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Abstract

In this paper, we study the relationship between the thin junction
tree filter (TJTF) [Pas03] and the Boyen-Koller (BK) algorithm [BK98a]
for approximate inference in discrete dynamic Bayesian networks. First,
we review the TJTF for discrete networks and cast the BK algorithm
as a special case of TJTF. Then, we employ a TJTF to automat-
ically compute conditionally independent clusters for the BK algo-
rithm. Theoretical work by Boyen and Koller [BK99] showed that
using conditionally independent clusters strongly improves BK’s error
bounds, and we demonstrate that the theoretical results carry over to
practice. We achieve a contract anytime algorithm which is superior
to BK with marginally independent clusters and faster than TJTF in
its general form.

1 Introduction

The junction tree [LS88, JLO90, CDLS99] is amongst the most widely used

tools for exact inference in graphical models. It can be used for a variety of

tasks, from simultaneously computing all posterior family marginals to gener-

ating the M most probable configurations [CDLS99]. However, since its space

and time complexity are exponential in the induced width of the graphical

model’s independence graph, it is not applicable for larger problems. Bucket

elimination [Dec96], another widely used framework for exact inference has

long overcome this problem by introducing approximation schemes, such as

Mini-Buckets [DR03]. Only recently, this has been achived for the Junction

Tree by the development of the Thin Junction Tree (TJT) [BJ02] and the

Thin Junction Tree Filter (TJTF) [Pas03]. Here, we employ TJTFs for exact

or approximate inference in static and dynamic discrete Bayesian networks.

We incrementally build a thin junction tree Υ with a user-defined bound s

on size and thus bounded space and time complexity. If Υ’s size remains

smaller than s at all times, our version performs exact inference. However,

when the introduction of a new variable into Υ would render it larger than s,
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Υ is thinned by splitting large clusters into two smaller ones connected by a

new separator. Since both new clusters may be subsumed by other clusters

in Υ and can thus be removed, significant size reductions are possible, often

with only minimal approximation error [Kjæ94].

Previous approximate junction tree algorithms [JA90, Kjæ94] build an

exact junction tree Υ and if Υ is too big approximate it afterwards. This has

a severe drawback as, due to space and time constraints, it might simply not

be possible to build the exact Υ in the first place. Our TJTF implementation

easily deals with this problem by allowing approximations in the construction

phase if necessary to ensure computational feasibility. Thus, the TJT never

gets too large. Another drawback of existing approaches for approximate

junction trees is that they operate on fixed, static Bayesian networks, and

are not flexible enough to incorporate new variables. To see the importance

of this, imagine an additional sensor is installed in a complex system; one

would like to simply add a variable and a potential for its CPT into the

junction tree Υ instead of rebuilding Υ’s whole structure [Dra95]. TJTFs can

easily handle this kind of probability distributions with dynamically changing

domains. The same applies for the case of dynamic Bayesian networks.

In this paper, we deal with the problem of filtering in discrete dynamic

Bayesian networks (DBNs). For this problem, the Boyen-Koller (BK) al-

gorithm [BK98a] is a very prominent approach. It works by projecting the

belief state at every time step onto a set of marginally independent clusters of

variables and has a bounded expected error at all times. Unfortunately, the

actual error bounds are quite loose and in practice the chosen set of clusters

determines the actual approximation error. There is theoretical work yield-

ing tighter error bounds for conditionally independent sets of clusters [BK99],

but until now it was neither clear how to choose these conditionally indepen-

dent clusters nor whether the tighter (yet still loose) theoretical bounds carry

over to improved results in practice.

Using our TJTF implementation, we automatically detect sets of condi-

tionally independent clusters C for subsequent use in BK. Each set of clus-
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ters C induces a proto-junction tree ΨC whose size S(ΨC) dominates BK’s

space and time complexity. We find conditionally independent sets of clus-

ters C with S(ΨC) ≤ s yielding low approximation error and use them in

BK; this way, we achieve a contract anytime algorithm conditional BK with

automatic clustering (s), short CBK-AC(s). Compared to the manually de-

termined marginally and conditionally independent sets of clusters suggested

in [BK98a], CBK-AC(s) yields about a tenth of BK’s error in the same com-

putation time. Automatically found clusterings can thus outperform manu-

ally determined ones. This can on the one hand considerably ease the usage

of conditional BK for researchers and on the other hand also enable intelligent

agents to automatically improve their lower-level inference.

The rest of this paper is organized as follows. We start with preliminaries

in Section 2, also reviewing junction trees and thin junction trees. Section 3

then presents the TJTF for discrete domains. Section 4 introduces the con-

ditional BK algorithm, views it as a special case of TJTF and shows how

to automatically compute conditionally independent sets of clusters for it.

The CBK-AC(s) algorithm is also detailed in this section and experiments in

Section 5 show its clear superiority to standard BK with the best manually

determined clusters used by Boyen and Koller [BK98a]. We conclude the

paper in Section 6 and list many possible extensions of this work.

2 Preliminaries

A Bayesian network B is a pair 〈G, Π〉, where the independence graph G =

(V , E) is a directed acyclic graph (DAG) in which each node V ∈ V represents

a random variable and each edge E = (U, V ) ∈ E defines a direct dependence

of variable V on variable U . The set pa(V ) = {U ∈ V|(U, V ) ∈ E} of

parents of a random variable V is the set of variables V directly depends

on; and the family FV = {V } ∪ pa(V ) of variable V is formed by itself

and its parents. For every variable V ∈ V , there is a conditional probability

distribution (CPD) πV ∈ Π that defines the probability of V taking on one of
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its values given the values of its parents: πV = P (V |pa(V )). The semantics

of a Bayesian network 〈G, Π〉 with G = (V , E) is that it specifies a joint

probability distribution φ over its variables V in factored form: φ = P (V) =∏
V ∈V πV = φFV

.

In this paper, we refer to conditional and marginal probability distri-

butions over sets of variables X as potentials φX on X; each conditional

probability distribution πV = P (V |pa(V )) corresponds to a potential φFV
on

V ′s family variables.

In discrete Bayesian networks each random variable V ∈ V has a finite

domain DV and the size S(φX) of a potential φX is the product of the domain

sizes |DX | of every variable X ∈ X:

S(φX) =
∏
X∈X

|DX |.

A dynamic Bayesian network (DBN) compactly represents a dynamically

changing joint probability distribution over a set of random variables X.

