Machine Learning:
Multi Layer Perceptrons

Prof. Dr. Martin Riedmiller

Albert-Ludwigs-University Freiburg
AG Maschinelles Lernen
Outline

- multi layer perceptrons (MLP)
- learning MLPs
- function minimization: gradient descend & related methods
Neural networks

- single neurons are not able to solve complex tasks (e.g. restricted to linear calculations)
- creating networks by hand is too expensive; we want to learn from data
- nonlinear features also have to be generated by hand; tessalations become intractable for larger dimensions
Neural networks

- Single neurons are not able to solve complex tasks (e.g. restricted to linear calculations)
- Creating networks by hand is too expensive; we want to learn from data
- Nonlinear features also have to be generated by hand; tessalations become intractable for larger dimensions

- We want to have a generic model that can adapt to some training data
- Basic idea: multi layer perceptron (Werbos 1974, Rumelhart, McClelland, Hinton 1986), also named feed forward networks
Neurons in a multi layer perceptron

- standard perceptrons calculate a discontinuous function:

\[\vec{x} \mapsto f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle) \]
Neurons in a multi layer perceptron

- standard perceptrons calculate a discontinuous function:
 \[\vec{x} \mapsto f_{\text{step}}(w_0 + \langle \vec{w}, \vec{x} \rangle) \]

- due to technical reasons, neurons in MLPs calculate a smoothed variant of this:
 \[\vec{x} \mapsto f_{\text{log}}(w_0 + \langle \vec{w}, \vec{x} \rangle) \]

with
\[f_{\text{log}}(z) = \frac{1}{1 + e^{-z}} \]

\(f_{\text{log}} \) is called logistic function
Neurons in a multi layer perceptron

standard perceptrons calculate a discontinuous function:

\[\vec{x} \mapsto f_{\text{step}}(w_0 + \langle \vec{w}, \vec{x} \rangle) \]

due to technical reasons, neurons in MLPs calculate a smoothed variant of this:

\[\vec{x} \mapsto f_{\log}(w_0 + \langle \vec{w}, \vec{x} \rangle) \]

with

\[f_{\log}(z) = \frac{1}{1 + e^{-z}} \]

\(f_{\log} \) is called logistic function

properties:

- monotonically increasing
- \(\lim_{z \to \infty} = 1 \)
- \(\lim_{z \to -\infty} = 0 \)
- \(f_{\log}(z) = 1 - f_{\log}(-z) \)
- continuous, differentiable
Multi layer perceptrons

A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are neurons with logistic activation.

- neurons of i-th layer serve as input features for neurons of $i+1$th layer
- very complex functions can be calculated combining many neurons
Multi layer perceptrons (cont.)

- Multi layer perceptrons, more formally:
 A MLP is a finite directed acyclic graph.
 - nodes that are no target of any connection are called **input neurons**. A MLP that should be applied to input patterns of dimension \(n \) must have \(n \) input neurons, one for each dimension. Input neurons are typically enumerated as neuron 1, neuron 2, neuron 3, ...
 - nodes that are no source of any connection are called **output neurons**. A MLP can have more than one output neuron. The number of output neurons depends on the way the target values (desired values) of the training patterns are described.
 - all nodes that are neither input neurons nor output neurons are called **hidden neurons**.
 - since the graph is acyclic, all neurons can be organized in layers, with the set of input layers being the first layer.
Multi layer perceptrons (cont.)

- connections that hop over several layers are called shortcut
- most MLPs have a connection structure with connections from all neurons of one layer to all neurons of the next layer without shortcuts
- all neurons are enumerated
- $\text{Succ}(i)$ is the set of all neurons j for which a connection $i \rightarrow j$ exists
- $\text{Pred}(i)$ is the set of all neurons j for which a connection $j \rightarrow i$ exists
- all connections are weighted with a real number. The weight of the connection $i \rightarrow j$ is named w_{ji}
- all hidden and output neurons have a bias weight. The bias weight of neuron i is named w_{i0}
variables for calculation:

- hidden and output neurons have some variable net_i ("network input")
- all neurons have some variable a_i ("activation"/"output")
variables for calculation:

- hidden and output neurons have some variable net_i (“network input”)
- all neurons have some variable a_i (“activation”/“output”)

applying a pattern $\vec{x} = (x_1, \ldots, x_n)^T$ to the MLP:

- for each input neuron the respective element of the input pattern is presented, i.e. $a_i \leftarrow x_i$
Multi layer perceptrons
(cont.)

► variables for calculation:

• hidden and output neurons have some variable net_i (“network input”)
• all neurons have some variable a_i (“activation”/“output”)

► applying a pattern $\vec{x} = (x_1, \ldots, x_n)^T$ to the MLP:

• for each input neuron the respective element of the input pattern is presented, i.e. $a_i \leftarrow x_i$
• for all hidden and output neurons i:
 after the values a_j have been calculated for all predecessors $j \in Pred(i)$, calculate net_i and a_i as:

$$net_i \leftarrow w_{i0} + \sum_{j \in Pred(i)} (w_{ij}a_j)$$

$$a_i \leftarrow f_{\log}(net_i)$$
variables for calculation:

- hidden and output neurons have some variable net_i (“network input”)
- all neurons have some variable a_i (“activation”/“output”)

applying a pattern $\vec{x} = (x_1, \ldots, x_n)^T$ to the MLP:

- for each input neuron the respective element of the input pattern is presented, i.e. $a_i \leftarrow x_i$
- for all hidden and output neurons i:
 after the values a_j have been calculated for all predecessors $j \in \text{Pred}(i)$, calculate net_i and a_i as:

$$net_i \leftarrow w_{i0} + \sum_{j \in \text{Pred}(i)} (w_{ij}a_j)$$

$$a_i \leftarrow f_{\log}(net_i)$$

- the network output is given by the a_i of the output neurons
Multi layer perceptrons
(cont.)

illustration:

• apply pattern $\vec{x} = (x_1, x_2)^T$
Multi layer perceptrons (cont.)

