Acknowledgement

Slides courtesy of Martin Riedmiller
Neural Networks

- The human brain has approximately 10^{11} neurons
- Switching time 0.001s (computer $\approx 10^{-10}$ s)
- Connections per neuron: $10^4 - 10^5$
- 0.1s for face recognition
- i.e. at most 100 computation steps
- parallelism
- additionally: robustness, distributedness
- ML aspects: use biology as an inspiration for artificial neural models and algorithms; do not try to explain biology: technically imitate and exploit capabilities
Biological Neurons

- Dentrites input information to the cell
- Neuron fires (has action potential) if a certain threshold for the voltage is exceeded
- Output of information by axon
- The axon is connected to dentrites of other cells via synapses
- Learning corresponds to adaptation of the efficiency of synapse, of the synaptical weight

![Neuron Diagram](image_url)
Historical ups and downs

1942 artificial neurons (McCulloch/Pitts)
1949 Hebbian learning (Hebb)
1958 perceptron (Rosenblatt)
1960 Adaline (Widrow/Hoff)
1960 Lernmatrix (Steinbuch)
1969 "perceptrons" (Rosenblatt)
1970 evolutionary algorithms (Minsky/Papert)
1972 self-organizing maps (Kohonen)
1982 Hopfield networks (Hopfield)
1986 Backpropagation (orig. 1974)
1992 Bayes inference (Rechenberg)
1992 computational learning (Kohonen)
1992 support vector machines (Schölkopf)
1992 Boosting (Freund)
Perceptrons: adaptive neurons

- perceptrons (Rosenblatt 1958, Minsky/Papert 1969) are generalized variants of a former, more simple model (McCulloch/Pitts neurons, 1942):
 - inputs are weighted
 - weights are real numbers (positive and negative)
 - no special inhibitory inputs
- a perceptron with n inputs is described by a weight vector $\vec{w} = (w_1, \ldots, w_n)^T \in \mathbb{R}^n$ and a threshold $\theta \in \mathbb{R}$. It calculates the following function:

$$
(x_1, \ldots, x_n)^T \mapsto y = \begin{cases}
1 & \text{if } x_1 w_1 + x_2 w_2 + \cdots + x_n w_n \geq \theta \\
0 & \text{if } x_1 w_1 + x_2 w_2 + \cdots + x_n w_n < \theta
\end{cases}
$$
Perceptrons: adaptive neurons (cont.)

for convenience: replacing the threshold by an additional weight (bias weight) $w_0 = -\theta$. A perceptron with weight vector \vec{w} and bias weight w_0 performs the following calculation:

$$(x_1, \ldots, x_n)^T \mapsto y = f_{step}(w_0 + \sum_{i=1}^{n}(w_i x_i)) = f_{step}(w_0 + \langle \vec{w}, \vec{x} \rangle)$$

with

$$f_{step}(z) = \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{if } z < 0 \end{cases}$$
geometric interpretation of a perceptron:

1. input patterns \((x_1, \ldots, x_n)\) are points in \(n\)-dimensional space
2. points with \(w_0 + \langle \vec{w}, \vec{x} \rangle = 0\) are on a hyperplane defined by \(w_0\) and \(\vec{w}\)
3. points with \(w_0 + \langle \vec{w}, \vec{x} \rangle > 0\) are above the hyperplane
4. points with \(w_0 + \langle \vec{w}, \vec{x} \rangle < 0\) are below the hyperplane
5. perceptrons partition the input space into two halfspaces along a hyperplane
Perceptron learning problem

- perceptrons can automatically adapt to example data ⇒ Supervised Learning: Classification

- perceptron learning problem:

 given:
 - a set of input patterns \(\mathcal{P} \subseteq \mathbb{R}^n \), called the set of positive examples
 - another set of input patterns \(\mathcal{N} \subseteq \mathbb{R}^n \), called the set of negative examples

 task:
 - generate a perceptron that yields 1 for all patterns from \(\mathcal{P} \) and 0 for all patterns from \(\mathcal{N} \)

- obviously, there are cases in which the learning task is unsolvable, e.g. \(\mathcal{P} \cap \mathcal{N} \neq \emptyset \)
Lemma (strict separability):
Whenever exist a perceptron that classifies all training patterns accurately, there is also a perceptron that classifies all training patterns accurately and no training pattern is located on the decision boundary, i.e. $\vec{w}_0 + \langle \vec{w}, \vec{x} \rangle \neq 0$ for all training patterns.

