Reinforcement Learning

LU 10 - Representing the Path Costs

Dr. Martin Lauer
AG Maschinelles Lernen und Natürlichsprachliche Systeme
Albert-Ludwigs-Universität Freiburg

martin.lauer@kit.edu
LU 10: Representing the path costs

Goals:
- Representation of path costs in very big / continuous state spaces
- Typical forms of function approximation in reinforcement learning

Outline

- Discretization
- Trees
- Linear models
- Nonlinear features for linear models
- Neural nets
Representation of path costs $J(\cdot)$

Until now: Finite state sets $S = \{0, 1, \ldots, n\}$

- J: One-dimensional array of length n
- Q: $n \times m$-dimensional table with $m = \text{number of actions}$

But: What if n very big (e.g. Backgammon: 10^{15}) or S has a continuous domain (robotics, control engineering)?

- how can we represent the value function
- how can we visit every state?

\Rightarrow Approximation of the value function

- Discretization
- Function approximation by regression
Regular discretization

MountainCar

Input space is two-dimensional:
\(x \): Position
\(\dot{x} \): Velocity
Output: \(J \) (path costs)

State space is regularly discretized with resolution \((m, n)\)
\(\Rightarrow\) Path costs are piecewise constant.
\(\Rightarrow\) Number of parameters: one per cell (exponential increase in dimensions)
Irregular discretization

MountainCar

Input space is two-dimensional:
\(x \) : Position
\(\dot{x} \) : Velocity
Output: \(J \) (path costs)

Individual resolution of separate sections of the state space
\(\Rightarrow \) Path costs are piecewise constant
\(\Rightarrow \) Number of parameters: one per cell
Discussion (discretization)

Advantages

▶ Efficient date structure (no expensive calculations needed)
▶ Transparent (inspection of the table possible)
▶ Theoretically analysis possible

Disadvantages

▶ High memory demand (curse of dimensionality)
▶ Low generalisation performance
▶ For practical problems hardly deployable
Adaptive discretization

MountainCar

Input space is two-dimensional:

\(x \): Position
\(\dot{x} \): Velocity

Output: \(J \) (path costs)

Table

<table>
<thead>
<tr>
<th></th>
<th>J(1)</th>
<th>J(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start with very rough discretization...

Adaptive discretization

MountainCar

Input space is two-dimensional:
\(x \): Position
\(\dot{x} \): Velocity
Output: \(J \) (path costs)

Table

\[
\begin{array}{ccc}
 & J(2) & J(3) \\
J(1) & J(4) & J(5) \\
J(0) & J(6) & J(7) \\
\end{array}
\]

... refinement only in important sections of the state space
Adaptive discretization

MountainCar

Input space is two-dimensional:
- x: Position
- \dot{x}: Velocity

Output: J (path costs)

Problem: Which parts of the state space are important, under which conditions should we refine the grid?

Table

<table>
<thead>
<tr>
<th></th>
<th>J(0)</th>
<th>J(1)</th>
<th>J(2)</th>
<th>J(3)</th>
<th>J(4)</th>
<th>J(5)</th>
<th>J(6)</th>
<th>J(7)</th>
<th>J(8)</th>
<th>J(9)</th>
<th>J(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Prof. Dr. Martin Riedmiller, Dr. Martin Lauer
Machine Learning Lab, University of Freiburg
Reinforcement Learning
Regression tree

KD-Tree

Learning regression trees

Leaves are linked to target values ⇒ discretization with tree structure

► Start with root node
► Successive splitting of the leaves along dimensions of the input space
► When do we split a leaf? (e.g. variance)
Discussion (regression trees)

Advantages

▶ Adapts to complexity of the problem
▶ Informative (tree structure interpretable)
▶ Works well with ensemble techniques
▶ Efficient for hard problems as well

Disadvantages

▶ Good splitting criteria hard to find
▶ Depth of trees is unbounded
▶ Just a form of discretization ...
▶ Limited generalization in a very local environment

Learning

▶ Requires parameter optimization (one parameter per cell)
▶ Requires update of partitioning structure
Literature about discretization and regression trees