It is a pair 〈B0, Bts〉, where B0 is a Bayesian network specifying the prior

distribution φX0 over the set of variables X at time step 0; and Bts is the time-

slice Bayesian network over a subset of the variables Xt ∪Xt+1, specifying

the evolution dynamics of the variables. The filtering problem in DBNs is,

given evidence e1:t up to time step t, to compute the belief state P (Xt|e1:t).
1

2.1 Junction Trees

The junction tree [LS88, JLO90, CDLS99] is a very prominent and widely

used secondary structure for inference in graphical models. A junction tree

Υ = (C,S) is a tree structure where each node C ∈ C represents a cluster of

variables and each edge S ∈ S connecting two neighbouring clusters repre-

sents a separator between them. Each cluster C ∈ C has an associated set of

variables VC , and a cluster potential φC ; analogously, each separator S ∈ S
1We use uppercase for random variables and lowercase for variable instantiations. Bold

face is used for sets of variables.
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has a set of variables VS and a separator potential φS. If a separator Sk con-

nects clusters Ci and Cj in the junction tree, its associated set of variables

is the intersection of Ci’s and Cj’s variables: VSk
= VCi

∩ VCj
.

A defining characteristic of junction trees is the running intersection prop-

erty : the set of variables VCk
of any cluster Ck on the path between two clus-

ters Ci and Cj in Υ is a superset of VCi
∩ VCj

. A junction tree Υ = (C,S) is

called consistent if for arbitrary sets of variables X, the marginals over X in

arbitrary clusters Ci and Cj with X ⊆ VCi
, VCj

coincide up to a normalization

constant: ∑
VCi

\X

φCi
∝

∑
VCj

\X

φCj
.

A junction tree Υ = (C,S) is said to be normalized iff all its potentials

are normalized, i.e. ∀C ∈ C.
∑

C φC = 1 and ∀S ∈ S.
∑

S φS = 1. The joint

system belief φΥ of Υ = (C,S) is the joint distribution over all variables in

Υ:

φΥ =

∏
C∈C φC∏
S∈S φS

.

Constructing a junction tree Υ = (C,S) for a Bayesian network B =

〈G, Π〉 with G = (V , E) is usually done in several steps (see [HD96] for a

good overview). First, the junction tree is constructed qualitatively: the

clusters C are formed by the maximal cliques of the network’s moralized

and triangulated independence graph G, and the separators S are chosen

to form a maximum spanning tree, where maximal is defined in terms of

number of variables in the separator domains. After Υ’s graphical structure

is determined, a number of quantitative operations can be performed on

it (for details, see, e.g. [JLO90, CDLS99, HD96]):

Initialization of Υ = (C,S) means to initialize all entries in Υ’s cluster po-

tentials φC , C ∈ C, and separator potentials φS, S ∈ S, to unity.

Multiplication of Υ by a potential φX over variables X means to iden-

tify some cluster C ∈ C with X ⊆ VC and multiply φC by φX (this

assumes that such a cluster exists).
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Division of Υ by a potential φX is defined analogously to multiplication.

To put evidence e into Υ means to set all entries in all potentials of Υ to

zero which do not agree with e.

Calibration of Υ performs a local message passing between clusters which

renders Υ consistent.

Normalization of Υ normalizes every potential in Υ to sum to one.

Marginalizing Υ = (C,S) to a set of variables X, later in this paper ab-

breviated by marg(Υ,X), means to identify a cluster C ∈ C of the

consistent, normalized junction tree Υ with X ⊆ VC and return its

marginal
∑

VC\X φC on X (this again assumes that such a cluster ex-

ists).

In inference for a Bayesian network B = 〈G, Π〉 with G = (V , E), these

operations are used as follows. First, the graphical structure of the junction

tree Υ is determined as sketched out above. Upon initialization, the family

potentials φFV
for every variable V ∈ V are multiplied into Υ. This yields

a joint system belief of φΥ =
∏

V ∈V φFV
= P (V). Then, the available evi-

dence e is put into Υ, followed by calibration and normalization. This yields

the joint system belief φΥ = P (V|e). Afterwards, all posterior marginals

P (X|e) over subsets X of cluster domains can be queried from Υ by sim-

ple marginalization. The correctness of this approach is guaranteed by the

following theorem (this is a standard result, see, e.g. [JLO90]).

Theorem 2.1 (Correct marginals). Marginalization of a consistent, nor-

malized junction tree Υ = (C,S) to a subset X of any set of variables VC

associated with a cluster C ∈ C, yields the joint system belief φΥ marginal-

ized to X:

marg(Υ,X) =
∑
V\X

φΥ.
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Proof. Let Ci be an arbitrary cluster with X ⊆ VCi
. By definition, consis-

tency and normality,

marg(Υ,X) =
∑

VCi
\X

φCi
.

Because of distributivity, the marginal of the joint system belief is

∑
V\X

φΥ =

∏
C∈C

∑
VC\X φC∏

S∈S
∑

VS\X φS

=
∑

VCi
\X

φCi
× α

with

α =

∏
C∈C\{Ci}

∑
VC\X φC∏

S∈S
∑

VS\X φS

.

Consider a cluster Cj in C\{Ci} and the adjacent separator S in the direction

of Ci in the tree structure of Υ. Then, VCj
∩X = VS ∩X. This is the case

because due to X ⊆ VCi
and the running intersection property, x ∈ VCj

∩X

implies x ∈ VCi
∩ VCj

, which in turn implies x ∈ VS. Because of this, as well

as consistency and normality,
∑

VC\X φCj
=

∑
VS\X φS. Since there is exactly

one such separator S ∈ S for each cluster Cj ∈ C \ {Ci}, all terms cancel out

and α = 1.

Theorem 2.1 may look trivial, but in Section 3 when we change the junc-

tion tree’s qualitative structure by adding and marginalizing clusters, it will

allow us to focus solely on the joint system belief φΥ for proving correctness

of the posterior marginals P (X|e).

The task of computing posterior marginals is only detailed here as one

example for the many applications the junction tree has. Compared to other

exact inference algorithms like bucket elimination [Dec96], the junction tree’s

main advantage is that, once it is built, it can simultaneously compute all

family marginals. It can also be used for the task of computing the M most

probable assignments to variables in Bayesian networks [CDLS99, YW04].

8



2.2 Thin Junction Trees

The junction tree is a very general and efficient tool for exact computations in

graphical models. Most operations in a junction tree Υ = (C,S) have linear

time complexity in Υ’s size S(Υ), but unfortunately this size often grows

prohibitively large. It is defined as the sum of the sizes of its potentials:

S(Υ) =
∑

X∈C∪S

S(φX).

S(Υ) is exponential in the induced width of the underlying graphical

model which quickly renders the junction tree approach inapplicable for

larger problems. The concept of thin junction trees (TJTs) simply deals

with this problem by bounding S(Υ). The term originates from [BJ02],

where Bach and Jordan learn the best junction tree in a restricted subset

of junction trees with bounded cluster size. Since the maximal cluster size

often dominates the overall junction tree size, this approach promises to yield

small junction trees for efficient inference.

Another approach to manage large junction trees is to approximate them

after their construction. Soon after the introduction of junction trees [LS88],

Jensen [JA90] introduced such an approximation scheme that reduces the

junction tree size by setting the k lowest values in each potential to zero. In

1994, Kjærulff [Kjæ94] introduced an approximation scheme for Bayesian net-

works that removed edges from the network’s moralized, triangulated graph.