Proof:
Let (\vec{w}, w_0) be a perceptron that classifies all patterns accurately. Hence,

$$
\langle \vec{w}, \vec{x} \rangle + w_0 \begin{cases}
\geq 0 & \text{for all } \vec{x} \in \mathcal{P} \\
< 0 & \text{for all } \vec{x} \in \mathcal{N}
\end{cases}
$$

Define $\varepsilon = \min\{-\langle \vec{w}, \vec{x} \rangle + w_0 | \vec{x} \in \mathcal{N}\}$. Then:

$$
\langle \vec{w}, \vec{x} \rangle + w_0 + \frac{\varepsilon}{2} \begin{cases}
\geq \frac{\varepsilon}{2} > 0 & \text{for all } \vec{x} \in \mathcal{P} \\
\leq -\frac{\varepsilon}{2} < 0 & \text{for all } \vec{x} \in \mathcal{N}
\end{cases}
$$

Thus, the perceptron $(\vec{w}, w_0 + \frac{\varepsilon}{2})$ proves the lemma.
Perceptron learning algorithm: idea

- Assume, the perceptron makes an error on a pattern $\mathbf{x} \in \mathcal{P}$:
 $\langle \mathbf{w}, \mathbf{x} \rangle + w_0 < 0$

- How can we change \mathbf{w} and w_0 to avoid this error?

- We need to increase $\langle \mathbf{w}, \mathbf{x} \rangle + w_0$
 - Increase w_0
 - If $x_i > 0$, increase w_i
 - If $x_i < 0$ ('negative influence'), decrease w_i

- Perceptron learning algorithm: add \mathbf{x} to \mathbf{w}, add 1 to w_0 in this case. Errors on negative patterns: analogously.

Geometric interpretation: increasing w_0: shift, modifying \mathbf{w}: rotation
Perceptron learning algorithm

Require: positive training patterns \mathcal{P} and a negative training examples \mathcal{N}

Ensure: if exists, a perceptron is learned that classifies all patterns accurately

1. initialize weight vector \vec{w} and bias weight w_0 arbitrarily
2. while exist misclassified pattern $\vec{x} \in \mathcal{P} \cup \mathcal{N}$ do
3. if $\vec{x} \in \mathcal{P}$ then
4. $\vec{w} \leftarrow \vec{w} + \vec{x}$
5. $w_0 \leftarrow w_0 + 1$
6. else
7. $\vec{w} \leftarrow \vec{w} - \vec{x}$
8. $w_0 \leftarrow w_0 - 1$
9. end if
10. end while
11. return \vec{w} and w_0
Perceptron learning algorithm: example

\[\mathcal{N} = \{(1, 0)^T, (1, 1)^T\}, \mathcal{P} = \{(0, 1)^T\} \]

→ exercise
Lemma (correctness of perceptron learning):
Whenever the perceptron learning algorithm terminates, the perceptron given by \((\vec{w}, w_0)\) classifies all patterns accurately.

Proof: follows immediately from algorithm.

Theorem (termination of perceptron learning):
Whenever exists a perceptron that classifies all training patterns correctly, the perceptron learning algorithm terminates.

Proof:
for simplification we will add the bias weight to the weight vector, i.e. \(\vec{w} = (w_0, w_1, \ldots, w_n)^T\), and 1 to all patterns, i.e. \(\vec{x} = (1, x_1, \ldots, x_n)^T\). We will denote with \(\vec{w}^{(t)}\) the weight vector in the \(t\)-th iteration of perceptron learning and with \(\vec{x}^{(t)}\) the pattern used in the \(t\)-th iteration.
Perceptron learning algorithm: Preliminaries

Inner product (dot product of two vectors \vec{w}, \vec{x})

$$\langle \vec{w}, \vec{x} \rangle = \vec{w}^T \vec{x} = \sum_{i=1}^{n} w_i x_i$$

$$\langle \vec{w}, \vec{x} \rangle + \langle \vec{w}, \vec{y} \rangle = \langle \vec{w}, \vec{x} + \vec{y} \rangle$$

