'}) \cdot \textit{value}
11: \quad \textit{result} \leftarrow \textit{groupscores} + \textit{runscores} + \text{MAX\textsc{SCORE}}(\textit{value} + 1, \textit{runs'})
12: \quad \textit{score}[\textit{value, runs}] \leftarrow \max(\textit{result, score}[\textit{value, runs}])
13: end for

14: return \textit{score}[\textit{value, runs}]
Complexity

- Traditional Rummikub puzzle with fixed m and k: solvable in $O(n)$ time (polynomial in n).
- Rummikub state space is at most of size $O(n \cdot k \cdot m^4)$ (polynomial in all input parameters n, m and k).
- Rummikub puzzle is solvable in $O(n \cdot m^4)$ (polynomial with input parameters n and m).
- Our algorithm for solving Rummikub puzzle runs in $O(n \cdot (m^4)^k)$ time (not polynomial in all input parameters n, m and k).
From the puzzle to the Rummikub game

- Table constraint
 - Some tiles must be in the construction
- Jokers
 - Additional factor in memory
 - More options to make groups
- Multi-player aspect unaddressed
Counting winning hands

- Aspects in human play
- Number of winning hands
- Decide when to get rid of tiles
Counting winning hands

Game finishes in one move

- Number of deals:

\[h(n, m, k, t) = \binom{n \cdot k}{t}^m \]

- Where \(t \) is the number of tiles in hand
- For \(m = 2 \): Trinomial coefficient
- Real game (\(t = 14 \)): 37,418,772,170,780
- How many of these games are winning?
Counting winning hands

Example:

```
1 2 3 4 5 4 5 6 7 8
4 5 4 5 6 7 8
```
Counting winning hands

- Roughly 10,000,000 hands are winning
- 0.0000273%
Counting winning hands

- Roughly 10,000,000 hands are winning
- 0.0000273%
- Hand of 15 tiles:
- Chances increase to 0.0000509%
Counting winning hands

- Roughly 10,000,000 hands are winning
- 0.0000273%
- Hand of 15 tiles:
 - Chances increase to 0.0000509%
- Hand of 16 tiles: 0.0000302%
- Hand of 17 tiles: 0.0000137%
- Hand of 18 tiles: 0.0000198%
- Period of 3
Counting winning hands

Small instance of the game:

```
2 -14
2 -12
2 -10
2 -8
2 -6
2 -4
2 -2
2  0
```

![Graph showing the ratio of winning hands against the number of tiles. The graph is labeled and shows a non-linear increase with a rapid decrease in the ratio of winning hands as the number of tiles increases.]
Conclusion

- Solving the standard Rummikub puzzle is easier than sorting an array.
- We proposed an algorithm for the Rummikub puzzle that is polynomial in the numbers n and duplicates m.
- Generalizing over the number of suits k may make the problem harder.
- Complexity of the generalized Rummikub puzzle with parameters n, m and k remains an open problem.
- Future work: multi-player game
Thank you for your attention!

Questions?