He showed that this edge removal relates to splitting single large clusters of

the associated junction tree into two smaller clusters connected by a sepa-

rator while preserving the rest of the junction tree’s structure. Since one or

even both of the resulting smaller clusters may be subsumed by neighbour-

ing clusters in the junction tree and can thus be removed, substantial size

reductions can be achieved [Kjæ94].

Paskin employed thin junction trees as the state space representation in

his thin junction tree filter (TJTF) for the domain of Simultaneous Local-

ization and Mapping (SLAM) [Pas03]. In the purely continuous problem of

SLAM, the cluster size is only cubic in the number of continuous variables and
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the approximation error computes quite efficiently as a simple function of the

covariances of the exact and approximate distributions [Pas03]. Moreover,

the SLAM domain is further constrained since only two variables become

coupled by each measurement. For these reasons, the TJTF is very efficient

in the SLAM domain. Here, we study its application for discrete problems.

The approach we employ to reduce the size of a junction tree Υ is based on

Kjærulff’s [Kjæ94] work. We extend this to the case of dynamically changing

probability distributions by directly operating on the junction tree itself. We

iteratively compute the set ∆(Υ) of possible splits of clusters in Υ and per-

form one possible split at a time until some termination criterion is reached.

Definition 2.2 (Possible splits). The set of possible splits ∆(Υ) for a

junction tree Υ = (C,S) consists of unordered pairs of variables that share

exactly one cluster (∃! denotes “there exists exactly one”):

∆(Υ) = {{u, v}|∃!C ∈ C.{u, v} ⊆ VC}.

To perform a split {u, v} ∈ ∆(Υ) on Υ = (C,S) means to remove the unique

cluster C ∈ C with {u, v} ⊆ VC from the consistent junction tree Υ, but

add two new clusters Cu and Cv with VCu = VC\{v} and VCv = VC\{u};
and also add a new separator S with VS = VC \ {u, v}, connecting

Cu and Cv. Separators from neighbouring clusters D of C are bend

to Cu if u ∈ VD and to Cv otherwise. The new clusters’ potentials

are φCu =
∑

v φC and φCv =
∑

u φC , the new separator’s potential is

φS =
∑

u,v φC . Both new clusters are then checked for subsumption by

their neighbouring clusters (and may often be removed rightaway). We

will also refer to this operation as thinning the junction tree.2

We now define KL divergence, the error measure we use to judge about

the quality of a possible split {u, v} ∈ ∆(Υ).

2Note that possible splits only include splits of single clusters with n variables into two
clusters with n− 1 variables each. In general, we may want to consider splits that result
in smaller clusters.
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Definition 2.3 (KL divergence [CT91]). The Kullback Leibler divergence,

short KL divergence, D(p‖q) between two discrete probability distributions

p(x) and q(x) with equal domain X is defined as

D(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

To quantify the error introduced by a possible split {u, v} ∈ ∆(Υ), we

use the KL divergence D(φΥ, φΥ′) between the joint system beliefs φΥ and

φ′Υ represented by the consistent and normalized junction trees Υ before

the split and Υ′ after the split, respectively. Kjærulff [Kjæ94] proves three

very important facts for efficient approximations in junction trees: the KL

divergence introduced by splitting clusters can be computed locally, it is

additive, and splitting clusters preserves consistency.

Theorem 2.4 (Locality of KL divergence [Kjæ94]). Let Υ′ be the result

of performing a split {u, v} in a consistent and normalized junction tree Υ,

and let C be the unique cluster in Υ containing u and v. Further, let Cu and

Cv be the new clusters in Υ′ generated when splitting C and let S be their

new shared separator. Then, the KL divergence between φΥ and φΥ′ can be

computed locally:

D(φΥ‖φΥ′) = D(φC‖
φCu × φCv

φS

).

Theorem 2.5 (Additivity of KL divergence [Kjæ94]). The KL di-

vergence introduced by performing a set {{u1, v1}, . . . , {un, vn}} of possible

splits of different clusters adds up, i.e. let Υ0 be a junction tree and let Υi,

i ∈ {1, . . . , n}, be Υ0 after performing splits {{u1, v1}, . . . , {ui, vi}}. Then,

D(φΥ0‖φΥn) =
∑

j=0,...,n−1 D(φΥj
‖φΥj+1

).

Lemma 2.6 (Conservation of consistency [Kjæ94]). The junction tree

Υ′ obtained by splitting a cluster C in a consistent junction tree Υ is consis-

tent.

Locality of KL divergence enables us to efficiently compute the error

for each possible split {u, v} ∈ ∆(Υ) on a single cluster potential instead
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of on the whole joint system belief φΥ (which would require summing over

exponentially many values). Additivity, the fact that splitting one of Υ’s

clusters does not affect other clusters of Υ, and conservation of consistency

together further enable a very efficient caching scheme. Let the best possible

split {u, v} ∈ ∆(Υ) split cluster C ∈ C into Cu and Cv, yielding the new

junction tree Υ′. Then, in order to compute the new set of possible splits

∆(Υ′), we merely have to remove any splits {u′, v′} from ∆(Υ) which also

split cluster C, and instead put in the new possible splits of Cu and Cv or

their respective subsuming clusters in Υ′.

So far, there are two approaches which approximate junction trees to

achieve computational feasibility [JA90, Kjæ94]. However, both have the

significant disadvantage that they first build an exact junction tree and ap-

proximate it afterwards; this is problematic if the exact junction tree is too

large to compute in the first place. In the next section, we introduce a set

of operations that allows for incremental construction of the junction tree to

overcome this problem.

3 The Thin Junction Tree Filter for Discrete

networks

In this section, we present the thin junction tree filter (TJTF) [Pas03] for

exact or approximate inference in static and dynamic discrete Bayesian net-

works. By incrementally building junction trees, the framework can represent

probability distributions over both a fixed set and a changing set of dynamic

variables. Variables and their conditional probability tables can be intro-

duced into the junction tree Υ, they can be summed out of Υ and Υ’s size is

kept as low as possible by removing non-maximal clusters. For cases where

TJTF without approximations is not feasible, we split clusters for computa-

tional efficiency as demonstrated in the last section.

The following operations build on the ones introduced by Draper [Dra95]

for incremental construction of qualitative junction trees, but extend them to
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a quantitative treatment, handling cluster and separator potentials as well.

To introduce new cliques X into Υ = (C,S) means to build a new Junc-

tion Tree Υ′ = (C ′,S ′) such that for each C ∈ C there is a C ′ ∈ C ′ with

VC ⊆ VC′ , and that for each new clique X ∈ X there is a C ′ ∈ C ′ with

X ⊆ VC′ . Υ′ is then initialized, multiplied by the potentials φC , C ∈ C,
and divided by φS, S ∈ S.

To introduce a variable V into Υ = (C,S) whose parents are all contained

in Υ is shorthand for introducing a clique for V ’s family FV and mul-

tiplying V ’s family potential φV into Υ.