Euclidean norm:

$$||\vec{w}||^2 = \langle \vec{w}, \vec{w} \rangle = \sum_{i=1}^{n} w_i w_i$$

Angle between two vectors:

$$\cos \angle(\vec{x}, \vec{y}) = \frac{\langle \vec{x}, \vec{y} \rangle}{||\vec{x}|| \cdot ||\vec{y}||}$$
Let be \vec{w}^* a weight vector that strictly classifies all training patterns.

$$\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle = \langle \vec{w}^*, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle = \langle \vec{w}^*, \vec{w}^{(t)} \rangle \pm \langle \vec{w}^*, \vec{x}^{(t)} \rangle \geq \langle \vec{w}^*, \vec{w}^{(t)} \rangle + \delta$$

with $\delta := \min \left(\{ \langle \vec{w}^*, \vec{x} \rangle | \vec{x} \in \mathcal{P} \} \cup \{- \langle \vec{w}^*, \vec{x} \rangle | \vec{x} \in \mathcal{N} \} \right)$

$\delta > 0$ since \vec{w}^* strictly classifies all patterns

Hence,

$$\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle \geq \langle \vec{w}^*, \vec{w}^{(0)} \rangle + (t + 1)\delta$$
Perceptron learning algorithm: convergence proof (cont.)

\[\|\vec{w}^{(t+1)}\|^2 = \langle \vec{w}^{(t+1)}, \vec{w}^{(t+1)} \rangle \]
\[= \langle \vec{w}^{(t)} \pm \vec{x}^{(t)}, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle \]
\[= \|\vec{w}^{(t)}\|^2 \pm 2 \langle \vec{x}^{(t)}, \vec{w}^{(t)} \rangle + \|\vec{x}^{(t)}\|^2 \]

consider \[\langle \vec{x}^{(t)}, \vec{w}^{(t)} \rangle\]:
if we go from \(t\) to \(t+1\), then \(x(t)\) was not correctly classified. Hence, \(x(t)\) not correctly classified, then if \(\vec{x}^{(t)} \in \mathcal{P} : \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle < 0\), if
\(\vec{x}^{(t)} \in \mathcal{N} : \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle \geq 0\). Therefore: \(\pm \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle \leq 0\). Dropping it makes expression larger.
Perceptron learning algorithm: convergence proof (cont.)

\[
||\vec{w}^{(t+1)}||^2 = \langle \vec{w}^{(t+1)}, \vec{w}^{(t+1)} \rangle \\
= \langle \vec{w}^{(t)} \pm \vec{x}^{(t)}, \vec{w}^{(t)} \pm \vec{x}^{(t)} \rangle \\
= ||\vec{w}^{(t)}||^2 \pm 2 \langle \vec{w}^{(t)}, \vec{x}^{(t)} \rangle + ||\vec{x}^{(t)}||^2 \\
\leq ||\vec{w}^{(t)}||^2 + \varepsilon
\]

with \(\varepsilon := \max\{||\vec{x}||^2|\vec{x} \in \mathcal{P} \cup \mathcal{N}\} \)

Hence,

\[
||\vec{w}^{(t+1)}||^2 \leq ||\vec{w}^{(0)}||^2 + (t + 1)\varepsilon
\]
Perceptron learning algorithm: convergence proof (cont.)

\[
\cos \angle (\vec{w}^*, \vec{w}^{(t+1)}) = \frac{\langle \vec{w}^*, \vec{w}^{(t+1)} \rangle}{\|\vec{w}^*\| \cdot \|\vec{w}^{(t+1)}\|} \geq \frac{\langle \vec{w}^*, \vec{w}^{(0)} \rangle + (t + 1)\delta}{\|\vec{w}^*\| \cdot \sqrt{\|\vec{w}^{(0)}\|^2 + (t + 1)\varepsilon}} \quad \rightarrow \quad \infty \quad \text{as} \quad t \rightarrow \infty
\]

Since \(\cos \angle (\vec{w}^*, \vec{w}^{(t+1)}) \leq 1 \), \(t \) must be bounded above. \(\square \)
Lemma (worst case running time):
If the given problem is solvable, perceptron learning terminates after at most $(n + 1)^2 2^{(n+1)\log(n+1)}$ iterations.

Exponential running time is a problem of the perceptron learning algorithm. There are algorithms that solve the problem with complexity $O(n^2)$.
Lemma:
If a weight vector occurs twice during perceptron learning, the given task is not solvable. (Remark: here, we mean with weight vector the extended variant containing also w_0)

Proof: next slide

Lemma:
Starting the perceptron learning algorithm with weight vector $\vec{0}$ on an unsolvable problem, at least one weight vector will occur twice.