- illustration:

- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$
- apply pattern $\vec{x} = (x_1, x_2)^T$
- calculate activation of input neurons: $a_i \leftarrow x_i$
- propagate forward the activations:
Multi layer perceptrons
(cont.)

illustration:

• apply pattern \(\vec{x} = (x_1, x_2)^T \)
• calculate activation of input neurons: \(a_i \leftarrow x_i \)
• propagate forward the activations: step
illustration:

- apply pattern \(\vec{x} = (x_1, x_2)^T \)
- calculate activation of input neurons: \(a_i \leftarrow x_i \)
- propagate forward the activations: step by
illustration:

- apply pattern \(\vec{x} = (x_1, x_2)^T \)
- calculate activation of input neurons: \(a_i \leftarrow x_i \)
- propagate forward the activations: step by step
• apply pattern $\vec{x} = (x_1, x_2)^T$
• calculate activation of input neurons: $a_i \leftarrow x_i$
• propagate forward the activations: step by step
• read the network output from both output neurons
algorithm (forward pass):

Require: pattern \vec{x}, MLP, enumeration of all neurons in topological order

Ensure: calculate output of MLP

1: **for all** input neurons i **do**
2: set $a_i \leftarrow x_i$
3: **end for**
4: **for all** hidden and output neurons i in topological order **do**
5: set $net_i \leftarrow w_{i0} + \sum_{j \in Pred(i)} w_{ij} a_j$
6: set $a_i \leftarrow f_{log}(net_i)$
7: **end for**
8: **for all** output neurons i **do**
9: assemble a_i in output vector \vec{y}
10: **end for**
11: **return** \vec{y}
variant:
Neurons with logistic activation can only output values between 0 and 1. To enable output in a wider range of real number variants are used:

- neurons with \(\text{tanh} \) activation function:

\[
a_i = \text{tanh}(\text{net}_i) = \frac{e^{\text{net}_i} - e^{-\text{net}_i}}{e^{\text{net}_i} + e^{-\text{net}_i}}
\]

- neurons with linear activation:

\[
a_i = \text{net}_i
\]
variant:

Neurons with logistic activation can only output values between 0 and 1. To enable output in a wider range of real number variants are used:

- neurons with \(\tanh \) activation function:
 \[
 a_i = \tanh(\text{net}_i) = \frac{e^{\text{net}_i} - e^{-\text{net}_i}}{e^{\text{net}_i} + e^{-\text{net}_i}}
 \]

- neurons with linear activation:
 \[a_i = \text{net}_i \]

- the calculation of the network output is similar to the case of logistic activation except the relationship between \(\text{net}_i \) and \(a_i \) is different.

- the activation function is a local property of each neuron.
typical network topologies:

- for regression: output neurons with linear activation
- for classification: output neurons with logistic/tanh activation
- all hidden neurons with logistic activation
- layered layout:
 input layer – first hidden layer – second hidden layer – ... – output layer
 with connection from each neuron in layer i with each neuron in layer $i + 1$, no shortcut connections
typical network topologies:

- for regression: output neurons with linear activation
- for classification: output neurons with logistic/tanh activation
- all hidden neurons with logistic activation
- layered layout:
 - input layer – first hidden layer – second hidden layer – ... – output layer
 - with connection from each neuron in layer i with each neuron in layer $i+1$, no shortcut connections

Lemma:

Any boolean function can be realized by a MLP with one hidden layer. Any bounded continuous function can be approximated with arbitrary precision by a MLP with one hidden layer.

Proof: was given by Cybenko (1989). Idea: partition input space in small cells
given training data: $\mathcal{D} = \{(\vec{x}^{(1)}, \vec{d}^{(1)}), \ldots, (\vec{x}^{(p)}, \vec{d}^{(p)})\}$ where $\vec{d}^{(i)}$ is the desired output (real number for regression, class label 0 or 1 for classification)

given topology of a MLP

task: adapt weights of the MLP
idea: minimize an error term

$$E(\vec{w}; D) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2$$

with $y(\vec{x}; \vec{w})$: network output for input pattern \vec{x} and weight vector \vec{w},

$||\vec{u}||^2$ squared length of vector \vec{u}: $||\vec{u}||^2 = \sum_{j=1}^{\text{dim} (\vec{u})} (u_j)^2$
MLP Training
(cont.)

- idea: minimize an error term

\[E(\vec{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2 \]

with \(y(\vec{x}; \vec{w}) \): network output for input pattern \(\vec{x} \) and weight vector \(\vec{w} \),
\(||\vec{u}||^2 \) squared length of vector \(\vec{u} \):
\[||\vec{u}||^2 = \sum_{j=1}^{\dim(\vec{u})} (u_j)^2 \]

- learning means: calculating weights for which the error becomes minimal

\[\minimize_{\vec{w}} E(\vec{w}; \mathcal{D}) \]
idea: minimize an error term

$$E(\vec{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)}||^2$$

with $y(\vec{x}; \vec{w})$: network output for input pattern \vec{x} and weight vector \vec{w},

$||\vec{u}||^2$ squared length of vector \vec{u}: $||\vec{u}||^2 = \sum_{j=1}^{\text{dim}(\vec{u})} (u_j)^2$

learning means: calculating weights for which the error becomes minimal

$$\min_{\vec{w}} E(\vec{w}; \mathcal{D})$$

interpret E just as a mathematical function depending on \vec{w} and forget about its semantics, then we are faced with a problem of mathematical optimization
discusses mathematical problems of the form:

\[
\min_{\vec{u}} f(\vec{u})
\]

\(\vec{u}\) can be any vector of suitable size. But which one solves this task and how can we calculate it?
Optimization theory

- discusses mathematical problems of the form:

\[
\min_{\vec{u}} f(\vec{u})
\]

\(\vec{u}\) can be any vector of suitable size. But which one solves this task and how can we calculate it?