A subsumption check of C ∈ C by D ∈ C in Υ = (C,S) means to check

whether VC ⊆ VD. If this is the case, we say C is subsumed by D. C

is then removed from Υ along with the separator S between C and D;

all other separators adjacent to C are bend over to D. D’s potential

φD is multiplied by φC and divided by the separator potential φS:

φD ←
φD × φC

φS

.

To merge a connected set of clusters C ′ ⊆ C in Υ = (C,S) means to

delete each C ∈ C ′ and the separators S ∈ S ′ connecting one Ci ∈ C ′

to another Cj ∈ C ′ from Υ and instead introduce one new cluster M

with VM =
⋃

C∈C′ VC and

φM =

∏
C∈C′ φC∏
S∈S′ φS

.

All neighbours of M in Υ are then checked for subsumption by M in

Υ.

To sum a variable V out of Υ = (C,S) means to merge the connected set

of clusters {C ∈ C|V ∈ VC} in Υ into a new cluster M and afterwards

marginalize V out of M ’s potential: φM ←
∑

V φM . M is then checked

for subsumption by its neighbours in Υ.
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Theorem 2.1 states that even when performing complex changes in the qual-

itative junction tree structure, for correctness of the posterior marginals we

only need to consider the joint system belief φΥ. We now show how φΥ

behaves under the new set of operations.

Lemma 3.1 (Uniformly extended joint system belief). Introduction of

new cliques X extends the joint system belief φΥ of a junction tree uniformly

to the new variables in X .

Proof. When introducing new cliques X into Υ = (C,S), we build a new

junction tree Υ′ to include variables from the new cliques and initialize all

potentials with uniform probability distributions. Then, we multiply each

of the old potentials φC , C ∈ C into Υ′. Consequently, the marginal over

the pre-existing variables does not change and the marginal over the newly

introduced variables is uniform. Thus, the new joint system belief φ′Υ is the

old one φΥ uniformly extended over the new variables in the cliques X .

Lemma 3.2 (Unchanged joint system belief). Subsumption checks and

merging of a connected set of clusters in a junction tree Υ do not change Υ’s

joint system belief φΥ.

Proof. Let Υ′ = (C ′,S ′) be the result of performing a subsumption check

or a merging of a connected set of clusters in the junction tree Υ. For

each cluster C ∈ C that is removed from Υ = (C,S), there is some other

cluster D ∈ C which is not removed and whose cluster potential φD is mul-

tiplied by φC . Analogously, for every separator S ∈ S that is removed

there is a D ∈ C whose cluster potential φD is divided by φS. Thus,

φ′Υ =
∏

C∈C′ φC/
∏

S∈S′ φS =
∏

C∈C φC/
∏

S∈S φS = φΥ.

Lemma 3.3 (Marginalization of φΥ). Summing a variable V out of a

junction tree Υ marginalizes Υ’s joint system belief φΥ over V : φΥ′ =
∑

V φΥ.

Proof. Let Υ′′ = (C ′′,S ′′) denote the result of merging the clusters containing

V in Υ = (C,S). Because of Lemma 3.2, φΥ = φΥ′′ . Let M denote the
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merged cluster, which is now the unique cluster holding V and let Υ′ denote

the result of marginalizing V out of Υ′′.

φΥ′ = (
∑

V φM)×
∏

C∈C′′\{M} φC∏
S∈S′′ φS

=
∑

V

∏
C∈C′′ φC∏
S∈S′′ φS

=
∑

V φΥ′′ =
∑

V φΥ.

Using a TJTF with all of the introduced operations but thinning results in

a special case of TJTF we refer to as the junction tree filter (JTF). JTFs per-

form exact inference in (static or dynamic) Bayesian networks. We introduce

new variables, their cliques and conditional probability tables, and marginal-

ize others out while keeping the size down by means of subsumptions. The

correctness of this approach is guaranteed by the following theorem.

Corrolary 3.1 (Correctness of JTFs). Consider an initially empty JTF

Υ, into which a set of variables X is incrementally introduced and out of

which a subset Y ⊆ X of variables is summed out. If in this process no

thinning has taken place, Υ’s joint system belief is the product of the family

potentials φFV
marginalized over Y:

φΥ =
∑
Y

∏
V ∈X

φFV
.

Proof. Before any variable is introduced, the joint system belief is 1. The

introduction of a variable V into Υ first introduces the clique FV and then

multiplies in the potential φFV
. Due to Lemma 3.1 and since multiplication

of Υ by φX multiplies φΥ by φX, this results in a new joint system belief

φ′Υ = φΥ×φFV
. Due to Lemma 3.3, summing an arbitrary variable V out of

Υ yields a marginalized joint system belief φΥ′ =
∑

V φΥ. After introducing

the variables V ∈ X and summing out the variables V ∈ Y, the joint system

belief is thus φΥ =
∑

Y

∏
V ∈X φFV

.

Using JTFs, we can often keep an exact probability distribution over the

variables which are of interest in the given situation. Variables which are
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of no more interest are marginalized out. An approach quite related to this

is the frontier algorithm for DBNs [Zwe96]. This method keeps a joint dis-

tribution over a set of variables, the frontier, which separates the past from

the future and is “swept” over the DBN forwards in time (and backwards for

smoothing). It multiplies in new variables and marginalizes out old variables

as soon as all their children are contained in the frontier. Our JTF approach,

however, does not necessarily build only a single large cluster over the whole

frontier when applied to DBNs. Rather, if the joint distribution factorizes,

it may take advantage of this by employing smaller clusters while still per-

forming exact inference. Nevertheless, without approximations, JTFs would

still often produce clusters that span the whole frontier, which may lead to

prohibitive sizes of the junction tree.

JTFs are correct but just like the standard junction tree approach they

are computationally infeasible for large problems. The following lemma and

theorem guarantee that we can always deal with this by performing approx-

imations.

Lemma 3.4 (Maximality of clusters). All clusters in a TJTF are maxi-

mal.

Proof. A newly constructed junction tree Υ formed when introducing cliques

has maximal clusters. This property is conserved by the standard junction

tree operations in Section 2.1 which do not change Υ’s qualitative structure.

Possible non-maximal clusters, which are left by merging or splitting clusters,

or summing variables out, are always checked for subsumption. They are

subsumed iff they are non-maximal.

Corrolary 3.2 (Existence of splits). Every TJTF Υ = (C,S) with at least

one cluster C with |VC | > 1 has at least one possible split.

Proof by construction. The clusters C ∈ C with |VC | > 1 induce a subforest

Υ′ of Υ. Consider an arbitrary leaf cluster C in Υ′. If C has no neighbour

in Υ′, any pair of different variables {u, v} with u, v ∈ VC is a possible
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split in Υ since due to the running intersection property u and v can only

appear together in C. If C has a neighbour D in Υ′, due to C’s maximality

(Lemma 3.4), there is at least one variable v ∈ VC which does not appear

in D. Variable v then forms a possible split {v, x} of Υ with every other

x ∈ VC .

