Machine Learning

Decision Trees

Dr. Joschka Boedecker
AG Maschinelles Lernen und Natürlichsprachliche Systeme
Institut für Informatik
Technische Fakultät
Albert-Ludwigs-Universität Freiburg

jboedeck@informatik.uni-freiburg.de

Acknowledgment Slides courtesy of Martin Riedmiller, previously adapted from slides provided by Tom Mitchell, Carnegie-Mellon-University and Peter Geibel, University of Osnabrück
Outline

• Decision tree representation
• ID3 learning algorithm
• Which attribute is best?
• C4.5: real valued attributes
• Which hypothesis is best?
• Noise
• From Trees to Rules
• Miscellaneous
Decision Tree Representation

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Outlook, Temperature, etc.: attributes
PlayTennis: class
Shall I play tennis today?
Decision Tree for PlayTennis

- **Outlook**
 - Sunny
 - Overcast
 - Rain

- **Humidity**
 - High
 - No
 - Yes
 - Normal
 - Yes

- **Wind**
 - Strong
 - No
 - Weak
 - Yes
Alternative Decision Tree for PlayTennis

What is different?
Sequence of attributes influences size and shape of tree
Decision Trees

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- \land, \lor, XOR

Example XOR:

```
A
 /   \
|     |
yes  no

B
 /   \
|     |
yes  no

B
 /   \
|     |
yes  no
```

```
NO  YES  YES  NO
```
When to Consider Decision Trees

• Instances describable by attribute–value pairs
• Target function is discrete valued
• Disjunctive hypothesis may be required
• Possibly noisy training data
• Interpretable result of learning is required

Examples:
• Medical diagnosis
• Text classification
• Credit risk analysis
Top-Down Induction of Decision Trees, ID3 (R. Quinlan, 1986)

ID3 operates on whole training set \(S \)

Algorithm:

1. create a new node

2. If current training set is sufficiently pure:
 - Label node with respective class
 - We’re done

3. Else:
 - \(x \leftarrow \) the “best” decision attribute for current training set
 - Assign \(x \) as decision attribute for node
 - For each value of \(x \), create new descendant of node
 - Sort training examples to leaf nodes
 - Iterate over new leaf nodes and apply algorithm recursively
Example ID3

- Look at current training set S

 $S = \{1, \ldots, 14\}$

- Determine best attribute

 Outlook

- Split training set according to different values

 Outlook

 - Sunny

 $\{1,2,8,9,11\}$

 - Overcast

 $\{3,7,12,13\}$

 - Rain

 $\{4,5,6,10,14\}$
Example ID3

- Tree

```
  Outlook
     /    /
  Sunny Overcast Rain
   /     /
{1,2,8,9,11} {3,7,12,13} {4,5,6,10,14}
```

- Apply algorithm recursively

```
  Outlook
     /    /
  Sunny Overcast Rain
   /     /
... Yes ...
```

Recursion Pure -> Leaf Recursion
Example – Resulting Tree

```
Outlook
  Sunny
    Humidity
      High
        No
      Normal
        Yes
  Overcast
    Yes
  Rain
    Wind
      Strong
        No
      Weak
        Yes
```
ID3 – Intermediate Summary

- Recursive splitting of the training set
- Stop, if current training set is sufficiently pure
- ... What means pure? Can we allow for errors?
- What is the best attribute?
- How can we tell that the tree is really good?
- How shall we deal with continuous values?
Which attribute is best?

- Assume a training set \(\{+,-,+,-,+,+,+,-,-\} \) (only classes)
- Assume binary attributes \(x_1, x_2, \) and \(x_3 \)
- Produced splits:

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>{+, +, -, -, +}</td>
<td>{-, +, +, -, -}</td>
</tr>
<tr>
<td>(x_2)</td>
<td>{+}</td>
<td>{+, -, -, +, -, +, +, -, -}</td>
</tr>
<tr>
<td>(x_3)</td>
<td>{+, +, +, +, -}</td>
<td>{-, -, -, -, +}</td>
</tr>
</tbody>
</table>

- No attribute is perfect
- Which one to choose?
Entropy

- p_\oplus is the proportion of positive examples
- p_\ominus is the proportion of negative examples
- Entropy measures the impurity of S
- $\text{Entropy}(S) \equiv -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus$
- Information can be seen as the negative of entropy
Examples

\[S = \{ + + + + + + + + + + , - - - - - - \} = \{ 9 + , 5 - \}. \quad \text{Entropy}(S) = ? \]

\[\text{Entropy}(S) = \frac{-9}{14} \log \left(\frac{9}{14} \right) - \frac{5}{14} \log \left(\frac{5}{14} \right) = 0.94 \]

\[S = \{ + + + + + + + + + + , - - - - - - - - \} = \{ 8 + , 6 - \}. \quad \text{Entropy}(S) = ? \]

(größer oder kleiner oder gleich)?

\[\text{Entropy}(S) = \frac{-8}{14} \log \left(\frac{8}{14} \right) - \frac{6}{14} \log \left(\frac{6}{14} \right) = 0.98 \]

\[S = \{ + + + + + + + + + + + + + + + + + + \} = \{ 14 + \}. \quad \text{Entropy}(S) = ? \]

\[\text{Entropy}(S) = 0 \]

\[S = \{ + + + + + + + + + + - - - - - - - - \} = \{ 7 + , 7 - \}. \]

\[\text{Entropy}(S) = ? \]

\[\text{Entropy}(S) = 1 \]
Information Gain

- Measuring attribute x creates subsets S_1 and S_2 with different entropies.