Articles worth reading

Regression

Approximation of data points through a functional relationship given set of patterns

\[
D = \{(x^1, t^1), (x^2, t^2), \ldots, (x^P, t^P)\}
\]

with

\[
x \in \mathbb{R}^n, t \in \mathbb{R}^m
\]

Assumption: \(t^i = f(x^i) + \eta^i \), with \(\eta^i \) random variable with zero mean, 'noise'

goal: find a model, i.e. a function \(y(x; w) \) that approximates \(f(. \) as accurately as possible. Here, \(w \) are the parameters of the model.
Linear regression

Example:
Input space one-dimensional, desired model a linear function

\[x = x_1; \quad w = (w_0, w_1) \]

\[y(x, w) = w_0 + w_1 x_1 \]

Extension to \(n \)-dimensional input:

\[y(x, w) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n \]

\[= w_0 + \sum_{i=1}^{n} w_i x_i \]

\[= w^T x \]

with \(x = (1, x_1, x_2, \ldots, x_n)^T \), \(w = (w_0, w_1, w_2, \ldots, w_n)^T \)

Learning: Find parameters \(w \) such that model fits best to data
Regession with sum of least squares

How can we determine \mathbf{w} from data?

Idea: minimize the sum of squared errors for all data points.

Error per pattern (residual): $e^p(\mathbf{w}) = (y(x^p, \mathbf{w}) - t^p)^2$

Total error for all patterns:

$$E(\mathbf{w}) := \frac{1}{2} \sum_{p=1}^{P} e^p(\mathbf{w}) = \frac{1}{2} \sum_{p=1}^{P} (y(x^p, \mathbf{w}) - t^p)^2$$

task: find \mathbf{w}^* with

$$\mathbf{w}^* = \arg \min_{\mathbf{w}} E(\mathbf{w}) = \arg \min_{\mathbf{w}} \frac{1}{2} \sum_{p=1}^{P} (y(x^p, \mathbf{w}) - t^p)^2$$
Linear regression with sum of least squares

In the case of linear functions $y(x, w) = w^T x$ we can solve the task analytically. Approach: Zero the partial derivations of the error term.

$$\frac{\partial e_i(w)}{\partial w_j} = 2 \cdot x_j \cdot (w^T x^i - t^i)$$

$$\frac{\partial E(w)}{\partial w_j} = \sum_{i=1}^{P} x_j \cdot (w^T x^i - t^i)$$

$$\quad = w^T \sum_{i=1}^{P} x_j x^i - \sum_{i=1}^{P} x_j t^i$$

Hence,

$$\text{grad } E = w^T \sum_{i=1}^{P} (x^i)^T x^i - \sum_{i=1}^{P} (x^i)^T t^i$$

Zeroing gradient yields system of linear equations

$$\left(\sum_{i=1}^{P} (x^i)^T x^i \right) \cdot w = \sum_{i=1}^{P} t^i x^i \quad \Rightarrow \quad w^* = \left(\sum_{i=1}^{P} (x^i)^T x^i \right)^{-1} \cdot \sum_{i=1}^{P} t^i x^i$$
Regression with sum of least squares

Alternative way to determine w^*: stochastic gradient descent

If w_t is our present guess of w^* and we observe data point (x^i, t^i), we update:

$$w_{t+1} = w_t - \epsilon \cdot \text{grad} e^i(w)$$

with $\epsilon > 0$ a learning rate

If the learning rate is small and decreasing, the algorithm converges to w^*

Stochastic gradient descent can also be applied to nonlinear regression tasks.
Basis functions (features)

Advantages of linear models
 ▶ closed-form solution
 ▶ allow theoretical analysis of convergence behavior

Disadvantages of linear models
 ▶ poor expressive power

Idea:
 ▶ combine linear models with nonlinear features (basis functions)
 ▶ transform data into feature space
 ▶ learn linear model in feature space
Basis functions (features)

Inputs (states, state-action-pairs): \(x \in \mathbb{R}^n, \ t \in \mathbb{R} \)

Non-linear basis functions: \(\phi_i : \mathbb{R}^n \rightarrow \mathbb{R} \)

Feature vector: \(\Phi(x) = (\phi_1(x), \phi_2(x), ..., \phi_m(x)) \)