Since all clusters in a TJTF are maximal, iterated approximations even-

tually lead to a size reduction and terminate when every cluster C ∈ C has

only one variable left.

TJTF can be applied in either static or dynamic Bayesian networks. We

expect the algorithm’s potential for DBNs to be higher, and we discuss this

in detail in the next section. For static models, TJTFs provide an alterna-

tive to Kjærulff’s method of edge removal [Kjæ94]. His approach is a special

case of the one we suggest here, where the specialization is to restrict all

approximations to happen after all variables have been introduced. This is

very reasonable because it enables the most informed approximation, but if

the exact junction tree is prohibitively large it is infeasible. To counter this,

Kjærulff suggests first approximating the cluster potentials using sampling

techniques. TJTFs are feasible without this secondary approximation tech-

nique. Given a bound on space complexity, we can topologically introduce

variables and thin the junction tree Υ once the junction tree Υ′ resulting

from the introduction of a new variable would grow too large. Approximate

junction trees obtained like this can yield approximations to all problems

junction trees apply for, such as the simultaneous approximation of all pos-

terior marginals and the approximation of the M most probable explanations

in a Bayesian network [CDLS99, YW04] 3.

3One possible application of computing the M -MPEs in a thinned junction tree is in
providing a set of very good initial solutions for stochastic local search algorithms for the 1-
MPE problem. It is widely known that stochastic local search algorithms generally benefit
from good initial solutions quite significantly; for the 1-MPE this has been demonstrated
convincingly in [KD99].
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4 TJTF and the Boyen-Koller algorithm

In this section, we describe the Boyen-Koller algorithm for approximate in-

ference in DBNs, show how it can be viewed as a special case of the TJTF

and based on this notion compute conditionally independent clusters for it.

4.1 The Boyen Koller algorithm

The Boyen-Koller (BK) algorithm [BK98a] is a commonly used for approx-

imate inference in DBNs. As Boyen and Koller [BK98a] demonstrate, al-

though a complex system’s evolution dynamics can be represented in compact

form as a DBN, in general all conditional independencies amongst variables

in a time slice are lost when marginalizing out variables from previous time

slices. In exact inference, this quickly results in a prohibitively large cluster

whose variables are the so-called canonical variables Xt, variables in time

slice t which are parents of variables in slice t + 1. The BK algorithm’s ap-

proach is to approximate the belief state P (Xt|e1:t) at every time step t by

a product of marginal probability distributions over subsets of variables:

P (Xt|e1:t) ≈
∏

Ct∈Ct

P (Ct|e1:t),

where Ct is a partition of Xt.

The intuition behind this is that the DBN describes a complex system

which consists of only weakly interacting subsystems represented by the clus-

ters Ct ∈ Ct; and that the error induced by ignoring covariances between

variables in different subsystems is small due to the only weak interactions

amongst subsystems. The accuracy of BK is strongly sensitive to the par-

tition C of canonical variables and finding a good C requires deep domain

knowledge and is often manually done by experts. On the positive side, due

to the stochasticity of the process, the individual errors introduced at each

time step decay exponentially fast over time, such that the expected error

of BK is bounded at all times [BK98a]. Unfortunately, the error bounds

are quite loose, but in [BK99], Boyen and Koller significantly improve them
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for conditionally independent clusters. Their characterization of weak and

sparse interactions between subsystems of complex systems [BK99] provides

a strong theoretical foundation for conditionally independent sets of clusters.

However, implementation issues and empirical results have been disregarded

so far. For clarity of presentation, we detail the BK algorithm using condi-

tionally independent sets of clusters C (conditional BK(C), short CBK(C)).
The implementation of BK with a conditionally independent set of clusters

adds just a few extra lines of code to the marginally independent case and is

explained in a short footnote in [BK98b]. Unfortunately, this explanation is

misleading.4 For this reason and due to the importance of the algorithm, we

present the conditional BK algorithm at some length. With the term clus-

tering, we refer to a marginally or conditionally independent set of clusters

C to use in CBK(C). The approximate belief state in CBK(C) is

P (Xt|e1:t) ≈
∏

Ct∈Ct
P (Ct|e1:t)∏

St∈St
P (St|e1:t)

, (1)

where St ∈ St are the separators in a junction tree with clusters Ct.
As described in [BK98a], the propagation of a belief state from one time

step to the next in a DBN 〈B0, Bts〉 can be implemented very efficiently in

(conditional) BK. For a given clustering C, Boyen and Koller suggest building

a so-called proto-junction tree Ψ. We can easily explain the construction of

Ψ with the TJTF framework. For this purpose, let Fts denote the set of

families in Bts and Φts denote their associated family potentials.

4Boyen and Koller (see footnote on page 22 of [BK98b]) describe a different denom-
inator. For a set of clusters C1, . . . , Cn, instead of dividing by the potentials over the
separators S1, . . . , Sn−1 of a junction tree formed by C1, . . . Cn, they divide by potentials
over all non-empty intersections VCi

∩ VCj
, i < j. For the one conditionally independent

set of clusters A-B-C-D-E, C-D-E-F-G, G-H presented in [BK98b], this agrees with our
version (both would choose the approximation (φABCDE×φCDEFG×φGH)/(φCDE×φG)),
but in general it yields wrong results. Suppose a system with the variables A,B,C,D,E,F
decomposes into the conditionally independent clusters A-B-C-D, B-C-D-E, and C-D-E-F.
The joint probability φABCDEF is then (φABCD × φBCDE × φCDEF )/(φBCD × φCDE),
which we would choose as an approximation, while their version would additionally divide
by φCD.
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To build a proto-junction tree ΨC for a clustering C and a time slice

Bayesian network Bts means to create a new empty junction tree and

introduce cliques {VC |C ∈ Ct ∪ Ct+1} ∪ Fts into it. Unless ΨC is only

built qualitatively, ΨC is initialized and the time slice family potentials

Φts are multiplied into it. We call ΨC the proto-junction tree induced

by C.

Figure 1 shows CBK(C) for filtering in a DBN given a stream of observa-

tions e1,2,... and using the clustering C. First, the separators S for clustering

C are computed. Then, the proto-junction tree ΨC is constructed and the pri-

ors φC0 = P (VC0) and φS0 = P (VS0) are computed for C0 ∈ C0 and S0 ∈ S0,

respectively (lines 02–05). At every time step t, a temporary copy Ψ of ΨC is

multiplied by the cluster potentials φCt , Ct ∈ Ct, and divided by the separator

potentials φSt , St ∈ St (lines 07–09). New evidence et+1 is then introduced

and Ψ is calibrated (lines 10–11). The next time step’s cluster and separator

potentials φCt+1 , Ct+1 ∈ Ct+1, and φSt+1 , St+1 ∈ St+1, can then be retrieved by

querying Ψ (lines 12–13). As [BK98a] notes, this is a straight-forward exten-

sion of the standard BK algorithm with marginally independent clusterings.