Proof: omitted, see Minsky/Papert, *Perceptrons*
Perceptron learning algorithm: cycle theorem

Proof:
Assume \(\vec{w}^{(t+k)} = \vec{w}^{(t)} \). Meanwhile, the patterns \(\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+k)} \) have been applied. Without loss of generality, assume \(\vec{x}^{(t+1)}, \ldots, \vec{x}^{(t+q)} \in \mathcal{P} \) and \(\vec{x}^{(t+q+1)}, \ldots, \vec{x}^{(t+k)} \in \mathcal{N} \). Hence:

\[
\vec{w}^{(t)} = \vec{w}^{(t+k)} = \vec{w}^{(t)} + \vec{x}^{(t+1)} + \cdots + \vec{x}^{(t+q)} - (\vec{x}^{(t+q+1)} + \cdots + \vec{x}^{(t+k)})
\]

\[
\Rightarrow \quad \vec{x}^{(t+1)} + \cdots + \vec{x}^{(t+q)} = \vec{x}^{(t+q+1)} + \cdots + \vec{x}^{(t+k)}
\]

Assume, a solution \(\vec{w}^* \) exists. Then:

\[
\langle \vec{w}^*, \vec{x}^{(t+i)} \rangle \begin{cases} \geq 0 & \text{if } i \in \{1, \ldots, q\} \\ < 0 & \text{if } i \in \{q+1, \ldots, k\} \end{cases}
\]

Hence,

\[
\langle \vec{w}^*, \vec{x}^{(t+1)} + \cdots + \vec{x}^{(t+q)} \rangle \geq 0
\]

\[
\langle \vec{w}^*, \vec{x}^{(t+q+1)} + \cdots + \vec{x}^{(t+k)} \rangle < 0 \quad \text{contradiction!}
\]
Perceptron learning algorithm: Pocket algorithm

- how can we determine a “good” perceptron if the given task cannot be solved perfectly?
- “good” in the sense of: perceptron makes minimal number of errors
- Perceptron learning: the number of errors does not decrease monotonically during learning
- Idea: memorise the best weight vector that has occured so far!
 ⇒ Pocket algorithm
Perceptron networks

- perceptrons can only learn linearly separable problems.
- famous counterexample: \(XOR(x_1, x_2): \mathcal{P} = \{(0, 1)^T, (1, 0)^T\},\) \(\mathcal{N} = \{(0, 0)^T, (1, 1)^T\}\)
- networks with several perceptrons are computationally more powerful (cf. McCullough/Pitts neurons)
- let’s try to find a network with two perceptrons that can solve the XOR problem:
 - first step: find a perceptron that classifies three patterns accurately, e.g. \(w_0 = -0.5, w_1 = w_2 = 1\) classifies \((0, 0)^T, (0, 1)^T, (1, 0)^T\) but fails on \((1, 1)^T\)
 - second step: find a perceptron that uses the output of the first perceptron as additional input. Hence, training patterns are: \(\mathcal{N} = \{(0, 0, 0), (1, 1, 1)\}\), \(\mathcal{P} = \{(0, 1, 1), (1, 0, 1)\}\). perceptron learning yields: \(v_0 = -1, v_1 = v_2 = -1, v_3 = 2\)
Perceptron networks (cont.)

XOR-network:

\[y = \sum x_1 \cdot w_1 - \sum x_2 \cdot w_2 + b = 0.5 \]

\[y = \begin{cases} 1 & \text{if } y > 0 \\ -1 & \text{otherwise} \end{cases} \]
Historical remarks

- **Rosenblatt perceptron (1958):**
 - retinal input (array of pixels)
 - preprocessing level, calculation of features
 - adaptive linear classifier
 - inspired by human vision
 - if features are complex enough, everything can be classified
 - if features are restricted (only parts of the retinal pixels available to features), some interesting tasks cannot be learned (Minsky/Papert, 1969)

- **Important idea:** create features instead of learning from raw data
Summary

- Perceptrons are simple neurons with limited representation capabilities: linear separable functions only
- simple but provably working learning algorithm
- networks of perceptrons can overcome limitations
- working in feature space may help to overcome limited representation capability