- some simplifications:

 here we consider only functions \(f\) which are continuous and differentiable

![Graphs showing non-continuous, continuous non-differentiable, and differentiable functions](Machine Learning: Multi Layer Perceptrons -- p.15/61)
A global minimum \vec{u}^* is a point so that:

$$f(\vec{u}^*) \leq f(\vec{u})$$
for all \vec{u}.

A local minimum \vec{u}^+ is a point so that exist $r > 0$ with

$$f(\vec{u}^+) \leq f(\vec{u})$$
for all points \vec{u} with $||\vec{u} - \vec{u}^+|| < r$
analytical way to find a minimum:
For a local minimum \vec{u}^+, the gradient of f becomes zero:

$$\frac{\partial f}{\partial u_i}(\vec{u}^+) = 0 \quad \text{for all } i$$

Hence, calculating all partial derivatives and looking for zeros is a good idea (c.f. linear regression)
analytical way to find a minimum:

For a local minimum \vec{u}^+, the gradient of f becomes zero:

$$\frac{\partial f}{\partial u_i}(\vec{u}^+) = 0 \quad \text{for all } i$$

Hence, calculating all partial derivatives and looking for zeros is a good idea (c.f. linear regression)

but: there are also other points for which $\frac{\partial f}{\partial u_i} = 0$, and resolving these equations is often not possible
numerical way to find a minimum, searching:
assume we are starting at a point \vec{u}.
Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.

Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?

slope is negative (descending), go right!
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.
Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.
Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?

slope is positive (ascending), go left!
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.

Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?

Which is the best stepwidth?
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.
Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?

Which is the best stepwidth?

slope is small, small step!
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.
Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?

Which is the best stepwidth?
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.

Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?

Which is the best stepwidth?

slope is large, large step!
numerical way to find a minimum, searching: assume we are starting at a point \vec{u}.

Which is the best direction to search for a point \vec{v} with $f(\vec{v}) < f(\vec{u})$?

Which is the best stepwidth?

general principle:

$$v_i \leftarrow u_i - \epsilon \frac{\partial f}{\partial u_i}$$

$\epsilon > 0$ is called learning rate
Gradient descent

Gradient descent approach:

Require: mathematical function f, learning rate $\epsilon > 0$

Ensure: returned vector is close to a local minimum of f

1: choose an initial point \vec{u}
2: while $||\nabla f(\vec{u})||$ not close to 0 do
3: $\vec{u} \leftarrow \vec{u} - \epsilon \cdot \nabla f(\vec{u})$
4: end while
5: return \vec{u}

Open questions:

- how to choose initial \vec{u}
- how to choose ϵ
- does this algorithm really converge?
choice of ϵ
choice of ϵ

1. case small ϵ: convergence
choice of ϵ

2. case very small ϵ: convergence, but it may take very long
choice of ϵ

3. case medium size ϵ: convergence
Gradient descent (cont.)

- choice of ϵ
 4. case large ϵ: divergence
choice of ϵ

- is crucial. Only small ϵ guarantee convergence.
- for small ϵ, learning may take very long
- depends on the scaling of f: an optimal learning rate for f may lead to divergence for $2 \cdot f$
some more problems with gradient descent:

- flat spots and steep valleys:
 need larger ϵ in \vec{u} to jump over the uninteresting flat area but need smaller ϵ in \vec{v} to meet the minimum
some more problems with gradient descent:

- **flat spots and steep valleys:**
 need larger ϵ in \vec{u} to jump over the uninteresting flat area but need smaller ϵ in \vec{v} to meet the minimum

- **zig-zagging:**
 in higher dimensions: ϵ is not appropriate for all dimensions
Conclusion:

Pure gradient descent is a nice theoretical framework but of limited power in practice. Finding the right ϵ is annoying. Approaching the minimum is time consuming.
Conclusion:

Pure gradient descent is a nice theoretical framework but of limited power in practice. Finding the right ϵ is annoying. Approaching the minimum is time consuming.

Heuristics to overcome problems of gradient descent:

- Gradient descent with momentum
- Individual learning rates for each dimension
- Adaptive learning rates
- Decoupling step length from partial derivatives
gradient descent with momentum

idea: make updates smoother by carrying forward the latest update.

1: choose an initial point \(\vec{u} \)
2: set \(\vec{\Delta} \leftarrow \vec{0} \) (stepwidth)
3: while \(\| \text{grad} f (\vec{u}) \| \) not close to 0 do
4: \(\vec{\Delta} \leftarrow -\epsilon \cdot \text{grad} f (\vec{u}) + \mu \vec{\Delta} \)
5: \(\vec{u} \leftarrow \vec{u} + \vec{\Delta} \)
6: end while
7: return \(\vec{u} \)

\(\mu \geq 0, \mu < 1 \) is an additional parameter that has to be adjusted by hand. For \(\mu = 0 \) we get vanilla gradient descent.
advantages of momentum:

- smoothes zig-zagging
- accelerates learning at flat spots
- slows down when signs of partial derivatives change

disadvantage:

- additional parameter μ
- may cause additional zig-zagging
advantages of momentum:

- smoothes zig-zagging
- accelerates learning at flat spots
- slows down when signs of partial derivatives change

disadvantage:

- additional parameter μ
- may cause additional zig-zagging
advantages of momentum:
• smoothes zig-zagging
• accelerates learning at flat spots
• slows down when signs of partial derivatives change

disadvantage:
• additional parameter μ
• may cause additional zig-zagging
advantages of momentum:

- smoothes zig-zagging
- accelerates learning at flat spots
- slows down when signs of partial derivatives change

disadavantage:

- additional parameter μ
- may cause additional zig-zagging
Gradient descent (cont.)

- advantages of momentum:
 - smooths zig-zagging
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change

- disadvantage:
 - additional parameter μ
 - may cause additional zig-zagging

vanilla gradient descent
Gradient descent (cont.)