The only additional work we need to do for the conditionally independent

clustering is to compute the separators (line 01), initialize, input the old

separator potentials and query the new ones (lines 05, 09, and 13). The sep-

arators do not impose new constraints on the structure of Ψ since for every

separator S ∈ S, there is a cluster C ∈ C with VS ⊆ VC .

The space requirement of CBK(C) is linear in its induced proto-junction

tree size S(ΨC). The dominating factor in time complexity is ΨC’s calibration,

which is also linear in S(ΨC). Thus, for efficient inference our aim is to find

a clustering that induces a small proto-junction tree. However, the finer a

clustering we choose, the bigger the error introduced by the approximation

in Equation 1; we face a tradeoff of time and space versus approximation

error. In the next two sections, we show how to automatically find a very

good clustering with bounded induced proto-junction tree size based on the

TJTF framework.

20



Algorithm CBK(C, 〈B0, Bts〉, e1,2,...)
Input. Clustering C, DBN 〈B0, Bts〉, continuous stream of observations e1,2,...

Precondition. X ⊆
⋃

C∈C VC for canonical vars X.

Output. Filter marginals P (VCt |e1:t) = φCt for all clusters C ∈ C and t = 0, 1, . . .

%===== Compute separators.

01. (C,S)← Connect clusters C into a qualitative JT.

%===== Init ΨProto and potentials for C0 and S0.

02. Build proto-junction tree ΨC for C and Bts.

03 Υ0 ← Build junction tree for B0

04. For each C ∈ C, φC0 = marg(Υ0, VC0)

05. For each S ∈ S, φS0 = marg(Υ0, VS0)

%===== Do propagation for each time step.

06. for t = 0, 1, . . . do

07. Ψ← ΨC

08. for each C ∈ C do Multiply Ψ by φCt

09. for each S ∈ S do Divide Ψ by φSt

10. Insert new evidence et+1 into Ψ.

11. Calibrate Ψ.

12. for each C ∈ C do φCt+1 ← marg(Ψ, VCt+1).

13. for each S ∈ S do φSt+1 ← marg(Ψ, VSt+1).

14. end

Figure 1: The conditional BK algorithm for approximate inference in DBNs.

Step 1 can be achieved by any maximum-spanning-tree algorithm, see

e.g. [HD96]. For a marginally independent clustering C, we can omit lines 1,

5, 9, and 13.
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4.2 A TJTF algorithm generalizing CBK

In this section, we describe a TJTF algorithm that generalizes the CBK

algorithm introduced in the last section. At every time step t, this new

algorithm adaptively chooses a set of clusters Ct and separators St, or, to

be explicit, a junction tree Υt = (Ct,St), to approximate the belief state

P (Xt|e1:t). For this, it takes into account the observations e1:t which enables

easy detection of and reaction to special events such as sparse interactions

between subsystems [BK99].

For the filtering task in DBNs, we start at time step t with a junction tree

Υ̂t, representing the filter estimate at t: φΥ̂t
= P̂ (Xt|e1:t). This junction tree

is then thinned down to a junction tree Υ̃t = (C̃t, S̃t) by repeatedly splitting

clusters until some termination criterion is satisfied.

Then, we introduce the variables Xt+1 into Υ̃t and also insert the evidence

et+1. This yields a junction tree Υ̂t+1 with φΥ̂t+1
= P̂ (Xt,Xt+1|e1:t+1).

Normally, we could keep some of the variables Xt in Υt+1, possibly achieving

smaller size S(Υt+1) by exploiting conditional independence5. However, in

the spirit of CBK, here we sum all variables Xt out of Υ̂t+1, yielding the next

time step’s filter estimate φΥ̂t+1
= P̂ (Xt+1|e1:t+1).

At every time step t, the junction tree Υ̂t which represents the filter esti-

mate is approximated by a junction tree Υ̃t. However, we are not constrained

to use the same approximation Υ̃ at every time step. This feature allows us to

react optimally to the given situation, thinning Υ̂t differently conditioned on

the last belief state Υ̃t−1 and especially on the new observation et. Knowing

the new evidence, we can exactly compute the error introduced by different

thinnings and perform the best one in the given situation. From a theoreti-

cal point of view, the complete analysis of BK [BK98a, BK99] applies to this

TJTF algorithm since it is done on a step-by-step base. In fact, it is usually

5This would conflict with the general approach of keeping the number of variables in
the belief state representation as small as possible and would rather seek to minimize
the size s of the belief state representation; s might indeed become smaller if some past
variables decoupling many present variables do not have to be marginalized out.
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hard in BK to determine a bound on the individual error ε introduced at

each time step [BK98a]; in our setting, we exactly know all the individual

errors and thus get this bound for free as the highest error introduced over

all time steps so far. The biggest problems with the stated algorithm is its

high computational cost which is due to the costly evaluation of many pos-

sible thinnings at each time step. It may also in part be an artifact of our

non-optimized Matlab implementation.6

The stated TJTF algorithm generalizes CBK since using a static clus-

tering, or namely, the same Υ̃ = (C̃, S̃) at every time step yields exactly

CBK(C̃). The major advantage of CBK, however, is speed. CBK does not

need to perform a large number of possibly costly splits of clusters but di-

rectly collects the cluster and separator marginals. Also, computing a new

approximation at every time step does not allow for the usage of the highly

efficient proto-junction tree implementation. For this reason, in our sample

application, we only perform the TJTF approach in an off-line fashion on

a training sequence ē1:Ttrain
in order to determine good clusterings C̃ to be

subsequently used as fixed clusterings in the faster CBK(C̃) algorithm.

4.3 Computing well-performing clusterings for CBK

Boyen and Koller [BK98a] clearly state that the choice of clustering signifi-

cantly influences both BK’s runtime and approximation error. However, they

suggest to simply use a clustering reflecting the subsystems of the complex

system represented by the DBN at hand. This approach requires domain

knowledge and significant trial-and-error on the researcher’s side in order to

determine a clustering that is computationally feasible and results in fairly

accurate inference. Here, we present a simple algorithm which automatically

computes clusterings for CBK that perform orders of magnitude better than

the best ones determined manually by Boyen and Koller [BK98a]. The fact

that we automatically find better clusterings than by hand will ease the use

6In particular, significant speedups may be gained by using more vectorized code than
is currently done.
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of CBK for new DBNs and also enable intelligent agents to improve their

lower level inference engines automatically.