Linear model in feature space: \(y(\Phi(x, w) = \sum_{i=1}^{m} \phi_i(x) \cdot w_i = w^T \cdot \Phi(x) \)

Nonlinear model in input space

Same idea as, e.g., in support vector machines and Gaussian processes
Rectangular basis functions

- **1-d case:**
 \[\phi_i(x) = \begin{cases}
 1 & \text{if } a_i \leq x < b_i \\
 0 & \text{otherwise}
 \end{cases} \]

- **n-d case:**
 \[\phi_i(\vec{x}) = \begin{cases}
 1 & \text{if } \vec{x} \in A_i \\
 0 & \text{otherwise}
 \end{cases} \]

with \(A_i \subseteq \mathbb{R}^n \)

\(\Rightarrow \) step functions
Triangular basis functions

- 1-d case:
 choose k supporting points z_1, \ldots, z_k in increasing order and two boundaries $z_0 < z_1, z_{k+1} > z_k$
 \[\phi_i(x) = \begin{cases} \frac{z_i - x}{z_i - z_{i-1}} & \text{if } z_{i-1} \leq x < z_i \\ \frac{x - z_i}{z_{i+1} - z_i} & \text{if } z_i \leq x < z_{i+1} \\ 0 & \text{otherwise} \end{cases} \]

- n-d case:
 requires subpartitioning of input space into simplices
 - 1-d simplex = interval
 - 2-d simplex = triangle
 - 3-d simplex = tetrahedron
 - n-d simplex = area bounded by $n + 1$ hyperplanes
 one basis function for each vertex of the simplices. Feature functions depend on *barycentric coordinates*

\Rightarrow piecewise linear functions
Monomial features

- 1-d case:
 1, x, x^2, x^3, ...

- 2-d case:
 1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3, ...

⇒ polynomial functions
Radial basis functions (RBF networks)

Gaussian feature functions

\[\phi_i(x) = \exp\left(\frac{||x-\mu_i||^2}{2\sigma_i^2} \right) \]

⇒ Basis functions represent clusters in the input space

⇒ Idea: Overlap of features achieves good generalisation. Smooth variation of simplex tessalation
CMAC (cerebellar model articulation controller)

Use rectangular feature functions but choose overlapping rectangles.

⇒ better generalization
Neural nets: The Multi-layer perceptron (MLP)

Simple perceptron:

Idea: Cascade multiple neurons
Supervised learning in MLPs

Task:
given: Training set D consisting of pairs of patterns (x^i, t^i)
task: Find suitable weights w_{ij}

Solution: Minimization of an error function E through gradient descent:
Total error function

$$E(w) := \frac{1}{2} \sum_{p=1}^{P} (y(x^p, w) - t^p)^2$$

Weight update

$$w_{ij}^{\text{new}} := w_{ij}^{\text{old}} - \epsilon \frac{\partial E(w)}{\partial w_{ij}}$$

Calculation of $\frac{\partial E}{\partial w_{ij}}$: Backpropagation
Setup of single neuron

Terms

▶ Neuron, unit \(i \)

▶ \(k \) incoming weights of neuron \(j \) to neuron \(i \):
 \[w_{i1}, \ldots, w_{ij}, \ldots, w_{ik} \]

▶ 'Net input', 'internal activation':
 \[net_i := \sum_{j=0}^{n} w_{ij} s_j \]

▶ Activation or output value of neuron \(i \) \(s_i := f_{\text{sig}}(net_i) \) with \(f_{\text{sig}} \) : activation function

Model:
The activation function

Motivation: The threshold function f_{step} is approximated by a differentiable, monotonically increasing function. Example: sigmoid functions (hyperbolic tangent)

$$f_{sig}(z) = \frac{1}{1 + e^{-az}}$$

Alternatives: hinge function $z \mapsto \max\{z, 0\}$
Reinforcement learning with function approximation

This chapter: several generic function approximation methods

Open questions:

- how can these approximators be combined with RL-algorithms (Value iteration, Q-learning, TD(0)), policy iteration) ?
- which phenomena occur?
- differences between supervised learning and reinforcement learning