- advantages of momentum:
 • smoothes zig-zagging
 • accelerates learning at flat spots
 • slows down when signs of partial derivatives change

- disadvantage:
 • additional parameter μ
 • may cause additional zig-zagging
Gradient descent (cont.)

▶ adaptive learning rate

 idea:
 - make learning rate individual for each dimension and adaptive
 - if signs of partial derivative change, reduce learning rate
 - if signs of partial derivative don’t change, increase learning rate

▶ algorithm: Super-SAB (Tollenare 1990)
Gradient descent (cont.)

\[\eta^+ \geq 1, \eta^- \leq 1 \] are additional parameters that have to be adjusted by hand. For \(\eta^+ = \eta^- = 1 \) we get vanilla gradient descent.

1: choose an initial point \(\vec{u} \)
2: set initial learning rate \(\vec{\epsilon} \)
3: set former gradient \(\vec{\gamma} \leftarrow \vec{0} \)
4: while \(\| \text{grad} \ f(\vec{u}) \| \) not close to 0 do
5: calculate gradient \(\vec{g} \leftarrow \text{grad} \ f(\vec{u}) \)
6: for all dimensions \(i \) do
 \[
 \epsilon_i \left\{ \begin{array}{ll}
 \eta^+ \epsilon_i & \text{if } g_i \cdot \gamma_i > 0 \\
 \eta^- \epsilon_i & \text{if } g_i \cdot \gamma_i < 0 \\
 \epsilon_i & \text{otherwise}
 \end{array} \right.
 \]
7: \(u_i \leftarrow u_i - \epsilon_i g_i \)
8: end for
9: end while
10: \(\vec{\gamma} \leftarrow \vec{g} \)
11: return \(\vec{u} \)
advantages of Super-SAB and related approaches:

• decouples learning rates of different dimensions
• accelerates learning at flat spots
• slows down when signs of partial derivatives change

disadvantages:

• steplength still depends on partial derivatives
advantages of Super-SAB and related approaches:

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change

disadvantages:

- step length still depends on partial derivatives
Gradient descent (cont.)

- **advantages of Super-SAB and related approaches:**
 - decouples learning rates of different dimensions
 - accelerates learning at flat spots
 - slows down when signs of partial derivatives change

- **disadvantages:**
 - step length still depends on partial derivatives
advantages of Super-SAB and related approaches:
- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change

disadvantages:
- step length still depends on partial derivatives
advantages of Super-SAB and related approaches:
- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change

disadvantages:
- step length still depends on partial derivatives
Gradient descent (cont.)

- make step length independent of partial derivatives

 idea:

 - use explicit step length parameters, one for each dimension
 - if signs of partial derivative change, reduce step length
 - if signs of partial derivative don’t change, increase step length

- algorithm: RProp (Riedmiller & Braun, 1993)
Gradient descent (cont.)

1: choose an initial point \mathbf{u}
2: set initial steplength Δ
3: set former gradient $\mathbf{\gamma} \leftarrow \mathbf{0}$
4: while $||\nabla f(\mathbf{u})||$ not close to 0 do
5: calculate gradient $\mathbf{g} \leftarrow \nabla f(\mathbf{u})$
6: for all dimensions i do
7: $\Delta_i \leftarrow \begin{cases}
\eta^+ \Delta_i & \text{if } g_i \cdot \gamma_i > 0 \\
\eta^- \Delta_i & \text{if } g_i \cdot \gamma_i < 0 \\
\Delta_i & \text{otherwise}
\end{cases}$
8: $u_i \leftarrow \begin{cases}
u_i + \Delta_i & \text{if } g_i < 0 \\
u_i - \Delta_i & \text{if } g_i > 0 \\
u_i & \text{otherwise}
\end{cases}$
9: end for
10: $\mathbf{\gamma} \leftarrow \mathbf{g}$
11: end while
12: return \mathbf{u}

$\eta^+ \geq 1, \eta^- \leq 1$ are additional parameters that have to be adjusted by hand. For MLPs, good heuristics exist for parameter settings: $\eta^+ = 1.2, \eta^- = 0.5$, initial $\Delta_i = 0.1$
advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length
advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length
advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length
advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length

vanilla gradient descent
advantages of Rprop

- decouples learning rates of different dimensions
- accelerates learning at flat spots
- slows down when signs of partial derivatives change
- independent of gradient length
Beyond gradient descent

- Newton
- Quickprop
- line search
Newton’s method:

approximate f by a second-order Taylor polynomial:

$$f(\vec{u} + \Delta) \approx f(\vec{u}) + \nabla f(\vec{u}) \cdot \Delta + \frac{1}{2} \Delta^T H(\vec{u}) \Delta$$

with $H(\vec{u})$ the Hessian of f at \vec{u}, the matrix of second order partial derivatives.
Newton’s method:

approximate f by a second-order Taylor polynomial:

$$f(\vec{u} + \Delta) \approx f(\vec{u}) + \text{grad} f(\vec{u}) \cdot \Delta + \frac{1}{2} \Delta^T H(\vec{u}) \Delta$$

with $H(\vec{u})$ the Hessian of f at \vec{u}, the matrix of second order partial derivatives.

Zeroing the gradient of approximation with respect to Δ:

$$\vec{0} \approx (\text{grad} f(\vec{u}))^T + H(\vec{u}) \Delta$$

Hence:

$$\Delta \approx -(H(\vec{u}))^{-1}(\text{grad} f(\vec{u}))^T$$
Beyond gradient descent (cont.)

- Newton’s method:

 approximate f by a second-order Taylor polynomial:

 $$f(\vec{u} + \Delta) \approx f(\vec{u}) + \nabla f(\vec{u}) \cdot \Delta + \frac{1}{2} \Delta^T H(\vec{u}) \Delta$$

 with $H(\vec{u})$ the Hessian of f at \vec{u}, the matrix of second order partial derivatives.