For a given bound s, we focus on the problem of finding a clustering C with

a low approximation error of CBK(C) and an induced proto-junction tree size

S(ΨC) ≤ s. In Figure 2, we present pseudo code for our algorithm AC(s),

that Automatically finds a good Clustering C with S(ΥC) ≤ s for subsequent

use in CBK(C). As S(ΥC) dominates CBK’s space and time complexity,

this yields a contract anytime algorithm CBK-AC(s) in combination with

CBK(C).
For finding a good clustering, AC(s) first samples a training sequence

ē1:Ttrain
of evidence from the DBN 〈B0, Bts〉 and builds a TJTF for the prior

belief state P (X0) represented by B0 (see Figure 2, line 01–02). For ev-

ery time step t from 0 to Ttrain, we iteratively and greedily split clusters of

the TJTF Υ̃t = (C̃t, S̃t) until the induced proto-junction tree size S(ΨC̃t
) is

smaller than or equal to s (lines 04–09)7. After the thinning process for one

time step is complete, we move on to the next time step by introducing the

variables Xt+1 into the TJTF, summing out old variables Xt, introducing

the new evidence et+1 and calibrating (lines 10–13). Upon completion of

the given number of time steps, we sample a new sequence of observations

ē1:Tchoose
and evaluate the clusterings C̃1, . . . , C̃Ttrain

on this one. The cluster-

ing C̃t with best accuracy of CBK(C̃t) is returned (line 16).

The search for a good clustering C̃ in AC(s) is performed offline. Since the

online filtering algorithm CBK(C̃) can be used for arbitrarily long sequences,

the time for searching a good clustering quickly amortizes. Precomputing

various clusterings for different maximal proto-junction tree sizes s yields a

contract anytime algorithm for online filtering, conditional BK with auto-

matic clustering, CBK-AC(s). In CBK-AC(s), an increase in computational

7The quality of a possible split {u, v} ∈ ∆(Υ) has to be determined by some heuristic,
and in this case we choose the split {u, v} maximizing the ratio of reduction in induced
proto-junction tree size and approximation error, as measured by KL divergence. This
greedy heuristic is motivated by the objective to achieve large size reductions while intro-
ducing only a small approximation error.
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Algorithm AC(s, 〈B0, Bts〉)
Input. DBN 〈B0, Bts〉, bound s on S(Υ)

Output. Clustering C̃ for use in CBK

%===== Sample training evidence and init TJTF.

01. Sample ē1:Ttrain
from 〈B0, Bts〉.

02. Υ̂0 ← Build TJTF for B0

%===== Thin until induced proto-jt small enough.

03. for t = 0 to Ttrain

04. (Υ̃t = (C̃t, S̃t))← Υ̂t

05. ΨC̃t
← Qualitative proto-junction tree(C̃t, Bts)

06. while(S(ΨC̃t
) > bound) do

07. (Υ̃t = (C̃t, S̃t))←Thin Υ̃t

08. ΨC̃t
← Qual. proto-junction tree (C̃t, Bts)

09. end

%===== Move on to next time step.

10. Υ̂t+1 ←Introduce new variables Xt+1 into Υ̂t

11. Sum out variables Xt from Υ̂t+1

12. Introduce evidence et+1 into Υ̂t+1

13. Calibrate Υ̂t

14. end

%===== Choose best performing clustering.

15. Sample ē1:Tchoose
from 〈B0, Bts〉.

16. C̃ ← C̃t ∈ {C̃1, . . . , C̃Ttrain} with best accuracy of the

filter marginals for CBK(C̃t, 〈B0, Bts〉, ē1:Tchoose
).

Figure 2: Finding good conditionally independent cliques for BK by using

the TJTF framework. In our experiments, the parameters Ttrain and Tchoose

are set to 10 and 50, respectively.
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resources allows the usage of a larger proto-junction tree which in turn lets

us use a set of precomputed clusters with higher induced proto-junction tree

size resulting in lower approximation error. However, there remains a prob-

lem for large DBNs 〈B0, Bts〉. If Bts has many densely connected variables

and thus high induced width, even the induced proto-junction tree Ψff for the

fully factored clustering (where every canonical variable has its own cluster)

might be infeasibly large [MW01]. Here, our anytime approach reaches a

natural border since we cannot thin the fully factored clustering any further.

CBK-AC(s) in its current version is thus not completely anytime yet. We

would like to address this in future work by thinning the proto-junction tree

ΨC directly instead of merely thinning the junction tree Υ = (C,S) inducing

it.8 This way, we can achieve a true anytime algorithm.

5 Experiments

In this section, we report results of CBK-AC(s) for the task of filtering in

the BAT [FHKR95] and WATER [JKOP89] DBNs, the same networks as

used by Boyen and Koller [BK98a]. For each of the networks, we compare

CBK-AC(s) with BK using the best manually determined sets of clusters

reported in [BK98a].9 As an overall error measure, we employ the maximal

error in the filter marginals at each time step.

For each DBN, we ran CBK-AC(s) with a number of different bounds s

on induced proto-junction tree size. For each clustering C thus obtained for

8In our approach so far, we only approximate the filter estimate P (Xt|e1:t) and use the
exact transition function P (Xt+1|Xt), no matter how beneficial it might be in terms of
induced proto-junction tree size to also approximate the transition function. By thinning
the proto-junction tree directly, we could achieve an approximation of both the filter
estimate and the transition function at once. The algorithm would then be free to choose
the most promising approximations.

9For much standard functionality, we used Kevin Murphy’s Bayes Net Toolbox [Mur01].
Our experiments are done on a 1.2GHz Pentium laptop with 768MB Ram running Win-
dows XP.
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Algorithm PJT Size Error Time

BK ff 6752 1.30e-3 8.37
BK bk 60660 4.22e-4 10.06

BK cond 464942 1.91e-4 33.98
BK exact 5004482 0 -

CBK-AC(6752) 6752 1.30e-3 8.27
CBK-AC(10000) 7892 8.43e-4 8.40
CBK-AC(15000) 13074 2.17e-4 8.61
CBK-AC(20000) 16434 1.68e-4 8.81
CBK-AC(30000) 28786 1.67e-4 9.98
CBK-AC(50000) 43794 8.15e-5 10.46
CBK-AC(80000) 74226 8.27e-5 12.34
CBK-AC(200000) 179698 4.09e-5 17.74
CBK-AC(400000) 382322 6.82e-6 34.69

Table 1: Size of the induced proto-junction tree, average error of the filter

marginals and wall clock time for various online algorithms on the WATER

network. BK exact ran out of memory on our machines.

the WATER network, Figure 3 shows C’s induced proto-junction tree size

S(ΨC) and the average errors of CBK-AC(C)’s filter marginals. We compare

this to standard BK with fully factored (ff) clusters, the best manually de-

termined marginally independent set of clusters (bk), and the conditionally

independent set of clusters (cond) suggested in [BK98a]. BK with just one

single large cluster (exact) would yield a proto-junction tree size of 5004482;

however, our machines ran out of memory when using this clustering.

In Table 1, we list the induced proto-junction tree size, average error of

the filter marginals, and run time for the algorithms on the WATER network.

The induced proto-junction tree size s of a clustering C indeed dominates the

time complexity of CBK(C) for larger s.