- Taking the mean of $\text{Entropy}(S_1)$ and $\text{Entropy}(S_2)$ gives conditional entropy $\text{Entropy}(S|x)$, i.e. in general:
 \[
 \text{Entropy}(S|x) = \sum_{v \in \text{Values}(x)} \frac{|S_v|}{|S|} \text{Entropy}(S_v)
 \]

- Choose that attribute that maximizes difference:
 \[
 \text{Gain}(S, x) := \text{Entropy}(S) - \text{Entropy}(S|x)
 \]

- $\text{Gain}(S, x) =$ expected reduction in entropy due to partitioning on x
 \[
 \text{Gain}(S, x) = \text{Entropy}(S) - \sum_{v \in \text{Values}(x)} \frac{|S_v|}{|S|} \text{Entropy}(S_v)
 \]
Example - Training Set

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play Tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Example

\[Gain(S, x) = Entropy(S) - \sum_{v \in Values(x)} \frac{|S_v|}{|S|} Entropy(S_v) \]

For top node: \(S = \{ 9+, 5- \} \), \(Entropy(S) = 0.94 \) (see previous slide)

Attribute Wind:

\(S_{\text{weak}} = \{ 6+, 2- \}, \ |S_{\text{weak}}| = 8 \)
\(S_{\text{strong}} = \{ 3+, 3- \}, \ |S_{\text{strong}}| = 6 \)

\(Entropy(S_{\text{weak}}) = \)
\(-6/8 \log(6/8) - 2/8 \log(2/8) = 0.81 \)

\(Entropy(S_{\text{strong}}) = \)
\(= 1 \)

Expected Entropy when assuming attribute 'Wind':

\(Entropy(S|\text{Wind}) = \)
\(8/14 \ Entropy(S_{\text{weak}}) + 6/14 \ Entropy(S_{\text{strong}}) = 0.89 \)

\(Gain(S, \text{Wind}) = \)
\(0.94 - 0.89 \approx 0.05 \)
Selecting the Next Attribute

- For whole training set:
 \[\text{Gain}(S, \text{Outlook}) = 0.246 \]
 \[\text{Gain}(S, \text{Humidity}) = 0.151 \]
 \[\text{Gain}(S, \text{Wind}) = 0.048 \]
 \[\text{Gain}(S, \text{Temperature}) = 0.029 \]
- \(\rightarrow \text{Outlook} \) should be used to split training set!
- Further down in the tree, \(\text{Entropy}(S) \) is computed locally
- Usually, the tree does not have to be minimized
- Reason of good performance of ID3!
Real-Valued Attributes

- $Temperature = 82.5$
- Create discrete attributes to test continuous:
 - $(Temperature > 54) = true$ or $= false$
 - Sort attribute values that occur in training set:

Temperature	PlayTennis
40	No
48	No
60	Yes
72	Yes
80	Yes
90	No
 - Determine points where the class changes
 - Candidates are $(48 + 60)/2$ and $(80 + 90)/2$
- Select best one using info gain
- Implemented in the system C4.5 (successor of ID3)
Hypothesis Space Search by ID3
Hypothesis Space Search by ID3

- Hypothesis H space is complete:
 - This means that every function on the feature space can be represented
 - Target function surely in there for a given training set
- The training set is only a subset of the instance space
- Generally, several hypotheses have minimal error on training set
- Best is one that minimizes error on instance space
 - ... cannot be determined because only finite training set is available
 - Feature selection is shortsighted
 - ... and there is no back-tracking → local minima...
- ID3 outputs a single hypothesis
Inductive Bias in ID3

- **Inductive Bias** corresponds to explicit or implicit prior assumptions on the hypothesis
 - E.g. hypothesis space H (language for classifiers)
 - Search bias: how to explore H
 - Bias here is a preference for some hypotheses, rather than a restriction of hypothesis space H

- Bias of ID3:
 - Preference for short trees,
 - and for those with high information gain attributes near the root

- **Occam's razor**: prefer the shortest hypothesis that fits the data

- How to justify Occam’s razor?
Occam’s Razor

• Why prefer short hypotheses?
• Argument in favor:
 – Fewer short hyps. than long hyps.
 → A short hyp that fits data unlikely to be coincidence
 → A long hyp that fits data might be coincidence
• Bayesian Approach: A probability distribution on the hypothesis space is assumed.
 – The (unknown) hypothesis h_{gen} was picked randomly
 – The finite training set was generated using h_{gen}
 – We want to find the most probable hypothesis $h' \approx h_{\text{gen}}$ given the current observations (training set).
Consider adding noisy (=wrongly labeled) training example #15:

Sunny, Mild, Normal, Weak, PlayTennis = No, i.e. outlook = sunny, humidity = normal
What effect on earlier tree?
Overfitting in Decision Trees