 Zeroing the gradient of approximation with respect to Δ:

 $$\vec{0} \approx (\nabla f(\vec{u}))^T + H(\vec{u}) \Delta$$

 Hence:

 $$\Delta \approx -(H(\vec{u}))^{-1} (\nabla f(\vec{u}))^T$$

- advantages: no learning rate, no parameters, quick convergence

- disadvantages: calculation of H and H^{-1} very time consuming in high dimensional spaces
Quickprop (Fahlmann, 1988)

- like Newton’s method, but replaces H by a diagonal matrix containing only the diagonal entries of H.
- hence, calculating the inverse is simplified
- replaces second order derivatives by approximations (difference ratios)
Beyond gradient descent (cont.)

Quickprop (Fahlmann, 1988)

- like Newton’s method, but replaces H by a diagonal matrix containing only the diagonal entries of H.
- hence, calculating the inverse is simplified
- replaces second order derivatives by approximations (difference ratios)

update rule:

$$\Delta w^t_i := \frac{-g^t_i}{g^t_i - g^{t-1}_i} (w^t_i - w^{t-1}_i)$$

where $g^t_i = \text{grad } f$ at time t.

- advantages: no learning rate, no parameters, quick convergence in many cases
- disadvantages: sometimes unstable
Beyond gradient descent (cont.)

- line search algorithms:
 - two nested loops:
 - outer loop: determine search direction from gradient
 - inner loop: determine minimizing point on the line defined by current search position and search direction
 - inner loop can be realized by any minimization algorithm for one-dimensional tasks
 - advantage: inner loop algorithm may be more complex algorithm, e.g. Newton

- problem: time consuming for high-dimensional spaces
line search algorithms:

- outer loop: determine search direction from gradient
- inner loop: determine minimizing point on the line defined by current search position and search direction

- inner loop can be realized by any minimization algorithm for one-dimensional tasks

- advantage: inner loop algorithm may be more complex algorithm, e.g. Newton

- problem: time consuming for high-dimensional spaces
Beyond gradient descent (cont.)

- line search algorithms:
 - two nested loops:
 - outer loop: determine search direction from gradient
 - inner loop: determine minimizing point on the line defined by current search position and search direction
 - inner loop can be realized by any minimization algorithm for one-dimensional tasks
 - advantage: inner loop algorithm may be more complex algorithm, e.g. Newton

- problem: time consuming for high-dimensional spaces
Summary: optimization theory

- several algorithms to solve problems of the form:

\[
\min_{\vec{u}} f(\vec{u})
\]

- gradient descent gives the main idea
- Rprop plays major role in context of MLPs
- dozens of variants and alternatives exist
training an MLP means solving:

\[
\minimize_{\bar{w}} E(\bar{w}; \mathcal{D})
\]

for given network topology and training data \(\mathcal{D} \)

\[
E(\bar{w}; \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{p} ||y(\bar{x}^{(i)}; \bar{w}) - \bar{d}^{(i)}||^2
\]
Back to MLP Training

- training an MLP means solving:

\[
\min_{\vec{w}} E(\vec{w}; D)
\]

for given network topology and training data \(D \)

\[
E(\vec{w}; D) = \frac{1}{2} \sum_{i=1}^{p} \| y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)} \|^2
\]

- optimization theory offers algorithms to solve task of this kind

open question: how can we calculate derivatives of \(E \)?
Calculating partial derivatives

- The calculation of the network output of a MLP is done step-by-step: neuron i uses the output of neurons $j \in \text{Pred}(i)$ as arguments, calculates some output which serves as argument for all neurons $j \in \text{Succ}(i)$.

- Apply the chain rule!
Calculating partial derivatives (cont.)

the error term

$$E(\vec{w}; D) = \sum_{i=1}^{p} \left(\frac{1}{2} \| y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)} \|^2 \right)$$

introducing $e(\vec{w}; \vec{x}, \vec{d}) = \frac{1}{2} \| y(\vec{x}; \vec{w}) - \vec{d} \|^2$ we can write:
the error term

\[E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} \left(\frac{1}{2} \| y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)} \|^2 \right) \]

Introducing \(e(\vec{w}; \vec{x}, \vec{d}) = \frac{1}{2} \| y(\vec{x}; \vec{w}) - \vec{d} \|^2 \) we can write:

\[E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} e(\vec{w}; \vec{x}^{(i)}, \vec{d}^{(i)}) \]

Applying the rule for sums:
Calculating partial derivatives (cont.)

the error term

\[E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} \left(\frac{1}{2} \| y(\vec{x}^{(i)}; \vec{w}) - \vec{d}^{(i)} \|^2 \right) \]

introducing \(e(\vec{w}; \vec{x}, \vec{d}) = \frac{1}{2} \| y(\vec{x}; \vec{w}) - \vec{d} \|^2 \) we can write:

\[E(\vec{w}; \mathcal{D}) = \sum_{i=1}^{p} e(\vec{w}; \vec{x}^{(i)}, \vec{d}^{(i)}) \]

applying the rule for sums:

\[\frac{\partial E(\vec{w}; \mathcal{D})}{\partial w_{kl}} = \sum_{i=1}^{p} \frac{\partial e(\vec{w}; \vec{x}^{(i)}, \vec{d}^{(i)})}{\partial w_{kl}} \]

we can calculate the derivatives for each training pattern individually and sum up
Calculating partial derivatives (cont.)