The development of the errors in CBK-AC(C)’s filter marginals over time

is shown in Figure 4. It follows the same pattern as observed in [BK98a]:

the errors are quite low most of the time, with a few spikes. The variance
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Figure 3: Error in the filter estimates of CBK-AC(s) and BK on the WATER

network, averaged over 100 time steps. BK clusterings: ff, A-B, C-D-E-F, G-

H (bk) and the conditionally independent clustering A-B-C-D-E, C-D-E-F-G,

G-H (cond), as suggested in [BK98a]. BK-exact has induced proto-junction

tree size 5004482 and runs out of memory.

of the marginal errors is quite high for all clusterings, not only for BK-

ff. The advantage of using the automatically found clusters of CBK-AC(s)

becomes obvious in Figure 5, where we plot the ratios of BK-bk error and

BK-cond error to the error of the respective CBK-AC(s) version with next

lower induced proto-junction tree size s (and thus, at most equal complexity).

On average, it yields approximation errors which are between one and two

orders of magnitude better than the standard BK variants with comparable

complexity.

For the BAT network, we achieve very similar results. Table 2 shows for

each clustering C used in CBK-AC the size of the induced proto-junction

tree, average error of the filter marginals, and the run time. Note that the

clustering found by CBK-AC(28554) induces a proto-junction tree that is

smaller than Ψff, the proto-junction tree induced by the fully factored clus-
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Figure 4: Maximal error in the filter marginal per time step for CBK-AC

and BK for the WATER domain. The number in parenthesis gives the size

of the clustering’s induced proto-junction tree.

tering. This is possible because we do not build the minimal junction tree

for each clustering. In constrast, for all clusterings we employ standard soft-

ware [Mur01] implementing the min-weight heuristic (see e.g. [HD96]) for

the NP-hard problem of finding the minimal junction tree. We can luck

out and find a clustering which yields a small proto-junction tree with this

heuristic (even smaller than the one found for the fully factored clustering),

but we can as well have bad luck and construct a very poor junction tree.

CBK-AC(28554) obviously yields much lower error than BK-ff. Ψff neces-

sarily places many variables in shared clusters; approximating their joint

distribution by a product of marginals as done in BK-ff can thus not yield

any advantage in computation time or space, but merely introduces an un-

necessary error. The superiority of our automatically found clusters is again

demonstrated in Figure 7; there, CBK-AC(s) yields much lower error than

BK-bk with a smaller induced proto-junction tree size s.
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Algorithm PJT Size Error Time

BK ff 28554 5.23e-4 15.20
BK bk 49099 2.98e-5 14.96

BK exact 1465342 0 -
CBK-AC(28554) 28473 4.74e-5 16.48
CBK-AC(35000) 33513 1.75e-5 15.24
CBK-AC(40000) 37977 5.55e-7 15.90
CBK-AC(45000) 37977 5.55e-7 15.90
CBK-AC(55000) 50091 3.45e-7 16.65
CBK-AC(75000) 62331 3.47e-7 17.05
CBK-AC(100000) 62331 3.37e-7 17.05
CBK-AC(200000) 130878 1.76e-7 20.23
CBK-AC(400000) 130878 1.76e-7 20.23

Table 2: Size of the induced proto-junction tree, average error of the filter

marginals and wall clock time for various online algorithms on the BAT

network. BK exact ran out of memory on our machines.

Figure 5: Ratios of average marginal errors of BK and CBK-AC(s) with

smaller proto-junction tree on the Water network.
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Figure 6: Average error in the filter estimates of CBK-AC(s) and BK on the

BAT network. BK-exact would induce a proto-junction tree of size 1465342

and ran out of memory on our machines.
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Figure 7: Maximal error in the filter marginal per time step for CBK-AC

and BK for the BAT domain. The number in parenthesis gives the size of

the clustering’s induced proto-junction tree.
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Figure 8: Same as Figure 7, but with nonlogarithmic scale. Here, the error

peaks for BK-ff can be seen very clearly.
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6 Conclusions and Future work

In this paper, we studied the relationship between the thin junction tree

filter (TJTF) for inference in static and dynamic Bayesian networks (DBNs)

on the one hand and the Boyen-Koller algorithm for approximate inference in

DBNs on the other hand. We explicitly stated the conditional Boyen-Koller

algorithm (CBK) mentioned in [BK98a], showed that TJTFs generalize CBK

and how they can be used to automatically find conditionally independent

clusterings C with low error of CBK(C) and an induced proto-junction tree

ΥC with bounded size S(ΥC) < s. We showed that S(ΥC) determines the

space and time complexity of CBK(C); thus, we achieved a contract anytime

algorithm CBK-AC(s) that finds a good clustering C with S(ΥC) < s and

then performs CBK(C) online for an arbitrary amount of time steps. On

the WATER and BAT DBNs, we demonstrated empirically how CBK-AC(s)

shows significantly lower approximation errors than standard BK with equal

computational complexity.

The TJTF framework can be applied in a number of other areas. It

can e.g. be used to build approximate junction trees on large Bayesian net-

works. For the filtering task, TJTF can detect special circumstances such

as sparse interactions between variables very naturally. We plan to develop

this promising approach further; its potential is an efficient algorithm which

exactly quantifies the actual error it introduces with specific approximations.

In order to make this framework applicable for online inference we need to re-

duce its complexity. We plan research on approximation schemes to estimate

the error of splitting a cluster and speed up the introduction of new vari-

ables by means of Draper’s operations for incremental building of qualitative

junction trees [Dra95]. Another interesting point is that the theoretical anal-

ysis of CBK [BK98a, BK99] does not apply directly to the TJTF framework

if we split clusters between time steps. We conjecture that the theoretical

properties should be similar, but this needs further research.

There are also many possibilities to improve and extend the CBK-AC(s)

algorithm. As discussed in Section 4.3, its contract anytime property is nat-
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urally limited by the size of the induced proto-junction tree Υff of a fully fac-

tored clustering. There are DBNs for which Υff is prohibitively large [MW01]

but by building an approximate proto-junction tree we can achieve the full

contract anytime property; we plan to implement this in future work

Using a matrix of proto-junction trees, it is also possible at the runtime of

CBK to switch between several clusterings that have been computed offline.

If the time and space constraints for online inference change, the clustering

can be adapted to reflect this. Furthermore, if we can assess the performance

of different clusterings in regular intervals of the online algorithm, a reactive

scheme becomes possible that also detects sparse interactions [BK99] between

variables and uses an appropriate clustering at any time.

We also plan to study how the approaches studied in this paper can be

used for inference in hybrid DBNs and how they can be combined with other

approximate inference schemes.

For hybrid DBNs with conditional Gaussian distributions, Paskin’s ap-

proach [Pas03] is most promising, whereas for general hybrid DBNs com-

binations with particle filtering seem most promising. We plan to study

an extension of the factored particle filter [NPP02] to conditionally inde-

pendent clusterings, which could be determined with a procedure similar to

AC(s). By employing Rao-Blackwellized particle filters [DdFMR00] or the

Gaussian particle filter [HD03], factored particles also generalize to hybrid

DBNs with probability distributions close to multimodal multivariate Gaus-

sians [NPDH04]. This promising novel approach in filtering for DBNs can

likely be further improved by means of conditionally independent clusterings.
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