- Algorithm will introduce new test
- Unnecessary, because new example was erroneous due to the presence of Noise
- → Overfitting corresponds to learning coincidental regularities
- Unfortunately, we generally don’t know which examples are noisy
- ... and also not the amount, e.g. percentage, of noisy examples
Overfitting

Consider error of hypothesis h over

- training data $(x_1, k_1), \ldots, (x_d, k_d)$: training error

$$ error_{\text{train}}(h) = \frac{1}{d} \sum_{i=1}^{d} L(h(x_i), k_i) $$

with loss function $L(c, k) = 0$ if $c = k$ and $L(c, k) = 1$ otherwise

- entire distribution \mathcal{D} of data (x, k): true error

$$ error_{\mathcal{D}}(h) = P(h(x) \neq k) $$

Definition Hypothesis $h \in H$ overfits training data if there is an alternative $h' \in H$ such that

$$ error_{\text{train}}(h) < error_{\text{train}}(h') \quad \text{and} \quad error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h') $$
Overfitting in Decision Tree Learning

- The accuracy is estimated on a separate test set.
- Learning produces more and more complex trees (horizontal axis).
Avoiding Overfitting

1. How can we avoid overfitting?
 - Stop growing when data split not statistically significant (pre-pruning)
 - e.g. in C4.5: Split only, if there are at least two descendant that have at least n examples, where n is a parameter
 - Grow full tree, then post-prune (post-prune)

2. How to select “best” tree:
 - Measure performance over training data
 - Measure performance over separate validation data set
 - Minimum Description Length (MDL): minimize $size(tree) + size(misclassifications(tree))$
Reduced-Error Pruning

1. An example for post-pruning
2. Split data into *training* and *validation* set
3. Do until further pruning is harmful:
 (a) Evaluate impact on *validation* set of pruning each possible node (plus those below it)
 (b) respective node is labeled with most frequent class
 (c) Greedily remove the one that most improves *validation* set accuracy
4. Produces smallest version of most accurate subtree
5. What if data is limited?
Rule Post-Pruning

1. Grow tree from given training set that fits data best, and allow overfitting
2. Convert tree to equivalent set of rules
3. Prune each rule independently of others
4. Sort final rules into desired sequence for use
 - Perhaps most frequently used method (e.g., C4.5)
 - allows more fine grained pruning
 - converting to rules increases understandability
Converting A Tree to Rules

IF \((Outlook = Sunny) \land (Humidity = High) \) THEN \(PlayTennis = No \)
IF \((Outlook = Sunny) \land (Humidity = Normal) \) THEN \(PlayTennis = Yes \)

\[\ldots \]
Special Aspects: Attributes with Many Values

Problem:

- If attribute has many values, *Gain* will select it
- For example, imagine using Date as attribute (very many values!) (e.g. $Date = Day_1, \ldots$)
- Sorting by date, the training data can be perfectly classified
- this is a general phenomenon with attributes with many values, since they split the training data in small sets.
- but: generalisation suffers!

One approach: use *GainRatio* instead
Special Aspects: Gain Ratio

Idea: Measure how broadly and uniformly A splits the data:

\[
SplitInformation(S, A) \equiv - \sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}
\]

where \(S_i\) is subset of \(S\) for which \(A\) has value \(v_i\) and \(c\) is the number of different values.

Example:

- Attribute 'Date': \(n\) examples are completely separated. Therefore:
 \[
 SplitInformation(S, 'Date') = - \sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = - \log_2 \frac{1}{n} = \log_2 n
 \]

- Other extreme: binary attribute splits data set in two even parts:
 \[
 SplitInformation(S, Data) = - \sum_{i=1}^{2} \frac{1}{2} \log_2 \frac{1}{2} = - \log_2 \frac{1}{2} = 1
 \]

By considering as a splitting criterion the

\[
GainRatio(S, A) = \frac{Gain(S, A)}{SplitInformation(S, A)}
\]

one relates the Information gain to the way, the examples are split.
Special Aspects: Attributes with Costs

- Consider
 - medical diagnosis, *BloodTest* has cost $150
 - robotics, *Width_from_1 feet* has cost 23 sec.
- How to learn a consistent tree with low expected cost?
- One approach: replace gain by
 - Tan and Schlimmer (1990): \(\frac{Gain^2(S,A)}{Cost(A)} \)
 - Nunez (1988): \(\frac{2Gain(S,A) - 1}{(Cost(A) + 1)^w} \)
- Note that not the misclassification costs are minimized, but the costs of classifying
Special Aspects: Unknown Attribute Values

- What if an example x has a missing value for attribute A?
- To compute gain (S, A) two possible strategies are:
 - Assign most common value of A among other examples with same target value $c(x)$
 - Assign a probability p_i to each possible value v_i of A
- Classify new examples in same fashion
Summary

• Decision trees are a symbolic representation of knowledge
• → Understandable for humans
• Learning:
 – Incremental, e.g., CAL2
 – Batch, e.g., ID3
• Issues:
 – Pruning
 – Assessment of Attributes (Information Gain)
 – Continuous attributes
 – Noise