- individual error terms for a pattern \vec{x}, \vec{d}

 simplifications in notation:

 - omitting dependencies from \vec{x} and \vec{d}

 - $y(\vec{w}) = (y_1, \ldots, y_m)^T$ network output (when applying input pattern \vec{x})
Calculating partial derivatives (cont.)

individual error term:

\[
e(\vec{w}) = \frac{1}{2} ||y(\vec{x}; \vec{w}) - \vec{d}||^2 = \frac{1}{2} \sum_{j=1}^{m} (y_j - d_j)^2
\]

by direct calculation:

\[
\frac{\partial e}{\partial y_j} = (y_j - d_j)
\]

\(y_j\) is the activation of a certain output neuron, say \(a_i\)

Hence:

\[
\frac{\partial e}{\partial a_i} = \frac{\partial e}{\partial y_j} = (a_i - d_j)
\]
calculations within a neuron i

assume we already know $\frac{\partial e}{\partial a_i}$

observation: e depends indirectly from a_i and a_i depends on net_i

\Rightarrow apply chain rule

$$\frac{\partial e}{\partial \text{net}_i} = \frac{\partial e}{\partial a_i} \cdot \frac{\partial a_i}{\partial \text{net}_i}$$

what is $\frac{\partial a_i}{\partial \text{net}_i}$?
Calculating partial derivatives
(cont.)

\[\frac{\partial a_i}{\partial \text{net}_i} \]

\(a_i \) is calculated like:
\[a_i = f_{\text{act}}(\text{net}_i) \quad (f_{\text{act}} \text{ activation function}) \]

Hence:
\[\frac{\partial a_i}{\partial \text{net}_i} = \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i} \]
Calculating partial derivatives (cont.)

\[\frac{\partial a_i}{\partial net_i} \]

\(a_i \) is calculated like:
\[a_i = f_{act}(net_i) \] (\(f_{act} \) activation function)

Hence:
\[\frac{\partial a_i}{\partial net_i} = \frac{\partial f_{act}(net_i)}{\partial net_i} \]

- linear activation:
\[f_{act}(net_i) = net_i \]

\[\Rightarrow \frac{\partial f_{act}(net_i)}{\partial net_i} = 1 \]
Calculating partial derivatives

(cont.)

\[
\frac{\partial a_i}{\partial \text{net}_i}
\]

\(a_i\) is calculated like: \(a_i = f_{\text{act}}(\text{net}_i)\) (\(f_{\text{act}}\) activation function)

Hence:

\[
\frac{\partial a_i}{\partial \text{net}_i} = \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i}
\]

- **linear activation**: \(f_{\text{act}}(\text{net}_i) = \text{net}_i\)

 \[\Rightarrow \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i} = 1\]

- **logistic activation**: \(f_{\text{act}}(\text{net}_i) = \frac{1}{1 + e^{-\text{net}_i}}\)

 \[\Rightarrow \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i} = \frac{e^{-\text{net}_i}}{(1 + e^{-\text{net}_i})^2} = f_{\log}(\text{net}_i) \cdot (1 - f_{\log}(\text{net}_i))\]
Calculating partial derivatives

(cont.)

\[
\frac{\partial a_i}{\partial \text{net}_i}
\]

\[a_i \text{ is calculated like: } a_i = f_{\text{act}}(\text{net}_i) \quad (f_{\text{act}} \text{ activation function})\]

Hence:

\[
\frac{\partial a_i}{\partial \text{net}_i} = \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i}
\]

- linear activation: \(f_{\text{act}}(\text{net}_i) = \text{net}_i\)

 \[\Rightarrow \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i} = 1\]

- logistic activation: \(f_{\text{act}}(\text{net}_i) = \frac{1}{1 + e^{-\text{net}_i}}\)

 \[\Rightarrow \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i} = \frac{e^{-\text{net}_i}}{(1 + e^{-\text{net}_i})^2} = f_{\text{log}}(\text{net}_i) \cdot (1 - f_{\text{log}}(\text{net}_i))\]

- tanh activation: \(f_{\text{act}}(\text{net}_i) = \tanh(\text{net}_i)\)

 \[\Rightarrow \frac{\partial f_{\text{act}}(\text{net}_i)}{\partial \text{net}_i} = 1 - (\tanh(\text{net}_i))^2\]
from neuron to neuron

assume we already know $\frac{\partial e}{\partial net_j}$ for all $j \in Succ(i)$

observation: e depends indirectly from net_j of successor neurons and net_j depends on $a_i \Rightarrow$ apply chain rule
Calculating partial derivatives (cont.)

- from neuron to neuron

 assume we already know \(\frac{\partial e}{\partial \text{net}_j} \) for all \(j \in \text{Succ}(i) \)

observation: \(e \) depends indirectly from \(\text{net}_j \) of successor neurons and \(\text{net}_j \)
depends on \(a_i \) ⇒ apply chain rule

\[
\frac{\partial e}{\partial a_i} = \sum_{j \in \text{Succ}(i)} \left(\frac{\partial e}{\partial \text{net}_j} \cdot \frac{\partial \text{net}_j}{\partial a_i} \right)
\]
Calculating partial derivatives (cont.)

from neuron to neuron

assume we already know $\frac{\partial e}{\partial \text{net}_j}$ for all $j \in \text{Succ}(i)$

observation: e depends indirectly from net_j of successor neurons and net_j depends on $a_i \Rightarrow$ apply chain rule

$$\frac{\partial e}{\partial a_i} = \sum_{j \in \text{Succ}(i)} \left(\frac{\partial e}{\partial \text{net}_j} \cdot \frac{\partial \text{net}_j}{\partial a_i} \right)$$

and:

$$\text{net}_j = w_{ji}a_i + ...$$

hence:

$$\frac{\partial \text{net}_j}{\partial a_i} = w_{ji}$$
Calculating partial derivatives
(cont.)

▸ the weights

assume we already know $\frac{\partial e}{\partial \text{net}_i}$ for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net_i and net_i depends on w_{ij}

⇒ apply chain rule
Calculating partial derivatives
(cont.)

the weights

assume we already know $\frac{\partial e}{\partial net_i}$ for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net_i and net_i depends on w_{ij}

⇒ apply chain rule

$$\frac{\partial e}{\partial w_{ij}} = \frac{\partial e}{\partial net_i} \cdot \frac{\partial net_i}{\partial w_{ij}}$$
Calculating partial derivatives

(cont.)

the weights

assume we already know $\frac{\partial e}{\partial \text{net}_i}$ for neuron i and neuron j is predecessor of i

observation: e depends indirectly from net_i and net_i depends on w_{ij}

⇒ apply chain rule

$$\frac{\partial e}{\partial w_{ij}} = \frac{\partial e}{\partial \text{net}_i} \cdot \frac{\partial \text{net}_i}{\partial w_{ij}}$$

and:

$$\text{net}_i = w_{ij}a_j + ...$$

hence:

$$\frac{\partial \text{net}_i}{\partial w_{ij}} = a_j$$
Calculating partial derivatives
(cont.)

- bias weights

assume we already know $\frac{\partial e}{\partial \text{net}_i}$ for neuron i

observation: e depends indirectly from net_i and net_i depends on w_{i0}

⇒ apply chain rule
Calculating partial derivatives
(cont.)

- bias weights

assume we already know $\frac{\partial e}{\partial n_{et_i}}$ for neuron i

observation: e depends indirectly from n_{et_i} and n_{et_i} depends on w_{i0}

\Rightarrow apply chain rule

$$\frac{\partial e}{\partial w_{i0}} = \frac{\partial e}{\partial n_{et_i}} \cdot \frac{\partial n_{et_i}}{\partial w_{i0}}$$
Calculating partial derivatives (cont.)

bias weights

assume we already know $\frac{\partial e}{\partial \text{net}_i}$ for neuron i

observation: e depends indirectly from net_i and net_i depends on w_{i0}

\Rightarrow apply chain rule

$$\frac{\partial e}{\partial w_{i0}} = \frac{\partial e}{\partial \text{net}_i} \cdot \frac{\partial \text{net}_i}{\partial w_{i0}}$$

and:

$$\text{net}_i = w_{i0} + ...$$

hence:

$$\frac{\partial \text{net}_i}{\partial w_{i0}} = 1$$
Calculating partial derivatives (cont.)

▶ a simple example:

\[
\begin{align*}
\text{neuron 1} & \quad \sum & \quad \text{neuron 2} & \quad \sum & \quad \text{neuron 3} \\
1 & \quad w_{2,1} & \quad w_{3,2} & \quad e
\end{align*}
\]
Calculating partial derivatives (cont.)

▶ a simple example:

\[
\begin{align*}
\frac{\partial e}{\partial a_3} &= a_3 - d_1 \\
\frac{\partial e}{\partial \text{net}_3} &= \frac{\partial e}{\partial a_3} \cdot \frac{\partial a_3}{\partial \text{net}_3} = \frac{\partial e}{\partial a_3} \cdot 1 \\
\frac{\partial e}{\partial a_2} &= \sum_{j \in \text{Succ}(2)} \left(\frac{\partial e}{\partial \text{net}_j} \cdot \frac{\partial \text{net}_j}{\partial a_2} \right) = \frac{\partial e}{\partial \text{net}_3} \cdot w_{3,2} \\
\frac{\partial e}{\partial \text{net}_2} &= \frac{\partial e}{\partial a_2} \cdot \frac{\partial a_2}{\partial \text{net}_2} = \frac{\partial e}{\partial a_2} \cdot a_2(1 - a_2) \\
\frac{\partial e}{\partial w_{3,2}} &= \frac{\partial e}{\partial \text{net}_3} \cdot \frac{\partial \text{net}_3}{\partial w_{3,2}} = \frac{\partial e}{\partial \text{net}_3} \cdot a_2 \\
\frac{\partial e}{\partial w_{2,1}} &= \frac{\partial e}{\partial \text{net}_2} \cdot \frac{\partial \text{net}_2}{\partial w_{2,1}} = \frac{\partial e}{\partial \text{net}_2} \cdot a_1 \\
\frac{\partial e}{\partial w_{3,0}} &= \frac{\partial e}{\partial \text{net}_3} \cdot \frac{\partial \text{net}_3}{\partial w_{3,0}} = \frac{\partial e}{\partial \text{net}_3} \cdot 1 \\
\frac{\partial e}{\partial w_{2,0}} &= \frac{\partial e}{\partial \text{net}_2} \cdot \frac{\partial \text{net}_2}{\partial w_{2,0}} = \frac{\partial e}{\partial \text{net}_2} \cdot 1
\end{align*}
\]
Calculating partial derivatives (cont.)

- calculating the partial derivatives:
 - starting at the output neurons
 - neuron by neuron, go from output to input
 - finally calculate the partial derivatives with respect to the weights

- Backpropagation
Calculating partial derivatives (cont.)

illustration:
Calculating partial derivatives (cont.)

- illustration:

 - apply pattern $\vec{x} = (x_1, x_2)^T$
Calculating partial derivatives (cont.)

• apply pattern \(\vec{x} = (x_1, x_2)^T \)
• propagate forward the activations:
Calculating partial derivatives (cont.)

- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step
Calculating partial derivatives
(cont.)

illustration:

- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step by step
Calculating partial derivatives
(cont.)

Illustration:

- Apply pattern $\vec{x} = (x_1, x_2)^T$
- Propagate forward the activations: step by step
Calculating partial derivatives (cont.)

- apply pattern \(\vec{x} = (x_1, x_2)^T \)
- propagate forward the activations: step by step
- calculate error, \(\frac{\partial e}{\partial a_i} \), and \(\frac{\partial e}{\partial net_i} \) for output neurons
Calculating partial derivatives (cont.)

• apply pattern \(\vec{x} = (x_1, x_2)^T \)
• propagate forward the activations: step by step
• calculate error, \(\frac{\partial e}{\partial a_i} \), and \(\frac{\partial e}{\partial net_i} \) for output neurons
• propagate backward error: step
Calculating partial derivatives (cont.)

illustration:

- apply pattern \(\vec{x} = (x_1, x_2)^T \)
- propagate forward the activations: step by step
- calculate error, \(\frac{\partial e}{\partial a_i} \), and \(\frac{\partial e}{\partial \text{net}_i} \) for output neurons
- propagate backward error: step by step
Calculating partial derivatives (cont.)

illustration:

- apply pattern \(\vec{x} = (x_1, x_2)^T \)
- propagate forward the activations: step by step
- calculate error, \(\frac{\partial e}{\partial a_i} \), and \(\frac{\partial e}{\partial net_i} \) for output neurons
- propagate backward error: step by step
Calculating partial derivatives (cont.)

- apply pattern $\vec{x} = (x_1, x_2)^T$
- propagate forward the activations: step by step
- calculate error, $\frac{\partial e}{\partial a_i}$, and $\frac{\partial e}{\partial \text{net}_i}$ for output neurons
- propagate backward error: step by step
- calculate $\frac{\partial e}{\partial w_{ji}}$
Calculating partial derivatives (cont.)

- apply pattern \(\vec{x} = (x_1, x_2)^T \)
- propagate forward the activations: step by step
- calculate error, \(\frac{\partial e}{\partial a_i} \), and \(\frac{\partial e}{\partial \text{net}_i} \) for output neurons
- propagate backward error: step by step
- calculate \(\frac{\partial e}{\partial w_{ji}} \)
- repeat for all patterns and sum up
Back to MLP Training

- bringing together building blocks of MLP learning:
 - we can calculate $\frac{\partial E}{\partial w_{ij}}$
 - we have discussed methods to minimize a differentiable mathematical function
Back to MLP Training

- bringing together building blocks of MLP learning:
 - we can calculate $\frac{\partial E}{\partial w_{ij}}$
 - we have discussed methods to minimize a differentiable mathematical function

- combining them yields a learning algorithm for MLPs:
 - (standard) backpropagation = gradient descent combined with calculating $\frac{\partial E}{\partial w_{ij}}$ for MLPs
 - backpropagation with momentum = gradient descent with moment combined with calculating $\frac{\partial E}{\partial w_{ij}}$ for MLPs
 - Quickprop
 - Rprop
 - ...

generic MLP learning algorithm:

1: choose an initial weight vector \vec{w}
2: initialize minimization approach
3: while error did not converge do
4: for all $(\vec{x}, \vec{d}) \in \mathcal{D}$ do
5: apply \vec{x} to network and calculate the network output
6: calculate $\frac{\partial e(\vec{x})}{\partial w_{ij}}$ for all weights
7: end for
8: calculate $\frac{\partial E(\mathcal{D})}{\partial w_{ij}}$ for all weights suming over all training patterns
9: perform one update step of the minimization approach
10: end while

learning by epoch: all training patterns are considered for one update step of function minimization
Back to MLP Training (cont.)

- generic MLP learning algorithm:
 1. choose an initial weight vector \vec{w}
 2. initialize minimization approach
 3. while error did not converge do
 4. for all $(\vec{x}, \vec{d}) \in \mathcal{D}$ do
 5. apply \vec{x} to network and calculate the network output
 6. calculate $\frac{\partial e(\vec{x})}{\partial w_{ij}}$ for all weights
 7. perform one update step of the minimization approach
 8. end for
 9. end while

- learning by pattern: only one training patterns is considered for one update step of function minimization (only works with vanilla gradient descent!)
Lernverhalten und Parameterwahl - 3 Bit Parity

3 Bit Parity - Sensitivity

average no. epochs

learning parameter

BP
QP
Rprop
SSAB
Lernverhalten und Parameterwahl - 6 Bit Parity

6 Bit Parity - Sensitivity

average no. epochs

learning parameter

Lernverhalten und Parameterwahl - 10 Encoder

10-5-10 Encoder - Sensitivity

average no. epochs

learning parameter

SSAB
Rprop
QP
BP

Machine Learning: Multi Layer Perceptrons – p.54/61
Lernverhalten und Parameterwahl - 12 Encoder

12-2-12 Encoder - Sensitivity

average no. epochs

learning parameter

QP
SSAB
Rprop

Lernverhalten und Parameterwahl - 'two spirals'

Two Spirals - Sensitivity

![Graph showing sensitivity of two spirals with different learning algorithms and parameters. The graph plots average number of epochs against the learning parameter. The algorithms compared are Backpropagation (BP), Quick Propagation (QP), and Rprop, and the learning parameters range from 1e-5 to 0.1.]
Real-world examples: sales rate prediction

- Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day.
- It is sold in 110,000 sales outlets in Germany, differing in a lot of facets.
Real-world examples: sales rate prediction

- Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day
- It is sold in 110,000 sales outlets in Germany, differing in a lot of facets
- Problem: how many copies are sold in which sales outlet?
Real-world examples: sales rate prediction

- Bild-Zeitung is the most frequently sold newspaper in Germany, approx. 4.2 million copies per day
- it is sold in 110,000 sales outlets in Germany, differing in a lot of facets
- problem: how many copies are sold in which sales outlet?
- neural approach: train a neural network for each sales outlet, neural network predicts next week’s sales rates
- system in use since mid of 1990s
Examples: Alvinn (Dean, Pommerleau, 1992)

- autonomous vehicle driven by a multi-layer perceptron
- input: raw camera image
- output: steering wheel angle
- generation of training data by a human driver
- drives up to 90 km/h
- 15 frames per second
Alvinn MLP structure
Alvinn Training aspects

- Training data must be ‘diverse’
- Training data should be balanced (otherwise e.g. a bias towards steering left might exist)
- If human driver makes errors, the training data contains errors
- If human driver makes no errors, no information about how to do corrections is available
- Generation of artificial training data by shifting and rotating images
MLPs are broadly applicable ML models

- continuous features, continuous outputs
- suited for regression and classification
- learning is based on a general principle: gradient descent on an error function
- powerful learning algorithms exist
- likely to overfit \(\Rightarrow\) regularisation methods